
Vol:.(1234567890)

Journal of Network and Systems Management (2020) 28:1694–1721
https://doi.org/10.1007/s10922-020-09554-9

1 3

A Two‑Stream Network Based on Capsule Networks
and Sliced Recurrent Neural Networks for DGA Botnet
Detection

Xinjun Pei1 · Shengwei Tian2 · Long Yu3 · Huanhuan Wang2 · Yongfang Peng2

Received: 4 October 2019 / Revised: 1 May 2020 / Accepted: 7 July 2020 / Published online: 20 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
With the development of Internet technology, botnets have become a major threat
to most of the computers over the Internet. Most sophisticated bots use Domain
Generation Algorithms (DGAs) to automatically generate a large number of pseudo-
random domain names in Domain Name Service (DNS) domain fluxing, which
can allow malware to communicate with Command and Control (C&C) server. To
cope with this challenge, we built a novel Two-Stream network-based deep learning
framework (named TS-ASRCaps) that uses multimodal information to reflect the
properties of DGAs. Furthermore, we proposed an Attention Sliced Recurrent Neu-
ral Network (ATTSRNN) to automatically mine the underlying semantics. We also
used a Capsule Network (CapsNet) with dynamic routing to model high-level visual
information. Finally, we emphasized how the multimodal-based model outperforms
other state-of-the-art models for the classification of domain names. To the best of
our knowledge, this is the first work that the multimodal deep learning have been
empirically investigated for DGA botnet detection.

Keywords Two-stream network · Capsule network · Sliced recurrent neural
network · Attention · Domain Generation Algorithms

1 Introduction

Most of the network security configurations allow the DNS data to pass through.
Attackers often embed malware commands in DNS data and manage installed mal-
ware through the C&C server. Most of these malwares like botnets use Domain
Generation Algorithms (DGAs) to dynamically generate a large number of pseu-
dorandom domain names. These domain names are called algorithmically-generated
domains (AGDs), some of which are selected as the masks of malware commands

 * Shengwei Tian
 tianshengwei@163.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-020-09554-9&domain=pdf

1695

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

and used to connect with C&C server. In order to completely shut down such a bot-
net, defenders need to intercept all AGDs generated by the malware.

Existing solutions are largely based on the linguistic features to build the models
for DGA botnet detection. Unfortunately, using linguistic properties has a potential
drawback because they may be bypassed by the malware authors, while deriving a
new set of features is rather challenging. Some techniques incorporate contextual
information (such as manual features [1, 2]) to further improve performance. How-
ever, this is a time consuming process and costly measure task, which cannot meet
the needs of many real-world security applications that require real-time detection
and prevention [3]. To address this challenge, we proposed a lightweight seman-
tics and visual feature extraction, and conducted a set of experiments for confirming
the validity of this feature extraction. This feature extraction is performed based on
an in-depth analysis of the semantics and visual features, which is much simpler
than existing manual features-based DGAs detection methods. This strategy allows a
very large number of DGA domain names to be scanned quickly.

The visual features are spatially rich features that are able to encode the visual
concepts of domain names without dissection the malware, when compared to other
well-studied features such as traffic features and linguistic features. Furthermore,
the intuition of using visual features is the inconsistent nomenclature between the
normal and DGA domain names, as much of the previous work in DGA detection
shown that many DGA domain names composed of random characters or words,
which are different from legitimate domain names. Thus, the visualized images of
normal and DGA domain names should be significantly different visually. The basic
motivation is to identify the related malicious domains structure, which may be use-
ful in identifying well-known DGAs. The introducing of visual feature helps to find
the hidden spatial sequence patterns. This is almost similar to human visual systems,
hence yields better accuracy than existing methods. We believe that the proposed
methodology along with the results will contribute a benchmark on forthcoming
DGA botnet detection proposals and research endeavors.

The challenge to catch malicious domain names that are generated dynamically
has led to the recent interest in detecting DGA botnets using deep learning algo-
rithms. In contrast to the traditional approaches, the deep learning algorithms can
learn features automatically, instead of relying on manual or expert-defined features.
Traditional deep learning algorithms [4], such as 1-dimensional convolution neural
network (CNN [5]) and long short term memory (LSTM [6]), which are commonly
used in detecting DGA botnets, can handle contextual relationships or local order
information. However, by using a single model (such as CNN and LSTM) or a tra-
ditional sequential joint model (such as CNN + LSTM [4]), it is easy to lose deep
features during feature mining. For example, when a traditional LSTM processes
long sequence data, the front part of the features in the sequence are lost, resulting
in an inability to completely capture the deep features and worsening the classifica-
tion effects. Thus, this is important for researchers to find a better algorithm to learn
and store the useful information of DGA domain names. To address this challenge,
we proposed a novel Two-Stream network-based deep learning framework, which
enforces the learning of correlation and correspondence between textual semantics
and visual concepts. To highlight the significance of this study, we compared the

1696 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

performance of our framework with those of other existing deep learning-based
methods. Overall, compared with the six baselines (see Sect. 4 for details), the per-
formance gain of the F-score is about 0.08% to 0.82% on the four datasets.

Our goal in this paper is to develop a deep learning-based framework for detect-
ing DGA botnets without any reverse engineering for malware. Furthermore, we
applied the Two-Stream network with two independent encoders to these two tasks
and measured its performance on the multimodal features from the perspective of a
network administrator. In the proposed Two-Stream network, one stream is utilized
to encode the semantic features and the other is applied for the visual features. Pro-
jecting the feature vectors of semantic and visual into a shared vector space through
the two-stream network can provide strong associations between textual semantics
and visual concepts, which has the potential to improve the ability of feature extrac-
tion. This strategy allows us to obtain good performances while keeping the com-
plexity as low as possible.

In summary, we mainly make the following contributions:

• We introduced how to develop multimodal information in detecting DGA bot-
nets. To the best of our knowledge, this is the first study that aims to extract mul-
timodal information consisting of textual semantics and visual concepts.

• We proposed a novel deep learning-based framework to encode different types
of multimodal information. The proposed TS-ASRCaps can automatically learn
multimodal representations from the data, bypassing the human effort of feature
engineering.

• From a practical perspective, the proposed method is attractive, due to its ease of
implementation, acceptable computational complexity, and high execution effi-
ciency. The experimental results show that the proposed model outperforms the
state-of-the-art methods significantly.

The rest of this paper is organized as follows. The next section summarizes pre-
vious research in detecting DGA botnets. Section 3 outlines our approach, includ-
ing feature extraction and classification. Section 4 presents our experimental results.
Section 5 concludes the paper.

2 Related Work

One of the most common approaches for DGA botnet detection is taking the tasks
as binary and multiclass classification, where each domain is assigned with a
label. Many methods have focused on the analysis of DNS traffic to recognize
botnets [3, 7]. These DNS traffic-based methods require the DNS traffic data from
a top-level domain name server or a recursive resolution server. Schiavoni et al.
[7] proposed a mechanism called Phoenix, which characterizes the DGAs using
a combination of string and IP-based features. Phoenix used a set of fingerprints
to label new DGA domains. Mowbray et al. [8] proposed a procedure for DGA
detection, which is used to reveal and identify client IP addresses with an unusual
distribution of second-level string lengths in DGA domain names (from the query

1697

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

data of DNS). Based on observation time and known seeds, Sivaguru et al. [9]
selected data for test and training sets. In this study, they evaluated the robustness
of tree ensemble models based on manual features and deep neural networks that
learn features automatically from domain names. However, these methods have
limited generalization capabilities in the modeling process.

In addition to the above studies, a more effective approach involves the use
of deep learning techniques for identifying the DGA domains. Deep learning
approaches like recurrent neural network (RNN) and convolutional neural net-
work (CNN) have recently been proposed. These deep learning-based meth-
ods significantly outperform traditional machine learning-based methods [1,
10–12] on classification accuracy, at the price of increasing the complexity of
training the model and requiring larger datasets. A typical approach is to feed the
original characters of a domain name as the semantic features into deep learning
model without the need for expert features [13–16] so that the model can auto-
matically learn and classify, which also facilitates real-time detection of DGAs.
In this case, all extracted character features are first converted to numbers, and
then truncated or complemented to a fixed length.

