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Abstract
Software Defined Networking simplifies design, monitoring and management of 
next generation networks by segregating a legacy network into a centralized con-
trol plane and a remotely programmable data plane. The intelligent centralized SDN 
control plane controls behavior of forwarding devices in processing the incoming 
packets and provides a bird-eye view of entire network at a single central point. The 
centralized control provides network programmability and facilitates introduction 
of adaptive and automatic network control. The SDN control plane can be imple-
mented by using following three deployment models: (i) physically centralized, in 
which a single SDN controller is configured for a network; (ii) physically distributed 
but logically centralized, wherein multiple SDN controllers are used to manage a 
network; and (iii) hybrid, in which both legacy distributed control and centralized 
SDN control coexist. This manuscript presents all these control plane architectures 
and discusses various SDN controllers supporting these architectures. We have ana-
lyzed more than forty SDN controllers in terms of following performance param-
eters: scalability, reliability, consistency and security. We have examined the mecha-
nisms used by various SDN controllers to address the said performance parameters 
and have highlighted the pros and cons associated with each mechanism. In addition 
to it, this manuscript also highlights number of research challenges and open issues 
in different SDN control plane architectures.
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1  Introduction

The ever-increasing demand of online services like cloud computing [1], big data 
applications [2] and automated networking platform for IOT [3] have stretched tra-
ditional networks to breaking points. With the unprecedented growth of such online 
services, the network industry is compelled to change its conventional architecture. 
Open Networking Foundation (ONF) [4] proposed Software Defined Networks 
(SDN) which supports network programmability and automation of network opera-
tions. This networking paradigm fosters innovations by separating the data and 
control plane, removing hurdles for advances in each plane. SDN [5] is a radical 
approach for next generation networks which provides bird-eye view of entire net-
work at a centralized controller and promotes use of open and programmable for-
warding devices. The multilayered architecture of SDN comprising of forwarding, 
control and management plane is shown in Fig. 1.

The bottom layer is termed as forwarding plane or data plane. It consists of dis-
tributed forwarding devices usually switches that forward packets as per the flow 
rules communicated by the remote controller. The open vendor-agnostic interface 
between control and data plane is termed as southbound interface. This interface is 
used by the controller to communicate flow rules and to retrieve flow statistics infor-
mation from the data plane devices. The most widely used southbound interface is 
OpenFlow [6, 7].

The middle layer or control plane consists of software-based SDN controller(s) 
which controls and manages the underlying data plane devices and defines traffic 
flows as per the network policy. The control plane can be implemented as a single 
physically centralized controller or distributed but logically centralized controllers 
or an amalgam of centralized SDN control and legacy distributed control. The con-
trollers use east and westbound interfaces to exchange inter-domain network infor-
mation, as shown in Fig. 1. As per the authors in [8], the eastbound interface is used 

Fig. 1   SDN architecture and SDN interfaces
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between two SDN controllers whereas the westbound interface is used to exchange 
information between SDN control plane and legacy distributed control. Since the 
main focus of this manuscript is on SDN control plane, a detailed account on it is 
provided in the next section.

The top layer or application layer is also termed as management plane. It com-
prises of various SDN applications which are designed to implement specific con-
trol and management strategies. Traffic engineering (TE), load balancing, firewalls, 
etc., are some common SDN applications. These control applications use open 
northbound interface to interact with the SDN control plane. The northbound inter-
face can be compared to win32 or POSIX standard of operating systems, provid-
ing abstractions that guarantee programming language and controller platform inde-
pendence. Keeping in view the importance of this interface, the ONF formulated a 
working group namely Open Networking Foundation North Bound Interface Work-
ing Group (NBI-WG) [9] for standardization of this API.

SDN is an agile, programmable and centrally controlled architecture which 
supports vendor-agnostic open devices. To meet changing traffic demands in next 
generation networks, the logically centralized controller in SDN enables network 
administrators to dynamically regulate network-wide traffic flows. With the help of 
centralized SDN control, dynamic network topologies can be defined in data cent-
ers and policy based routing can be implemented in service providers or enterprise 
networks. Numerous mechanisms have been used in various controllers to provide a 
scalable, fault-tolerant, consistent and secure control platform. The main aim of this 
paper is to perform an analysis of such mechanisms with emphasis on prospective 
trends which may drive further research in SDN control plane.

1.1 � Contributions and Related Work

The main aim of this manuscript is to survey the industrial/academic projects and 
publications related to SDN controllers implemented and published over the last one 
decade. We have presented a systematic discussion of various prominent SDN con-
trollers and have analyzed such controllers in terms of scalability, reliability, consist-
ency and security. To the best of our knowledge, this is the first manuscript which 
considers four performance parameters of SDN controllers and analyzes a wide 
range of SDN controllers. The main contributions of this survey are as follows:

•	 Comprehensive background of SDN control plane: We present a detailed account 
on SDN control plane, SDN control plane architectures and classification of vari-
ous SDN controllers based on their architecture.

•	 Research challenges in SDN control plane architectures: The research challenges 
associated with different SDN control plane architectures are identified and 
emphasized.

•	 Evaluation of SDN Controllers: Most prominent SDN controllers are evaluated 
in terms of following four performance parameters: scalability, consistency, reli-
ability and security.



	 Journal of Network and Systems Management (2021) 29:9

1 3

9  Page 4 of 59

•	 Classification of Hybrid SDN models: We present the classification of hybrid 
SDN models and map various hybrid SDN controllers to these models.

•	 Future research directions: We specify potential future research areas in SDN 
control plane along with recommendations on probable solutions.

Covering every aspect of SDN in a single survey is a difficult task as it is an 
intricate field. There have been numerous surveys [10–18] addressing different 
aspects of SDN paradigm including SDN’s historical perspective [11, 12], SDN 
architecture, design challenges and applications [13–18], programming lan-
guages for SDN [19], fault management in SDN [8, 20], traffic engineering with 
SDN [21, 22], security issues in SDN [23–26] and SDN applicability in diverse 
domains [27–32]. However, SDN control plane being a vital component in SDN 
architecture has been discussed as a section in some papers [10] and some sur-
veys [33–36] have limited discussion to specific controllers and have considered 
only few performance parameters.

In [33], the authors have addressed only scalability issue of SDN controllers. 
They have discussed the contributors for scalability issues in SDN architecture 
including control and data plane separation, request to a single centralized controller 
and switch-controller communication delay. Further, the authors in [33] have clas-
sified the control plane scalability approaches into two broad categories: topology 
based and mechanism based approaches. On the other hand, authors in [34–36] have 
limited the discussion to distributed SDN control plane. In [34], the authors have 
highlighted the scalability and consistency challenges in distributed SDN control-
lers, whereas authors in [35] have highlighted differences between multi-controller 
architectures and have discussed the communication mechanisms and state distri-
bution methods used in some prominent multi-controllers. Hu et  al. in [36] have 
elaborated the mechanisms proposed by researchers to handle controller placement, 
domain partition, state consistency, strategy consistency, path reliability, node reli-
ability and load balancing in multi-controller architectures. The authors have elabo-
rated the strategies and mechanisms proposed by researchers to address scalability, 
consistency and load balancing in multi-controller architecture.

Even though Hybrid SDN controllers provide transitional approach to introduce 
programmability or OpenFlow devices in traditional networks but have been least 
analyzed by the research community. Authors in [37] have explained five hybrid 
SDN models and have described their transitional and long-term design use cases. 
They have provided a tradeoff analysis of these hybrid models interms of robustness, 
scalability, deployment cost, flexibility and complexity. On the other hand, authors 
in [38] have discussed the various hybrid SDN models suitable for transition of con-
ventional networks to SDN. They have compared these models on the basis of traffic 
management, automation, investment and scalability.

Despite these surveys, none of the paper has discussed in detail the possible SDN 
control plane implementations, classification of controllers based on the architec-
ture, and mechanisms used by various controllers to address the following impor-
tant performance parameters: scalability, reliability, consistency and security. In this 
paper, we have analyzed more than forty SDN controllers in terms of said perfor-
mance parameters. The controllers discussed in this manuscript along with the year 



1 3

Journal of Network and Systems Management (2021) 29:9	 Page 5 of 59  9

of inception are shown in Fig. 2. Figure 2 also depicts the research challenges asso-
ciated with different control plane architectures.

1.2 � Paper Outline

The manuscript is organized as follows: Sect.  2 provides background information 
about SDN control plane and defines the four performance parameters. Section  3 
provides a detailed account on centralized SDN control plane, the research chal-
lenges in centralized SDN control plane and examines various centralized SDN 
controllers. Section 4 explains distributed SDN control plane, challenges in distrib-
uted SDN control plane and presents analysis of various distributed SDN control-
lers. Section  5 provides a classification of various hybrid SDN network models, 
research challenges in Hybrid SDN control plane and detailed analysis of various 
Hybrid SDN controllers. The future research perspectives in SDN control plane are 
discussed in Sect. 6 and finally the paper is concluded in Sect. 7.

2 � Background

In this section, we have presented a detailed account on SDN control plane, SDN 
control plane architectures, and relevant terminology. The performance parameters 
including scalability, reliability, consistency and security used in this manuscript to 
evaluate diverse SDN controllers are also expounded.

Fig. 2   Diverse SDN controllers and research challenges in various SDN control plane architectures
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2.1 � SDN Control Plane

The SDN control plane acts as a bridging layer between management and data 
plane. It plays a vital role in network control and monitoring. The network control 
involves programming forwarding devices as per the policy directives defined by the 
applications in management plane. On the other hand, in network monitoring, the 
control plane retrieves traffic flow statistics information from the data plane devices 
which can be analyzed by various applications in management plane, for instance, 
traffic engineering, security, etc. If congestion or a security attack is detected by 
such applications, the control plane can dynamically re-program the flow tables of 
data plane devices in such a way so that the traffic will be diverted to under-utilized 
paths or to intrusion detection system (IDS), respectively. The traffic flow statistics 
information is also useful for network provisioning to meet future traffic demands.

Most often control plane consists of a general purpose hardware executing a Net-
work Operating System (NOS). The NOS consists of basic control software neces-
sary to operate and manage a network. It provides global view of entire network 
to the applications, simplifies network programming by hiding the complex control 
logic implementation details, analogous to an operating system of a PC. In essence, 
NOS involves basic control programs necessary for topology detection and traf-
fic management. Some of the core modules commonly found in various NOSs are 
shown in Fig. 3.

The topology manager module along with the link detection module maintains 
up-to-date topology information which involves discovery of hosts, switches and 

Fig. 3   SDN controller modules
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links. The SDN controller discovers hosts, switches and links in a network with the 
help of packet_in messages, initial handshake process and LLDP protocol, respec-
tively [39]. With the help of topology information, the decision module determines 
optimal paths across the network. The two other core modules are storage manager 
and flow manager. The storage manager stores all the necessary network state infor-
mation whereas the flow manager module utilizes southbound interface to define 
and modify flow rules in flow tables. Other than these core modules, the controller 
may also have various supplementary modules like dedicated queue manager mod-
ule, statistics collector module and module manager for management of queues, flow 
statistics collection and orchestration of information exchange between various con-
troller modules, respectively.

In brief, SDN controller provides programmability, virtualization, centralized 
monitoring and dynamic network control. Providing all functions at a single central 
point simplifies job of a network operator and enables efficient network manage-
ment. However, in multi-domain networks or in large scale networks a single con-
troller may face scalability and control latency issues. In such domains, instead of a 
single centralized SDN control plane, a physically distributed but logically central-
ized SDN control plane is used. Moreover, a clean slate or green field deployment 
of SDN paradigm seems impossible with tremendous number of legacy devices 
deployed globally and proprietaries adamant to change due to cost and technical 
constraints. These factors force to use an incremental approach to introduce pro-
grammability or OpenFlow enabled devices into a traditional network (TN). Such a 
networking scenario, where there is an amalgam of legacy and OpenFlow devices is 
termed as Hybrid SDN or transitional SDN and the controller used to manage such 
a network is termed as Hybrid SDN controller [40, 41]. Therefore, in SDNs, we can 
have a single centralized SDN controller, physically distributed but logically central-
ized SDN controllers or Hybrid SDN controller as shown in Fig. 4.

