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Abstract
Smart home systems are designed as platforms for connecting sensors, home appli-
ances, and devices to exchange data and, ultimately, to provide useful services to 
home residents. However, such systems are vulnerable to Cybersecurity attacks that 
can affect the reliability and integrity of the delivered services. Sensors, planted at 
smart homes or equipped with smart appliances, are highly exposed to identity theft. 
Intruders can recognize through the understanding of the exchanged data, their loca-
tions, or knowing their associated services. Such information might make the home 
resident vulnerable to life attacks. Therefore, protecting sensors identities in smart 
home systems is of high interest in this domain. This paper introduces a novel tech-
nique that protects sensors’ identity from being recognized through cordless com-
munication environments. Our proposed approach utilizes a three-phase technique 
that controls a synchronized queue among connected sensors and keeps their iden-
tity hidden from outsiders. The proposed approach preserves the linearity of time 
that is required to manage the protection of the home network. To validate the per-
formance of our proposed approach, we conducted experiments on four different 
smart homes datasets. Furthermore, we performed a sensitivity analysis to measure 
how our proposed approach is affected by different environmental variables. The 
results indicated that the proposed approach provides a significant performance in 
protecting sensors identities in smart home area networks. Furthermore, during the 
sensitivity analysis, we found that our proposed technique’s performance is highly 
affected by the threshold value that defines each sensor’s time interval.
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1 Introduction

Due to the advancements in internet-of-things (IoT) technologies and their infra-
structures, the proliferation of smart home services is gaining greater momentum 
across several ICT industries. IoT-based smart home systems combine heterogene-
ous ubiquitous devices and appliances that are connected together in order to pro-
vide smart services to homes’ inhabitants [1]. For instance, such smart services 
can monitor power consumption, control smart appliances, or recognize residents’ 
activities to provide healthcare services or detect critical medical conditions. As 
homes become more intelligent, more complex and technology dependent services 
appear to exist. Figure 1 shows an architectural design of a smart home system, in 
which multiple heterogeneous sensors are installed to recognize elderly residents’ 
activities.

The home area network (HAN) defines the connection topology, in which sen-
sors report their readings back to some central unit such as a server or a cloud. 
Several HAN network technologies are used in existing smart homes, such as X10, 
ZigBee, and Z-wave. X10 is a protocol that allows for remotely controlling appli-
ances at smart homes [2]. It involves short-distance radio frequency that enables fast 
communication between transmitters and receivers. On the other hand, ZigBee and 
Z-wave support mesh network topology, in which there is no single path for the mes-
sage to get to its designated destination [3, 4]. As technology converges and the cost 
of connectivity decreases dramatically, HANs are always connected to the internet 
via wireless mediums. However, such always-on connectivity raises Cybersecurity 
threats where HANs could be vulnerable to intruders’ attacks [5, 6].

Existing wireless network technologies are vulnerable to espionage or van-
dalism threats. This may lead to exploit this vulnerability to recognize sensors’ 
identities since the wireless communication mediums are public [7]. Therefore, it 
allows for identifying the life patterns of smart homes’ residents. Consequently, 
this may result in a cybersecurity breach that affects individuals’ privacy or leads 
to cybercrimes. Specifically, intruders try to learn the behavior of inhabitants by 
identifying the functionalities of sensors that have been installed at homes. This 

Fig. 1  Smart home systems
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may lead to significant privacy issues that might cause dangerous crimes, facili-
tates whaling (a phishing attack that targets high profile individuals), or leaks sen-
sitive information about homes’ residents. Sensors’ identity theft in smart homes 
is the process of identifying the types of the installed sensors, which results in 
discovering the events or activities that have been performed by a homes’ resi-
dents. Such knowledge allows intruders to commit fraud or other types of crimes. 
Furthermore, knowing sensors’ identities could manipulate the integrity of broad-
casting data.

Current literature paid more attention to research solutions that preserve peoples’ 
data privacy while ignoring the devices that people use in their daily activities in 
smart homes. Such ubiquitous equipment can easily lead to useful knowledge, which 
breaches the privacy of people as well. For instance, in [8] researchers investigated 
the preservation of users’ privacy in social big data. Other research proposed a novel 
technique for securing users’ privacy in smart mobile applications [9]. While in 
[10], researchers utilized an authentication method to preserve the privacy of users 
who benefit from IoT services.