Furthermore, CNN has been widely used in fields like image classification
and video recognition. Recently, Catania et al. [5] provided a performance analy-
sis and comparison of CNN designed specifically for DGA detection. Addition-
ally, RNN has been successful in DGA botnet detection, since it can capture
local information. To overcome the multiclass imbalance problem, Tran et al.
[6] proposed a novel cost-sensitive LSTM, called LSTM. MI. They introduced
a cost item into backpropagation learning procedure to measure the identifica-
tion importance among classes. However, RNN-based methods still suffer from
the defect of unable to completely record the context information in long text.
Yu et al. [4] discussed two types of deep neural networks (including CNN and
LSTM) based on character features for DGA domains detection. This method can
be automatically identify and learn semantic knowledge.

Overall, many methods for DGA botnet detection had achieved good per-
formance using deep learning model as a classifier. These methods are used to
decide whether the given domain is a malicious domain. However, they are only
conducted on the semantic features at character level without considering visual
features. For DGA botnet detection, predictive accuracy should generally strongly
increase when adding additional visual information.

3 Our Approach

3.1 Problem Definition

We formulated our tasks as binary and multiclass classification. Given a set of
S=

{(
xi, yi

)}N

i=1
 , where xi as the model input represents an instance of domain, and

yi denotes the label of the instance.

1698 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

Our goal is to find a proper function f (⋅) , which is the score predicting the class
assignment for an instance. Finally, the output of the function with the largest prob-
ability is taken as the final class predicted by the classifier.

3.2 The Overview of TS‑ASRCaps Framework

In this paper, a deep learning framework (TS-ASRCaps) of feature extraction and
detection of DGAs based on multimodal information is proposed. This frame-
work conducts two major processes; feature analysis (Sect. 3.3) and classification
(Sect. 3.4). More concretely, we designed a novel ATTSRNN- and CapsNet-based
Two-Stream network to model the semantic and visual knowledge. By combin-
ing natural language processing technology with image processing technology, the
semantic and visual features are first extracted from domain names, and then fed
them into the two streams of the Two-Stream network, respectively. Lastly, the Two-
Stream network is evaluated on the fused classification score, and a classification
loss is adopted for optimizing the whole network.

3.3 Feature Analysis

The accuracy of classification is directly affected by the quality of the extracted
features. The multimodal vectors are divided into two types: semantic- and visual-
based vectors.

3.3.1 Semantic Features

As previously noted, some deep learning methods based on character features have
been proposed, which can be considered as classification of short character strings.
Previous research has demonstrated the effectiveness of character features. We
extracted DGA domain name characters as semantic features, which was inspired
by the reports of previous work [4, 6]. Thus, each character contained in a domain
name is represented by a number.

3.3.2 Visual Features

Additionally, we extracted the visual features from the domain names. A typical
approach [16] is represented executable malware binary files as one-channel gray-
scale images via scanning and converting every bit value in binary files into an
image pixel. For example, Su et al. [17] proposed a light-weight approach to classify
malware in IoT environments. After generating images, they firstly analyzed these
converted binary images and then applied a lightweight convolutional neural net-
work for detecting DDoS malware.

Inspired by this, we extracted the gray-scale images from domain names and
classified them according to the similarity of image texture. This strategy allows
researchers to intuitively understand the spatial patterns and structures of domain
names. So this visual feature will provide an effective input for subsequent model

1699

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

learning. Our main assumption is that image samples from different DGA fami-
lies have distinct texture characteristics. Because the different DGA domains are
generated by different algorithms. Furthermore, we treated the domain names
as binary data [17–19]. Each character is represented by the corresponding one-
channel gray-scale image pixel, and each transformed gray-scale image contains
some layouts and textures. Figure 1 illustrates the visualization process of extract-
ing visual features. “Domain to Image Converter” is first transformed a domain
into a gray-scale image, and visual features are then represented and stored in
a database. Specifically, converting domains to the corresponding images only
requires creating the input vectors to the subsequent model learning, which is a
very fast operation.

Algorithm 1 illustrates the visualization process for converting the DGA
domain names to gray-scale images. Firstly, the characters of domain name are
stored in a 1-D array. We set the length of array L = 50. Furthermore, domain
names longer than 50 characters would get truncated from the 50-th character,
and any domain names shorter than 50 characters would get padded with the spe-
cial character ‘0′ till their lengths reached 50. This array can be treated as a 2-D
matrix of a specified width and height. For simplicity, the width and the height of
the image are fixed (Algorithm 1, Line 2–3). Finally, we converted the characters
of domain name to the pixels of image (Algorithm 1, Line 4–10).

Fig. 1 Example of the visualiza-
tion process

1700 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

3.4 Two‑Stream Architecture

In this part, we introduced the Two-Stream architecture that includes three compo-
nents, namely, Attention (ATT), Sliced Recurrent Neural Network (SRNN) and Cap-
sule Network (CapsNet). The overall flow of the proposed TS-ASRCaps is shown in
Fig. 2. Specifically, the choice of the optimized Two-Stream architecture is based on
the experiments in Sect. 4.

Fig. 2 Flow diagram of the TS-ASRCaps

1701

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

3.5 The Semantic Stream

3.5.1 Embedding Layer

In order to improve the statistical quality of the model, one-hot is a typical method
for handling categorical data, which encodes words and stores them into a sparse
matrix that is used as the input of a deep learning model. However, for the one-
hot encoding method, a serious problem is the high dimensionality of the data and
the curse of dimensionality. Instead of the one-hot encoding method, we encoded
semantic features into dense vectors of real values by applying a trainable embed-
ding layer, which is helpful for dealing with high dimensionality and data sparsity.
In such a case, the generated embedding maps the semantic-knowledge into a fixed
n × m matrix, where n represents the number of the semantic features. Each seman-
tic feature is stored in a 1 × m vector represented by a row in the matrix.

3.5.2 Independently Recurrent Unit

In order to prevent the gradient exploding and vanishing in recurrent neural net-
work (RNN), the variant of RNN, referred to as independently recurrent neural net-
work (IndRNN), have been proposed [20], which allows the network to learn long-
term dependencies. Furthermore, the LSTM was developed to address the gradient
explosion and disappearance problems effectively when the network converges, but
the use of hyperbolic tangent and the sigmoid action functions results in gradient
decay over layers [20]. Compared with the LSTM, the neurons in the same layer of
IndRNN are independent of each other and connected across layers, and the gradient
can be effectively propagated at different time steps. Through the gradient reverse
propagation of time, the IndRNN makes network memory more effective in learning
content and processing long sequences. Thus, the IndRNN can make full use of the
long-range information while preventing the gradient explosion and disappearance
problems. Furthermore, the gradient can be effectively propagated at different time
steps, resulting in faster processing compared to LSTM.

This standard IndRNN structure with a non-saturated function � such as relu as
activation function can be described as:

where ⊙ represents the Hadamard product, � and � are the recurrent weight and the
input weight, respectively. Since spatial patterns are aggregated independently (i.e.
through �) over time (i.e. through �), neurons at different times in the same layer
are independent of each other.

However, the IndRNN only uses forward context information during the process-
ing sequence. To improve the modeling ability to integrate forecast knowledge, the
improved bidirectional independently recurrent neural network (Bi-IndRNN) is used
in this paper, which can capture both forward and future context information. The
standard Bi-IndRNN structure is shown in Fig. 3. It can be described as:

(1)�t = 𝜎
(
�xt + �⊙ �t−1 + �

)
,

1702 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

where each input for the forward-to-future and future-to-forward direction are asso-
ciated with a hidden state �⃗t and a hidden state

←

�t corresponding to �⃗t . Next, we
concatenate the two vectors to form the output of the BiIndRNN. In doing so, each
hidden state �t contains information about the whole input sequence.

3.5.3 Sliced Recurrent Neural Networks

In order to improve the traditional RNN connection structure, a new RNN structure
called sliced recurrent neural networks (SRNNs) has been proposed [21, 22], which
have the ability to obtain high-level semantic information of the input sequences, not
just the character-level information.