2.2 � Performance Parameters

The four performance parameters we have considered to evaluate various SDN con-
trollers in this manuscript are scalability, consistency, reliability and security. The 

Fig. 4   SDN control plane implementations: a Centralized SDN control plane, b Distributed SDN control 
plane and c Hybrid SDN control
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different control architectures face different challenges with respect to the said per-
formance parameters and here we have emphasized all those challenges.

2.2.1 � Scalability

It is a multi-dimensional topic which does not educe the same meaning in every 
system. In some systems, it means parallel execution of multiple applications on 
different CPUs whereas in others, it can be optimization of resources of the sys-
tem with dynamic workload. There is no precise agreement on its definition or con-
tent [33]. However, in this manuscript, by scalability we broadly refer to control-
ler’s performance in handling flow requests, installation of flow rules in forwarding 
tables, delay incorporated to respond to flow requests. The physically centralized 
controllers try to achieve scalability by using parallelism, whereas distributed con-
trollers achieve scalability by breaking the control plane into horizontally distrib-
uted or hierarchically organized controllers. In hybrid SDN control, the scalability 
largely depends on performance of central SDN controller and efficient mechanisms 
used for interoperability between legacy distributed control and centralized SDN 
controller.

2.2.2 � Consistency

In general, consistency means having a stable and updated network wide view, 
unswerving policy update across the network and coherent fault tolerance in the net-
work. Achieving consistent network-wide view under a single centralized controller 
is facile as compared to distributed control architecture. The centralized controller 
only has to ensure consistent forwarding during network policy update whereas in 
distributed control architecture consistency involves three aspects: state consistency, 
rules update consistency and version update consistency. State consistency ensures 
that the distributed controllers within a cluster have an identical global view whereas 
the rule update consistency ensures that switches under a controller are having the 
same forwarding policies for stable forwarding. Lastly, the version update consist-
ency ensures consistent version update in distributed controllers. Ensuring all the 
three aspects of consistency is a complex task and involves trade-offs between 
performance and availability. On the other hand, in hybrid control there should be 
proper coordination, cooperation and translation mechanisms in place between the 
centralized SDN control and legacy distributed control to have a consistent network 
state.

2.2.3 � Reliability

The reliability of a system refers to perform its functions or operations without 
failure or abjection. Reliability in SDN pertains to resilience in both SDN control 
plane and data plane. In case of SDN control plane, reliability refers to perform 
seamless network operations even if the primary controller fails whereas in data 
plane it means resilient connectivity between the forwarding nodes. The con-
troller failures can be due to technical snag in the hardware, bugs in a software 
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module or sometimes deadlock due to race-condition between controller modules. 
In centralized SDN controllers, a simple monitoring software module and backup 
controller can provide fault-tolerance in control plane whereas in distributed SDN 
controllers designing fault-tolerant control architecture faces consistency and per-
formance issues. In hybrid SDN control, the legacy distributed control is resilient 
but backup controllers are required to achieve fault tolerance in centralized con-
trollers. To achieve reliability in data plane, the SDN controller has to compute 
and program flow tables with backup routes for all traffic flows.

2.2.4 � Security

Security vulnerabilities in a SDN controller will compromise the security of an 
entire network. Within a controller, there should be measures like process contain-
ment, application permission structure and resource utilization monitoring so that 
the attacks like spoofing, tampering, denial of service (DoS) and privileges elevation 
can be mitigated. In a single centralized controller, a malformed OpenFlow header 
can crash a controller and frequent flow-requests from an attacker can degrade over-
all controller performance and in the worst case can deny services to legitimate 
requests. In distributed control architecture, other than the said security issues there 
is an urgent requirement of authentication protocols for validation and verification of 
controller instances. Such protocols can enable mutual authentication of controller 
instances before proceeding for state information exchange. Impersonation and DoS 
attacks are very likely in hybrid SDN control plane due to mix of two control planes 
and diverse devices in the network. Further, irrespective of SDN control plane archi-
tecture, the exchange at SDN interfaces need to be secured with security protocols to 
mitigate various integrity threats.

In this paper, we have identified the mechanisms used by various SDN con-
trollers to address the aforesaid performance parameters. We have classified such 
mechanisms as good (G), limited (L) and very limited (V), depending on the 
number of issues addressed by those mechanisms. If majority of the issues are 
addressed, for instance, in case of a single centralized SDN controller, if a secu-
rity mechanism ensures process containment, application permission structure 
and resource utilization monitoring then we have classified it as good, and if only 
few of these issues are addressed then limited and in the worst case very limited.

3 � Centralized SDN Control Plane

The centralized controllers emerged with the inception of NOX [42] and thereaf-
ter number of centralized SDN controllers have been proposed. In this section, we 
have highlighted pros and cons, research challenges of centralized SDN control 
plane and have analyzed various centralized SDN controllers interms of said per-
formance parameters.
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3.1 � Pros and Cons of Centralized SDN Control Plane

Unlike legacy distributed control, where each device is having limited knowledge of 
the network, a single centralized controller in SDN is having information of entire 
network toplogy, traffic flows and switch load. The physically centralized SDN con-
troller monitors and manages the entire network. It remains connected either in-band 
or out-of-band to all forwarding devices and can define optimal paths for traffic 
flows across the network. In conventional networks, a number of specialized devices 
termed as middle boxes are used to perform functions like load balancing, firewalls, 
intrusion detection and prevention, etc. In SDN, such functions can be easily imple-
mented as specialized applications over the SDN controller, hence reducing cost and 
complexity of the network. Additionally, developing applications for a single central 
controller is easy for an application developer as it has to consider requirements only 
of a single system, rather than considering complex issues like multiple concurrent 
accesses and events in case of distributed control.

The service provider networks include limited number of nodes distributed over a 
wide geographical area. Using a single centralized SDN controller in such a network 
may face high control latency and bandwidth issues. On the other hand, in multi-
tenant data centers, where virtual machines (VMs) are brought up and down very 
rapidly, tens of thousands of network elements are required to connect such VMs. In 
such a dynamic environment, a huge number of networking events are generated in 
a short span of time and such events are sufficient enough to overload a single SDN 
controller. Authors in [43] have studied traffic characteristic of diverse data centers, 
varying in scale and have observed that for even 100 edge switches the controller 
may encounter 10 million flow setup requests per second. To handle such requests, 
they have suggested to use either parallelism in a single central controller or set up 
multiple controllers in the network. Likewise, Software Defined WANs (SD-WANs) 
impose stringent resiliency requirements. As per the authors in [44], it is difficult to 
achieve scale-out behaviours and desired failure resiliency with a single centralized 
controller in SD-WANs.

3.2 � Research Challenges in Centralized SDN Control Plane

3.2.1 � Scalability

A single central entity to provide all networking functions require high computa-
tion power and efficient data management techniques to respond to flow requests of 
forwarding switches. If flow setup requests arrive at a rapid rate and there are brisk 
changes in the network, such requests may overwhelm the centralized controller and 
can degrade the overall response time. The authors in [45] have concluded that if the 
network scales-up by increasing number of switches and end hosts, the SDN con-
troller can become a bottleneck.

To address this issue, one solution is to extend limited control logic back to for-
warding devices [57]. However, such a solution requires modifications in the design 
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of OpenFlow switches and is against the basic principles of SDN paradigm. Another 
possibility which is considered as an effective solution by the research community is 
to mold the control plane in such a way so that scalability and reliability issues are 
mitigated i.e., using physically distributed SDN controllers [46, 47].

3.2.2 � Central Choke Point

Whenever a new traffic flow request arrives at a switch, the first packet is forwarded 
to the controller. The controller inspects the received packet’s header, determines the 
path for traffic flow using topology information and then programs the forwarding 
tables of all data plane devices from source to destination. However, if such flow 
setup requests arrive at a rapid pace, the controller can become a bottleneck in han-
dling such requests. As observed by researchers in [48], the failure of a centralized 
controller disrupts the overall network traffic and halts the flow setup process. Fur-
ther, an upgrade in hardware/software at the controller will obstruct all services pro-
vided by the centralized SDN controller.

3.2.3 � Consistency

In SDN, the data plane devices forward packets as per the policy defined by appli-
cations in management plane. Now, if a policy update takes place, there might be 
packets of various flows in transit which may be forwarded by a mix of old and new 
policies, leading to inconsistency in packet forwarding. To address this issue, the 
researchers have proposed various solutions including reverse update [49], consist-
ent update [50], and a detailed survey of such solutions is given in [51]. However, 
it has been observed that achieving time stringent policy update across the entire 
network is a complex task.

3.2.4 � Flexibility and Robustness

Incase of fine-grained flow matching, every new flow request very often results 
in modification of multiple flow table entries in various switches. Frequent such 
requests in a network may lead to explosion of flow table modification messages. On 
the other hand, handling such requests frequently with a single controller may not be 
robust and any failure while handling such requests may result in instable network 
state. Studies on NOX controller have shown that it can handle 30 K flow request 
per second [52]. This may suffice a campus network but it is not enough for large 
scale networks.

3.2.5 � Security

SDN controller can provide inline network functions using global view and central-
ized control of data plane devices. However, this single point of network control is 
itself vulnerable to security attacks. From the security point of view, it is easy for an 
attacker to subvert a single point rather than multiple distributed devices. If attackers 
gain access to the controller, they can tamper/damage every corner of the network 
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and it will be “game over”. Further, in a single central control model, if an attacker 
floods the controller with new flow setup requests, it will render controller inaccessi-
ble for other legitimate traffic flows. To address these issues, the management plane 
applications and data plane devices must be authenticated before gaining access to 
control plane and message integrity measures need to be taken into account for both 
south and northbound interface.

The majority of aforesaid issues have been confirmed by various studies includ-
ing [34, 53, 54] by evaluating the performance of centralized controllers such as 
NOX [42], POX [55], Floodlight [56], etc.

3.3 � Centralized SDN Controllers

NOX [42] is an event-based, first generation network operating system which can 
handle 30  K flow requests per second [54]. This controller is applicable in small 
enterprizes, home networks or campus networks and is not suitable for environments 
that generate high flow setup requests like data-center [43]. Nicira networks has 
developed successors of NOX, a muti-threaded NOX termed as NOX-MT to provide 
better performance. On the other hand, POX [55] inherited from NOX, provides bet-
ter application development environment for programmers. Both NOX and POX are 
vulnerable to DoS, repudiation and information disclosure attacks [58]. Repudia-
tion is possible in these controllers as they fail to maintain log of communication 
with switches and applications. All these controllers have gained good eminence 
in research and education but fail to address requirements of large-scale networks 
interns of throughput and reliability.

Maestro [59] is a java based multi-threaded controller which can handle 600 K 
flow requests per second (rps), still far-off from the requirements imposed by a large-
scale data center (more than 10 million rps). It is optimised for a small domain, com-
prising of four main applications namely discovery, intradomain routing, authentica-
tion and routeflow. Like NOX, Maestro also crashes when it receives a malformed 
OpenFlow header and is very vulnerable to security attacks [54]. Another popular 
java based multi-threated controller from Big Switch Networks is Floodlight [56]. 
Although very popular in research community, but suffers from serious resiliency 
and security issues as reported by authors in [60]. They have also reported that 
floodlight controller is innately vulnerable to DoS attacks. To overcome such secu-
rity issues, another version of Floodlight called SE-Floodlight has been released by 
Big Switch Networks. This security enhanced version still has a limitation of single 
point of failure. However, due to apparent functionality and performance advantages 
[61], open-source Floodlight controller has been extensively used to construct dis-
tributed SDN architectures such as ONOS [62], DISCO [63], etc.

Ryu [64] is a muti-threaded, component based SDN controller developed in 
python using gevent wrapper of libewent. It supports various Southbound APIs 
including OpenFlow (all versions), Netconf, OF-config, etc. It provides a conveni-
ent application development environment for developers and has a module called 
Ryu BGPSpeaker that can be extended for writing BGP application to define inter-
domain flows. On the other hand, MUL [65] is also a mutithreaded SDN controller, 
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written in C using services of libevent and glib. It is a flexible, modular and easy 
to use controller but faces reliability and security issues as highlighted by authors 
in [54]. Another Ruby and C based SDN Controller framework is Trema [66]. It 
helps programmers to create simple, modular, customized controller in a network by 
defining messaging scripts in Ruby and C. It provides various libraries and supports 
a network emulator which can be used to create simple OpenFlow-based networks. 
Such a custom controller framework provides developers an efficient environment to 
develop and test OpenFlow networks. However, all the three controllers (Ryu, MUL 
and Trema) fail to address spoofing, tampering, DoS and repudiation attacks.

