
Vol:.(1234567890)

Journal of Network and Systems Management (2020) 28:1316–1342
https://doi.org/10.1007/s10922-020-09538-9

1 3

Modified Dragonfly Algorithm for Optimal Virtual Machine
Placement in Cloud Computing

Atul Tripathi1 · Isha Pathak2 · Deo Prakash Vidyarthi3 

Received: 12 July 2019 / Revised: 8 May 2020 / Accepted: 14 May 2020 / Published online: 26 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
The ease and affordability offered by the cloud computing has attracted large num-
ber of customers towards it. Cloud service providers offer its services, to the cloud
customers, usually in form of Virtual Machines (VMs). With the growth in the
number of customers, cloud data centers encounter overwhelming number of VM
requests. These requests need to be mapped on the real cloud hardware and there-
fore, VM placement has been an important research area in the cloud research com-
munity. Virtual machine placement, being an NP hard problem, is modelled as an
optimization problem with the objective to optimize resource wastage. Dragonfly
Algorithm (DA), a nature inspired technique, originates from static and dynamic
swarming behavior of dragonfly and is well suited to solve VM placement problem.
Therefore, in the proposed work, a modified dragonfly algorithm is applied for VM
placement for better resource utilization at cloud data centers. The performance of
the proposed model is analyzed through simulation and comparative study. Observa-
tions, obtained from the experiments, exhibit the superiority of the proposed model
in solving VM placement problem.

Keywords  Binary dragonfly algorithm (BDA) · Virtual machine (VM) · Cloud
data center (CDC) · Cloud service provider (CSP) · NP-hard problem · Resource
utilization · Information technology (IT)

 *	 Deo Prakash Vidyarthi
	 dpv@mail.jnu.ac.in

	 Atul Tripathi
	 atultripathi22@yahoo.com

	 Isha Pathak
	 ishaapathak@yahoo.in

1	 Mahatma Gandhi Central University, Bihar, India
2	 Indian Institute of Information Technology, Kota, Rajasthan, India
3	 Jawaharlal Nehru University, New Delhi, India

http://orcid.org/0000-0003-4151-0552
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-020-09538-9&domain=pdf

1317

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

1  Introduction

Newer technologies are being introduced in the modern technological word with
rapid pace. Cloud computing is one such technologies, which is able to dominate
the IT world during the last decade. Cloud has changed the manner of resource
usage i.e. hardware, software and other general purpose tools used by an indi-
vidual as well as by industry. Basically, cloud computing provides the IT ser-
vices to its variety of clients through its large data centers and the internet [1,
2]. The cloud technology comprises of two parts: front-end and back-end. Front
end deals with the users’ requirement to access the cloud services such as inter-
face, browser, connection etc., whereas back end considers the requirement of
the system such as servers, hosts, networks etc. Of the offered cloud services,
Infrastructure as a service (IaaS) is facilitated mainly with the help of Virtual
Machines (VMs) which gives the ease of its configuration. A suitable VM place-
ment algorithm, eventually maps these VMs to the Physical Machines (PMs) of a
cloud data center. Technically, these data centers are supposed to provide infinite
computational resources such as CPU, memory, storage, network etc. However,
in reality, the cloud resources are finite. A good VM placement algorithm opti-
mally places the VMs on to PMs to satisfy both; cloud service provider (CSP)
as well as cloud customer. The CSP aims to maximize its revenue and minimize
its operational cost [3] such as resource wastage, power consumption, thermal
emission, physical infrastructures etc. Whereas, a cloud customer often aims to
minimize its payment and avail best services. To minimize the resource wastage
is an important research issues as it has direct impact on the operational cost of
cloud data centers. As VM placement procedure is complex and time consum-
ing, an automation is warranted. A bit of mismanagement may lead to application
interruption.