The input sequence is sliced into several minimum subsequences with equal
length. At each layer, the SRNN can work on each subsequence simultaneously
through the improved RNN connection structure. Furthermore, the Bi-IndRNN is
integrated as the recurrent unit of SRNN and is used for each subsequence, so that
Bi-IndRNN can be computed in parallel, which brought the superiority of both Bi-
IndRNN and SRNN into full play. The hidden state of each minimum subsequence
on the 0-th layer can be described as:

where mss denotes minimum subsequences on the 0-th layer, t denotes the length of
each subsequence, l0 denotes the minimum subsequence length, and the Bi-IndRNN
is used on each layer. On the p-th layer, the last hidden state of the subsequences can
be described as:

(2)�⃗t = 𝜎

(
�xt + �⊙ �⃗t−1 + �

)
,

(3)
←

ht = 𝜎

(
�xt + �⊙

←

�t−1 + �

)
,

(4)�
1
t
= BiIndRNN0

(
mss0

t−l0∼t

)
,

Fig. 3 The BiIndRNN structure

1703

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

where lp denotes the subsequence length of the p-th layer.
In this way, information can be obtained in many short subsequences and impor-

tant information is then transmitted in parallel through the multiple-layers structure
from the 0-th layer to the top layer.

3.5.4 Attention Layer

For knowledge distillation, we stacked an attention module [23] on the top layer of
the SRNN, which pays more attention to the quality of the semantic features of the
SRNN hidden-layer. The attention mechanism is used to extract such characters that
are important to the meaning of the semantic expression since the contribution of
each character to the semantic expression of a domain name is different. Thus, some
critical semantic features are obtained by considering the probability weight distri-
bution. Furthermore, the representations of those informative characters are then
aggregated into vectors. The context vector �i for the attention allocation coefficient
aij is generated as follows:

The weight coefficient of attention mechanism is calculated as follows:

where

is an alignment model which scores how well the inputs around position j and the
output at position i match [23]. The score is based on the hidden state hi−1 of the pre-
vious layer and the j-th annotation annj.

3.5.5 The Visual Stream

The visual stream study also begins with an embedding layer. All of these visual fea-
tures are treated as the specially learnt words, and then embed them into a specific
visual vector space. This strategy enables us to better identify the combinations and
patterns of features.

The capsule network [24–26] is effective for image-related inference tasks (e.g.,
image classification, etc.). We introduced a version of CapsNet to extract visual fea-
tures from gray-scale images that help improve the classification accuracy. Our main
assumption is that the CapsNet will able to successfully detect DGA botnets using
raw pixel values extracted from domain names. Each capsule performs complex
internal calculations on sample inputs and learns how to represent and reconstruct

(5)�
p+1
t = BiIndRNNp

(
h
p

t−lp
∼ h

p

t

)
,

(6)�i =

n∑

j=1

�ijannj.

(7)�ij =
exp

�
eij
��

∑n

k=1
exp

�
eik

�
,

eij=a
(
�i−1, annj

)

1704 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

a given sample like an autoencoder. Compared with CNN [5], the CapsNet converts
scalars into vectors, which can better store features. Furthermore, the dynamic rout-
ing algorithm is used to ensure a more accurate output of low-level capsule vectors
to higher-level parent capsules. By doing this, the dynamic routing-based capsule
network can encode the intrinsic spatial relationships between a part and a whole
knowledge. The above advantages show that CapsNet is a promising architecture
against to standard CNN.

3.5.6 Convolutional Layer

In this network, a standard convolutional layer is used to generate effective features
from different positions of the embedded vector matrix in the previous embedding
layer. The convolutional operations are computed by:

where ◦ denotes element-wise multiplication. The convolutional filter is denoted by
�a ∈ RK1×V1 , where K1 and V1 are used to describe the window size of the convolu-
tional filter. All extracted features are collected into one feature map by sliding the
filter over the embedded vector matrix.

3.5.7 Capsule Layer

Next, a convolutional capsule layer with a group-convolution operation is used to
transform the feature maps into primary capsules. Capsules apply a subset of the
filters used in the previous layer to represent each element in the current layer. More
formally, features at same position from all feature maps are encapsulated into a cor-
responding capsule by the 1 × 1 filters �b=

{
w1,… ,wv

}
∈ RV2 shard across differ-

ent windows. Thus, a capsule vector pi is computed by:

where “[]” is the concatenation operator, V2 is the dimension of a capsule vector,
and g is a non-linear squashing function. Specially, the length ‖‖pi‖‖ of each capsule is
constrained to the unit interval [0, 1] by the squashing function:

By a linear transformation matrix �c , the prediction vector ûj|i from its i-th child
capsule in the first capsule layer to the j-th parent capsule in the subsequent capsule
layer is generated by:

(8)zl = f
(
�

a
◦Xl∶l+k−1 + b

)
,

(9)�
(i) =

[
z1, z2,… , zL−k+1

]
,

(10)pij = zi ⋅ wj ∈ R,

(11)pi = g(
[
pi1, pi2,… , piV2

]
) ∈ RV2 ,

(12)g(x) = squash(x) =
‖x‖�

�+‖x‖�
x

‖x‖
.

1705

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

Then, the high-level capsule vj is calculated as a weighted sum over all prediction
vectors ûj|i . The capsule

where ci is the coupling coefficients that are determined by the dynamic routing
process.

3.5.8 Fusion Vector

The outputs of the two streams are directly combined together by a concatenation
operation “[]”, so that the semantic and visual features are closely interacted. Fur-
thermore, the multimodal vectors m can be obtained by:

After fusion, it is passed on to further layers. This multimodal vectors are used to
calculate the class probabilities for classification task.

Furthermore, the multimodal vectors m can be invoked as features for the binary
or multiclass classification. We let the Sigmoid/Softmax function operate on the
multimodal vectors.

For the binary classification, the Sigmoid function is used as the output layer to
model the binary probabilities.

For the multiclass classification, the Softmax function is used as the output layer
to model the multiclass probabilities:

Our network is trained by minimizing the cross entropy loss, and the objective
function is optimized using the gradient-based optimization algorithm Adam. Hav-
ing the same architecture in both the binary and multiclass classification subtasks
makes the development and the evaluation of a given design simpler.

4 Experiments and Evaluation

For a comprehensive assessment, we evaluated the TS-ASRCaps in a binary experi-
ment (Whether DGA?) and multiclass experiment (Which DGA?) by describing the
details of our experimental setup and evaluation metrics. We conducted two evalua-
tion studies to answer the following research questions:

(13)ûj|i=�
c
ui.

(14)vj=g

(
∑

i

cj|iûj|i

)
,

(15)m=[s, v].

(16)ybinary = Sigmoid (m).

(17)ymulticlass = Softmax (m).

1706 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

• For Study I How accurate is TS-ASRCaps in detecting DGA and non-DGA, and
how does it compare to other state-of-the-art peer approaches that address the
same problem?

• For Study II Does TS-ASRCaps have the ability to distinguish one DGA algo-
rithm from another with high precision?

4.1 Dataset and Metrics

Dataset Our model is evaluated on three widely used benchmark datasets containing
both DGA and normal domains. The normal domains were obtained from the Alexa
top 1 million domains [27]. The DGA domains were obtained from the repositories
of DGA domains of OSINT [28], Lab360 [29], and Andrey Abakumov [30]. Table 1
lists the descriptions of the three datasets, where #Num is the number of DGA and
normal domain names. The OSINT DGA feed (used in our experiment) from Bam-
benek Consulting consists of thirty families of DGAs with a varying number of
examples from each class, which was downloaded on the following dates: April 11,
May 7, and July 10, 2019.

Along with these three public datasets, we also collected a lot of domains gen-
erated by real DNS traces in Jan 2020 from our university. It is referred as XJU
dataset. For all the users connected to the university network, their DNS queries are
sent to the DNS server. We collected all the DNS traffic by mirroring the ports of
the DNS server. Specially, after deduplication, only 88,913 of the queried domains
(including 86,075 normal domains and 2838 DGA domains) are unique. Some sta-
tistics for this dataset are listed in Table 1.