Beacon [67] is a modular, cross-platform, java-based controller which supports 
both threaded and event-based operations. Like Floodlight, Beacon also uses Open-
FlowJ library for working with OpenFlow messages. Unlike, Floodlight which sup-
ports start-time modularity, Beacon has run-time modularity i.e., the capability to 
start and stop applications while it is running without shutting down the main Bea-
con process. OSGi specification [68] enables this run-time modularity in Beacon. In 
comparison with other centralized SDN controllers, Beacon provides high scalabil-
ity but fails to address security and reliability issues [54]. Although, it can withstand 
privilege elevation attack due to slicing architecture (in which each application has a 
limited domain) but fails to resist spoofing, repudiation and DoS attacks [58].

Another java based re-factored Floodlight controller is Iris [69]. It tries to resolve 
scalability and reliability issues of most popular controllers like Floodlight and Bea-
con controller, by proposing horizontal scalability for carrier grade networks and 
high availability with transparent failover. It also provides multi-domain support 
with the help of recursive network abstraction based on Openflow. However, it also 
faces the challenges of single point failure and other security vulnerabilities. Since 
Iris controller is derived from Floodlight controller, hence involve same security 
issues as that of Floodlight controller.

Rosemary [70] distinguishes itself from other control platforms by proposing 
concepts of process containment, application permission structure and resource uti-
lization monitoring in order to prevent common network application failures from 
halting the operation of SDN controller. It implements a resilient strategy and con-
cept of network application containment based on the notion of spawning applica-
tions separated within a micro-NOS. It employs sandbox approach for access con-
trol and authentication of applications in order to prevent malicious applications to 
access internal data structures and modify them without restriction. It resists repu-
diation, tampering, spoofing and disclosure of information attacks due to auditing 
service and micro-NOS permission structure [71].

The latest multi-threaded centralized controller with fine-grained parallelism 
is ParaFlow [72]. Unlike, conventional parallelism used by various multithreaded 
SDN controllers, ParaFlow exploits parallelism not only in event handling but also 
in event processing by event handlers. ParaFlow introduces flow-based program-
ming interface that enables application developers to create application programs 
using network flows instead of low-level assorted events. ParaFlow is basically a 
lightweight controller written in C+ +, using Boost library to achieve parallel asyn-
chronous I/O. In this multithreaded SDN controller, multiple threads operate con-
currently on network state, which is stored in the shared memory. The consistency 
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is ensured by the mutex-based synchronization mechanism; however, such mecha-
nisms may result in errors if fine-grained parallel applications perform concurrent 
accesses.

3.4 � Insights

Most of the centralized SDN controllers face scalability, reliability and secu-
rity issues due to single point of network control, lack of resiliency measures and 
absence of security mechanisms, respectively. Apart from Rosemary [70], all other 
centralized SDN controllers lack security measures as shown in Table 1. Majority of 
the centralized SDN controllers support multithreading and use OpenFlow as south-
bound interface. On the other hand, the centralized SDN controllers either use an 
inbuilt API or REST APIs as northbound interface. The centralized SDN controllers 
are applicable in small enterprises, campus networks, domain specific networking in 
small-scale data centers and edge networks.

4 � Distributed SDN Control Plane

In the last few years, physically distributed SDN control plane has received much 
attention from the reseach community [34, 35] and a number of distributed SDN 
control frameworks have been proposed. In this section, we have presented pros and 
cons, research challenges in distributed SDN control plane and have analyzed vari-
ous distributed SDN controllers.

4.1 � Pros and Cons of Distributed SDN Control Plane

The distributed SDN control plane overcomes scalability, reliability, performance 
and single point failure problem of centralized SDN control plane by introducing 
multiple controllers in a SDN. The distributed SDN control plane is more robust, 
scalable and responsive which can effectively react to diverse networking events 
like link failures, new flow setup requests, intrusion, etc. In dynamic environments 
like multi-tenant data centers where millions of networking events are generated fre-
quently the distributed control plane architecture provides flexible and scalable solu-
tions to manage such events [43].

Likewise in WANs, placing network controllers at strategic points can facilitate 
quick response and consistent view of network changes [46, 112]. To have better 
response time and performance, the distributed SDN controllers use load sharing 
mechanisms to distribute data plane switches among the controller instances. How-
ever, flexible load balancing involves continous state sharing communication over-
head among the distributed controllers. Further, the distributed SDN control plane 
architecture faces numerous challenges in terms of interoperability, consistency, 
controller placement, etc., and we have presented all these challenges in detail in the 
next sub-section.
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4.2 � Research Challenges in Distributed SDN Control Plane

4.2.1 � Consistent Global View

In distributed SDN control plane, domain-specific controllers address data plane 
failures or traffic flow congestion in their respective domains. In order to have a 
consistent global view such changes should be communicated to all other controller 
instances within a cluster in a timely manner. However, achieving such time strin-
gent level of consistency while maintaining good performance is a complex task 
[73].

The strong consistency model guarantees that all distributed controllers have lat-
est network information, but at the cost of communication overhead and increased 
synchronization. Such strong consistency models introduce new scalability chal-
lenges and retaining sturdy consistency during recurrent state updates might 
obstruct the state progress and can render network unavailable, resulting in higher 
switch to controller latencies. On the other hand, eventual or weak consistency mod-
els allow concurrent reads and such read operations may return different values from 
the actual updated values for a short transient period. Consequent to such dissimilar 
values retrieved by the SDN controllers, there can be inconsistent global view of 
the network which may result in incorrect application behaviour. As per authors in 
[74], inconsistency in control plane can have considerable effect on the network per-
formance. So maintaining a consistent global view across all controllers is a design 
challenge that involves trade-offs between policy enforcement and performance [74].

4.2.2 � Reliablility

Unlike traditional networks, the emphasis in SDN is not only on resilient data plane 
but also on resilient distributed control plane [75]. The fault tolerance in control 
plane is commonly achieved through active or passive replication mechanisms [76, 
77]. In active replication strategy, OpenFlow switches keep simultaneous connection 
with multiple controllers and if one controller fails, the others can still control the 
switches. On the other hand, in passive replication or primary-backup replication, 
each switch is connected with only one controller (termed as primary controller) and 
if the primary fails then the backup controllers can take control of the network.

In centralized SDN control, a simple Master/Slave approach can be used for 
fault-tolerance, whereas in distributed SDN control, such a simple approach will not 
work as the network state information is partitioned among many controllers which 
exchange information to maintain a consistent logically centralized global view [78]. 
So in distributed SDN control plane, there should be coordination strategies to solve 
and reach agreements on concurrent state updates and to maintain consistent net-
work state. In large-scale networks, a simple self-healing approach can be imple-
mented wherein if one controller goes down, the load will be redistributed among 
the remaining active controllers. However, such an approach involves overhead of 
state maintenance and frequent distribution of domain state among the participating 
controllers.
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Additionally, implementation of replication strategy is a challenging aspect of 
distributed control plane [79] as there should be mechanisms also for state storage 
replication. Some approaches store network state of a replication controller locally 
and use specific group coordination framework for communication [80], others del-
egate state storage, replication and management of state information to external data 
stores like distributed file system and distributed data structures [81, 82]. In design-
ing a reliable fault-tolerant distributed SDN control architecture issues like consist-
ency, scalability and performance should also be taken into account.

4.2.3 � Automatic Reconfiguration

The mapping between distributed controllers and forwarding devices must be auto-
mated rather than using static configurations. Static configurations may result in 
uneven load distribution among the controllers within a cluster. For distribution of 
switches to different SDN controllers, there should be an application operational 
on all active controllers which monitors and shares the network load information 
with the neighbouring controller instances. However, this approach may overload 
the controllers with load sharing information, leading to scalability issue. Further, in 
the absence of standard northbound and eastbound interface, communication among 
applications and application portability is hard to achieve.

4.2.4 � Interoperability

To foster development and adoption of SDN in next generation networks, there is 
an urgent need of ensuring interoperability among heterogenous distributed SDN 
controllers operating under different administrative domains and using different 
technologies. The main reason for the lack of interoperability is absence of standard 
east/westbound interfaces and heterogeneity in data models used in various SDN 
controllers.

YANG [83] has emerged as a data modelling language to represent state and 
configuration data in a standard form. This NETCONF based IETF contribution is 
expected to be extended in future to pave way for standard data models enabling 
interoperability in SDNs. Another initiative in this direction is from OpenConfig’s 
efforts on building a standard data model for management and configuration opera-
tions, which is vendor-neutral written in YANG [84]. ONF’s OF-Config protocol has 
implemented YANG based data models called Core Data Model to enable remote 
configuration of OpenFlow capable devices [85]. However, such data models and 
protocols should be integrated into various heterogenous distributed controllers to 
achieve interoperability.

4.2.5 � Network Partitioning

The topology based partitioning of network in distributed SDN control may result 
in performance degradation of latency sensitive (e.g., monitoring) or compute inten-
sive (e.g., route computation) applications. As reported by authors in [86], if latency 
sensitive and compute intensive applications are co-located within a controller 
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which controls a particular network partition, achieving low response time and con-
vergence time concurrently might be challenging. They have proposed functional 
slicing in which different applications are placed in different partitions in order to 
reduce inter-controller communication between applications. They have observed 
that functional slicing and communication aware placement of control applications 
can minimize network convergence time and response time. We believe that net-
work partitioning is an optimization problem and requires further attention from the 
research community.

4.2.6 � Controller Placement and Load Balancing Problem

Decoupling control plane from the forwarding devices into a logically centralized 
SDN controller raises questions like where to place these controllers and how many 
controllers are required in a network? Such questions need to be answered, particu-
larly in WANs, where propagation latency becomes a decisive factor. In other areas, 
like data center or enterprize, researchers are focused more towards load balancing 
and fault tolerance.

Undoubtedly, the distributed SDN control architecture is a scalable option as 
compared to the centralized one, but achieving scalability and at the same time good 
performance requires a strategy that takes into account both physical placement of 
controllers and numbers of SDN controllers required. Several placement schemes 
have been proposed by researchers including [46, 87, 88] and all these schemes 
use different approaches and heuristic algorithms to achieve optimal values of per-
formance parameters like link delay or flow set-up time, etc. In [89], authors have 
proposed a framework that combines hierarchical clustering and betweenness cen-
trality models to reduce switch-to-controller latency and concurrently balance the 
load using centrality scores of the nodes. These performance parameters are inter-
dependent and finding the optimal solution is an NP hard problem. We believe that 
controller placement problem should be investigated as an optimization problem 
with focus on multiple performance parameters.

4.2.7 � Security

Since the entire network intelligence resides at distributed SDN controllers, com-
promising security of a distributed controller instance can jeopardize the entire SDN 
network. In large scale networks, if security issue is not addressed, SDN might lose 
the control plane availability [90, 91]. Although, distributed control architecture 
overcomes risk of subverting a single central controller, but faces authentication and 
message integrity challenges. Without proper authentication mechanisms in place, 
any attacker can easily introduce its node within the network which will behave 
like other SDN controller instances and can corrupt the entire network. Securing 
information exchange between controllers is also very vital to ensure consistent net-
work wide view in distributed SDN Controllers. Addressing such issues require new 
strategies and application of security protocols, with the aim of securing distributed 
SDN control environment.
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4.3 � Distributed SDN Controllers

The physically distributed controllers can be broadly classified into two catego-
ries based on the physical organization of controller instances. The first category 
includes hierarchical control plane wherein the network control logic is partitioned 
into multiple layers as shown in Fig. 5a. The second category is a flat structure in 
which network control is partitioned horizontally to handle multiple areas as shown 
in Fig. 5b.