The VM placement problem can be modelled as an optimization problem with
multiple objectives. Out of these, higher resource utilization with minimization
in the operational cost is most essential one. In the proposed work, VM place-
ment problem is modelled as an optimization problem with resource wastage as
an objective. This objective, in fact, recurs to many other objectives of the cloud
resources. If the resource wastage is too high, it will lead to a greater number of
active PMs in the data center resulting not only in high energy consumption but
more physical space and cooling appliances too. In recent, energy has been given
due consideration for holistic development. More active PMs and more cooling
appliances are key contributors to higher operational cost of cloud data centers.
Therefore, in the proposed work resource wastage is chosen as an objective and
the problem is formulated as a minimization problem. Resource wastage,in cloud
data center, can mathematically be formulated with the capping on the upper
threshold of the respective resource. As VM placement problem is NP hard [4],
therefore, it is difficult to find a feasible deterministic algorithm for this problem.
A meta-heuristic is more suited for this and so in the proposed model, a bio-
inspired algorithm called Dragonfly Algorithm (DA) has been applied to solve the
VM placement problem. DA is based on the swarming behavior of the dragonfly.

1318	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

The major contributions, of the proposed model, are as follows:

•	 VM placement problem is modelled as an optimization problem with the most
important objectives of resource utilization.

•	 CPU and Memory are the resources under consideration for the problem formu-
lation of resource utilization.

•	 A V shaped time varying transfer function is incorporated in the algorithm for a
good balance between exploration and exploitation.

•	 Extensive experimentation is done for the analysis and comparative study.
•	 The performance of the proposed algorithm is evaluated for small as well as

large set of VMs.
•	 Simulation is done on real and synthesized data.

The outline of the paper is as follows. Section 2 briefs some recent relevant litera-
ture on VM placement problem. In Sect. 3, description of VM placement problem
and basic Dragonfly algorithm are presented. It also includes the mathematical for-
mulation of VM placement problem as an optimization problem with resource wast-
age as an objective. The proposed model is presented in Sect. 4 whereas experiment
details with comparative performance analysis are provided in Sect. 5. Finally, the
conclusion of the proposed work with its future scope is laid down in Sect. 6.

2 � Related Work

VM placement has been proven to be one of the emerging research area attracting
a large research community [4–9]. This section deals with the recent related meth-
odologies, applied successfully to solve the VM placement problem. These related
works have been categorized as follows: heuristic bin packing [4–12], linear pro-
gramming [6, 13], simulated annealing optimization [14], constraint programming
[15], and bio-inspired optimization [16–21].

2.1 � Heuristic Bin Packing

VM placement problem is modelled as vector bin packing problem which is a well-
known NP-hard problem [4]. Various heuristic methods such as greedy approaches
are applied to find the near optimal solution for this NP-hard problem. Grit et al. [5]
have applied worst fit and best fit algorithms for solving similar types of problems
for network resources. Later, Speitkamp et al. [6] and Bichler et al. [8] extended
this concept by applying heuristics such as first fit decreasing (FFD) and best fit
decreasing (BFD) to improve the results. Verma et al. [10] have further extended
the FFD heuristic and proposed a placement mechanism that caters the power cost
as well as the migration cost. Cardosa et al. [7] have also modified first fit and best
fit algorithms to incorporate node utility in VM placement problem. Srikantaiah
et al. [9] have proposed profile data based consolidation for cloud data center that

1319

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

incorporates the worst fit strategy. Few other works [11, 22, 23] are also based on
heuristic strategies.

2.2 � Linear Programming

In linear programming, VM placement problem is modelled as simple bin packing
problem with linear relationship in objectives and decision variables. Speitkam et al.
[6] have formulated VM placement and server consolidation problem as a bin pack-
ing problem. A heuristic of LP-relaxation based technique is adopted to minimize
the cost. Lin et al. [13] have formulated VM consolidation problem as an integer
linear programming and proposed a novel polynomial time heuristic algorithm. In
order to reduce the complexity of integer linear programming problem and impro-
vising the efficiency of algorithm, bipartite graph is also embedded.

2.3 � Simulated Annealing

Simulated annealing has been proven to be an effective tool to solve an optimization
problem. Liao et al. [14] have proposed a framework, called GreenMap, for runtime
virtual machine placement. This framework consist of a simulated annealing optimi-
zation based algorithm that tries to dynamically map VMs to less number of PMs.

2.4 � Constraint Programming

Van et al. [15] have proposed a different framework consisting of two components:
dynamic utility based VM provisioning manager and dynamic VM placement man-
ager. Both of these utilizes the concept of constraint programming. Herminier F at
el. [24] have proposed a resource manager called Entropy, based on constraint pro-
gramming. This work handles the problem of VM placement and migration both.
Duong-Ba et al. [25] have modelled the VM placement problem as convex optimiza-
tion problem and proposed a multi-level join VM placement and migration (MJPM)
algorithm to solve the resource fragmentation problem.

