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Abstract
The ease and affordability offered by the cloud computing has attracted large num-
ber of customers towards it. Cloud service providers offer its services, to the cloud 
customers, usually in form of Virtual Machines (VMs). With the growth in the 
number of customers, cloud data centers encounter overwhelming number of VM 
requests. These requests need to be mapped on the real cloud hardware and there-
fore, VM placement has been an important research area in the cloud research com-
munity. Virtual machine placement, being an NP hard problem, is modelled as an 
optimization problem with the objective to optimize resource wastage. Dragonfly 
Algorithm (DA), a nature inspired technique, originates from static and dynamic 
swarming behavior of dragonfly and is well suited to solve VM placement problem. 
Therefore, in the proposed work, a modified dragonfly algorithm is applied for VM 
placement for better resource utilization at cloud data centers. The performance of 
the proposed model is analyzed through simulation and comparative study. Observa-
tions, obtained from the experiments, exhibit the superiority of the proposed model 
in solving VM placement problem.
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1  Introduction

Newer technologies are being introduced in the modern technological word with 
rapid pace. Cloud computing is one such technologies, which is able to dominate 
the IT world during the last decade. Cloud has changed the manner of resource 
usage i.e. hardware, software and other general purpose tools used by an indi-
vidual as well as by industry. Basically, cloud computing provides the IT ser-
vices to its variety of clients through its large data centers and the internet [1, 
2]. The cloud technology comprises of two parts: front-end and back-end. Front 
end deals with the users’ requirement to access the cloud services such as inter-
face, browser, connection etc., whereas back end considers the requirement of 
the system such as servers, hosts, networks etc. Of the offered cloud services, 
Infrastructure as a service (IaaS) is facilitated mainly with the help of Virtual 
Machines (VMs) which gives the ease of its configuration. A suitable VM place-
ment algorithm, eventually maps these VMs to the Physical Machines (PMs) of a 
cloud data center. Technically, these data centers are supposed to provide infinite 
computational resources such as CPU, memory, storage, network etc. However, 
in reality, the cloud resources are finite. A good VM placement algorithm opti-
mally places the VMs on to PMs to satisfy both; cloud service provider (CSP) 
as well as cloud customer. The CSP aims to maximize its revenue and minimize 
its operational cost [3] such as resource wastage, power consumption, thermal 
emission, physical infrastructures etc. Whereas, a cloud customer often aims to 
minimize its payment and avail best services. To minimize the resource wastage 
is an important research issues as it has direct impact on the operational cost of 
cloud data centers. As VM placement procedure is complex and time consum-
ing, an automation is warranted. A bit of mismanagement may lead to application 
interruption.

The VM placement problem can be modelled as an optimization problem with 
multiple objectives. Out of these, higher resource utilization with minimization 
in the operational cost is most essential one. In the proposed work, VM place-
ment problem is modelled as an optimization problem with resource wastage as 
an objective. This objective, in fact, recurs to many other objectives of the cloud 
resources. If the resource wastage is too high, it will lead to a greater number of 
active PMs in the data center resulting not only in high energy consumption but 
more physical space and cooling appliances too. In recent, energy has been given 
due consideration for holistic development. More active PMs and more cooling 
appliances are key contributors to higher operational cost of cloud data centers. 
Therefore, in the proposed work resource wastage is chosen as an objective and 
the problem is formulated as a minimization problem. Resource wastage,in cloud 
data center, can mathematically be formulated with the capping on the upper 
threshold of the respective resource. As VM placement problem is NP hard [4], 
therefore, it is difficult to find a feasible deterministic algorithm for this problem. 
A meta-heuristic is more suited for this and so in the proposed model, a bio-
inspired algorithm called Dragonfly Algorithm (DA) has been applied to solve the 
VM placement problem. DA is based on the swarming behavior of the dragonfly.
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The major contributions, of the proposed model, are as follows:

•	 VM placement problem is modelled as an optimization problem with the most 
important objectives of resource utilization.

•	 CPU and Memory are the resources under consideration for the problem formu-
lation of resource utilization.

•	 A V shaped time varying transfer function is incorporated in the algorithm for a 
good balance between exploration and exploitation.