However, a rare interest has been noticed in preserving sensors’ identities that are 
embedded in smart devices and appliances. Research in [11–14] have focused on 
several authentication methods to mitigate the risk of data breaches. While authen-
tication and authorization paradigms have proven their effectiveness in preventing 
unauthorized access to network activities, surpassing such techniques becomes eas-
ier as intruders interrupt wireless signals and sniff data packets from the open space, 
not edge nodes.

This paper introduces a framework for protecting sensors’ identities in smart 
homes using a novel data-driven technique. The proposed methodology defines the 
sensor’s identity problem in smart home environment as a binary classification prob-
lem, which measures how likely an intruder can predict the identities of smart home 
sensors. Our proposed approach relies on defining an extra data-level, which parti-
tion sensor readings into a set of scrambled signals that, in turn, can be aggregated 
into a meaningful and readable record at the destination. The proposed protocol pre-
serves the identity of the data source while keeping data granularity at lower levels. 
In other words, it does not add extra load on the network medium.

Given a set of sensors that are connected via HAN in a smart home such as 
H =

{

s1, s2,… , sn
}

 and a set of readings that have been resulted from each type of 
these sensors such as Sk =

{

dk,1, dk,2,… , dk,l
}

 , the set of all possible data that might 
be generated from this network is defined by the function H ⋅ S . Furthermore, we 
define the function as follows:

Through this research, we will prove that f
(

H ⋅ Sk
)−1 is the inverse of the original 

function with extremely low probability of being detected or predicted by intruders. 
Moreover, we will test our proposed methodology using well-known and efficient 
binary classifiers to measure its performance in terms of misclassification rate, loss 
function, and the sensitivity of our proposed methodology to running time, detection 
rates, enhancements, and its effect on each classifier.

(1)f
(

H ⋅ Sk
)

= H ×
⋃

(i = 1)Ndk,i
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This paper is organized as follows: Sect. 2 discusses the related work in the lit-
erature and highlights the contribution of this research as compared to existing ones. 
Section 3 introduces and explains the proposed methodology. Section 4 illustrates 
the experiments and the anticipated results. Finally, Sect. 5 concludes the research 
work.

2  Literature Review

This section discusses the related research from three perspectives: the communica-
tions among smart home devices and appliances, the existing research on identity 
theft, and the application of data-driven solutions to the identity theft problem in 
smart homes.

Home area networks have been developed to define the operational connectiv-
ity among devices and appliances at smart homes. The main differences of such 
interconnectivity are the need to connect several equipment with fast transmission 
medium, reliable connection, low-load, and ad-hoc connectivity that allows for mul-
tiple and heterogeneous nodes [15]. HANs have been successfully implemented to 
monitor the daily operations of home appliances, such as turning the light on or off, 
controlling the home temperature, or providing voice command system to monitor 
home appliances.

Recent advances of IoT technologies added another level of complexity; it is 
the need to collect data and make the decision based on the behavioral patterns of 
home inhabitants. In other words, the operations of different appliances became no 
longer independent. In addition, homes are also connected to other homes, hospitals, 
schools, cars, and other data sources to formulate smart cities [16]. Such complexity 
evolves the concept of HAN to include extra services to cope with current technol-
ogy and the emerging need for smart services.

Connectivity in an ad-hoc environment, in which new appliances can be added, 
and their locations are changing over time, has been handled through embedding 
appliances with wireless sensors [17]. Consequently, the open spectrum medium of 
wireless sensors communications raises the concerns of security and privacy issues 
[18]. For this reason, communication protocols for HANs have been developed to 
provide the required functionality, specifications, and preserve the privacy of such 
networks.

ZigBee is a bidirectional radio frequency protocol that adopts the wireless net-
working standards of IEEE 802.15.4. ZigBee technology has been widely used in 
developing HANs as it provides low data transmission communication and, con-
sequently, long-life battery [19]. Since ZigBee has been articulated on the top of 
wireless mediums, its designated architecture makes it subject to intrusion attacks as 
all appliances are connected via a single coordinator (controller). In addition, con-
necting ZigBee networks to an external internet connection or Wi-Fi requires extra 
equipment and complexity, which makes ZigBee not suitable for IoT connectivity 
standards.