2.5 � Bio‑Inspired Techniques

Bio-inspired techniques have always attracted the researchers across to solve NP
hard problems. Feller et al. [16] have proposed an Ant Colony Optimization (ACO)
based algorithm that binds VMs to PMs based on the current workload. Jeyrani
et al. [17, 21] have used a self-adaptive Particle Swarm Optimization (PSO) for VM
placement with better power management. Tripathi et al. [26] have modelled VM
placement problem as multi-objective optimization problem and applied modified
binary particle swarm optimization (BPSO) to solve this. Inspired from our ecosys-
tem, Zheng et al. [27] have proposed a novel VM placement algorithm based on
bio-geography based optimization technique to minimize the power consumption
and resource wastage in cloud data centers. Abdel-Basset et al. [28] have proposed
a new improved Lévy based Whale optimization algorithm for bandwidth efficient

1320	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

VM placement. Satpathy et al. [29] have proposed an attractive method using Crow
search optimization for VM placement problem, modelled as multi-objective opti-
mization problem with resource wastage and power consumption as the objectives.

Few most important works have been summarized in Table 1 for better
understanding.

Most of the above discussed models consider power consumption or network
bandwidth as the objectives to be optimized. Very few of them have emphasized
on resource utilization metric effectively. The proposed work solely concentrates on
optimal resource utilization in solving the VM placement problem.

3 � The Problem

In this section, VM placement problem is discussed and illustrated with an exam-
ple. Cloud data center, the backbone of cloud computing, contains large number
of physical servers over which large number of VMs are mapped with the help of
virtualization technology. The prime objective of virtual machine placement algo-
rithm is to utilize the resources effectively and efficiently. Consider a scenario in
which seven VMs need to be placed on physical machines (PMs) of a cloud data
center. Each PM has four cores therefore, can host up to four VMs. Assume resource
requirement of these VMs are 60%, 35%, 25%, 30%, 35%, 40% and 15% of the total
capacity of PMs. Further, assume that PMs are homogeneous and resource utiliza-
tion threshold is 95%. If each VM is placed on a single PM then 7 PMs are needed.
In this scenario, resource utilization will be extremely poor as most of the resources
will be underutilized. Since it is possible to place four VMs, keeping the availability
of resources in mind, an alternative and optimal way of VM placement is possible as
shown in Fig. 1. In this, only three PMs are required to be in active mode with better
resource utilization.

For better understanding, the notation used throughout the work is given in
Table 2.

For the VM placement problem, in the proposed model, a modified dragonfly
algorithm is applied. Therefore, before proceeding to the proposed model, some
basics of dragonfly algorithm is discussed in the following section.

3.1 � Dragonfly Algorithm

Dragonflies are insects, also known as Odonata. The lifespan of dragonflies are
categorized into two milestones: nymph and adult. The time span of Nymph domi-
nates that of adult. The swarming behaviors of dragonflies are very rare but unique.
Dragonflies form swarm only for two purposes; to hunt the small insects & fish and
to migrate from one place to another. When dragonflies form the swarm in order
to hunt, it is called static swarm whereas forming the swarm to migrate is called
dynamic or migratory swarm. In static swarm, dragonflies move in small groups to
hunt their prey. Also, motion of a dragonfly is back and forth over a small hunt-
ing area. Sudden change in their trajectory and local movement makes the static

1321

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f s
om

e
re

le
va

nt
 m

et
ho

ds
 o

f V
M

 p
la

ce
m

en
t

Te
ch

ni
qu

e
Re

so
ur

ce
s u

nd
er

 c
on

si
de

ra
tio

n
N

ov
el

ty
St

re
ng

th
W

ea
kn

es
s

V
M

 P
la

ce
m

en
t u

si
ng

 A
CO

 [2
0]

C
PU

, M
em

or
y

O
pt

im
iz

at
io

n
of

 re
so

ur
ce

 w
as

t-
ag

e
an

d
po

w
er

 c
on

su
m

pt
io

n
M

ul
ti-

ob
je

ct
iv

e
m

od
el

lin
g

H
ig

h
co

m
pu

ta
tio

nt
im

e

V
M

 P
la

ce
m

en
t u

si
ng

 V
ec

to
r

D
ot

 [3
0]