In our experiment, 80% of the samples being randomly selected as the training
set, and the remaining as the test set. Note that, in order to avoid causing biases or
overfitting, this evaluation study did not involve any re-sampling. These two sets do
not have any common samples.

Evaluation metrics For evaluating the classification results, we used some com-
mon performance evaluation metrics to quantify numerically the performance of the
classifier, such as accuracy (ACC), precision (P), recall (R), F-score (F). The goal
of any DGA classification research is to achieve a high value for F-score (F). Addi-
tionally, following the work of [6], we use the micro and macro average to averag-
ing results over classes. For micro average, smaller classes are considered less than
larger classes in the average, which is a better performance predictor for this paper.

Table 1 Main datasets used in
our evaluation studies

Datasets Non-DGA DGA

Source #Num Source #Num

OSINT Alexa 1000,000 OSINT 956,241
Lab360 Alexa 1000,000 Lab360 1174,481
AR Alexa 1000,000 Abakumov 694,173
XJU University 86,075 University 2838

1707

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

For macro average, all classes are averaged regardless of the number of elements in
each individual class.

Experimental Set-up Additionally, we also provided the parameter settings of TS-
ASRCaps as shown in Table 2.

Among them, the Semantic and Visual denote the dimension of the semantic and
visual features, respectively. The Embedding denotes the dimension of the gener-
ated embedding vectors. The SRNN-layers, Bi-IndRNN-layers, Attention-layers and
CapsNet-layers indicate the number of SRNN, Bi-IndRNN, Attention and CapsNet
layers, respectively. The Bi-IndRNN is used as the recurrent unit of SRNN. The Bi-
IndRNN-units indicates the number of Bi-IndRNN neurons. The Capsule-numbers
indicates the number of capsules used in the capsule layer. The Capsule-dimensions
denotes the dimension of a capsule. The Dropout indicates that the dropout tech-
nique is used to overcome over-fitting during training. The Batch indicates the batch
amount. The Epochs indicates the number of iterations for the model training. In
addition, the loss function used in TS-ASRCaps is the cross-entropy. The optimizer
used in TS-ASRCaps is the Adam and the learning rate of the Adam is 0.001.

4.2 Study I: DGA Botnet Detection

The Performance Comparison for DGA Botnet Detection For comparison,
we start from the original proposals as can be found in the literature [31], which
provides the five state-of-the-art deep learning models for DGA botnet detection,
including Endgame, Invincea, CMU, MIT, and NYU. We reimplemented these
models as a set of baselines. In addition, following the work of [6], we also reim-
plemented the LSTM-MI architecture. It is also worth mentioning that Endgame,
CMU, MIT, and LSTM-MI are also used in the recent research [9]. Specially, all

Table 2 Hyper parameter setting Parameters Values

Semantic 64
Visual 64
Embedding 100
SRNN-layers 3
SRNN-recurrent-units Bi-IndRNN
Bi-IndRNN-layers 1
Bi-IndRNN-units 64
Attention-layers 1
CapsNet-layers 1
Capsule-numbers 4
Capsule-dimensions 32
Dropout 50%
Epoch 20
Batch 128
loss function Cross-entropy
optimization algorithm Adam

1708 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

baselines were built using the descriptions and specified parameters from existing
papers [6, 31]. Overall, we compared our proposed model against the following
six baselines:

• Endgame Model [4] [31]: A long short-term memory network (LSTM) was
designed specifically for DGA detection.

• CMU Model [31]: A standard bidirectional language model for DGA detection
consists of a forward and backward long short-term memory network.

• NYU Model [4, 5, 31]: A standard convolutional neural network (CNN) was
originally proposed by [32], and adapted for DGA detection by [4, 5], and [31].

• Invincea Model [31]: An extended model of CNN with parallel architecture was
adapted by [31].

• MIT Model [31]: A hybrid neural network consists of an embedding layer, a
CNN layer, and an LSTM layer, which was originally proposed for character-
level text processing by [33].

• LSTM-MI [31]: The cost-sensitive LSTM model for DGA detection was pro-
posed by [6], which introduces the cost items into the backpropagation learning
procedure to take into account the identification importance among classes.

These models are used independently to model multimodal information with-
out using the Two-Stream mode. The results are listed in Table 3. All models per-
formed well on the four benchmark datasets. We can see that the LSTM-MI, End-
game, and NYU are closest to our TS-ASRCaps in overall performance, which
fully demonstrates the powerful generalization ability of these models.

Table 3 TS-ASRCaps versus baselines for DGA detection on the four benchmark datasets (the size of
dataset used in this experiment is described in Table 1)

Dataset Endgame CMU NYU Invincea MIT LSTM-MI TS-ASRCaps

OSINT Acc 99.28 99.2 99.32 99.14 99.27 99.32 99.4
P 99.35 98.79 99.22 99.02 99.06 99.21 99.26
R 99.25 99.65 99.46 99.3 99.52 99.47 99.58
F 99.3 99.22 99.34 99.16 99.29 99.34 99.42

Lab360 Acc 99.36 99.36 99.42 99.02 9.37 99.4 99.51
P 98.97 99.12 99.2 98.22 98.99 99.43 99.38
R 99.66 99.49 99.54 99.68 99.64 99.26 99.57
F 99.31 99.31 99.37 98.94 99.31 99.35 99.47

AR Acc 98.88 98.66 98.95 98.63 98.85 98.89 99.05
P 99.25 98.87 99.23 98.77 98.95 99.06 99.14
R 98.85 98.87 99 98.91 99.09 99.06 99.26
F 99.05 98.87 99.11 98.84 99.02 99.06 99.2

XJU Acc 97.96 97.62 98.31 97.67 98.59 97.89 99.24
P 98.75 97.8 98.51 98.68 99.28 99.14 99.61
R 99.15 99.77 99.76 98.91 99.26 98.67 99.6
F 98.95 98.78 99.13 98.8 99.27 98.91 99.6

1709

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

Although their performances better than the other methods, but they are not yet
comparable to the results given by the TS-ASRCaps. The TS-ASRCaps substan-
tially outperforms all baselines, since it takes into account the mutual relation-
ship between semantic and visual. Figure 4 shows the ROC curves for the four
benchmark datasets. This shows that the TS-ASRCaps has superior performance
in detecting DGA botnets.

Is the Two-stream network redundant? In this part, we conduct experiments
to evaluate: (1) the effectiveness of multimodal. (2) the contributions of each
component of TS-SRACaps. As TS-SRACaps comprises a set of contiguous com-
ponents, such as Attention Mechanism (ATT), Sliced Recurrent Neural Network
(SRNN) and Capsule Network (CapsNet), we designed four models to investigate
the necessity and benefits of these components.

• OS-CapsNet (One-Stream CapsNet): OS-Caps is designed to test whether visual
features and CapsNet for DGA detection are necessary, which adopt one branch
of the CapsNet to learn the visual information.

Fig. 4 ROC curves for the four benchmark datasets

1710 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

• OS-CNN (One-Stream CNN): To verify the necessity of CapsNet, we also
designed a baseline OS-CNN to learn the visual information.

• OS-SRNN (One-Stream SRNN without Attention Mechanism): To verify the
necessity of semantic features and SRNN, we designed a baseline OS-SRNN to
learn the semantic information, which uses one branch of the SRNN.

• OS-ATTSRNN (One-Stream SRNN with Attention Mechanism): Unlike the
OS-SRNN model, one branch of SRNN with an attention mechanism (OS-
ATTSRNN) is used to learn semantic information and to model the hidden con-
textual by calculating the attention weights, which verifies the necessity of the
attention mechanism. OS-ATTSRNN is a straightforward combination of the
SRNN and attention models.

As shown in Table 4, the OS-CapsNet performs the best in this One-Stream
mode. This is the only configuration that uses a CapsNet as it is not tested in com-
bination with the SRNN. Meanwhile, the OS-CapsNet in the OSINT dataset has an
accuracy of 99.26%, which is a significant improvement over the OS-CNN. This is
because the OS-CapsNet can encode the intrinsic spatial relationships between a
part and a whole knowledge. Specially, an ensemble of SRNN with attention (i.e.
OS-ATTSRNN) substantially improves the overall performance compared to the
OS-SRNN, with an accuracy of 98.69% and an F-score of 99.32% on the XJU data-
set. This is because the OS-ATTSRNN can capture the importance of each context
character while the OS-SRNN cannot. The result listed in Table 4 affirmed the effec-
tiveness of the proposed semantic and visual features.