The hierachical control plane also referred as vertical model provides better scal-
ability and performance. Each layer of controllers provide specific services, for 
instance, in two layer architecture as shown in Fig. 5a, the lower layer of control-
lers handle local events and provide services to switches, whereas top layer provides 
global view and interoperability between the lower layer area-specific controllers. 
The lower layer controllers (or local controllers) does not have a direct connection 
with each other, instead each local controller uses services of upper layer controller 
(or root controller) for interdomain connectivity.

In flat SDN control plane, the network is partitioned into multiple areas and 
each area is under the control of a local controller. Organizing controllers in such 
a fashion provides good resiliency and less control latency. This architecture is 
also referred as horizontal architecture. To have a global view, all controllers in a 
flat cluster remain connected with each other using eastbound interface and share/
receive network state information to/from other controllers as shown in Fig.  5b. 
Every local network event like link or node failure is shared with other SDN con-
trollers within the cluster in order to have a consistent global view. Consequent to 
it, this model is also called as peer-to-peer model or replicated state machine model.

4.3.1 � Hierachical SDN Controllers

Google’s B4 [92] is the first and largest private intradomain SD-WAN connecting 
multiple data centers across the globe. It implements various control applications 

Fig. 5   Types of distributed SDN control plane: a Hierarchical SDN Control Plane, b Flat SDN Control 
Plane
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to achieve cost efficient networking between scalable WAN sites. As per designers 
of B4, it consists of two-level hierarchical control plane to meet elastic bandwidth 
demands of interconnected data centers. The bottom layer comprises of Onix based 
[82] SDN controllers managing each data center site and using site-level control 
applications. At the upper layer or global level, a global SDN Gateway manages 
the site-level controllers and provides the site-level TE services. It collects neces-
sary network information from the lower level distributed controllers and forwards 
this information to a logically centralized TE server. The TE server operates at the 
upper layer and enforces high-level TE policies that optimize the elastic bandwidth 
demands among the competing control applications working across the different 
data center sites. The TE server uses gateway APIs to program the TE entries into 
high-priority forwarding switch tables alongside with shortest path routing (SPR). 
The routing and TE are deployed as separate independent services with former act-
ing as the base and later deployed as an overlay.

To reduce complexity in B4 network, the topology abstraction is used wherein 
each data center site is represented as a super-node and aggregated links connecting 
these super-nodes as super-trunk. This network abstraction reduces the complexity 
and allows the centralized TE server to run protocols at coarse granularity level. For 
reliability and fault tolerance, the redundant controllers are deployed at both site-
level and global-level. These availability mechanisms have been largely improved 
after experiencing a large-scale outage in B4 in the intial deployment. At site-level, 
Paxos [93] is employed to detect and handle the failure of a primary controller. 
Incase a primary controller fails, it selects a new leader among the set of standby 
controller instances placed on different physical servers in the data center. On the 
other hand, at global-level, the logically centralized TE controller is guarded against 
failures by geographically replicating TE servers across multiple WAN sites. More 
precisely, one master and four secondary hot standby TE servers are used in B4. 
Further, if TE service goes down, the standard shortest-path routing is employed as 
a sovereign service.

Kandoo [94] proposes a two layer hierarchical control architecture in which 
bottom layer controllers manage OpenFlow switches of a domain without having 
network-wide state information. On the other hand, the top layer consists of a logi-
cally centralized controller or root controller that maintains the network-wide state 
information. The root controller can install flow entries into the OpenFlow switches 
by delegating requests to the particular local controllers. These local controllers in 
kandoo framework can scale linearly and provide adaptive control wherein default 
configuration can be pushed proactively and can be refined afterwards. However, 
this framework lacks measures to safeguard controllers from security attacks and 
failures.

Logical xBar [95] introduces a recursive building block to design SDN control 
plane for a large-scale and worldwide distributed network. Logical xBar is actually 
a programmable entity which switches packets between ports, using aggregation of 
smaller units (like OpenFlow switches) for forwarding into larger ones. The control 
plane computations and management of forwarding table are carried out in man-
agement CPUs termed as Logical Servers. These logical servers are replicated for 
fault tolerance and scalability. The hierarchical architecture is achieved by recursive 
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aggregation of logical xBars and their respective logical servers. Each xBar stores 
state information and configuration information to formulate table of topology at 
each recursive level. The control plane acquires summarized state by upwards 
aggregation and configuration information is disseminated downwards to forward-
ing devices. This approach uses virtualization to provide extensible, scalable, and 
locally-scoped control planes for large scale networks. However, no information 
about state storage and consistency is provided in [95].

With the success of B4 [92] in optimizing the overall network performance and 
reducing the complexity in management of inter-data center WAN motivated design-
ers to use resonant concepts of SDN in Google’s edge network. Google designed 
Expresso [96] an architecture which provides cost-effective, reliable and exponen-
tially scalable peering edge network integrated with global traffic systems. It pro-
vides application-aware routing and routes over 22% of Google’s overall traffic to 
Internet.

Like B4, Espresso also uses two layer hierarchical control plane architecture, 
with top layer comprising of global controllers and lower layer of local control-
lers. The local controllers react to local networking events, for instance performing 
local repairs like link or peering port failure whereas the global controllers optimize 
global traffic to improve efficiency. Espresso is designed with intent-driven manage-
ability to support large scale operations which are safe, automated and incremental. 
Further, it uses software development design principles that allows network evolu-
tion with changing application requirements and enables new innovative features to 
be deployed with high velocity.

Espresso provides full interoperability with traditional heterogenous peers or with 
rest of the Internet. It provides a fail static system in which if a local controller fails, 
the data plane works as per the last known good state without impacting BGP peer-
ing and other data plane operations. All these features implemented in Espresso pro-
vide high reliability, interoperability and supports incremental deployment.

4.3.2 � Flat SDN Controllers

Onix [82] is a distributed control architecture comprising of one or more physical 
servers with each server executing multiple Onix instances. To provide scalability 
and resiliency in large scale networks (connecting millions of ports), each Onix 
controller instance disseminates network state information to other instances within 
the cluster. It uses a data structure termed as Network Information Base (NIB) to 
store network state. This data structure is partitioned among multiple controller 
instances that hold responsibility for the subset of NIB. Onix achieves scalability 
and resiliency by partitioning, aggregation and replication of NIB among control-
ler instances. Onix ensures consistency by using distributed locking and consensus 
algorithms. It uses application-specific logic for both detection and conflict resolu-
tion of network state. ONIX also supports distributed hash table (DHT) to provide 
general APIs which guarantee weak consistency of network view. Fault tolerance of 
link or node is handled by the control applications whereas controller failure is han-
dled by using distribution coordination function among controller replicas. Such a 
controller is applicable in environments which require high availability and frequent 
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updates. The Onix control framework lacks confidentiality and integrity measures to 
ensure secure state sharing among controllers within a cluster.

On the other hand, ONOS [62] uses multiple instances of floodlight controller to 
build a distributed control platform for scale-out performance and fault tolerance. 
This framework executes controller instances on numerous servers, each of which 
handles a subset of OpenFlow switches. Fault tolerance is achieved by connecting 
each switch with multiple controllers, one acting as a master controller and others 
operate as backup controllers. For consistency and integrity of network information, 
ONOS uses Titan’s transactional semantics (that maintains graph’s structural integ-
rity) on top of Cassandra’s consistent data store. For better performance, it employs 
load balancing mechanisms to balance the number of switches under a master con-
troller. Further for controller break down, it uses Anti-Entropy protocol [97] recov-
ery mechanism for healing lost updates. ONOS employs TLS and HTTPS at south-
bound and northbound interfaces, respectively to prevent tempering and information 
disclosure threats. Authorized access and fine grained control to internal data-struc-
tures and libraries are provided in Secure-Mode ONOS (SM-ONOS). It uses strict 
access control measures and security audit service to prevent repudiation and eleva-
tion of privilege threats.

The designers of Ravana [98] argue that using simple primary/backup methods 
[62, 82] or replicated state machines (RSM) for controllers can provide fault-toler-
ant consistent state only in control plane and fail to provide resilient and consistent 
switch state. Such mechanisms do not capture the switch state accurately. Conse-
quent to it, if a master controller crashes while configuring a switch, the new mas-
ter may not know from where to resume the switch configuration process. So, in 
Ravana, instead of keeping only the controller state consistent, the entire event-pro-
cessing cycle (including events from switches, event processing at controllers, and 
commands forwarded to switches) is treated as a transaction; either all or none of the 
events of this transaction are executed. This architecture ensures that transactions 
are totally ordered across replicas and executed only once across the entire system.

In Ravana architecture three components including switch runtime, Ryu-based 
controller runtime and control channel interface works collectively and coopera-
tively to ensure desired correctness and robustness of fault-tolerance in logically 
centralized controller. Further, the authors propose Ravana protocol that detects the 
failure of master controller and performs leader election among the slave control-
lers like the Zookeeper [99] mechanism. The new elected leader before proceeding 
with the normal operations first, finishes the job of a failed master controller. Since 
Ravana is based on Ryu controller, it faces the same security challenges as that of 
Ryu controller.

The two popular controllers using flat distributed control architecture are Open-
Daylight (ODL) [100] and DISCO [63]. The former is a logically centralized control 
architecture whereas the later is a logically distributed control architecture (logical 
classification adopted by [101]). The ODL is a general-purpose framework admin-
istered by Linux Foundation and supported by the industry. It is an open source 
community driven framework providing full functionalities of a Network Operat-
ing System. It was conceived to address requirements of multiple domains includ-
ing data center, enterprise and service provider networks. The latest release of this 
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framework is Magnesium [102] which supports wide range of Southbound APIs 
including OpenFlow, NETConf, OVSDB, PCEP, etc. The main architectural fea-
ture of Magnesium is Model-Driven Service Abstraction Layer (MD-SAL) based 
on YANG models, that allows simple and flexible integration of network services 
requested by the application layer via northbound APIs (supporting RESTful inter-
face, OSGi Framework and intents). The Magnesium framework integrates ODL 
with the Container Orchestration Engine for Kubernetes environments.

Another aim of ODL project was to accelerate integration of SDN with traditional 
networking environments, to automate management and configuration of legacy net-
work devices and enabling them to communicate with OpenFlow enabled devices. 
The distributed controllers in ODL maintain a logically centralized view by using 
Akka framework [103] and RAFT concensus algorithm [104]. It’s latest release 
provides base for running business logic and other control algorithms as applica-
tions in management plane. Such control applications e.g., BGPCEP, BGP/MPLS, 
OpenROADM, etc. enable this framework to control devices in various domains 
like WAN, cloud or edge networks. ODL is the most secure distributed SDN con-
trol platform with specialized security modules like Secure Network Bootstrapping 
Infrastructure (SNBI), AAA service, Defense4All, etc. [71]. It uses Apache Karaf 
security framework to control accesses of OSGi services, console commands, java 
management extension layer and WebConsole. Such security features in ODL ena-
bles it to mitigate various security threats like DoS, spoofing, repudiation, etc.

On the other hand, DISCO’s [63] logically distributed control architecture is 
applicable in multi-domain heterogeneous environments particularly overlay net-
works and WANs. DISCO control architecture is based on Floodlight controller in 
which each distributed controller instance controls a single SDN domain and inter-
acts with other instances for end-to-end transport service. A unique lightweight 
channel is used between two controller instances to share summarized domain 
information. The DISCO architecture separates intra and inter-domain control logic 
wherein the intra-domain control part monitors the local network and responds to the 
local issues and the inter-domain part handles communication with other domains 
with the help of AMQP-based messenger [101] service. This AMQ-based messen-
ger uses publish/subscribe mechanism and provides communication channel for 
agents operating at inter-domain level. Like Floodlight, DISCO controller instances 
also lack security measures which make them vulnerable to various security threats.