On the other hand, Wi-Fi provides high transmission rates as compared to Zig-
Bee; permitting appliances that require streaming, synchronous communications, 
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and fast response to function in smart homes [20]. Wi-Fi is also a bidirectional radio 
frequency protocol; implements IEEE 802.11 standards. While Wi-Fi is considered 
one of the most reliable and trusted connectivity medium, it is prone to interference 
due to the open spectrum environment of wireless communications.

To overcome intrusions, several researches have investigated the application of 
a secure layer on RFID (Radio Frequency Identification) technology [21], in which 
identification is performed through RFID tags. Unfortunately, it is hard and ineffi-
cient to replace sensors embedded in appliances with RFID tags to formulate an ad-
hoc network. Furthermore, IoT connectivity seems impossible with RFID protocol, 
which relies on EPC (Electronic Product Code) protocol that has been developed to 
track items rather than facilitate communication among devices.

The process of identity theft attack (ITA) is based on scanning the networks to 
detect unsecured and weakly configured connections. Once detected, the attacker 
copies the identity and uses it to access private information. The purpose of attacks 
is varying [22] and can be classified into the following: obstruction of data, counter 
international cyber security measures, retardation of decision making, denial in pro-
viding public services, abatement of public confidence, and other goals.

Our problem is complicated in terms of securing the type of sensor (device) 
rather than securing the communicating data; protecting sensor identity. Specifi-
cally, in smart homes, if the attacker detects the functionality of a sensor, it will be 
easy to understand the behavior of smart home’s resident [23]. Our goal is to protect 
the identity of the sensors rather than protecting the data generated by them.

There are several solutions in the literature with techniques to detect such types of 
Cybersecurity attacks. Unfortunately, most of these techniques are not applicable for 
securing sensor identity, which is the primary constituent of modern smart homes. 
For instance, the well-known solution that keeps track of neighbors with their loca-
tions so that the designated base station can regulate the communication [24], is not 
applicable in this domain. Such a traditional solution secures the communicating 
data rather than the identities of sensors [25].

TOR-based anonymous communication among smart home appliances has been 
proposed in [26], in which, authentication phase has been omitted. This approach 
is based on public-key cryptography, which is very expensive in terms of process-
ing time and memory. Another interesting solution is the lightweight authentication 
sessions that have been proposed in [27]. It relies on establishing a token-based pro-
tocol to legitimate the identity of a smart device in which a centralized state table 
is kept to manage this process. The proposed solution guarantees communication 
security while ignoring anonymity.

Santoso and Vun [28] have proposed a more specific solution to IOT systems by 
considering the user convenience aspect. The proposed solution is based on estab-
lishing a shared key among different IOT sensors using Elliptic Curve Diffie Hell-
man (ECDH) primitive. In [29] and [30], multi-level and multi-tier schemes were 
implemented to expand the ECDH functionality. Neither ECDH nor its expanded 
versions guarantee to keep the type of sensor secure from attackers.

The easiest way to detect the type of wireless sensors embedded in smart devices 
at modern smart homes is the analysis of the data that are generated by these sen-
sors [31]. For instance, a motion sensor on the restroom door can be interpreted as 
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the inhabitant need to count the number of times this room is used. Another sen-
sor is measuring the level of insulin of a specific resident. Simply, both facts are 
correlated, since insulin can be easily mapped to diabetes, in which going to the 
restroom is a major symptom. Therefore, the attacker can conclude that the resident 
is infected by diabetes.

Data-layer technologies can provide simple and efficient solutions to handle the 
identity theft of sensors in smart homes. The ultimate goal of such solutions is to 
hide the semantic of communicating data; rather than hiding their values [32, 33]. 
However, detecting the semantic of communicating data is not a simple task. Recent 
advances in machine learning techniques (such as deep learning) facilitate detecting 
behaviors through data history.

Another important direction is the adoption of time sensitive networks [34], 
which can be utilized to centralize the control and management of traffic streams as 
a scheduling problem. Such configuration enhancement would positively minimize 
the overall communication time and allows for enforcing security rules among all 
connected sensors. Although this research adopted a distributed algorithmic meth-
odology, it could be upgraded, in the future, to more centralized architecture.

Table 1 summarizes the related work and compares among existing methods in 
terms of their contributions and research directions.

3  Sensors Identity Protection

This section introduces our methodology to protect sensors’ that are installed in a 
home area network. The proposed methodology is driven by a verification phase, 
in which it has been verified during the modeling of every phase against reliability 
issues such as concurrency. First, we describe the common communication model 
in the home area network, which clarifies the implementation environment. Next, 
we illustrate how the attacker can benefit from such environment to identify the sen-
sors and then learn some meaningful information. Finally, we provide algorithmic 
descriptions to our proposed technique that detailed the execution of different phases 
in addition to the way we verify each of them.