As we expect, the TS-ASRCaps outperformed all baselines since the ensemble
method benefits from the incorporation of the Two-Stream network outputs. The

Table 4 Ablation studies of TS-ASRCaps on the four benchmark datasets

Dataset OS- CNN OS-CapsNet OS-SRNN OS-ATTSRNN TS-ASRCaps

OSINT Acc 99.13 99.26 98 98.03 99.4
P 98.95 99.26 97.51 97.64 99.26
R 99.35 99.29 98.6 98.52 99.58
F 99.15 99.27 98.05 98.08 99.42

Lab360 Acc 99.11 99.44 98.34 98.42 99.51
P 98.94 99.21 97.48 97.65 99.38
R 99.13 99.58 98.93 98.96 99.57
F 99.03 99.39 98.2 98.3 99.47

AR Acc 98.11 98.84 97 96.91 99.05
P 98.35 98.89 97.74 97.5 99.14
R 98.44 99.15 97.17 97.26 99.26
F 98.4 99.02 97.45 97.38 99.2

XJU Acc 98.36 98.72 98.5 98.69 99.24
P 98.4 98.76 99.52 99.38 99.61
R 99.93 99.93 98.93 99.26 99.6
F 99.15 99.34 99.22 99.32 99.6

1711

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

knowledge of multimodal for the detection task can be learned from the DGA data
since the semantic and visual embeddings are shared cross the network. Again, the
ensembles lead to a dramatic increase in performance, showing that the ATTSRNN
and CapsNet are complementary.

The Performance Comparison for the Proportion of Training and Testing
Sets To demonstrate the reliability of the TS-ASRCaps, we investigated the impact
of the number of training samples on classification accuracy. The experiment set-
tings are along the same lines as previously mentioned in Sect. 4.1. We evaluated our
model by training it on a small number of samples while testing on unseen samples.

Note that there are no common sample between the two sets. In this experiment,
we found that the number of training samples plays a crucial role in the performance
of the model. As shown in Fig. 5, we changed the proportion of training and testing
sets. We can see that, when the TS-ASRCaps used 20% of the data for training, the
classification accuracy rate is 99.14%. The results indicated that the TS-ASRCaps
can achieve good results in the case of a small number of training samples, dem-
onstrating that the feature collection ability of the TS-ASRCaps is very strong. The
downside is that the classification accuracy rate has not reached the best level.

Furthermore, when the number of training samples increases, the model fits the
data distribution better. The very strong ability in express information will make
the value from the function close to the desired target, and thus improve the per-
formance of the model. The experimental results indicate that the TS-ASRCaps is
more sensitive to the number of training samples. A modest increase in the training
sample size would improve the performance of the model.

4.3 Study II: Multiclass

The Performance Comparison for Familial Classification For assessing the per-
formances of the proposed model, we reported the familial classification results of
the TS-ASRCaps against the rival methods (the hyper-parameters of all models are
fixed without tuning). The precision, recall, and F-score are displayed in Tables 5

Fig. 5 The comparative classification performance in various proportions of training and testing sets

1712 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

Ta
bl

e
5

 M
ul

tic
la

ss
 c

la
ss

ifi
ca

tio
n

re
su

lts
 in

 te
rm

s o
f p

re
ci

si
on

, r
ec

al
l a

nd
 F

-s
co

re
—

pa
rt

I

Fa
m

ily
#N

um
En

dg
am

e
C

M
U

N
Y

U
TS

-A
SR

C
ap

s

P
R

F
P

R
F

P
R

F
P

R
F

A
le

ax
10

00
,0

00
99

.5
2

99
.5

6
99

.5
4

99
.4

9
99

.6
9

99
.5

9
99

.3
1

99
.7

7
99

.5
4

99
.4

5
99

.8
4

99
.6

4
PT

 G
oz

66
,0

00
99

.7
9

99
.9

8
99

.8
8

99
.9

8
99

.9
7

99
.9

7
99

.9
6

99
.9

7
99

.9
6

10
0

99
.9

9
10

0
N

ec
ur

s
49

,1
52

93
.7

4
84

.1
9

88
.7

1
94

.7
8

83
.5

2
88

.8
94

.1
4

84
.2

7
88

.9
4

97
.3

3
81

.7
1

88
.8

4
Q

ak
bo

t
40

,0
00

79
.0

3
79

.9
8

79
.5

75
.9

8
83

.2
79

.4
3

75
.3

8
81

.9
2

78
.5

2
77

.4
1

81
.1

9
79

.2
6

M
ur

of
et

26
,5

00
85

.7
4

82
.2

4
83

.9
5

82
.2

6
88

.0
7

85
.0

6
80

.5
4

82
.9

7
81

.7
4

83
.3

7
85

.1
8

84
.2

6
Ti

nb
a

66
,6

88
93

.3
3

99
.7

96
.4

1
94

.9
2

99
96

.9
2

93
.6

2
98

.8
9

96
.1

8
94

.3
3

99
.2

6
96

.7
3

R
am

ni
t

56
,1

74
78

.9
4

91
.8

9
84

.9
2

81
.3

8
90

.6
9

85
.7

9
79

.6
4

90
.8

7
84

.8
8

81
.6

90
.8

85
.9

6
R

an
by

us
13

,6
40

79
.5

9
87

.4
1

83
.3

2
82

.4
85

.4
5

83
.9

82
.4

5
84

.5
6

83
.4

9
82

.0
9

85
.7

4
83

.8
8

D
yr

e
79

98
99

.9
4

99
.9

4
99

.9
4

10
0

10
0

10
0

99
.9

2
10

0
99

.9
6

99
.9

4
99

.7
5

99
.8

4
H

es
pe

rb
ot

19
2

0
0

0
0

0
0

0
0

0
0

0
0

Lo
ck

y
53

52
84

.4
3

32
.0

7
46

.4
8

82
.7

3
30

.0
3

44
.0

6
89

.1
9

29
.6

2
44

.4
7

74
.5

7
33

.5
6

46
.2

9
W

ik
i 2

5
50

00
40

.1
6

51
.1

44
.9

7
54

.7
6

29
.5

3
38

.3
6

62
.7

25
.9

3
36

.6
9

49
.4

6
40

.2
8

44
.4

B
eb

lo
h

12
,5

21
98

.5
3

91
.4

94
.8

3
98

.7
2

91
.4

2
94

.9
3

99
.2

3
90

.7
6

94
.8

1
99

.0
6

91
.5

5
95

.1
6

K
ra

ke
n

89
88

97
.6

6
76

.1
85

.5
4

91
.7

1
81

.6
5

86
.3

9
98

.5
8

76
.8

5
86

.3
7

87
.7

1
85

.9
6

86
.8

3
C

hi
na

d
15

36
99

.0
5

97
.8

1
98

.4
3

98
.8

9
97

.4
5

98
.1

6
96

.3
1

96
.5

2
96

.4
2

99
.2

9
94

.2
6

96
.7

1
Pu

sh
do

16
80

91
.1

9
86

.3
1

88
.6

9
94

.0
6

87
.4

2
90

.6
2

91
.9

2
80

.2
9

85
.7

1
96

.2
5

87
.5

91
.6

7
C

ry
pt

ol
oc

ke
r

10
00

0
0

0
0

0
0

0
0

0
0

0
0

Va
w

tra
k

31
50

77
.8

9
69

.0
5

73
.2

1
89

.9
4

84
.9

2
87

.3
5

84
.9

5
53

.7
4

65
.8

3
80

.9
7

77
.8

3
79

.3
7

Sp
hi

nx
76

8
0

0
0

0
0

0
0

0
0

0
0

0
Pr

os
lik

ef
an

60
0

83
.3

3
20

.4
9

32
.8

9
88

.6
4

29
.1

43
.8

2
91

.4
3

17
.6

8
29

.6
3

10
0

18
.8

5
31

.7
2

G
eo

do
57

6
44

.4
4

7.
08

12
.2

1
50

94
.5

9
65

.4
2

10
0

0.
52

1.
04

47
.4

5
98

.9
4

64
.1

4
Pa

dc
ry

pt
57

6
10

0
93

.4
6

96
.6

2
95

.9
99

.1
5

97
.5

96
.3

4
86

.8
1

91
.3

3
92

.5
4

98
.4

1
95

.3
8

R
am

do
20

00
99

.7
6

99
.7

6
99

.7
6

10
0

10
0

10
0

98
.5

6
98

.7
1

98
.6

3
96

.9
5

10
0

98
.4

5

1713

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

Ta
bl

e
5

 (c
on

tin
ue

d)