•	 Extensive experimentation is done for the analysis and comparative study.
•	 The performance of the proposed algorithm is evaluated for small as well as 

large set of VMs.
•	 Simulation is done on real and synthesized data.

The outline of the paper is as follows. Section 2 briefs some recent relevant litera-
ture on VM placement problem. In Sect. 3, description of VM placement problem 
and basic Dragonfly algorithm are presented. It also includes the mathematical for-
mulation of VM placement problem as an optimization problem with resource wast-
age as an objective. The proposed model is presented in Sect. 4 whereas experiment 
details with comparative performance analysis are provided in Sect. 5. Finally, the 
conclusion of the proposed work with its future scope is laid down in Sect. 6.

2 � Related Work

VM placement has been proven to be one of the emerging research area attracting 
a large research community [4–9]. This section deals with the recent related meth-
odologies, applied successfully to solve the VM placement problem. These related 
works have been categorized as follows: heuristic bin packing [4–12], linear pro-
gramming [6, 13], simulated annealing optimization [14], constraint programming 
[15], and bio-inspired optimization [16–21].

2.1 � Heuristic Bin Packing

VM placement problem is modelled as vector bin packing problem which is a well-
known NP-hard problem [4]. Various heuristic methods such as greedy approaches 
are applied to find the near optimal solution for this NP-hard problem. Grit et al. [5] 
have applied worst fit and best fit algorithms for solving similar types of problems 
for network resources. Later, Speitkamp et  al. [6] and Bichler et  al. [8] extended 
this concept by applying heuristics such as first fit decreasing (FFD) and best fit 
decreasing (BFD) to improve the results. Verma et  al. [10] have further extended 
the FFD heuristic and proposed a placement mechanism that caters the power cost 
as well as the migration cost. Cardosa et al. [7] have also modified first fit and best 
fit algorithms to incorporate node utility in VM placement problem. Srikantaiah 
et al. [9] have proposed profile data based consolidation for cloud data center that 
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incorporates the worst fit strategy. Few other works [11, 22, 23] are also based on 
heuristic strategies.

2.2 � Linear Programming

In linear programming, VM placement problem is modelled as simple bin packing 
problem with linear relationship in objectives and decision variables. Speitkam et al. 
[6] have formulated VM placement and server consolidation problem as a bin pack-
ing problem. A heuristic of LP-relaxation based technique is adopted to minimize 
the cost. Lin et  al. [13] have formulated VM consolidation problem as an integer 
linear programming and proposed a novel polynomial time heuristic algorithm. In 
order to reduce the complexity of integer linear programming problem and impro-
vising the efficiency of algorithm, bipartite graph is also embedded.

2.3 � Simulated Annealing

Simulated annealing has been proven to be an effective tool to solve an optimization 
problem. Liao et al. [14] have proposed a framework, called GreenMap, for runtime 
virtual machine placement. This framework consist of a simulated annealing optimi-
zation based algorithm that tries to dynamically map VMs to less number of PMs.

2.4 � Constraint Programming

Van et al. [15] have proposed a different framework consisting of two components: 
dynamic utility based VM provisioning manager and dynamic VM placement man-
ager. Both of these utilizes the concept of constraint programming. Herminier F at 
el. [24] have proposed a resource manager called Entropy, based on constraint pro-
gramming. This work handles the problem of VM placement and migration both. 
Duong-Ba et al. [25] have modelled the VM placement problem as convex optimiza-
tion problem and proposed a multi-level join VM placement and migration (MJPM) 
algorithm to solve the resource fragmentation problem.

2.5 � Bio‑Inspired Techniques

Bio-inspired techniques have always attracted the researchers across to solve NP 
hard problems. Feller et al. [16] have proposed an Ant Colony Optimization (ACO) 
based algorithm that binds VMs to PMs based on the current workload. Jeyrani 
et al. [17, 21] have used a self-adaptive Particle Swarm Optimization (PSO) for VM 
placement with better power management. Tripathi et  al. [26] have modelled VM 
placement problem as multi-objective optimization problem and applied modified 
binary particle swarm optimization (BPSO) to solve this. Inspired from our ecosys-
tem, Zheng et  al. [27] have proposed a novel VM placement algorithm based on 
bio-geography based optimization technique to minimize the power consumption 
and resource wastage in cloud data centers. Abdel-Basset et al. [28] have proposed 
a new improved Lévy based Whale optimization algorithm for bandwidth efficient 
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VM placement. Satpathy et al. [29] have proposed an attractive method using Crow 
search optimization for VM placement problem, modelled as multi-objective opti-
mization problem with resource wastage and power consumption as the objectives.