3.1  Communication Model

Home Area Networks (HANs) are described as networks in which several smart 
home appliances are connected to communicate fine-tune messages. While the com-
munication topology and installation architecture are not a measure contribution of 
this research, this section shows the basic components of HANs that affect our per-
spective toward preserving the privacy of the smart sensors as part of such network. 
Figure  2 shows the general architecture of HAN that consists of connected smart 
appliances and the gateway, through an internal modem, to the internet.

Given a set of appliances in a smart home, where every appliance is equipped 
with a special-purpose sensor and maintains a look-up table. The set of sensors 
that are attached to home appliances are defined as D =

{

d1, d2,… , dn
}

 . Once an 
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appliance joins the network, the gateway controller assigns a unique number that 
uniquely identifies each appliance in the network (network address). The set of iden-
tifiers is defined as follows:ID =

{

id1, id2, idn
}

 . Furthermore, during the initializa-
tion phase, an appliance constructs a look-up table that maintains information about 
other home appliances, type of messages, and the responding protocol.

As shown in Fig. 2, two communication schemes apply to this network: internal 
and external. Internal communications follow the IoT standard communications, in 
which devices are communicated directly (P2P). On the other hand, external com-
munications are performed via the HAN gateway to connect the home network with 
external ones (the Internet). Communication messages, in this network, are follow-
ing a predefined protocol. A message carries on information from the sender that 
is well-known to the receiver. For instance, a sensor broadcasts the temperature of 
the room. Once this message has been received by the air-conditioner, it will cool 
or heat the room, or even turn the power off. Accordingly, every device has its own 
reaction against broadcasted messages at the smart home.

The semantic of the data attached in each communicating message is totally 
dependent on the source sensor; i.e. the device ID. In other words, the receiver 
cannot interpret the message correctly and pick-up the appropriate reaction with-
out knowing the ID. The traditional privacy preserving model relies on encrypt-
ing the communicating messages using the well-known public-private keys frame-
work. Since every appliance has a public key and its own private one, it can easily 
identify the message content. Formally, given a message mID and public key Ck , 
the sender applies Enc

(

mID,Ck

)

 to encrypt the message, while the receiver applies 
Dec

(

mID,Ck

)

 to reverse the encryption. Figure 3 simplifies the secured communica-
tion paradigm in HANs.

3.2  Sensor Identity Attack (Use‑Case)

Each home appliance has unique characteristics that lead to identifying its func-
tionality. Data analysis and machine learning tools make it easy to analyze the 
patterns of communicating data to identify their semantics, which raise the vul-
nerability that attackers may exploit it. Although encrypting communicating 

Fig. 2  Smart area network (HAN)
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messages helps preserve the data privacy, it will not prevent an attacker from 
learning their identity as the source location of these sensors cannot be hidden. 
Sensor identity, in this context, is defined as the distinguished job that a sen-
sor provides when it is actively functioning. For instance, it is not that hard for 
attackers to predict the identity of home appliances in the kitchen. It is a matter of 
time to identify every device and its associated sensors once the attacker knows 
the source of messages. In this case, an intruder can collect useful information 
that is not directly related to exchanged data; it is enough for the attacker to know 
that there are some appliances have turned-on in the kitchen in a specific time 
to conclude that the resident is at home or the other rooms are empty. Figure 4 
explains the way an intruder can attack the network through the cordless commu-
nication scheme.

To formulate the use-case, we are looking for a technique to frequently change 
sensors’ identity overtime. While, at the same time, all other home appliances are 
still able to identify each other. In other words, we are trying to benefit from the 
fact that internal communications can be highly controlled and manipulated so 
that external intruders cannot understand their paradigms.

Fig. 3  Secured framework for communicated messages

Fig. 4  Identity attacks
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3.3  Identity Preserving Protocol

This section explains our proposed 3-phase technique for setting up the environment 
and harmonizes the implementation of an identity preserving algorithm among other 
communication components. Mainly, the three phases are: initialization, conceal-
ment, and communication. The following subsections provide a detailed algorithmic 
description of each phase.