Fa
m

ily
#N

um
En

dg
am

e
C

M
U

N
Y

U
TS

-A
SR

C
ap

s

P
R

F
P

R
F

P
R

F
P

R
F

C
or

eb
ot

24
0

10
0

10
0

10
0

10
0

98
.0

8
99

.0
3

98
.7

8
10

0
99

.3
9

10
0

97
.8

3
98

.9
Vo

la
til

e
99

6
99

.5
97

.0
9

98
.2

8
98

.5
1

10
0

99
.2

5
99

.0
1

10
0

99
.5

95
.5

4
99

.4
8

97
.4

7
B

am
ita

l
24

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
98

.6
1

99
.3

10
0

10
0

10
0

B
ee

bo
ne

21
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

98
.4

4
99

.2
1

97
.4

4
10

0
98

.7
D

irc
ry

pt
72

0
0

0
0

0
0

0
0

0
0

0
0

0
Te

m
pe

dr
ev

e
24

9
0

0
0

10
0

1.
82

3.
57

0
0

0
0

0
0

Fo
bb

er
60

0
38

.8
1

19
.8

5
26

.2
6

37
.0

4
7.

81
12

.9
66

.6
7

1.
16

2.
27

44
.4

4
3.

15
5.

88
vi

dr
o

20
0

0
0

0
0

0
0

0
0

0
0

0
0

M
ic

ro
–

96
.5

9
96

.5
9

96
.5

9
96

.8
96

.8
96

.8
96

.5
5

96
.5

5
96

.5
5

96
.8

2
96

.8
2

96
.8

2
M

ac
ro

–
69

.8
2

63
.4

3
64

.9
8

73
.9

4
66

.5
3

67
.1

2
73

.5
60

.6
1

62
.7

70
.2

3
66

.1
6

66
.1

1

1714 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

and 6 for the Endgame, Invincea, CMU, MIT, NYU, and LSTM-MI. Based on the
additional information provided by detecting the specific DGA malware family, anti-
malware providers can validate the results, thereby making optimal detection deci-
sion with higher confidence. Our goal is to retain the high F-score on the non-DGA
(Alexa) class while increasing the micro and macro averaging F-score on the DGA
classes. As we can see, the TS-ASRCaps has a more balanced F-score in all classes,
which explains why an ensemble of SRNN with CapsNet works, as they are comple-
mentary to one another. Figure 6 shows the multiclass classification performance of
the TS-ASRCaps for each DGA family.

We discovered that some families were misclassified most of the time, such as
cryptolocker, tempedreve, hesperbot, fobber, and dircrypt. These observations are
along the same lines as [6]. All baselines are well recognized for some DGA fami-
lies and do not perform well in other families. This is perhaps because the serious
imbalance class distribution towards these families makes the classifier less likely to
learn useful information. According to [6], another possible reason may be due to
the uniform distribution of letters generated by those malwares. Overall, although
the different families are classified, the TS-ASRCaps is still comparable to these
state-of-the-art techniques. The TS-ASRCaps also has the ability to retain high
F-score on the non-DGA (Alexa) class.

In addition, to analyze the weighting process of attention, we drew the attention
distributions at attention layer as shown in Fig. 7. Color proceeding a domain name
denotes to the weight of the attention matrix, and does not necessarily denote non-
DGAs or DGAs. The attention layer acted somewhat as an optimized feature extrac-
tor on the sequences of semantic feature vectors produced from previous SRNN
layer, and the cell of attention provided an indication of what the semantic feature
was weighting. We can observed that after attention learning, some characters of
a domain can obtain a high weight at attention layer, while others cannot. In other
word, the key semantic features would be collected and irrelevant parts would be
ignored. This shows our application of attention layer for the DGAs classification is
effective at guiding the attention layer to select the vital semantic features.

4.4 Efficiency

Analyzing a domain name is mainly divided into two phases: one is the feature
extraction phase, and the other is the classification phase. For the feature extraction
phase, previous studies, such as [24], have demonstrated the effectiveness of char-
acter features for deep learning model in DGA botnet detection. These methods are
more efficient than ours because only character features are extracted. Compared to
them, we additionally extracted the visual features as the input of classifier. In fact,
the extraction of the multimodal features is a very fast operation, and the time taken
to process one sample for feature extraction is almost negligible. Another topic of
discussion is the efficiency of our method in classifying DGAs. For potential users,
the classification time is critical. For assessing the overall runtime, we focused on
evaluating the processing time for feature extraction and then giving an average runt-
ime for processing one sample. Furthermore, we time predation for 100 k domains,