Few most important works have been summarized in Table  1 for better 
understanding.

Most of the above discussed models consider power consumption or network 
bandwidth as the objectives to be optimized. Very few of them have emphasized 
on resource utilization metric effectively. The proposed work solely concentrates on 
optimal resource utilization in solving the VM placement problem.

3 � The Problem

In this section, VM placement problem is discussed and illustrated with an exam-
ple. Cloud data center, the backbone of cloud computing, contains large number 
of physical servers over which large number of VMs are mapped with the help of 
virtualization technology. The prime objective of virtual machine placement algo-
rithm is to utilize the resources effectively and efficiently. Consider a scenario in 
which seven VMs need to be placed on physical machines (PMs) of a cloud data 
center. Each PM has four cores therefore, can host up to four VMs. Assume resource 
requirement of these VMs are 60%, 35%, 25%, 30%, 35%, 40% and 15% of the total 
capacity of PMs. Further, assume that PMs are homogeneous and resource utiliza-
tion threshold is 95%. If each VM is placed on a single PM then 7 PMs are needed. 
In this scenario, resource utilization will be extremely poor as most of the resources 
will be underutilized. Since it is possible to place four VMs, keeping the availability 
of resources in mind, an alternative and optimal way of VM placement is possible as 
shown in Fig. 1. In this, only three PMs are required to be in active mode with better 
resource utilization.

For better understanding, the notation used throughout the work is given in 
Table 2.

For the VM placement problem, in the proposed model, a modified dragonfly 
algorithm is applied. Therefore, before proceeding to the proposed model, some 
basics of dragonfly algorithm is discussed in the following section.

3.1 � Dragonfly Algorithm

Dragonflies are insects, also known as Odonata. The lifespan of dragonflies are 
categorized into two milestones: nymph and adult. The time span of Nymph domi-
nates that of adult. The swarming behaviors of dragonflies are very rare but unique. 
Dragonflies form swarm only for two purposes; to hunt the small insects & fish and 
to migrate from one place to another. When dragonflies form the swarm in order 
to hunt, it is called static swarm whereas forming the swarm to migrate is called 
dynamic or migratory swarm. In static swarm, dragonflies move in small groups to 
hunt their prey. Also, motion of a dragonfly is back and forth over a small hunt-
ing area. Sudden change in their trajectory and local movement makes the static 
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Fig. 1   An example of VM Placement problem [26]

Table 2   Notation

Symbol Description

Si Separation of ith dragonfly
X Position of current individual
N Total count of neighbors
Ai Alignment of ith dragonfly
Vj Velocity of the jth neighboring individual
Ci Cohesion of ith dragonfly
Fi Attraction of ith dragonfly towards the food source
Ei Distraction of ith dragonfly from the predator
s, a, c, f, e Weights corresponding to separation, alignment, cohesion, attraction towards the food 

source and distraction from predators
n Number of VMs
m Number of PMs
Tc
j
and Tm

j
Normalized remaining CPU and memory resources at jth PM

Uc
j
and Um

j
Normalized resource wastage corresponding to CPU and memory resources at jth PM

Wj Total resource wastage at jth PM
I Set of VMs
J Set of PMs
�ci

 , �mi
CPU and memory requirement of ith VM

Rcj
 , Rmj

Threshold CPU and memory capacity of jth PM
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swarming quiet interesting and useful. In dynamic swarm, dragonflies move in a 
large group over a long distance.

Seyedali Mirjalili [36] proposed an optimization algorithm, based on the swarm-
ing behavior of dragonflies and named it Dragonfly Algorithm. The formation of 
sub-swarms and its back and forth flying, over a different area, makes static swarm 
very useful for exploitation phase. Similarly in dynamic swarm, flying of large num-
ber of dragonflies in one direction favors the exploration phase. Dragonfly algorithm 
uses three basic properties of swarm movement which are as follows.