3.3.1  Initialization Phase

This phase presents the initial actions to set up the sensors into the home area net-
work. The process involves defining the essential parameters and actions that should 
be executed to deliver the required services. Algorithm 1 defines a queue that main-
tains information about every sensor in the network. This queue holds the actual infor-
mation about every sensor and is required to be updated every specific amount of time. 
Line 2 defines the private key of the current sensor as a function of the public key and 
certificate. It follows the traditional IEEE standards of defining public-private keys. 
Line 3 defines the time variable; which is associated with the current sensor and does 
not require to be synchronized with similar variables in the sensors network. For these 
lines (2, 3, and 4), the time complexity that is required to execute them is O(1).

Line 4 defines a join function that allows the sensor to join the home network. 
The joining process involves three actions. The first one is to set up networking 
addresses and a dedicated connection to the network gateway. The second action 
is to collect information about neighboring sensors and push them into the sensor’s 
queue. The third action is to establish a permanent control connection in which com-
mands and acknowledgments are passing through. The time complexity to run these 
actions is O(N) , where N is the total number of sensors in the home area network.
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To protect sensor identity, the initialization algorithm uses a random integer at 
each time. Lines 5, 6, and 7 are responsible for picking up a random integer that 
will be used later to encrypt the identity of the sensor. Consequently, this will hide 
the pattern of the sensor’s activities. The time complexity that is required to execute 
both lines is O(1) . The threshold variable defines the range of numbers that can be 
assigned to the time variable. The higher the value of the threshold variable implies 
a lower chance to recognize the identity of the sensor. However, it plays a signifi-
cant role in the performance of the communication, since the correlation between 
the threshold value and the communication performance is strongly negative. Line 
8 broadcasts an acknowledgement packet confirming the new arrived information to 
other neighboring sensors with time complexity O(1).

3.3.2  Concealment Phase

During this phase, every sensor is used to hide its functionality, broadcast, and 
receive others’ information. This thread is executed concurrently and is strictly 
dependent on the environment settings. In Algorithm 2, Lines 1 to 3 are repeatedly 
used to generate a random time value, encrypt sensor’s identity, and broadcast infor-
mation to other neighboring sensors.

The while-loop in this algorithmic pseudo code is used to receive identities’ 
acknowledgements from other sensors, decrypt them, and update the sensor’s queue. 
Furthermore, the sensor acknowledges every packet to guarantee reliability. The time 
complexity (for N sensors) that is required to execute this thread is O

(

N2
)

 , since the 
function ‘receive’ requires N times and the function ‘push’ requires N times as well.
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3.3.3  Communication Phase

The main communication module defines how sensors execute the whole three 
phases sequentially and/or concurrently. Further, it consists of three threads that 
are responsible for sensing, receiving, and synchronizing the maintenance of sys-
tem queues. As shown in Algorithm 3, at the very beginning, the module is initial-
izing the environment and setting the time-threshold value. This value is globally 
accepted. The first thread is responsible for sensing the environment and reporting 
back the results in an encrypted message. The receiving thread is responsible for 
waiting until other neighboring sensors send their information. The synchronization 
thread, finally, maintains the system queues.

The concurrent implementation of these three threads raises the problem of inter-
leaving, in which a thread may access the same resource while it is used by another 
one. Threads, in this context, are triggered according to the sensing environment. 
For instance, the sensors are sat to read the environment every amount of time. Each 
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sensor has its own setting. On the other hand, once a sensor reports a change of 
its identity, others should synchronize their queues. Thus, the interleaving among 
threads may often occur during the lifetime of the network.

3.4  Model Verification

Each phase of the proposed protocol is designed to be implemented as an embed-
ded code in every cooperative sensor. Therefore, sensors may run similar threads 
simultaneously, which raises the problem of how main parameters can be syn-
chronized. For instance, queues’ values must be known for other sensors at the 
end of the sensing phase.

Since concurrency is a major issue, in this technique, model verification is 
necessary for ensuring that the system handles interleaving among its running 
threads. For this reason, we use model checking as a tool to ensure that the pro-
posed technique achieves the overall system specifications in terms of temporal 
aspects. As described in [35, 36], model checking verification is a tool that can 
detect whether a model conforms to a specific requirement specification or not. It 
cannot tell that the system is error free, but, on the other hand, it can tell with a 
counter example that the system violates a given requirement.