B
an

dw
id

th
, M

em
or

y,
 C

PU
,

N
et

w
or

k
In

te
gr

at
in

g
se

rv
er

 &
 st

or
ag

e
m

ig
ra

tio
n

H
an

dl
in

g
ov

er
lo

ad
ed

 n
od

es
 &

dy

na
m

ic
 lo

ad
 b

al
an

ci
ng

St
at

ist
ic

al
 a

nd
 p

re
di

ct
iv

e
m

od
el

s
fo

llo
w

ed
V

M
 P

la
ce

m
en

t u
si

ng
 E

xa
ct

A
llo

ca
tio

n
an

d
M

ig
ra

tio
n

[3
1]

C
PU

M
in

im
iz

at
io

n
of

 n
um

be
r o

f
m

ig
ra

tio
ns

 &
 e

ne
rg

y
Re

du
ct

io
n

in
 m

ig
ra

tio
n

co
st

Sl
ow

 e
xe

cu
tio

n

V
M

 P
la

ce
m

en
t u

si
ng

 G
ro

up

Pa
ck

in
g

A
lg

or
ith

m
 [3

2]
B

an
dw

id
th

, C
PU

Fu
tu

re
 b

an
dw

id
th

 P
re

di
ct

io
n

us
in

g
ra

nd
om

 v
ar

ia
bl

es
Re

du
ci

ng
 n

um
be

r o
f P

M
s

St
at

ist
ic

al
 a

nd
 p

re
di

ct
iv

e
m

od
el

s
fo

llo
w

ed
V

M
 P

la
ce

m
en

t u
si

ng
 G

en
et

ic

al
go

rit
hm

 [1
8]

C
PU

Fo
re

ca
sti

ng
 re

qu
es

ts
 a

nd
 re

co
n-

fig
ur

at
io

n
In

cr
ea

se
d

C
PU

 u
til

iz
at

io
n

an
d

re
du

ct
io

n
in

 a
ct

iv
e

PM
s

La
rg

e
se

ar
ch

 sp
ac

e
ov

er
he

ad

V
M

 P
la

ce
m

en
t u

si
ng

 E
nh

an
ce

d
Fi

rs
t F

it
D

ec
re

as
in

g
al

go
rit

hm

[3
3]

C
PU

Re
us

e
of

 V
M

s
Im

pr
ov

ed
 e

ne
rg

y
effi

ci
en

cy
 &

hi

gh
 sy

ste
m

 th
ro

ug
hp

ut
SL

A
 V

io
la

tio
n

Ex
ac

t a
lg

or
ith

m
s f

or
 e

ne
rg

y-
effi

ci
en

t V
M

 P
la

ce
m

en
t u

si
ng

in

 d
at

a
ce

nt
er

s [
34

]

C
PU

 a
nd

 m
em

or
y

A
dd

re
ss

 m
ul

ti
ob

je
ct

iv
e

un
de

r
m

ul
tip

le
-c

ap
ac

ity
 c

on
str

ai
nt

s
B

et
te

r t
ha

n
an

 o
n-

th
e-

sh
el

f
m

ix
ed

-in
te

ge
r l

in
ea

r p
ro

gr
am

so

lv
er

H
ig

h
co

m
pu

ta
tio

n
tim

e

O
pt

im
ist

ic
 V

M
 P

la
ce

m
en

t i
n

cl
ou

d
da

ta
 c

en
te

r u
si

ng
 q

ue
u-

in
g

ap
pr

oa
ch

 [3
5]

N
on

e
O

pt
im

iz
at

io
n

of
 c

om
pl

et
io

n
tim

e,
 p

ro
du

ct
io

n
co

st
an

d
th

ro
ug

hp
ut

H
ig

h
pe

rfo
rm

an
ce

 g
ai

n
fo

r
cl

ou
d

ap
pl

ic
at

io
ns

Se
cu

rit
y

co
ul

d
be

 c
om

pr
om

is
ed

1322	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Fig. 1   An example of VM Placement problem [26]