•	 Separation All dragonflies, in a swarm, should maintain some distance from 
the neighborhood dragonfly to avoid the collision. Reynolds [37] has proposed a 
method to compute the separation of an individual from its neighboring individ-
uals. The Separation Si of an individual X from its neighbors Xj can be calculated 
as given in eq. 1.

	 
	   Where, N is the total count of neighbors.
•	 Alignment All dragonflies should maintain nearly the same velocity as their 

neighbor. This is called Alignment Ai which can be calculated as given in eq. 2.

	 
	   Where, Vj represents the velocity of the jth neighboring individual.
•	 Cohesion The trajectory, of all dragonflies in a swarm, should be towards the 

center of mass of neighborhood. The Cohesion Ci of an individual X with their N 
neighbors can be calculated as given in eq. 3.

	 

In order to survive, all individuals should move towards the food source but 
simultaneously should stay away from the predators. Attraction towards the food 
sourceX+and distraction from the predatorX−can be measured as given in eqs. 4 and 
5 respectively.

(1)Si =

j=N∑
j=1

X − Xj

(2)
Ai =

N∑
j=1

Vj

N

(3)
Ci =

j=N∑
j=1

Xj

N
− X

(4)Fi = X+ − X

(5)Ei = X− + X
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Dragonfly algorithm utilizes the concept of velocity of PSO algorithm and proposes 
a new vector called stepΔX . The step vector represents the direction of swarm move-
ment and can be calculated as given in eq. 6.

Here, s, a, c, f, and e are the weights corresponding to separation, alignment, cohe-
sion, attraction, and distraction respectively. w represents the inertia weight. Position 
vector, after t iteration, will be updated as given in eq. 7.

For balancing the exploration and exploitation in the optimization process, fine tun-
ing of s, a, c, f and e is required. In dynamic swarm, dragonflies align themselves and 
maintain proper separation and cohesion whereas in static swarm the alignment is very 
low and cohesion is very high in order to attack on a prey (food source). Therefore, for 
exploiting the search space high alignment and low cohesion weights are assigned. On 
the other hand, for exploring the search space low alignment and high cohesion weights 
are assigned.

For stochastic behavior in artificial dragonflies, it is assumed that dragonflies are fly-
ing in the search space using random walk also called as Levy flight in case of zero 
neighborhood. For this, the position of a dragonfly will be updated according to eq. 8.

Where d represents the dimension of the position vector. Levy flight [38] can be 
calculated as in eq. 9.

Where r1 and r2 are two randomly generated real numbers in the range [0, 1] and� is 
a constant tuned during the experiment.� is calculated according to eq. 10.

Where� (x) = (x − 1)!.

Basic dragonfly algorithm, for continuous search space, is presented below. 

(6)ΔXt+1 = (sSi + aAi + cCi + fFi + eEi) + wΔXt

(7)Xt+1 = Xt + ΔXt+1

(8)Xt+1 = Xt + Levy(d) × Xt

(9)
Levy(x) = 0.01 ×

r1 × �

||r2||
1∕�

(10)� =

⎛⎜⎜⎜⎝

� (1 + �) × Sin
�

��

2

�

�

�
1+�

2

�
× � × 2

�
�−1

2

�

⎞⎟⎟⎟⎠

1∕�
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4 � The Problem Formulation

In cloud data center, VMs’ requirement are served by physical machines using an 
appropriate placement scheme. In this section, VM placement problem is mathemat-
ically formulated as a multidimensional bin packing problem.

Let there are n VMs to be mapped over m PMs. If we consider the possibility of 
a case where a VM may not be assigned to any of PMs, there will total be (m+1)n 
ways for assigning n VMs onto m PMs.

4.1 � Resource Wastage Modelling

A VM contains various resources such as CPU, memory, storage, network band-
width etc. In the proposed work, only CPU and memory have been considered as 
these two are prime VM resources. The total resource wastage at jth PM can be 
formulated as in eq. 11.

Tc
j
andTm

j
are normalized remaining CPU and remaining memory at jth PM,Uc

j

andUm
j

are normalized wastage corresponding to CPU and memory.� , a small real 
number, is fixed to 0.0001.