To involve model checking in our design, we use UPPAAL [37] to formally 
describe the interactions among threads in our proposed technique. UPPAL 
defines the system as a set of states and transitions. The tool runs all models 

Fig. 5  UPPAL models of systems threads
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concurrently and tests their verifiability in terms of a given set of temporal speci-
fications. Figure 5 shows the finite-state automata for every thread.

For this reason, we designed 10-specifications, shown in Table 2, to verify that 
our proposed technique maintains reliability in terms of concurrency, resource 
sharing, and safety. Our modeling of the whole technique was controlled by 
checking the temporal specifications of this system. Eventually, the proposed 
technique proved its ability to maintain concurrency during execution. The prop-
erties were used are: Mutex, Deadlock, Starvation, Liveness, Activation, Reach-
ability, and Safety.

4  Experiments and Results

This section describes and explains a set of experiments that have been conducted to 
evaluate the performance of the proposed technique. There are mainly two types of 
experiments: performance evaluation and sensitivity analysis. The first experiment 
is focusing on testing how our proposed technique enhances the misclassification 
rates based on the assumption that sensors identities would be hard to be identified 
if existing data features do not clearly point to them. The second experiment, on the 
other hand, shows how our proposed technique is sensitive to the threshold value 
range and queue size.

Table 2  System temporal specifications

Table 3  Description of datasets Dataset name Size # Activities # Sensors

Tulum 1,048,576 16 20
Cairo 158,409 10 25
Milan 433,665 15 33
Kyoto 64,250 5 25
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To perform such experiments, we applied our technique on four well-known data-
sets that have been collected from smart homes in four different countries obtained 
from CASAS project [38]: France-Tulum, Egypt-Cairo, Italy-Milan, and Japan-
Kyoto. Every dataset comprises instances covering a finite set of activities. Actions 
are generated using motion, temperature, or detection sensors. Table  3 briefly 
describes the datasets. Note that every dataset has an attached map that shows the 
location of sensors, which can be interpreted as the location where a specific action 
triggers.

Instances in these datasets represent the daily activities of a single resident; 
they have been collected and labeled manually, so that experiments could be 
supervised using already annotated instances. Note, only active sensors have been 
used, because some sensors were not active in the testbed during the data collec-
tion process. Figure 6 shows the planted sensors in the Milano smart home.

Fig. 6  The distribution of the sensors in the smart home (Milano-Italy)
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Moreover, we also conducted the preprocessing task to assemble all actions 
that are related to each activity; since each activity consists of a set of actions. 
This preprocessing task is known as data segmentation, in which each segment is 
a record that aggregate information from multiple actions to represent a specific 
activity.

Finally, all experiments have been conducted using Python 2.2 and the machine 
specifications are as follows: Intel(R) Core(TM) i5-4200  M CPU@2.50  GHz, 
Physical RAM4.00 GB, Windows 7 Professional Edition. Moreover, data visuali-
zation and results analysis have been developed using MATLAB.

4.1  Performance Analysis

In this section, we present our experiments to measure the performance of the pro-
posed technique. We designed the experiment as a binary classification problem to 
measure the ability of different classifiers to identify the sensors’ identities (class 
labels). For this reason, we chose the misclassification rate (MC) as a measure of the 
classifiers’ disability for recognition (i.e. the higher the MC value implies the higher 
the disability of a classifier to identify the sensor identity). The misclassification rate 
is defined as follows:

Where TP is the true positive value, FN is the false negative value, FP is the false 
positive value, and TN is the true negative value. The misclassification rate shows 
how our approach can confuse these classifiers (intruders) in recognizing the sen-
sors’ identities. First, we ran the classifiers on the original data and measure the mis-
classification rates. Next, we applied our technique on the original data at different 
threshold values and feed the classifiers with the new datasets to measure the mis-
classification rates after applying our proposed technique. To implement this experi-
ment, we chose six-classification algorithms: K-Nearest-Neighbor (KNN), Hidden 
Markov Model (HMM), Support-Vector Machine (SVM), Decision Tree base clas-
sifier (J48), Naïve Byes (NB), and Conditional Random Field (CRF). These algo-
rithms were widely applied in similar research such as [1, 5, 16, 17]. Moreover, we 
used to split every dataset into training and testing sets (2:1 ratio) in which both of 
them were fixed; to prevent testing the classifiers on different testing sets.