The distributed architecture of DISCO is envisioned to work in large scale net-
works under different administrative domains like Internet [101]. However, this logi-
cally distributed architecture has numerous drawbacks. First, the local controllers 
having limited network vision can optimize the local network performance rather 
than providing global optimal performance. Second, in DISCO a single control-
ler is responsible for each domain, but in large scale networks controlling entire 
domain with a single controller instance raises scalability and resiliency issues. In 
DISCO if a local controller fails the nearby neighbouring controllers take care of the 
affected switches, however, it may result in increased control plane latency. Lastly, 
this decomposition of network into logically independent entities is in contrary to 
emerging theory [105] which proposes manageable network infrastructure by a sep-
arate plane termed as Knowledge Plane on top of the logically centralized controller.
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IRIS-HiSA [106] involves a pool of distributed controller instances and each 
instance uses global topology information for network management. This global net-
work information is obtained by using publish-subscribe mechanism among the con-
troller instances. IRIS-HiSA proposes dynamic mechanism for load sharing among 
the controllers and take-over load mechanism from the failed controller. The load 
balancing among the controller instances is ensured by a session management mod-
ule which uses load balancing algorithms to distribute switches among the controller 
instances. The main advantage of IRIS-HiSA is that it provides transparent control 
to switches, i.e., the switches in data plane simply connect to one or other controller 
instances without having any knowledge of internal architecture of control cluster. 
This feature in HiSA controller cluster is achieved by assigning dynamically a new 
connection request from a switch to a specific controller instance within the control-
ler cluster based on the load. Fault tolerance in HiSA controller cluster is achieved 
by receiving a periodical status message (running/down) from each controller 
instance. Once failure is detected, a new controller instance is brought up and takes 
role of a failed controller. Moreover, IRIS-HiSA achieves consistency and state shar-
ing by using Hazelcast [107]. Hazelcast involves a distributed in-memory database 
to synchronize state-information with other controller instances in the cluster and 
IMap data structure for state sharing.

Hydra [86] is another Floodlight based distributed SDN control framework which 
focuses mainly on network partitioning problem. The authors argue that conven-
tional partitioning based on topology in controllers like Onix [82] results in perfor-
mance issues. The performance of latency-sensitive applications (e.g., monitoring) 
associated with a given network partition may be obstructed by another co-located 
compute-intensive application (e.g., route computation). Achieving simultaneous 
low response time and convergence time might be challenging and communication 
between various applications across different partitions may encounter high latency. 
To mitigate such issues, authors have proposed functional slicing in which applica-
tions performing a particular control function are placed in physically distinct serv-
ers irrespective of the network partition. So partitioning of control applications is 
based on the functionality rather than using the conventional topological partition-
ing. In Hydra, the primary metric used by authors is network convergence time and 
response time. To achieve fault tolerance in control plane, authors have used mas-
ter–slave controller replication and paxos [93] algorithm, but have not addressed the 
security issues of distributed floodlight controller instances.

Elasticon [108] is an elastic, load adaptive distributed control architecture in 
which controller instances are increased or decreased depending upon the network 
load. The Elasticon control framework comprises of following three important mod-
ules load measurement module, load adaptation module and decision module. Load 
measured by the measurement module is forwarded to the load adaptation and deci-
sion module, which initiate actions to shift switches between controller instances or 
to add/remove controller instances. Under heavy load, new controller instances are 
added into control cluster and switches are migrated to these controllers in order to 
balance the load. The load rebalancing algorithm balances the number of switches 
under the control of different controller instances. A specialized switch migration 
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protocol has been proposed by authors in [108] that provides consistent, disruption 
free and serializability of events during switch migration.

Additionally, in Elasticon, SIGAR API [109] has been used to retrieve CPU usage 
information from various controllers. The REST API architecture of controller has 
been enhanced to respond to CPU usage queries. The adaptation decision algorithm 
queries all controller instances about the switch load using these REST APIs. After 
retrieving the CPU usage information, reflecting the current load on a particular 
controller, the decision alogrithm may initiate the switch migration process. How-
ever, the elasticon control framework lacks fault tolerance and security measures.

Orion [110] proposes a hybrid control plane architecture, combining features of 
both flat and hierarchical SDN control plane. This hybrid hierarchical architecture 
comprises of three layers: (i) Bottom Layer: consists of large number of connected 
OpenFlow switches, (ii) Middle Layer: comprises of area controllers which are 
responsible for collecting physical device and link information for topology man-
agement and handling network events within an area. The area controller abstracts 
network view of an area and forwards it to the upper layer controllers; and (iii) 
Upper layer: consists of domain controllers which abstract the area controllers as 
simple devices and synchronizes the abstract network-wide view with the help of 
a distribution protocol. Orion minimizes computational complexity of the control 
plane from super-linear growth to linear by dividing network into smaller areas and 
builds abstract hierarchical area views. Orion developers have developed number of 
controller modules including routing module which uses Dijiktras algorithm [111] 
for area routing or domain routing, storage module which uses NoSQL database for 
dynamic clustering and storage of abstract topology information, etc. The Orion 
architecture is scalable, fault-tolerant, with limited consistency measures but lacks 
security mechanisms.

4.4 � Insights

The physically distributed but logically centralized SDN controllers like Onix [82], 
ODL [100], etc. are more suitable for enterprises and data centers, as these use cases 
are under a single administrative control. Such controllers provide strong consist-
ency measures and require limited inter-controller communication. On the other 
hand, physically as well as logically distributed controllers like DISCO [63] are 
applicable in multi-domain heterogeneous environments, particularly overlay net-
works and WANs. Most of the distributed SDN controllers support REST APIs as 
the northbound interface and lack security measures as shown in Table 2. The dif-
ferent mechanisms used for consistency and reliability (for both Control Plane (CP) 
and Data Plane (DP)) in each controller framework are summarized in Table 2.
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5 � Hybrid SDN Control Plane

In a hybrid network, SDN controller controls both programmable and legacy 
devices. The level of control depends on the mechanisms used by hybrid control-
lers to control legacy distributed devices. In this section, we have discussed pros 
and cons of hybrid SDN control plane, research challenges in hybrid SDN control 
architecture and classification of hybrid SDN models. Further, we have presented 
the analysis of various hybrid controllers in terms of said performance parameters 
and a mapping of hybrid controllers to different hybrid SDN models.

5.1 � Pros and Cons of Hybrid SDN Control Plane

Transitional or hybrid networks provide an interim option for enterprizes or cloud 
operators to change the networking paradigm incrementally from TN to SDN. Tran-
sitional networks reduce need of skilled man-power, initial investment for organi-
zations by enabling them to implement programmable devices incrementally into 
a legacy network. In hybrid control, the centralized SDN control plane and legacy 
distributed control plane communicate at diverse levels to configure, manage and 
control forwarding devices. The two control planes with effective communication 
mechanisms can complement each other and can provide better end-user experience 
and optimization of network resources. For instance, the Routing Control Platform 
(RCP) [113] uses a hybrid approach wherein the centralized control plane simplifies 
and augments the BGP decision logic to provide optimized inter-domain IP routing. 
Several other studies including [40, 41, 114, 115] have implemented hybrid con-
trol architecture and have reported that changing legacy devices to programmable 
devices incrementally in a network can also provide better control and performance.

With the help of centralized global view, fine-grained control of traffic flows 
can be achieved in hybrid networks. If such fine-grained flow control is required 
for a limited set of traffic flows, then such traffic flows can be managed by the 
centralized SDN control plane whereas the rest of traffic flows can be controlled 
by traditional networking [116]. Additionally, TN is very effective in handling 
certain tasks due to resiliency and reliability features and having centralized 
control only on limited traffic flows reduces burden on SDN controller and guar-
antees controller scalability for large-scale networks. On the other hand, hybrid 
SDN control faces numerous limitations due to amalgam of various devices in a 
hybrid network. The network configuration, topology discovery and overall net-
work control in hybrid network is very complex and involves numerous issues 
which we have presented in detail in the next sub-section.

5.2 � Research Challenges in Hybrid SDN Control Plane

5.2.1 � Scalability

With the increase in number of OpenFlow devices in a hybrid network, the load on 
the centralized SDN controller increases and may lead to scalability issue. Further, 
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in a hybrid network, other than programming of flow-tables of OpenFlow devices, 
the SDN controller has an additional responsibility of legacy device protocol trans-
lation for interoperability and configuration of legacy devices. To address this issue, 
additional controllers may be put into the action in the network, however, it will 
result in more complex network management due to presence of physically distrib-
uted but logically centralized SDN control plane and legacy distributed control plane 
in the network. Ensuring consistency and coordination of diverse control planes in 
such a network becomes an uphill task.

5.2.2 � Topology Discovery

In hybrid networks, topology discovery is more challenging than pure SDNs due 
to presence of diverse vendor-specific devices, supporting different protocols such 
as IS-IS, OSPF, BGP, SNMP, etc. To discover such heterogenous devices, the SDN 
controller has to support different protocols and conversion mechanisms in order to 
obtain a global network view. Performing such protocol translations and support-
ing all protocols can easily overwhelm a single centralized controller. Several pro-
posals have been given by researchers including [117–120] for topology discovery, 
but most of them have extended support for a particular protocol which works at a 
specific layer like layer 2 or layer 3. To have seamless connectivity in a hybrid net-
work, hybrid SDN controllers need to be enhanced in terms of topology discovery 
protocols.

5.2.3 � Programmable Device Placement

Hybrid SDN controller is able to manoeuver traffic in a hybrid network with the 
help of programmable or SDN devices. However, in such a network there are limited 
number of programmable devices and a network operator has to decide the num-
ber and location of these devices. The decision is based on multiple factors such as 
CAPEX, performance benefits and network topology. This decision making is an 
optimization problem with focus on performance parameters like link utilization, 
minimum disruption and overall cost–benefit. For such a complex problem, some 
researchers have used many heuristics including node degree by Hong et al. in [121] 
and node degree and traffic volume by authors in [41]. However, such parameters 
may affect the scalability of SDN controllers in a physically centralized control 
architecture or consistency in a distributed control architecture. Further, the number 
and place of programmable devices depends on multiple parameters like bandwidth, 
latency, traffic-flows, etc. and we believe that this issue requires further attention 
from the research community.

5.2.4 � Complex Network Control

In a hybrid network, the traffic forwarding in data plane is controlled by both legacy 
distributed control plane and centralized SDN control plane. The legacy distributed 
control forwards traffic as per the limited view of the network whereas the central-
ized SDN controller does so as per the global view of the network. If there is no 
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coordination or cooperation between the two control planes, any network update 
may lead to forwarding inconsistencies which can result in traffic flow disruption 
and in the worst case formation of loops in the data plane. To address this issue, 
there should be network state verification and conflict resolution mechanisms in 
place in the hybrid networks. However, till date no such verification and resolution 
mechanism has been designed for hybrid networks.

5.2.5 � Network Configuration

Network Configuration is a critical aspect in network management. Whenever there 
is a change in network like link or node updation, policy change or expansion of the 
network, the forwarding devices need to reconfigured accordingly. TNs lack sophis-
ticated network configuration mechanisms and makes network management very 
challenging and error prone process. On the other hand, SDN provide abstractions 
and support for reconfiguration with the help of single central point for network 
control. However, in a hybrid network, network configuration is a complex task as 
the devices involved are both programmable and closed vendor-specific. Several 
researchers have proposed various solutions for configuration of hybrid networks 
including some device specific or protocol specific approaches [114, 122, 123] and 
some general frameworks [124, 125]. However, we believe a more robust approach 
is required to have interoperability and cooperation in network configuration in a 
hybrid scenario.

5.2.6 � Security

In hybrid SDN network, there are more security challenges due to presence of 
diverse type of devices in the network. Authentication of devices becomes neces-
sary to mitigate impersonation attacks, otherwise attackers can easily masquerade 
and disrupt the network operations. In various Hybrid SDN models, only OpenFlow 
devices are completely controlled by the SDN controller, so a security application 
running on the controller cannot mitigate all the threats confronted by the legacy 
devices. Moreover, the different legacy devices understand varied protocols which 
makes it challenging for a security application running on the SDN controller to 
detect all possible security threats. In such a network, if the controller has to secure 
entire network than it has to understand all legacy device protocols but it may lead to 
complex controller implementation.

Other than these, there are consistency and resiliency issues in a hybrid network. 
In such a network, where there are diverse devices, ensuring fault-tolerant connec-
tivity and consistent network-wide view is a tough task. However, despite such chal-
lenges the hybrid network is envisioned to pave way for deployment of program-
mable devices in traditional networks or gradually shifting from legacy distributed 
control to centralized SDN control.
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5.3 � Hybrid SDN Models

We have extended the classification given by authors in [37, 38] and have provided 
here a brief overview of various types of hybrid network models.