(11)Wj =

|||Tc
j
− Tm

j

||| + �

Uc
j
+ Um

j
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4.2 � Resource Wastage as an Optimization Problem

VM placement problem can mathematically be modelled as an optimization 
problem with the objective to minimize resource wastage. Let I represents the 
set of VMs and J represents the set of PMs, �ci represents the CPU requirement 
and �mi

 represents the memory requirement of ith VM, Rcj
represents the threshold 

CPU capacity and Rmj
 represents the threshold memory capacity. Two Boolean 

variables xij and yj can be defined as follows.

The VM placement problem can be viewed as given in eq. 12

Subject to:

The objective function in eq. 12 deals with the minimization of resource wastage of 
all deployed physical machines. eq. 13 represents the condition that each VM can 
be assigned to only one physical machine. eqs. 14 and 15 represent that requested 
resource requirement of all VMs mapped to a particular PM should not exceed the 
threshold value of the corresponding resources. The search space, associated with 
the formulated optimization problem, is binary in nature. Therefore, the dragonfly 
algorithm for the binary search space with some modifications is used to solve this 
problem.

xij =

{
1 if the VM i ∈ I is assigned to physical server j ∈ J

0 otherwise

yj =

{
1 if the server j ∈ J is in use

0 otherwise

(12)

f = Minimize

m�
j=1

Wj =

m�
j=1

⎡⎢⎢⎢⎢⎣
yj ×

�����

�
Rcj

−
n∑
i=1

(xij ⋅ �ci )

�
−

�
Rmj

−
n∑
i=1

(xij ⋅ �mi
)

������
+ �

n∑
i=1

(xij ⋅ �ci) +
n∑
i=1

(xij ⋅ �mi
)

⎤⎥⎥⎥⎥⎦

(13)
m∑
j=1

xij = 1∀i ∈ I

(14)
n∑
i=1

�ci
⋅ xij ≤Rcj

⋅ yj ∀j ∈ J

(15)
n∑
i=1

�mi
⋅ xij ≤ Rmj

⋅ yj ∀j ∈ J



1327

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

5 � The Proposed Model

This section discusses the detail of VM placement using modified Dragonfly 
Algorithm (VMPDA) and modifications done in original dragonfly algorithm to 
tune it for VM placement in cloud data center.

5.1 � Particle Representation and Generator Function

If n virtual machines are to be mapped over m physical servers, then each particle 
X is represented by a matrix of order n×m with each entry xij as 0 or 1. 

  The randomly generated initial population may or may not satisfy the constraints 
indicated in eq. (13). Therefore, following generator algorithm is used. 

Seyedali Mirjalili [36] has also modified the dragonfly algorithm to work in 
binary search space using the concept of transfer function [39, 40]. Two types of 
transfer functions; S-shaped and V-shaped restrict the output value to 0 or 1. The 
transfer function, used in binary dragonfly algorithm (BDA), is given in eq. 16.

Based on the value obtained in eq. 16, new position of dragonflies is calculated 
as given in eq. 17.

Here, rand is a random real number in the range [0, 1].

(15)X =
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(16)T(Δx) =

������
Δx√

Δx2 + 1

������

(17)Xt+1 =

{
X̄t if rand < T(Δxt+1)

Xt if rand ≥ T(Δxt+1)
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However, eq.  16 does not provide a balanced approach between exploitation 
and exploration as some better area remains unexplored. Therefore, in the pro-
posed model, a time varying transfer function [41] is used as shown in eq. 18.

Here, time variable � starts with some value and is reduced over the time as 
shown in eq. 19.

Here, t is current iteration, T is maximum number of iteration and �max and �min 
are maximum and minimum values of controlling parameter. Based on the above 
transfer function, new position of a dragonfly can be calculated as in eq. 20.

In binary search space, the distance between two dragonflies cannot be calcu-
lated, therefore, all dragonflies are assumed to be in a single swarm. All the weights 
corresponding to separation, alignment, cohesion, attraction, distraction and inertia 
i.e. s, a, c, f, e and w are adaptively tuned.

Proper problem formulation, with the above-mentioned modification in the drag-
onfly algorithm, will lead towards an optimal solution of the problem in a binary 
search space.

5.2 � Proposed Dragonfly Algorithm for VM Placement Problem

The virtual machine placement algorithm using dragonfly algorithm in a binary 
search space is given as Algorithm 3. 