Table 2   Notation

Symbol Description

Si Separation of ith dragonfly
X Position of current individual
N Total count of neighbors
Ai Alignment of ith dragonfly
Vj Velocity of the jth neighboring individual
Ci Cohesion of ith dragonfly
Fi Attraction of ith dragonfly towards the food source
Ei Distraction of ith dragonfly from the predator
s, a, c, f, e Weights corresponding to separation, alignment, cohesion, attraction towards the food

source and distraction from predators
n Number of VMs
m Number of PMs
Tc
j
and Tm

j
Normalized remaining CPU and memory resources at jth PM

Uc
j
and Um

j
Normalized resource wastage corresponding to CPU and memory resources at jth PM

Wj Total resource wastage at jth PM
I Set of VMs
J Set of PMs
�ci

 , �mi
CPU and memory requirement of ith VM

Rcj
 , Rmj

Threshold CPU and memory capacity of jth PM

1323

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

swarming quiet interesting and useful. In dynamic swarm, dragonflies move in a
large group over a long distance.

Seyedali Mirjalili [36] proposed an optimization algorithm, based on the swarm-
ing behavior of dragonflies and named it Dragonfly Algorithm. The formation of
sub-swarms and its back and forth flying, over a different area, makes static swarm
very useful for exploitation phase. Similarly in dynamic swarm, flying of large num-
ber of dragonflies in one direction favors the exploration phase. Dragonfly algorithm
uses three basic properties of swarm movement which are as follows.

•	 Separation All dragonflies, in a swarm, should maintain some distance from
the neighborhood dragonfly to avoid the collision. Reynolds [37] has proposed a
method to compute the separation of an individual from its neighboring individ-
uals. The Separation Si of an individual X from its neighbors Xj can be calculated
as given in eq. 1.

	 
	  Where, N is the total count of neighbors.
•	 Alignment All dragonflies should maintain nearly the same velocity as their

neighbor. This is called Alignment Ai which can be calculated as given in eq. 2.

	 
	  Where, Vj represents the velocity of the jth neighboring individual.
•	 Cohesion The trajectory, of all dragonflies in a swarm, should be towards the

center of mass of neighborhood. The Cohesion Ci of an individual X with their N
neighbors can be calculated as given in eq. 3.

	 

In order to survive, all individuals should move towards the food source but
simultaneously should stay away from the predators. Attraction towards the food
sourceX+and distraction from the predatorX−can be measured as given in eqs. 4 and
5 respectively.

(1)Si =

j=N∑
j=1

X − Xj

(2)
Ai =

N∑
j=1

Vj

N

(3)
Ci =

j=N∑
j=1

Xj

N
− X

(4)Fi = X+ − X

(5)Ei = X− + X

1324	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Dragonfly algorithm utilizes the concept of velocity of PSO algorithm and proposes
a new vector called stepΔX . The step vector represents the direction of swarm move-
ment and can be calculated as given in eq. 6.

Here, s, a, c, f, and e are the weights corresponding to separation, alignment, cohe-
sion, attraction, and distraction respectively. w represents the inertia weight. Position
vector, after t iteration, will be updated as given in eq. 7.

For balancing the exploration and exploitation in the optimization process, fine tun-
ing of s, a, c, f and e is required. In dynamic swarm, dragonflies align themselves and
maintain proper separation and cohesion whereas in static swarm the alignment is very
low and cohesion is very high in order to attack on a prey (food source). Therefore, for
exploiting the search space high alignment and low cohesion weights are assigned. On
the other hand, for exploring the search space low alignment and high cohesion weights
are assigned.

For stochastic behavior in artificial dragonflies, it is assumed that dragonflies are fly-
ing in the search space using random walk also called as Levy flight in case of zero
neighborhood. For this, the position of a dragonfly will be updated according to eq. 8.

Where d represents the dimension of the position vector. Levy flight [38] can be
calculated as in eq. 9.

Where r1 and r2 are two randomly generated real numbers in the range [0, 1] and� is
a constant tuned during the experiment.� is calculated according to eq. 10.

Where� (x) = (x − 1)!.

Basic dragonfly algorithm, for continuous search space, is presented below.