5.3.1 � Service Based Hybrid SDN (S‑hSDN)

In S-hSDN, as shown in Fig. 6i, the two networking paradigms coexists and each 
provide different services. For instance, SDN provides end-to-end tunelling or net-
work function virtualization whereas TN provides other services like MPLS-VPN. 
Other than these, few services like packet forwarding can be handled collectively by 
the two networking paradigms.

5.3.2 � Traffic Class Based Hybrid SDN (TC‑hSDN)

In TC-hSDN, the entire network traffic is segregated into various classes, some are 
under the control of centralized SDN control plane while as rest are managed by the 
traditional distributed control. In this approach, both SDN and legacy control spans 
all forwarding devices and each paradigm controls disjoint set of forwarding table 
entries in the devices as shown in Fig. 6ii.

5.3.3 � Topology Based Hybrid SDN (T‑hSDN)

In this approach, the entire network is divided into isolated islands controlled by 
either of the two domains as shown in Fig. 6iii. As discussed in Sect. 4.3, B4 [92] 
uses SDN to interconnect backbone data centers whereas non-SDN approach is used 

Fig. 6   Hybrid SDN models
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to connect to remote data centers and storage servers. In T-hSDN, an organisation in 
new geographical regions may invest to achieve benefits from SDN and use TN in 
already existing regions. This approach enables organisations to begin with limited 
investment in a smaller region, acquire expertise and confidence with the new para-
digm and then move to the next region.

5.3.4 � Edge Controlled Hybrid SDN (EC‑hSDN)

This approach is based on the idea of segregating edge from the core network as 
proposed by authors in [126]. In EC-hSDN, the programmable nodes are placed at 
the edge of the network and the SDN controller controls traffic that moves in and out 
of the organisation. This edge controlled strategy can enable customized routing in 
the legacy core networks wherein incoming packet’s destination IP addresses can be 
mapped to unused IP addresses [127].

5.3.5 � Overlay Hybrid SDN (O‑hSDN)

In this approach, an overlay SDN network is built atop of TN. Some chosen legacy 
devices are replaced by programmable devices to ease traffic management and appli-
cation of dynamic forwarding policies. In essence, an abstract centralized view of 
topology is generated by the controller which is used to built overlays over the TN. 
Big Virtual Switch [128] of Big Switch Networks is an example of O-hSDN.

5.3.6 � Middleware Based Hybrid SDN (M‑hSDN)

In middleware based approach, a mediator is used either at the legacy switch or on 
the controller side to have interoperability between the two paradigms. At legacy 
devices, the mediator may be a hardware agent attached to the device or a soft-
ware upgrade which can understand the OpenFlow messages sent by the controller. 
This enables the controller to communicate configuration information to the legacy 
device and in return can receive flow statistics information from the forwarding 
device. On the other hand, if middleware is used at the controller end, it will trans-
late the legacy protocol information into controller understandable format and the 
OpenFlow enabled devices will be handled in the standard manner. Author in [129, 
130] have proposed intermediate hardware which extends the centralized control 
over the legacy devices.

5.3.7 � Integrated Hybrid SDN (I‑hSDN)

In this model, the SDN controller is responsible for all the network services and 
controls conventional devices using legacy protocols. The SDN controller can adjust 
protocol settings like IGP weights and can change selected routes in the legacy rout-
ing system. RCP [113] uses I-hSDN model to optimize inter-autonomous system 
routing.
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5.4 � Hybrid SDN Controllers

Panopticon [40, 41] proposes a prototype of Hybrid SDN controller which operates 
in a virtual SDN network comprising of programmable (or SDN) and legacy devices 
to derive benefits of a pure SDN network. The Panopticon architecture breaks the 
network into cells and connects such cells by programmable switches which are 
monitored and controlled by the central controller (like the Panopticon prison archi-
tecture where central watch tower monitors the prison cells). The central controller 
controls the ports of these programmable switches and SDN controlled ports which 
are on legacy devices lying adjacent to the programmable switches. The controller 
ensures that traffic flows traverse atleast one programmable switch by using Solitary 
Confinement Trees (SCTs). The isolation of SCTs is ensured by assigning a distinct 
VLAN ID to each SCT. This constrained traffic flow is termed as Waypoint Enforce-
ment in Panopticon architecture and it may result in increased path-length for cer-
tain traffic flows. Further, the authors have proposed a planner for upgrading legacy 
switches to SDN switches to maximize benefits with limited cost. The Panopticon 
architecture is scalable since the VLAN IDs are assigned to SCTs rather than to 
end-to-end paths. The data plane fault-tolerance in panopticon is achieved by using 
redundant connectivity in the SCTs. Although this hybrid approach is robust, but it 
may lead to inconsistent traffic forwarding due to hybrid network control.

Hybnet [124] is a network management framework build on top of Openstack 
[131] (an open source cloud computing platform) using neutron to control and man-
age hybrid network devices through virtualization. It maintains a persistent network 
state view with a topology database and implements a path finder module in the 
controller that determines end-to-end paths between the host VMs. The controller 
parses the network operators requests and uses services of path finder module to cre-
ate virtual links between the end hosts. These virtual link may span multiple Open-
Flow switches and legacy devices. The Hybnet controller creates SDN-slices and 
these slices are mapped to different VLAN IDs. In Hybnet, OpenFlow and NET-
CONF protocols have been used to control SDN and legacy devices, respectively. 
HybNET is basically a simple custom module over OpenStack which lacks auto-
matic topology discovery and fault-tolerance measures.

Unlike Panopticon and Hybnet, ClosedFlow [122] extends the centralized control 
over legacy devices without using SDN devices. The ClosedFlow controller mimic 
the following four main functions of a pure SDN: (i) Control Channel between leg-
acy device and controller: an in-band overlay control channel between controller 
and switch is implemented using minimum OSPF instance; (ii) Topology Discov-
ery: network-wide view at the controller is achieved either by remote login at each 
legacy device or by running OSPF instance at the controller end as well. In [122], 
authors have used the first approach to retrieve topology information and to detect 
link failures; (iii) Programming Flow Tables: legacy devices are modified by chang-
ing access control lists, route maps and interface configurations to achieve a limited 
control over the forwarding process in such devices; and (iv) Packet-In Events: The 
packets are forwarded to the controller using either of the following approaches: (a) 
Using remote login with explicit deny, i.e., if a packet fails to match access control 
list specified in route map, then the controller is notified by the packet header and 
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the payload is dropped, (b) specifying a forwarding entry in the legacy device to 
forward entire packet to controller if there is a no match event. The prototype of 
ClosedFlow has been implemented with Cisco 3550 switches, but it lacks scalability 
due to support for limited protocols. Consequent to this limited protocol support and 
partial control of legacy devices, network management is very difficult in Closed-
Flow as compared to pure SDN.

Telekinesis [132] is a hybrid SDN controller which programs forwarding table 
entries of both SDN and legacy devices. It introduces a new flow control primitive 
termed as LegacyFlowMod which enables controller to modify flow table entries 
of a legacy switch. With the help of LegacyFlowMod, Telekinesis influences mac-
learning mechanism of layer-2 and whenever new flow data packets are received by 
a legacy switch, it forwards them to the nearest OpenFlow switch. The controller 
manages flow table entries with the help of two modules namely path verification 
and path update. The former checks path feasibility and if feasible, the later instructs 
the OpenFlow switches to implement the path by making necessary changes in the 
network. The proposed approach is applicable only in layer 2 networks and may 
result in topological loops in the network. Further, it does not support other net-
working protocols and networking features like ACL violations, fine-grained flow 
control etc. It also faces high latency issue in computing routes and provides low 
link utilization due to absence of efficient link optimization technique. On the other 
hand, Magneto [133] proposes a similar but refined approach to overcome network-
ing loops and strives to provide fine-grained flow control over legacy and OpenFlow 
devices.

The common hurdle that most enterprizes face to shift from TN to SDN para-
digm is complex and large configurations of existing networks. Exodus [115] pro-
posed a two stage translation system in which router configurations are first con-
verted into an intermediate form and afterwards transformed into SDN rules which 
can be inferred by an SDN Controller. With this conversion mechanism, it paves 
way for translation of TN configurations like packet filtering configurations, ACLs, 
NAT, VLAN and routing policies into SDN configurations, consequently, making 
the migration process easy from TN to SDN. The Exodus system consists of IOS 
parser and compiler, the former generates the intermediate network specification and 
flowlog libraries which the later converts into SDN rules. The problems with this 
approach are: (i) it cannot translate complex network functions and; (ii) for each 
vendor specific device a separate parser/compiler is required. Although this transla-
tion based mechanism simplifies the migration from TN to SDN, but it needs further 
investigation in order to minimize translation delay and handling translation errors.

SDN Hybrid Embedded Architecture (SHEAR) [134] mainly focuses on fault-tol-
erance and has been evaluated for LANs particularly ethernet networks. In SHEAR, 
few legacy switches are upgraded to SDN switches which act as observatory points 
and decompose the network into loop free network fragments. These network frag-
ments are connected using pathlets which are defined interms of VLAN IDs and 
switch ports. With the help of these pathlets between SDN nodes, the SDN con-
troller responds quickly to out of order routes and configures alternate routes. With 
only 2 to 10% SDN nodes in the network, authors in [134] have observed that the 
SHEAR architecture can re-route traffic in less than 3 s in case of a route failure. 
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The SHEAR framework uses spanning tree protocol to prevent loops in data plane 
but it may face scalability issue in dense networks.

Vissicchio et al., propose multiple ideas to achieve centralized control over dis-
tributed routing [135–138]. In [135], they introduced fake nodes in a legacy network 
to achieve centralized control over distributed routing. In [136], they have proposed 
Fibbing controller, a centralized controller which provides flexible network control 
by performing tasks like traffic steering, load balancing and backup path planning 
in legacy network by controlling input to legacy devices. This flexible control is 
achieved by introducing fake nodes into the network through fake LSAs announcing 
destination reachability. These fake nodes are introduced as per the path require-
ments given by network operator and at the same time considering the network 
topology and directed acyclic graph for each destination node.

The authors have evaluated performance of Fibbing controller interns of load, 
topology expansion and performance gain in [137]. The Fibbing controller intro-
duces very meagre memory and CPU overhead on legacy nodes. The time taken to 
install thousands of entries in switches and convergence of distributed routing pro-
tocols is almost constant. The topology augmentation is achieved by two algorithms 
viz, simple and merger, the former introduces fake nodes for each destination and 
the later works in phases. In the primary phase it introduces numerous fake nodes 
and determines lower and upper bound costs. In the second phase, fake nodes are 
merged based on the upper and lower bound cost. The controller introduces these 
fake nodes along the unused links, to increase the overall throughput. In [138], Til-
mans et. al. have used Fibbing controller to load balance the on demand delivery 
of video. They have observed that incase of unexpected congestion in the network, 
the fibbing controller provides better and quick load balancing. However, there are 
two major disadvantages associated with the Fibbing controller, first this approach is 
limited to destination based routing and second it makes network vulnerable to secu-
rity attacks as any compromised router can inject fake LSAs in the network.

SYMPHONY [139] is a framework which orchestrates SDN’s centralized control 
and legacy distributed control with the help of two main modules namely Legacy 
Route Server (LRS) and Packet Forwarder. Specifically, these two modules work 
together to compute end-to-end paths in a hybrid network. The LRS module com-
prises of a Linux container that executes Quagga [140] routing engine and maintains 
information of complete network topology. The packet forwarder module is imple-
mented on POX [55] along with path finder module and next-hop module. The POX 
controller communicates with LRS as if communicating with any host over OVS. 
The packet forwarder module listens to OpenFlow events like PacketIn, PortStatus 
etc., and enables the controller to respond to such events. The path finder module 
uses Shortest Path First algorithm and LLDP module (LLDP generates Switches.txt 
file that stores network graph information) to compute optimal paths across the net-
work. The next-hop module uses POX and LRS interfacing over OVS to query LRS 
for optimal edge router to reach a destination node. This edge router is nominated as 
target by packet forwarder module and installs necessary flow entries on the inter-
mediate OpenFlow nodes to reach to a destination node. Thus, the packet forwarder 
module replicates the working of a legacy layer-3 router in handling OpenFlow 
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events. The problem with this framework is that it is limited to layer-3 and does not 
provide important networking features like ACLs, load balancing, etc.