(18)T(Δx, 𝜏) =

⎧
⎪⎨⎪⎩

1 −
2

1 + e
−2x∕𝜏

if x ≤ 0

2

1 + e
−2x∕𝜏

− 1 if x > 0

(19)� =
(
1 −

t

T

)
�max +

t

T
�min

(20)Xt+1 =

⎧
⎪⎨⎪⎩

0 if rand ≤ T(Δxt+1) and Δxt+1 ≤ 0

1 if rand ≤ T(Δxt+1) and Δxt+1 > 0

Xt if rand > T(Δxt+1)

,
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The flowchart of VMPDA algorithm is given in Fig. 2.

6 � Simulation Experiments and Analysis

The performance and effectiveness of the proposed VMPDA algorithm is done by 
comparing it with state of art such as VM placement using ant colony search opti-
mization (VMPACS) [20], VM placement using genetic algorithm (VMPGA) [18], 
VM placement using artificial bee colony (VMPABC) and VM placement using 
binary particle swarm optimization (VMPBPSO) [26]. These implementation is 
done using CloudSim simulation toolkit [42]. The experiments are carried out using 
synthesized data from similar work [20] and also real data from Amazon EC2 [43].

For the realistic verification and analysis of the proposed model, experiments are 
conducted for two types of VM sets: small set of VMs which consist of 50 VMs 
with certain CPU and memory requirements and large set of VMs which consist 
of 2000 VMs with certain CPU and memory requirement. The physical servers are 
simulated with the same dimension of resources as the VMs. To cater the worst-case 
possibility, the number of PMs are kept same as number of VMs. For simplicity, 
PMs’ configuration are considered homogeneous, though heterogeneous environ-
ment can also be simulated with the proposed model. For each algorithm, ten Monte 
Carlo simulations are performed and their average is reported. Keeping in mind the 
complexity of the simulated algorithms the termination condition is kept in form of 
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Fig. 2   The VMPDA flowchart
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number of function evaluations which is set to 70,000 for both types of data sets so 
that the algorithm could settle.

6.1 � Comparison Based on Resource Wastage Cost

Entire experiment is divided into two test cases based on their reference CPU 
requirement 𝜌̄c and memory requirement 𝜌̄m using the VM_configuration 
Algorithm 4. 

Test case 1 comprise of 𝜌̄c = 𝜌̄m = 25% and test case 2 comprise of 
𝜌̄c = 𝜌̄m = 45%. For test case 1, distribution values of CPU and memory require-
ment lies between [0, 50]. For test case 2, distribution values of CPU and memory 
requirement lies between [0, 90]. Note that the threshold value of physical servers 
is set to 90%. For both the test cases, probability P is set to 0.00, 0.25, 0.50, 0.75, 
and 1.0. For test case 1, the obtained correlation coefficients are − 0.754, − 0.348, 
− 0.072, 0.371 and 0.755 for respective probabilities. These correlation coefficients 
correspond to strong-negative, weak-negative, no, weak-positive, and strong-posi-
tive correlations. Similarly, for test case 2, the obtained correlation coefficients are 
− 0.755, − 0.374, − 0.052, 0.398 and 0.751.

Resource wastage of VMPDA is compared with VMPACS, VMPGA, VMPABC 
and VMPBPSO algorithms. In Table  3, resource wastage is computed for these 
algorithms after 70,000 function evaluations. It has been observed, from the table, 
that VMPDA algorithm leads to least resource wastage as compared to VMPACS, 
VMPGA, VMPABC and VMPBPSO for all correlations in both the test cases. 
VMPDA possess high exploration making it suitable for discovering the promis-
ing regions of the binary search space. Abrupt change, in the flying path of dragon-
flies, makes it suitable in avoiding local optima and forces it to move towards global 
optima.