1715

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

Ta
bl

e
6

 M
ul

tic
la

ss
 c

la
ss

ifi
ca

tio
n

re
su

lts
 in

 te
rm

s o
f p

re
ci

si
on

, r
ec

al
l a

nd
 F

-s
co

re
—

pa
rt

II

Fa
m

ily
#N

um
In

vi
nc

ea
M

IT
LS

TM
-M

I
TS

-A
SR

C
ap

s

P
R

F
P

R
F

P
R

F
P

R
F

A
le

ax
10

00
,0

00
99

99
.7

8
99

.3
8

99
.4

4
99

.7
5

99
.6

99
.4

8
99

.6
9

99
.5

8
99

.4
5

99
.8

4
99

.6
4

PT
 G

oz
66

,0
00

99
.8

8
99

.9
99

.8
9

10
0

99
.9

8
99

.9
9

99
.9

2
99

.9
4

99
.9

3
10

0
99

.9
9

10
0

N
ec

ur
s

49
,1

52
96

.0
9

73
.0

3
82

.9
9

96
.0

4
82

.8
2

88
.9

4
95

.1
3

83
.3

5
88

.8
5

97
.3

3
81

.7
1

88
.8

4
Q

ak
bo

t
40

,0
00

69
.4

7
78

.4
2

73
.6

7
76

.4
6

82
.2

1
79

.2
3

78
.3

4
79

.7
4

79
.0

3
77

.4
1

81
.1

9
79

.2
6

M
ur

of
et

26
,5

00
77

.8
8

58
.3

1
66

.6
9

80
.2

4
87

.9
83

.8
9

80
.4

88
.7

3
84

.3
6

83
.3

7
85

.1
8

84
.2

6
Ti

nb
a

66
,6

88
75

.5
4

94
.9

8
84

.1
5

94
.0

5
99

.3
96

.6
94

.3
6

98
.9

7
96

.6
1

94
.3

3
99

.2
6

96
.7

3
R

am
ni

t
56

,1
74

72
.7

5
80

.2
8

76
.3

3
81

.8
9

89
.2

3
85

.4
82

.4
3

89
.9

8
86

.0
4

81
.6

90
.8

85
.9

6
R

an
by

us
13

,6
40

59
.5

6
61

.4
1

60
.4

7
83

.0
4

82
.5

3
82

.7
8

81
.7

3
86

.2
7

83
.9

4
82

.0
9

85
.7

4
83

.8
8

D
yr

e
79

98
99

.8
7

10
0

99
.9

4
10

0
10

0
10

0
99

.9
2

10
0

99
.9

6
99

.9
4

99
.7

5
99

.8
4

H
es

pe
rb

ot
19

2
0

0
0

0
0

0
0

0
0

0
0

0
Lo

ck
y

53
52

95
.3

21
.3

6
34

.9
76

.9
5

36
49

.0
5

77
.8

5
35

.2
2

48
.5

74
.5

7
33

.5
6

46
.2

9
B

ed
ep

50
00

70
.7

15
.6

1
25

.5
7

63
.2

7
29

.3
9

40
.1

3
48

.6
41

.2
44

.6
49

.4
6

40
.2

8
44

.4
B

eb
lo

h
12

,5
21

94
.1

6
88

.2
2

91
.0

9
99

.1
1

91
.8

8
95

.3
6

98
.9

3
90

.7
8

94
.6

8
99

.0
6

91
.5

5
95

.1
6

K
ra

ke
n

89
88

97
.2

8
76

.7
7

85
.8

2
88

.7
6

85
.3

3
87

.0
1

91
.7

5
81

.7
2

86
.4

5
87

.7
1

85
.9

6
86

.8
3

C
hi

na
d

15
36

96
.1

6
69

.5
7

80
.7

2
98

.6
2

98
.2

8
98

.4
5

98
.7

3
97

.9
1

98
.3

2
99

.2
9

94
.2

6
96

.7
1

Pu
sh

do
16

80
89

.1
8

81
.6

8
85

.2
7

93
.4

5
85

.7
9

89
.4

6
86

.1
7

92
.9

3
89

.4
2

96
.2

5
87

.5
91

.6
7

C
ry

pt
ol

oc
ke

r
10

00
0

0
0

0
0

0
0

0
0

0
0

0
Va

w
tra

k
31

50
96

.3
6

34
.8

1
51

.1
5

89
.5

5
85

.5
8

87
.5

2
88

.8
9

90
.6

8
89

.7
7

80
.9

7
77

.8
3

79
.3

7
Sp

hi
nx

76
8

0
0

0
0

0
0

0
0

0
0

0
0

Pr
os

lik
ef

an
60

0
0

0
0

87
.5

23
.1

4
36

.6
82

.9
8

19
.9

32
.1

10
0

18
.8

5
31

.7
2

G
eo

do
57

6
0

0
0

57
.2

3
78

.5
1

66
.2

57
.7

5
97

.9
4

72
.6

6
47

.4
5

98
.9

4
64

.1
4

Pa
dc

ry
pt

57
6

95
.5

4
93

.0
4

94
.2

7
94

.2
9

90
.8

3
92

.5
2

98
.1

98
.1

98
.1

92
.5

4
98

.4
1

95
.3

8
R

am
do

20
00

96
.9

3
99

.7
6

98
.3

3
99

.1
8

98
.1

98
.6

3
99

.8
3

99
.5

99
.6

6
96

.9
5

10
0

98
.4

5

1716 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

Ta
bl

e
6

 (c
on

tin
ue

d)

Fa
m

ily
#N

um
In

vi
nc

ea
M

IT
LS

TM
-M

I
TS

-A
SR

C
ap

s

P
R

F
P

R
F

P
R

F
P

R
F

C
or

eb
ot

24
0

98
10

0
98

.9
9

10
0

10
0

10
0

10
0

97
.5

3
98

.7
5

10
0

97
.8

3
98

.9
Vo

la
til

e
99

6
98

.4
8

10
0

99
.2

3
97

.9
6

10
0

98
.9

7
98

.9
9

10
0

99
.4

9
95

.5
4

99
.4

8
97

.4
7

B
am

ita
l

24
0

10
0

81
.2

5
89

.6
6

10
0

10
0

10
0

94
.8

1
10

0
97

.3
3

10
0

10
0

10
0

B
ee

bo
ne

21
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

98
.3

3
99

.1
6

97
.4

4
10

0
98

.7
D

irc
ry

pt
72

0
0

0
0

0
0

0
0

0
0

0
0

0
Te

m
pe

dr
ev

e
24

9
0

0
0

66
.6

7
18

.1
8

28
.5

7
58

.3
3

17
.2

8
26

.6
7

0
0

0
Fo

bb
er

60
0

0
0

0
37

.1
8

20
.8

6
26

.7
3

30
.8

8
25

.9
3

28
.1

9
44

.4
4

3.
15

5.
88

V
id

ro
20

0
0

0
0

0
0

0
0

0
0

0
0

0
M

ic
ro

–
94

.5
6

94
.5

6
94

.5
6

96
.7

6
96

.7
6

96
.7

6
96

.7
8

96
.7

8
96

.7
8

96
.8

2
96

.8
2

96
.8

2
M

ac
ro

–
63

.8
1

55
.1

57
.3

7
72

.9
3

66
.6

3
68

.1
2

71
.7

5
68

.1
2

68
.4

6
70

.2
3

66
.1

6
66

.1
1

1717

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

which include the feature extraction and classification time. Figure 8 displays the
distribution of overall runtimes for all models. The five-pointed star denotes the
average runtime and the segment inside the box shows the median.

For our method, the average lies at just 0.015 s for processing one domain name
on a single core (GeForce GTX 1060 with 8 GB RAM), of which 0.0005 s spent
in the feature extraction and 0.015 s in the classification. Although our method is

Fig. 6 Normalized confusion matrix of the TS-ASRCaps classifier

Fig. 7 Examples of the visualization results of the attention matrix

1718 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

slower than that of some existing methods, it has almost no computation cost. Addi-
tionally, as shown in Table 3, the baseline methods achieve competitive results on
some datasets but fail to adapt to the others. For example, Endgame and LSTM-MI
perform quite well on OSINT, Lab360 and AR but poorly on XJU, or Invincea has a
favorable performance on OSINT but lower values on other datasets. Our proposed
method performs consistently well on all datasets that demonstrates the good gen-
eralization ability. Apparently, given the substantially superior performance of the
TS-ASRCaps over other state-of-the-art techniques, the additional cost incurred by
the TS-ASRCaps can be seen to be justified. Overall, our method allows for compu-
tationally inexpensive feature extraction and classification. Based on the above facts,
we can claim that the proposed method can facilitate real-time detection of DGAs.

5 Discussions

In this paper, we explored a novel Two-Stream Network to simultaneously capture
the semantic distribution and spatial context information contained in DGA domain
names, without relying on any other complex or expert features. We evaluated our
framework from two aspects: detecting DGA and non-DGA, and distinguishing one
DGA algorithm from another. To the best of our knowledge, this is the first applica-
tion of the multimodal deep learning to the DGA botnet detection.

Though the TS-ASRCaps performed extremely well in our experiments, there
might be room for improvement. We will work on extending our system to incorpo-
rate new multimodal features into the system, which may promote the representation
of higher-level concepts. Another important consideration is the modularity of the
system. Future work is needed to replace some of the components contained in this
architecture with newer and better-performing versions.

Acknowledgments The authors would like to thank the Editor-in-Chief, the Associate Editor, and the
reviewers for their insightful comments and suggestions. This work was supported by the Research Inno-
vation Project of Graduate Student in Xinjiang Uygur Autonomous Region (XJ2019G065), the CERNET
Innovation Project (NGII20170420, NGII20190412) and the Xinjiang Uygur Autonomous Region Cyber
Security and Informatization Project (XJWX-1-Z-2019-1021).

Fig. 8 Frequency distribution of runtimes

1719

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

References

 1. Yang L, Liu G, Zhai J, Dai Y, Yan Z, Zhou Y, Huang W. A novel detection method for word-based
DGA. International Conference on Cloud Computing and Security, 472–483 (2018)

 2. Antonakakis M, Perdisci R, Nadji Y, Vasiloglou N, Dagon D. From throw-away traffic to bots:
detecting the rise of DGA-based malware. Usenix Security Symposium, 491–506 (2012)

 3. Krishnan S, Taylor T, Monrose F, Mchugh J. Crossing the threshold: detecting network malfeasance
via sequential hypothesis testing. IEEE/IFIP International Conference on Dependable Systems &
Networks, 1–12 (2013)

 4. Yu B, Gray D L, Pan J, Cock M D, Nascimento A C. Inline DGA detection with deep networks.
IEEE International Conference on Data Mining Workshops, 683–692 (2017)

 5. Catania C, García S, Torres P. Deep convolutional neural networks for DGA detection. Argentine
Congress of Computer Science ,327–340 (2018)

 6. Tran, D., Mac, H., Tong, V., Tran, H.A., Nguyen, L.G.: A LSTM based framework for handling
multiclass imbalance in DGA botnet detection. Neurocomputing 275, 2401–2413 (2018)