Authors in [141] have proposed a solution to interoperate two or more SDN 
islands via legacy network devices. They have proposed LegacyFlow controller that 
understands the configuration of legacy devices with the help of Switch Control 
Server (SCS). This SCS accesses the device configuration using Telnet or SNMP 
and translates it into controller understandable format and in return translates Open-
Flow messages into switch configurations. LegacyFlow controller provides resil-
ient connectivity, scalable dynamic flow installation, and incorporates least over-
head. However, LegacyFlow controller faces flexibility and complexity issues due 
to diverse vendor-specific devices with each device using different mechanism for 
configuration. Another centralized approach to determine and supplement working 
of BGP protocol is Routing Control Platform [113]. RCP is a logically centralized 
control architecture segregated from legacy routers to augment IP routing between 
Autonomous Systems (AS). RCP employs SDN and in particular builds upon Route-
Flow [142] to evaluate BGP routes with the help of centralized SDN control. The 
RCP acts as an indirection layer and optimizes the evaluation of routing informa-
tion from BGP routers. A major limitation of this approach is that it focuses only on 
BGP protocol and does not consider other protocols.

Huang et  al. propose HybridFlow [143], a lightweight control architecture to 
control legacy devices with the help of SDN control plane. HybridFlow in essence 
is an abstraction which abstracts a hybrid SDN network as a logical SDN network 
and facilitates use of SDN applications to control and operate the logical SDN net-
work like a real SDN network. The HybridFlow controller maintains the logical 
SDN network by mapping the logical ports of SDN network to the physical ports 
of actual network. Authors have implemented HybridFlow on POX controller [55] 
and have determined that it works efficiently and incorporates marginal overhead. 
Since the authors have implemented HybridFlow as an application on POX control-
ler, so the performance largely depend on the capabilities of POX controller. Fur-
ther, in a dynamic environment where there are rapid topological changes this sim-
ple approach may face scalability and reliability issues.

Another Cloud based hybrid architecture is Meridian [144] which proposes fol-
lowing three logical layers to control and orchestrate cloud networking: (i) API 
layer: provides a declarative and query based interface to the cloud controller which 
allows it to specify traffic prioritization, traffic destined to middle boxes and in gen-
eral access control policies; (ii) Network orchestration layer: maps the logical enti-
ties along with the commands to physical entities; (iii) Interface layer: comprises of 
drivers necessary to interact with legacy devices and SDN switches. This network 
service model enables network operators to construct, control and manage logical 
topologies for their complex workloads in the cloud environment. With the help 
of centralized SDN control, the authors have addressed numerous issues of multi-
tenant cloud networking including conflicts in network configuration, optimization 
of device resources (e.g., flow tables), etc. Since the Meridian framework has been 
implemented and evaluated using Floodlight [56] controller, so the performance 
largely depends on the said controller.



1 3

Journal of Network and Systems Management (2021) 29:9	 Page 39 of 59  9

Authors in [145] have extended their work [146] of partitioning OSPF networks 
and connecting them with programmable SDN devices. They have proposed SDNp 
in [145], a hybrid OSPF/SDN control plane to have centralized SDN control over 
distributed routing by using SDN or OpenFlow devices to connect OSPF domains. 
The OpenFlow devices communicate routing information about the OSPF domains 
to the centralized controller. With this domain routing information, the centralized 
controller can efficiently steer the inter-domain traffic. The size of the domains 
defines the degree of centralized controller control and the authors have presented 
an algorithm for balanced topology partitioning. They have evaluated the perfor-
mance of pure SDN deployment, OSPF and hybrid SDN/OSPF and have concluded 
that with few SDN nodes between the OSPF domains, better network control can 
be achieved. The main objective of this study is to provide a migration path to the 
organizations in which they can partition their network into various domains and 
connect such domains with the help of OpenFlow devices. The domains can be 
iteratively partitioned into smaller sub-domains, resulting in more centralized con-
trol with each iteration and efficient traffic forwarding between sub-domains. The 
proposed approach attempted to achieve best of the two networking paradigms i.e., 
fault tolerant and reliable connectivity of legacy distributed routing and dynamic 
programmability of SDN.

5.4.1 � Software Defined eXchanges (SDXes)

Some prominent projects have used centralized SDN control at Internet eXchange 
Points (IXPs), hence introducing the concept of Software Defined eXchanges 
(SDXes). As depicted in Fig. 7, the SDXes comprises of participant ASs which are 
connected through an IXP switch controlled by a software based controller. The 
software-based centralized controller creates opportunities to have innovations in 
inter-domain peering, rapid change and implementation of peering policies, thus 
providing effective and promising control over the inter-domain traffic. The main 
design challenges in SDXes are handling complexity of policy combination in con-
trol plane (software platform) and efficient coding methods to reduce the number 
of forwarding table entries in an Internet Exchange Point (IXP) switch. The most 
popular SDXes projects are SDX [147, 148] at Princeton, Atlantic-Wave-SDX [149, 
150], Google’s Cardigan [151] in New Zealand and French TouIX [152]. Here we 

Fig. 7   SDX controller controlling the IXP fabric
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have provided an overview of iSDX [148], a latest, most prominent and state-of-the-
art SDX controller.

iSDX [148] is a large-scale SDX project based on Ryu [64] controller which has 
addressed both the aforementioned issues. iSDX proposes independent and paral-
lel compilation of policies of participating peers which results in fast compilation. 
For consistent inter-domain routing, the participant domains advertise BGP routes 
and in an industrial-scale IXP there can be around 700 participants which exchange 
traffic for hundreds of thousands of prefixes. Addditionally, these participants may 
have different policies for different type of traffic flows and as a result it may lead to 
intractable forwarding table entries in an IXP switch. To address this challenge, the 
authors in [148] have proposed an opaque tag which occupies packet’s destination 
MAC address. This opaque tag encodes both the AS information (which advertises 
the BGP routes for the packet’s destination) and next-hop of the packet and there-
fore, this information can be removed from the IXP switch table. It also prevents 
BGP route updates to trigger recalculation and recompilation of the forwarding table 
records. Further, the authors have used matching with arbitrary bitmask feature of 
OpenFlow 1.3 [153] which can reduce the size of the forwarding table by group-
ing tags having common bitmasks. They have also suggested partitioning and com-
pression approaches for composition of forwarding policies in an industrial scale 
operation.

On the other hand, the SDXes can only influence participating ASs which are 
connected through a software based IXP. At the inter-domain level, the SDX con-
trollers are still logically decentralized as no exchange of information takes place 
between them apart from reachability. Consequent to it, the SDXes can attain local 
optima rather than the global one. To address this issue, authors in [123] have pro-
posed Multi-AS Routing Controller which can have a centralized view over multiple 
ASes and can improve BGP convergence. However, ASes under different admin-
istrative control follow a local policy and share only reachability information, so 
achieving global optima is still a distant dream.

Additionally, SDX controllers face reliability and security issues. SDX control-
lers are more prone to security attacks as any adversary can attack a single central 
entity and after gaining access to it can disrupt the inter-domain traffic. Security pro-
tocols particularly authentication protocols must be employed for gaining access to 
the SDX controllers. Authors in [150] have classified SDX architectures into vari-
ous categories and highlighted the security concerns in each. Layer 2 and layer 3 
SDXes inherits vulnerabilities of shared ethernet and BGP, respectively. Further, 
SDX controller being the central entity is prone to security threats like DDoS attack 
or malicious access through compromised controller instances or applications run-
ning within a controller.

5.5 � Insights

In the last few years, many centralized SDN controllers [55, 56, 64] have been 
extended to operate in a hybrid network. The hybrid SDN controllers either use vir-
tualization, protocol translation mechanisms or extended OpenFlow messages to 
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interoperate two networking paradigms as shown in Table 3. The Panopticon [40, 
41], Hybnet [124], Telekinesis [132] and SHEAR [134] hybrid controllers use virtu-
alization mechanism (VLANs) for hybrid control. The VLAN based control mecha-
nisms conceil the underlying configurations from the end users and provide limited 
control over diverse devices. Although, VLAN based approach provides an interim 
solution but face numerous limitations particularly in dense networks. The hybrid 
controllers which use translation based mechanisms are ClosedFlow [122], Exodus 
[115], and LegacyFlow [141]. However, these translation based mechanisms may 
result in issues like misconfigurations, violation of network policies and in the worst 
case formation of loops in the network. On the other hand, the centralized control 
at IXPs face complexity and security challenges. All these hybrid SDN controllers 
along with their main features, objectives, and mechanisms used for hybrid control 
are summarized in Table 3. It is clear from Table 3 that majority of these hybrid 
SDN controllers fail to address all the four performance parameters.

6 � Future Research Perspectives in SDN Control Plane

The network-wide view at the central SDN controller enables it to optimize various net-
work operations like flow management, load balancing, policy enforcement, etc. The 
efficient and effective forwarding in SDN data plane mainly depends on performance 
of software based SDN controller. The selection of algorithms in control software plays 
a vital role in achieving efficient utilization of network resources. However, using a sin-
gle centralized SDN controller to perform all these functions faces scalability and reli-
ability issues. The distributed SDN control plane addresses these problems at the cost 
of interoperability and consistency issues. On the other hand, the hybrid SDN control 
plane provides an interim solution for upgradation of legacy networks but it also faces 
robustness and complexity issues due to diverse devices in a hybrid network. In this 
section, we have highlighted the various issues in SDN control plane and have pre-
sented future research perspectives in SDN control plane.

6.1 � Monitoring and Measurement Support in SDN Controllers

Network monitoring is a fundamental aspect of network management [154]. The 
applications in management plane require real-time appropriate network state sta-
tistics at diverse aggregation levels. The monitoring frameworks proposed for SDNs 
include OpenSketch [155], Payless [156], OpenNetMon [157], FlowCover [158] and 
Probe-SDN [159]. These frameworks either use active polling or sampling to collect 
monitoring data. Majority of these frameworks are implemented as a separate con-
troller module and have attempted to address a particular monitoring challenge. For 
instance, OpenNetMon [157] and Probe-SDN [159] focus on tradeoff between mon-
itoring overhead and accuracy. OpenNetMon mainly focuses on traffic engineering 
whereas Probe-SDN on estimation of bandwidth utilization. On the other hand, for 
hybrid networks, authors in [160] have provided a limited resource monitoring func-
tionality. However, such solutions are not universal and are specific to a particular 
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application scenario. Most of these approaches fail to innovate the ways of flow 
statistics collection from switches and does not address varied application require-
ments. There is not a single comprehensive monitoring and measurement framework 
for hybrid networks.

Nowadays, the application domain to be monitored is incessantly changing and 
growing. With emerging fine-grained monitoring requirements, the monitoring 
support provided by OpenFlow and SDN controllers is very limited. Currently, the 
SDN controllers provide elementary features and services for monitoring like car-
dinal [161] in ODL, OFMon [162] for ONOS, etc. However, to have diverse traffic 
statistics and real-time view of network statistics available to the applications we 
believe both controllers and data plane devices need to be extended and modified. In 
data plane, there should be provisions to define network events and event triggers in 
order to reduce the bi-directional communication overhead of monitoring data. Fur-
ther, we believe OpenFlow should be extended in line with IETF’s NETCONF [163] 
protocol which provides efficient mechanisms for statistics collection and network 
device configuration. Likewise, the controllers need to implement complex data 
structures and measurement algorithms to handle data plane events and present the 
collected statistics to applications as per the requirement.

6.2 � Automated Network Mangement

Network verification and debugging are important facets of network management. 
Some approaches have been proposed to verify and debug network operations and 
configuration for pure SDN including ndb [164] and Veriflow [165]. ndb [164] fol-
lows the postcard model wherein switches creates a postcard (which includes switch 
id, version number and output port) and forwards it to controller’s collector module 
for analysis. The controller captures and recreates the series of events which lead to 
an irregular behavior. On the other hand, Veriflow [165] performs real time verifi-
cation of networking events by analysing rules sent by the controller towards the 
switches. Veriflow generates forwarding graphs and runs queries on the graphs to 
determine bad or good rule. After observation, either an alarm is raised for a bad 
rule or good rule is forwarded to the data plane. Such mechanisms involve com-
munication overhead and control latency, therefore network operators may have to 
trade-off between accuracy and overhead. On the other hand, in hybrid networks, 
verification and debugging becomes more challenging due to disparity in protocols 
of two networking paradigms. Till date, to the best of our knowledge, there is not a 
single tool which can perform verification and debugging in a hybrid network.