Genetic algorithm does not guarantee optimal solution as it largely depends upon 
the initial population. In VMPGA, poor initial population leads to highest resource 
wastage as compared to other algorithms. This results in highest resource wast-
age for VMPGA among other compared algorithms in all the cases. It can also be 
observed that VMPBPSO results in less resource wastage as compared to other algo-
rithms except VMPDA. VMPBPSO responds to quality and diversity of the solu-
tions as here only ��������⃗gbest shares the information with others. So, overall behavior of 
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Table 3   Resource wastage comparison of various algorithms

Reference value Correlation 
coefficient

Algorithm Resource wastage for 
small set of VMs

Resource wastage 
for large set of VMs

𝜌̄c = 𝜌̄m = 25% − 0.754 VMPACS 3.61 2.10
VMPGA 5.43 2.54
VMPABC 4.98 2.32
VMPBPSO 3.12 1.92
VMPDA 2.88 1.84

− 0.348 VMPACS 2.86 1.94
VMPGA 5.12 2.42
VMPABC 4.81 2.20
VMPBPSO 2.54 1.71
VMPDA 2.49 1.63

− 0.072 VMPACS 2.78 1.79
VMPGA 4.86 2.21
VMPABC 4.37 2.07
VMPBPSO 2.62 1.65
VMPDA 2.53 1.50

0.371 VMPACS 2.47 1.68
VMPGA 4.70 2.09
VMPABC 3.98 1.91
VMPBPSO 1.97 1.55
VMPDA 1.82 1.39

0.755 VMPACS 2.31 1.45
VMPGA 4.10 1.92
VMPABC 3.64 1.73
VMPBPSO 1.89 1.32
VMPDA 1.76 1.20
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the above mentioned algorithms for resource wastage order is summarized as VMP
GA > VMPABC > VMPACS > VMPBPSO > VMPDA.

In order to show the convergence behavior of all five algorithms, mean cost curve 
is drawn as shown in right half of Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Mean value of 
resource wastage cost, for each function evaluation, is represented with the curves. 
Statistical distribution of these costs are shown with boxplot. Middle value of costs 
is represented by median in the boxplots which is evaluated from 70,000 function 

Table 3   (continued)

Reference value Correlation 
coefficient

Algorithm Resource wastage for 
small set of VMs

Resource wastage 
for large set of VMs

𝜌̄c = 𝜌̄m = 45% − 0.755 VMPACS 14.72 12.80

VMPGA 18.21 15.42

VMPABC 17.24 13.17

VMPBPSO 13.83 11.43

VMPDA 12.90 10.02

− 0.374 VMPACS 13.66 11.74

VMPGA 17.19 14.42

VMPABC 16.04 12.00

VMPBPSO 11.97 10.13

VMPDA 10.32 9.20

− 0.052 VMPACS 12.85 10.84

VMPGA 16.48 13.11

VMPABC 15.44 11.50

VMPBPSO 11.91 9.15

VMPDA 11.05 8.60

0.398 VMPACS 11.35 9.87

VMPGA 15.92 12.76

VMPABC 14.83 11.93

VMPBPSO 10.66 8.10

VMPDA 9.91 7.54

0.751 VMPACS 10.32 8.64

VMPGA 15.01 11.84

VMPABC 14.22 10.78

VMPBPSO 9.74 7.56

VMPDA 8.99 6.12

Bold values indicate the findings of proposed algorithm VMPDA
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Fig. 3   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.754

Fig. 4   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.348

Fig. 5   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.072
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Fig. 6   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = 0.371

Fig. 7   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = 0.755

Fig. 8   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.755
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Fig. 9   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.374

Fig. 10   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.052

Fig. 11   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = 0.398
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evaluations for synthesized data. All figures, on mean cost curve, indicate that 
VMPDA converges faster than VMPACS, VMPGA, VMPABC and VMPBPSO. The 
order of resource wastage at different function evaluations is VMPDA < VMPBPSO 
< VMPACS < VMPABC < VMPGA. VMPDA, at successive function evaluations, 
provide better solutions with better resource utilization. It is because VMPDA exhib-
its high exploration and exploitation as it incorporates V-shaped transfer function. 
The problem of local optima in VMPGA leads to mapping of the VMs onto more 
number of PMs. Therefore, VMPGA performs worst in all the cases. For higher ref-
erence value i.e. 𝜌̄c=𝜌̄m = 45%, it is also observed that at lower function evaluations 
VMPBPSO exhibits lower resource wastage as compared to other algorithms though 
this behavior is visible for very short duration. After few more function evaluations, 
VMPDA outperforms VMPBPSO.         