As shown in Table 4, the misclassification rates have been increased significantly 
as the threshold value increased. This indicates that at high threshold time inter-
val, the proposed technique was able to achieve high misclassification rates, which 
implies its ability to decrease the detection rates. In other words, an intruder who 
owns the features or the sensors data has a lower chance to recognize the source 
identity.

We performed additional experiment to ensure that the overall performance of the 
proposed technique satisfies our goal; minimizing the detection rate of given classi-
fiers. In this experiment, we used to apply the loss rate formulas to provide an indi-
cator of how it is complex to identify an entity using existing features. Indeed, the 
higher the loss rate values the better for protecting the class labels (sensor identity). 

(2)MCrate = (FP + FN)∕(TP + FN + TN + FP)
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The loss rate is defined as the square root of the TP complement and the FP value as 
follows:

Note that the value of the loss rate is greater than or equal zero; the maximum 
might exceed 1 as it depends on the TP value. The lower the TP value the more 
chance of loss rate to exceed 1.

As shown in Table 5, for all classification algorithms and datasets, the loss rates 
have been increased significantly. This implies that applying the proposed technique 
significantly complicated the process of recognizing the class labels (sensors’ iden-
tities). On the other hand, we noticed that the loss rate affected by the shape of the 
datasets; the dataset with more activities and sensors achieves higher loss rates as 
compared to others.

(3)Loss =

√

(

[1 − TP]2 + [FP]2
)

Table 4  Misclassification Rates of Data Classifiers at different threshold values

Algo. Dataset MC org MC
Th = 100

MC
Th = 200

MC
Th = 300

MC
Th = 500

MC
Th = 700

MC
Th = 1000

KNN Tulum 0.40 0.50 0.62 0.78 0.85 0.94 0.95
Cairo 0.33 0.41 0.51 0.64 0.71 0.85 0.93
Milan 0.38 0.47 0.59 0.73 0.81 0.89 0.97
Kyoto 0.27 0.34 0.43 0.53 0.58 0.70 0.77

HMM Tulum 0.29 0.36 0.45 0.56 0.62 0.74 0.82
Cairo 0.26 0.33 0.41 0.51 0.56 0.68 0.96
Milan 0.28 0.35 0.44 0.55 0.60 0.72 0.79
Kyoto 0.21 0.26 0.32 0.40 0.61 0.73 0.80

SVM Tulum 0.18 0.22 0.28 0.34 0.52 0.62 0.88
Cairo 0.14 0.18 0.23 0.28 0.42 0.76 0.84
Milan 0.15 0.19 0.24 0.30 0.45 0.80 0.88
Kyoto 0.13 0.16 0.20 0.26 0.38 0.69 0.98

J48 Tulum 0.33 0.41 0.51 0.64 0.70 0.84 0.93
Cairo 0.29 0.36 0.45 0.56 0.62 0.74 0.82
Milan 0.31 0.39 0.48 0.60 0.66 0.79 0.87
Kyoto 0.27 0.33 0.41 0.52 0.57 0.68 0.97

NB Tulum 0.23 0.29 0.36 0.45 0.68 0.82 0.90
Cairo 0.09 0.11 0.14 0.18 0.27 0.48 0.68
Milan 0.18 0.23 0.28 0.35 0.53 0.64 0.90
Kyoto 0.11 0.14 0.17 0.21 0.32 0.58 0.82

CRF Tulum 0.26 0.32 0.40 0.50 0.55 0.66 0.94
Cairo 0.25 0.31 0.39 0.48 0.72 0.87 0.96
Milan 0.19 0.24 0.29 0.37 0.55 0.66 0.94
Kyoto 0.09 0.11 0.14 0.17 0.26 0.46 0.66
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Finally, we conducted statistical testing to measure the significance of the dif-
ferences that have been achieved after applying the proposed 3-phase algorithm. 
At 99% confidence, the differences (enhancement and loss rates) that have been 
achieved were statistically significant at p < 0.001.