Rule or policy update are other critical issues in network management. Upgrades 
in hardware or software or in general maintenance of forwarding equipment may 
change the traffic flow pattern in the network. Under such conditions, congestion 
should be evaded and desired level of services should be retained. Several solutions 
have been proposed to address such issues including [112, 166, 167] and a detailed 
survey of these approaches is presented in [51]. However, there are still some open 
challenges which need to be addressed by the research community:
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•	 Atomic reconfiguration in distributed SDN control plane and hybrid SDN con-
trol plane.

•	 Providing seamless traffic level services in WANs while performing updates in 
geographically distributed nodes.

•	 Mechanisms for load balancing and congestion avoidance while performing net-
work updates in pure SDN and hybrid SDN.

•	 Mechanisms for policy verification while performing the network updates.

6.3 � Standard East/Westbound and Northbound Interfaces

The absence of industry recognised standard communication protocols for east/
westbound SDN interfaces hampers interoperability between distinct SDN control-
lers and deployment of logically centralized SDN control plane in large-scale net-
works [168]. Alongside the concern of interoperability between hetergenous SDN 
controllers, there is also an urgent need of ensuring interoperability between central-
ized SDN control and legacy distributed control which can enable organziations to 
gradually embrace this new radical paradigm. Even though ONF’s standardization 
efforts are underwary but rapid and effective standardization of these interfaces is 
hampered by heterogeneity in data models of SDN controllers and high performance 
communication mechanisms required to ensure consistent state exchange among 
diverse SDN controllers. The state distribution among controllers has to be clandes-
tine, secure and consistent. In addition to it, other issues associated with state infor-
mation exchange are what and when to exchange between controllers. On the other 
hand, to have interoperability with legacy distributed control various approaches 
like virtualization, message translation, etc. are used in different Hybrid SDN con-
trollers. However, to have seamless connectivity and consistent forwarding in hybrid 
networks a more flexible and scalable approach is required for inter-control plane 
communication.

Likewise, a standardized northbound interface is very important to hide the het-
erogeneity in diverse SDN controllers and to facilitate application portability. In this 
manuscript, we have discussed numerous approaches used in various SDN control-
lers for northbound interface which can be broadly classified into three categories. 
First category includes low-level, proprietary APIs tightly coupled with control-
ler platform, written in their native language. Second category uses client–server 
approach based on REST architecture [169] in which external applications (cli-
ents) use services provided by the controller (server). The third category comprises 
of high level APIs which use indirect way to interact with the controller by using 
domain-specific programming languages [170–174]. This category raises level 
of abstraction by allowing programmers to specify high-level network policies in 
a flexible application development environment. However, such programming lan-
guages need to be further extended to provide support for latest OpenFlow versions, 
code reusability, modularization, and libraries for developers. Further, to express 
network policies effectively in hybrid networks, a policy language for hybrid net-
works need to be developed in future research.
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Another approach which has gained momentum over the last few years is Intent 
Based Networking (IBN). Intent-based northbound interfaces allow applications in 
management plane to specify policy based directives termed as intents. These intents 
are transformed into forwarding rules and communicated to data plane devices by 
control plane. With the help of intents, applications in management plane can sim-
ply specify the necessary requirements without bothering about implementation 
and execution of such directives in control plane. Two distributed SDN controllers 
ONOS [62] and ODL [100] discussed in this manuscript provide limited support 
for intents. ODL framework is working on Network Intent Composition (NIC) [175, 
176], an intent support project which enables external applications to give directives 
to core ODL modules. Likewise, limited intent support [177] in ONOS allows appli-
cations to specify their requirements. IBN simplifies application development and 
needs to be further enhanced and extended in distributed SDN controllers. More-
over, intent support need to be developed in centralized and hybrid controllers in 
future research.

6.4 � Adaptable SDN Controller

The majority of SDN controllers discussed in this manuscript have attempted to 
address a particular control plane design issue. For instance, Elasticon [108] pro-
posed a mechanism for controller load balancing by bringing up and down the 
controller instances as per the load. Likewise, in other controllers [86, 94, 98], the 
authors have considered a particular issue without addressing other problems like 
control latency, functional slicing, convergence time, etc. On the other hand, most 
of the Hybrid SDN controllers can control and manage few legacy devices and fall 
short to control and manage diverse set of legacy devices. In brief, majority of SDN 
controllers fail to provide necessary functions and features which can be tuned to 
address requirements of diverse application areas like multi-tenant data centers, 
WANs, enterprize networks, hybrid networks, etc.

The ODL [100] project is one such SDN control framework which provides 
numerous advanced network control functions and features. This project was origi-
nally initiated to address requirements of multiple application areas like data center, 
enterprise and service provider networks. ODL’s latest release Magnesium [102] 
supports wide range of APIs and uses Model-Driven Service Abstraction Layer 
(MD-SAL) based on YANG models which allows simple and flexible integration 
of network services requested by the application layer via Northbound APIs. The 
main focus of various ODL releases is around S3P which stands for stability, secu-
rity, scalability and performance. The data import/export project termed as Daexin 
in Magnesium has improved scalability of control cluster and provides support for 
processing of huge data sets. The two other major projects which have been incorpo-
rated into Magnesium are DetNet and Plastic. The former focuses on deterministic 
networking at layer 3 and time-sensitive networking at layer 2, whereas the later is 
an intent based facility which performs model-to-model transformations. The Det-
Net provides features like optimal path calculation, QoS and end-to-end commu-
nication flow and service configuration. ODL is in active development process and 
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provides various control applications with every new release but still needs further 
research contribution to address requirements of diverse application domains.

6.5 � Open Issues in Distributed SDN Control Plane

In addition to the research challenges discussed in Sect.  4.2, there are still some 
open issues in distributed SDN control plane which need to be addressed by the 
research community:

•	 How to determine the number of controllers required in a network?
•	 How concurrent consistent state sharing and dynamic load balancing can be 

achieved in distributed SDN controllers?
•	 Where to place distributed controllers in different network scenarios?
•	 How distributed routing can be integrated with distributed controllers in a hybrid 

network?

6.6 � Virtualization

Network Function Virtualization (NFV) and SDN highly complement each other, 
since both advocate creativity, virtualization and automation to realize their respec-
tive goals. NFV aims to decouple network functions from specialized hardware 
whereas SDN segregates network control logic from packet forwarding. The com-
mon goal of NFV and SDN is to promote standard network hardware and open soft-
ware [178]. Currently, numerous approaches are being worked out in the research 
community to combine these two paradigms to augment either of them [179–184].

The SDN controller can play a vital role in implementing virtual network infra-
structure between various virtual network functions (VNFs) and can automate set-
tings according to the changing network requirements. Hence, the centralized SDN 
control plane can accelerate NFV deployment by providing automation of control 
operations, flexible re-configuration and provisioning of network connectivity. 
Numerous controllers have been used to implement SDN/NFV architectures (ODL 
[180, 181], ONOS [182], Floodlight [183, 184], etc.). However, to control and man-
age globally distributed varied network resources (IP, MPLS, Optical, etc.) feder-
ated and hierarchical controllers must be deployed. To meet the requirements of 
NFV, the existing SDN controllers need to be improved in terms of scalability, reli-
ability and interoperability [178]. Further, in NaaS, the network hypervisor creates 
logically-isolated network slices and each virtual slice is under the control of a vir-
tual SDN controller. Such network slices need to be protected from each other and 
security measures need to be taken into account while designing such virtual SDN 
controllers.
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7 � Conclusion

SDN segregates network control logic and forwarding equipment to provide agile, 
responsive, adaptable and more importantly automated control in next generation 
networks. The performance of data plane devices mainly depends on the perfor-
mance of network control logic. In SDN, this network control logic can be imple-
mented either as a physically centralized SDN control plane or physically distributed 
but logically centralized SDN control plane or even hybrid SDN control plane. In 
this manuscript, we have discussed all these SDN control plane architectures and 
research challenges associated with them. Further, we have classified numerous 
SDN controllers on the basis of their architecture and have analyzed them in terms 
of following performance parameters: scalability, reliability, consistency and secu-
rity. The mechanisms used to address the said performance parameters have been 
examined and the shortcomings associated with each mechanism are highlighted.

The physically centralized SDN controllers try to achieve parallelism not only in 
event handling but also in event processing to improve efficiency. In spite of it, the 
centralized SDN controllers face scalability and performance issues. It was observed 
that majority of these controllers fail to mitigate issues which may arise when a con-
trol application contains flaws, malicious logic or vulnerabilities and in the worst 
case such issues can obstruct the overall control plane operations. However, these 
controllers (like Floodlight [56], POX [55], Ryu [64], etc.) have been extensively 
used to design complex distributed SDN controllers (like ONOS [62], Hydra [86], 
DISCO [63], Ravana [98], etc.). In the last one decade, both academic and corporate 
sectors have realized that distributed SDN control plane can address the demands of 
next generation networks and consequently, numerous distributed SDN controllers 
have been proposed by researchers which either follow a hierarchical or flat archi-
tecture. Scalability and reliability are commonly considered as major challenges in 
physically centralized SDN controllers; however, we have observed that such chal-
lenges are also major concern in distributed SDN control plane.

In the distributed SDN control plane, the consistent global network view can be 
achieved at the cost of high control latency. Strong consistency models require huge 
communication overhead and increased synchronization, resulting in new scalabil-
ity challenges. Preserving sturdy consistency during recurrent state updates may 
obstruct the state progress and it may render network unavailable and can also result 
in higher switch to control latency. On the other hand, weak consistency models 
allow simultaneous read/write operations by multiple controller instances and such 
read/write operations may result in different values from the actual updated values 
for a short transient period. Consequent to such dissimilar values retrieved by the 
controller instances, the distributed control plane can have an inconsistent network 
view which may cause improper application behavior. We have analyzed the consist-
ency mechanisms used by various popular distributed controllers like ONOS [62], 
ODL [100], Onix [82], DISCO [63], etc., and have observed that consistent global 
network view across all controller instances is a design challenge which involves 
trade-off between performance and availability.
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Currently, the SDN domains using different control platforms form isolated 
islands with no interoperability and application portability due to absence of stand-
ard interfaces. The interoperability between heterogeneous SDN controllers and 
control application portability is possible only with standard east/westbound and 
northbound interfaces, respectively. For wide-spread adoption of this radical net-
working paradigm, the interoperability among diverse SDN control platforms must 
be ensured. Further, we have highlighted various other design issues of distributed 
SDN control plane like number and placement of distributed SDN controllers, 
load balancing among distributed controllers and criteria for network partitioning. 
Addressing such challenges is very important to have a robust and efficient distrib-
uted SDN control plane as these issues affect the overall network convergence time, 
consistent global view and control plane response time.

The hybrid SDN networks provide an interim path for SDN adoption as it reduces 
the initial cost and other technical constraints. Moreover, hybrid networks provide 
SDN-like control over legacy network infrastructure. We have categorized the 
hybrid SDN networks into seven models and mapped various hybrid SDN control-
lers to these models. These hybrid SDN controllers either use virtualization or trans-
lation based mechanisms to interoperate the two networking domains. Such simple 
mechanisms may face scalability and reliability issues in dense or large-scale net-
works. We believe that an efficient and scalable hybrid SDN controller should be 
designed in future research which can be tuned to various parameters to manage 
diverse set of legacy devices in a hybrid SDN network. Further, for performance 
evaluation and testing of hybrid SDN networks, the simulation/emulation tools need 
to be developed for such networks.

The scalability, consistency, reliability and security are key factors in designing 
an efficient and robust SDN controller. In this manuscript, we have highlighted var-
ious open issues in SDN control plane which can be future research perspectives 
for the research community. We have observed that existing SDN controllers lack 
standard data models, anomaly detection and security mechanisms. We also believe 
that developing a brand-new SDN controller may not be a best solution; however, 
the existing SDN control frameworks need to be enhanced, refined and improved to 
address the said issues.
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