Box plots, of all five algorithms for both test cases, are also shown at the left half 
of Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Median values of all the boxes can be relatively 
analyzed for the performance study of the VM placement algorithms into consid-
eration. By analyzing the boxplots, it can be inferred that most of the mean cost 
values of VMPDA are comparatively smaller than minimum values of VMPGA, 
VMPABC, VMPACS and VMPBPSO. Figures  8, 9, 10, 11 for test case 2, infer 
that initially VMPBPSO performs better than rest of the algorithms but after some 
function evaluation VMPDA outperforms others. This behavior is shown for all cor-
relation coefficients. The reason for this behavior being VMPBPSO more prone to 
local convergence but after sufficient function evaluation, it shows the actual cost. 
VMPDA facilitates tracking of position of dragonflies during the optimization pro-
cess. Therefore, it is possible to monitor the values of parameters and tune it to bal-
ance the exploitation and exploration of the search space. This property results in 
lower resource wastage while placing the VMs.

6.2 � Comparison Based on Placement Time

Placement time of VMPDA is compared with VMPACS, VMPGA, VMPABC and 
VMPBPSO as represented in Fig. 13. It reflects the faster convergence of VMPDA 

Fig. 12   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = 0.751
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than all other algorithms i.e. time taken to place the VMs in VMPDA is smaller than 
other four. Use of V-shaped transfer function do not limit dragonflies to take values 
0 or 1 and therefore it provides an efficient exploitation of search space leading to 
quick convergence. Despite the fact that VMPGA is very simple, it highly depends 
upon the initial population. Poor initial population leads to longer run time to find 
the optimal solution.

6.3 � Comparison of VMPDA with Original Binary Dragonfly Algorithm

The performance of the proposed VMPDA algorithm is compared with VM place-
ment algorithm based on original binary dragonfly algorithm VMPODA. This 

Fig. 13   Placement time on number of VMs

Fig. 14   Comparison of VMPDA and VMPODA for resource wastage
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comparison is performed for the reference value of 25% and for large set of VM 
placement problem. Figure 14 shows resource wastage of these two algorithms at 
different correlation coefficient which shows that VMPDA performs better as com-
pared to original binary dragonfly algorithm. Since the step vector is linked with 
the momentum of the individual dragonfly, it should be very small when dragonfly 
is close to the best solution. Transfer function affects the step vector hence is also 
responsible for the position update. VMPODA uses eq. 16 as transfer function and 
eq. 17 for position update. At the beginning, exploration rate should be more than 
exploitation rate which is not so in case of eq. 16. Therefore, some promising areas 
may not have been explored efficiently. Further, VMPDA with transfer function in 
eq. 18 and position updating rule in eq. 20 provides better solution. Figure 15 shows 
that time taken to place VMs in VMPDA is slightly more than VMPODA. 

7 � Conclusion

The resource utilization is very important in a cloud data center for which proper 
VM placement is a key activity. This work proposes an effective VM placement 
technique based on dragonfly algorithm to minimize the resource wastage. Few 
modifications, such as use of time varied V-shaped transfer function, solution gen-
erator function etc. are incorporated in simple Dragonfly algorithm to suit it well for 
the VM placement problem. The proposed model is simulated and extensive experi-
mentation is done on real as well as synthetic data sets. The performance of the 
proposed VMPDA algorithm is also compared with state of the art e.g. VMPACS, 
VMPGA, VMPABC and VMPBPSO.

It has been concluded, through simulation experiments, that the proposed 
model using modified Dragonfly algorithm performs verywell for VM placement 
problem. In most of the cases, the proposed VMPDA outperforms mainly due 

Fig. 15   Comparison of VMPDA and VMPODA for placement time
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to its greater coordination and its capacity to maintain a good balance between 
exploration and exploitation. VMPDA also results in quick convergence and 
offers least placement time as compared to others. We foresee the applicability of 
the VMPDA algorithm in a real cloud environment. The proposed model will be 
extended to incorporate the dynamic behavior of the cloud environment where, 
with time, new VM requests will be generated and after some time few VMs may 
get terminated.

Authors would like to acknowledge the editors and the anonymous reviewers for 
their useful suggestions resulting in the quality improvement of the paper. Also to 
acknowledge, MGCU Bihar, IIIT Kota and JNU for their support.
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