4.2  Sensitivity Analysis

This section discusses how the threshold value affects the overall performance of 
the proposed technique in terms of time cost, detection rates, enhancements, and its 
effect on each classifier. The proposed technique has benefited from the threshold 
parameter to expand the range of scrambled values that could be assigned as sensors 
used to encrypt their identities over a time ranges from zero to the threshold value. 
For this reason, we consider how this parameter affects the physical running time in 
terms of milliseconds. As shown in Fig. 7, the actual time that is required to execute 
the proposed algorithms increases exponentially until a certain threshold value, then 

Table 5  Average loss rates at different threshold values

Algorithm Dataset Loss inOriginal Data Loss in Converted Data

KNN Tulum 0.716 0.920
Cairo 0.678 0.993
Milan 0.707 0.985
Kyoto 0.646 0.936

HMM Tulum 0.654 0.963
Cairo 0.642 0.941
Milan 0.652 0.995
Kyoto 0.610 1.018

SVM Tulum 0.592 0.968
Cairo 0.575 0.971
Milan 0.579 1.003
Kyoto 0.568 1.063

J48 Tulum 0.677 0.935
Cairo 0.655 0.984
Milan 0.665 0.964
Kyoto 0.641 0.978

NB Tulum 0.623 0.991
Cairo 0.547 1.043
Milan 0.595 1.016
Kyoto 0.557 1.034

CRF Tulum 0.637 0.925
Cairo 0.631 0.993
Milan 0.599 1.040
Kyoto 0.545 1.034
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Fig. 7  Sensitivity of time cost to threshold values

Fig. 8  Sensitivity of detection cost to threshold values
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it became stable as the threshold value increases. This implies that at high threshold 
value, the required time to execute the 3-phase algorithm is linear.

On the other hand, we noticed that the effect of the low threshold value on the 
detection rates is low but enhanced significantly as the threshold value increased. 
Figure 8 shows that at average threshold value, the detection rate decreased sig-
nificantly; making the protection from sensor identity theft efficient and effective.

In addition, we investigated the enhancement rates that have been achieved by 
each classifier to notice their behavior against different threshold values. According 
to Fig. 9, all classifiers achieved enhancements as the threshold value increased. The 
SVM classifier achieved a higher enhancement at the high threshold value, while 
KNN achieved a higher enhancement at the lower threshold value.

Finally, we investigated how the datasets specifications (such as number of 
activities, number of sensors in the home area network, etc.) affect the perfor-
mance of different classifiers by considering different threshold values. This 
experiment is important as it gives valuable knowledge on how to pick up the best 
threshold value for specific smart home settings.

As shown in Fig. 10, KNN tends to perform better as the size of the dataset is 
smaller. The misclassification rate of Kyoto dataset (smallest size) was lower among 
other datasets, while it was the highest for Tulum (larger size). On the other hand, 
HMM (Fig.  11) showed no clear pattern on how it performs against the dataset’s 
specifications. We noticed that most datasets achieved similar MC rates at the high 
threshold value.

As it was the lowest performance in terms of MC rate, SVM (Fig. 12) tends not be 
affected by the specifications of the datasets. We believe that converting the features, 

Fig. 9  The effect of threshold value on the enhancement rates
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Fig. 10  KNN MC performance

Fig. 11  HMM MC performance
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Fig. 12  SVM MC performance

Fig. 13  J48 MC performance
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Fig. 14  NB MC performance

Fig. 15  CRF MC performance
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during the preprocessing, to formulate vectors of frequencies was the reason behind 
these results. Figure 13 shows that J48 achieved high detection as the dataset size is 
small; except in the case of Kyoto dataset at a high threshold value.

Figure 14 explains the performance of NB classifier as it appears to be affected 
by the dataset’s specifications for the largest datasets (Tulum and Milan), while the 
effect was opposite at the lowest ones (Cairo and Kyoto). CRF (Fig. 15) shows no 
pattern on how the classifier is affecting the dataset’s specifications, since the perfor-
mance fluctuated as the threshold values increased.

Accordingly, the results indicated that there are not enough proofs to conclude 
the effect of datasets specifications on the performance of the classifiers; except in 
few cases that cannot be generalized. Therefore, the proposed technique was able to 
perform well in protecting the sensors identities in smart home regardless of how the 
collected features are processed.

5  Conclusion

This paper introduces a novel approach to protect the sensors’ identities of smart 
homes. The proposed model aims to increase the security level of smart home 
devices and appliances, which reduces the risk of identifying sensors’ function-
alities. The proposed approach applied three-phase technique that manages a syn-
chronized space among connected sensors and prevents the identification of sen-
sors from outsiders. Furthermore, the proposed solution preserved the linearity of 
time required to manage the protection of the home network sensors’ identities. The 
empirical results showed significant performance enhancements in protecting sen-
sors’ identities in smart home area networks. Additionally, the experiments high-
lighted the impact of the threshold value that defines the time interval for each sen-
sor on the model performance.
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