 7. Schiavoni S, Maggi F, Cavallaro L, Zanero S. Phoenix: DGA-based botnet tracking and intelligence.
International Conference on detection of intrusions and malware, and vulnerability assessment,
192–211 (2014)

 8. Mowbray M, Hagen J. Finding domain-generation algorithms by looking at length distribution.
IEEE international symposium on software reliability engineering workshops (2014) 395–400

 9. Sivaguru R, Choudhary C, Yu B, Tymchenko V, Nascimento A, Cock M D. An evaluation of DGA
classifiers. IEEE International Conference on Big Data, (2018) 5058–5067

 10. Li, Y., Xiong, K., Chin, T., Hu, C.: A machine learning framework for domain generation algo-
rithm-based malware detection. IEEE Access 7, 32765–32782 (2019)

 11. Wang Z, Jia Z, Zhang B. A detection scheme for DGA domain names based on SVM. International
Conference on mathematics, modelling, simulation and algorithms, (2018)

 12. Tong V, Nguyen G. A method for detecting DGA botnet based on semantic and cluster analysis.
Seventh Symposium on information and communication technology, 272–277 (2016)

 13. Dahal B, Kim Y. AutoEncoded domains with mean activation for DGA botnet detection. IEEE
International Conference on global security, safety and sustainability, 208–212 (2019)

 14. Luo X, Wang L, Xu Z, Yang J, Sun M, Wang J. Dgasensor: Fast detection for dga-based malwares.
International Conference on communications and broadband networking, 47–53 (2017)

 15. Koh JJ, Rhodes B. Inline detection of domain generation algorithms with context-sensitive word
embeddings. IEEE International Conference on Big Data, 2966–2971 (2018)

 16. Yang M, Wen Q. Detecting android malware by applying classification techniques on images pat-
terns. IEEE International Conference on cloud computing and big data analysis, 344–347 (2017)

 17. Su J, Vasconcellos V D, Prasad S, Daniele S, Feng Y, Sakurai K. Lightweight classification of IoT
malware based on image recognition. IEEE Annual computer software and applications conference,
664–669 (2018)

 18. Dey A, Bhattacharya S, Chaki N. Byte label malware classification using image entropy. Advanced
computing and systems for security, 17–29 (2019)

 19. Yen, Y.S., Sun, H.M.: An android mutation malware detection based on deep learning using visuali-
zation of importance from codes. Microelectron Reliab. 93, 109–114 (2019)

 20. Li S, Li W, Cook C, Zhu C, Gao, Y. Independently recurrent neural network (indrnn): building a
longer and deeper rnn. IEEE Conference on computer vision and pattern recognition, 5457–5466
(2018)

 21. Li B, Cheng Z, Xu Z, Ye W. Long text analysis using sliced recurrent neural networks with breaking
point information enrichment. IEEE International Conference on acoustics, speech and signal pro-
cessing, 7550–7554 (2019)

 22. Yu Z, Liu G. Sliced recurrent neural networks. International Conference on computational linguis-
tics, 2953–2964 (2018)

 23. Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate.
International Conference on learning representations (2014)

 24. Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. Advances in neural informa-
tion processing systems, 3856–3866 (2017)

 25. Wang S, Zhou G, Lu J, Zhang F. A Novel Malware Detection and Classification Method Based on
Capsule Network. International Conference on artificial intelligence and security, 573–584 (2019)

1720 Journal of Network and Systems Management (2020) 28:1694–1721

1 3

 26. Kim, J., Jang, S., Park, E., Choi, S.: Text classification using capsules. Neurocomputing 376, 214–
221 (2020)

 27. “Does Alexa have a list of its top-ranked websites?” Amazon. https ://suppo rt.alexa .com/hc/en-us/
artic les/20044 9834-Does-Alexa -have-a-list-of-its-top-ranke d-websi tes-. Accessed 20 July 2019

 28. “OSINT feeds from Bambenek consulting,” Bambenek Consulting. http://osint .bambe nekco nsult
ing.com/feeds /. Accessed 20 July 2019.

 29. Lab, accessed: 2019-07–20. . https ://data.netla b.360.com/dga/
 30. Abakumov A. https ://githu b.com/andre waeva /DGA. Accessed 20 July 2019
 31. Yu B, Pan J, Hu J, Nascimento A, Cock M D. Character level based detection of DGA domain

names. International Joint Conference on neural networks, 1–8 (2018)
 32. Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for text classification. Advances

in neural information processing systems, 649–657 (2015)
 33. Vosoughi S, Vijayaraghavan P, Roy D. Tweet2vec: Learning tweet embeddings using character-level

cnn-lstm encoder-decoder. International ACM SIGIR Conference on research and development in
information retrieva, 1041–1044 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Xinjun Pei Was born in Tacheng, Xinjiang, China, in 1995. He is currently pursuing the M.S. degree with
the School of Information Science and Engineering, Xinjiang University, Urumqi, China. Since 2016, he
has been engaged in the direction of information security. His research interests include deep learning and
mobile security.

Shengwei Tian Was born in Urumqi, Xinjiang, China, in 1973. He received the B.S., M.S., and Ph.D.
degrees from the School of Information Science and Engineering, Xinjiang University, Urumqi, China, in
1997, 2004 and 2010, respectively. Since 2002, he has been a Teacher with the School of Software, Xin-
jiang University, where he is currently a Professor. His research interests include artificial intelligence,
natural language processing, and cyberspace security.

Long Yu Was born in Urumqi, Xinjiang, China, in 1973. She received the B.S. and M.S. degrees from the
School of Information Science and Engineering, Xinjiang University, Urumqi, China, in 1997 and 2008,
respectively. Since 2002, she has been a Teacher with the School of Information Science and Engineer-
ing, Xinjiang University, where she is currently a Professor. Her research interests include data mining,
mobile security, and cyberspace security.

Huanhuan Wang Was born in Shangqiu, Henan, China, in 1995. She is currently pursuing the M.S.
degree with the School of Software, Xinjiang University, Urumqi, China. Her research interests include
deep learning and mobile security.

Yongfang Peng Was born in Zaozhuang, Shangdong, China, in 1994. She is currently pursuing the M.S.
degree with the School of Software, Xinjiang University, Urumqi, China. Her research interests include
deep learning and mobile security.

Affiliations

Xinjun Pei1 · Shengwei Tian2 · Long Yu3 · Huanhuan Wang2 · Yongfang Peng2

 Xinjun Pei
 pei_xinjun@163.com

 Long Yu
 yul@xju.edu.cn

https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
http://osint.bambenekconsulting.com/feeds/
http://osint.bambenekconsulting.com/feeds/
https://data.netlab.360.com/dga/
https://github.com/andrewaeva/DGA

1721

1 3

Journal of Network and Systems Management (2020) 28:1694–1721

 Huanhuan Wang
 1597628677@qq.com

 Yongfang Peng
 m13999412597@163.com

1 School of Information Science and Engineering, Xinjiang University, Urumqi 830001, Xinjiang,
China

2 School of Software, Xinjiang University, Urumqi 830001, Xinjiang, China
3 Network Center, Xinjiang University, Urumqi 830001, Xinjiang, China

	A Two-Stream Network Based on Capsule Networks and Sliced Recurrent Neural Networks for DGA Botnet Detection
	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Problem Definition
	3.2 The Overview of TS-ASRCaps Framework
	3.3 Feature Analysis
	3.3.1 Semantic Features
	3.3.2 Visual Features

	3.4 Two-Stream Architecture
	3.5 The Semantic Stream
	3.5.1 Embedding Layer
	3.5.2 Independently Recurrent Unit
	3.5.3 Sliced Recurrent Neural Networks
	3.5.4 Attention Layer
	3.5.5 The Visual Stream
	3.5.6 Convolutional Layer
	3.5.7 Capsule Layer
	3.5.8 Fusion Vector

	4 Experiments and Evaluation
	4.1 Dataset and Metrics
	4.2 Study I: DGA Botnet Detection
	4.3 Study II: Multiclass
	4.4 Efficiency

	5 Discussions
	Acknowledgments
	References