(6)ΔXt+1 = (sSi + aAi + cCi + fFi + eEi) + wΔXt

(7)Xt+1 = Xt + ΔXt+1

(8)Xt+1 = Xt + Levy(d) × Xt

(9)
Levy(x) = 0.01 ×

r1 × �

||r2||
1∕�

(10)� =

⎛⎜⎜⎜⎝

� (1 + �) × Sin
�

��

2

�

�

�
1+�

2

�
× � × 2

�
�−1

2

�

⎞⎟⎟⎟⎠

1∕�

1325

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

4 � The Problem Formulation

In cloud data center, VMs’ requirement are served by physical machines using an
appropriate placement scheme. In this section, VM placement problem is mathemat-
ically formulated as a multidimensional bin packing problem.

Let there are n VMs to be mapped over m PMs. If we consider the possibility of
a case where a VM may not be assigned to any of PMs, there will total be (m+1)n
ways for assigning n VMs onto m PMs.

4.1 � Resource Wastage Modelling

A VM contains various resources such as CPU, memory, storage, network band-
width etc. In the proposed work, only CPU and memory have been considered as
these two are prime VM resources. The total resource wastage at jth PM can be
formulated as in eq. 11.

Tc
j
andTm

j
are normalized remaining CPU and remaining memory at jth PM,Uc

j

andUm
j

are normalized wastage corresponding to CPU and memory.� , a small real
number, is fixed to 0.0001.

(11)Wj =

|||Tc
j
− Tm

j

||| + �

Uc
j
+ Um

j

1326	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

4.2 � Resource Wastage as an Optimization Problem

VM placement problem can mathematically be modelled as an optimization
problem with the objective to minimize resource wastage. Let I represents the
set of VMs and J represents the set of PMs, �ci represents the CPU requirement
and �mi

 represents the memory requirement of ith VM, Rcj
represents the threshold

CPU capacity and Rmj
 represents the threshold memory capacity. Two Boolean

variables xij and yj can be defined as follows.

The VM placement problem can be viewed as given in eq. 12

Subject to:

The objective function in eq. 12 deals with the minimization of resource wastage of
all deployed physical machines. eq. 13 represents the condition that each VM can
be assigned to only one physical machine. eqs. 14 and 15 represent that requested
resource requirement of all VMs mapped to a particular PM should not exceed the
threshold value of the corresponding resources. The search space, associated with
the formulated optimization problem, is binary in nature. Therefore, the dragonfly
algorithm for the binary search space with some modifications is used to solve this
problem.

xij =

{
1 if the VM i ∈ I is assigned to physical server j ∈ J

0 otherwise

yj =

{
1 if the server j ∈ J is in use

0 otherwise

(12)

f = Minimize

m�
j=1

Wj =

m�
j=1

⎡⎢⎢⎢⎢⎣
yj ×

�����

�
Rcj

−
n∑
i=1

(xij ⋅ �ci)

�
−

�
Rmj

−
n∑
i=1

(xij ⋅ �mi
)

������
+ �

n∑
i=1

(xij ⋅ �ci) +
n∑
i=1

(xij ⋅ �mi
)

⎤⎥⎥⎥⎥⎦

(13)
m∑
j=1

xij = 1∀i ∈ I

(14)
n∑
i=1

�ci
⋅ xij ≤Rcj

⋅ yj ∀j ∈ J

(15)
n∑
i=1

�mi
⋅ xij ≤ Rmj

⋅ yj ∀j ∈ J

1327

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

5 � The Proposed Model

This section discusses the detail of VM placement using modified Dragonfly
Algorithm (VMPDA) and modifications done in original dragonfly algorithm to
tune it for VM placement in cloud data center.

5.1 � Particle Representation and Generator Function

If n virtual machines are to be mapped over m physical servers, then each particle
X is represented by a matrix of order n×m with each entry xij as 0 or 1.

 The randomly generated initial population may or may not satisfy the constraints
indicated in eq. (13). Therefore, following generator algorithm is used.

Seyedali Mirjalili [36] has also modified the dragonfly algorithm to work in
binary search space using the concept of transfer function [39, 40]. Two types of
transfer functions; S-shaped and V-shaped restrict the output value to 0 or 1. The
transfer function, used in binary dragonfly algorithm (BDA), is given in eq. 16.

Based on the value obtained in eq. 16, new position of dragonflies is calculated
as given in eq. 17.

Here, rand is a random real number in the range [0, 1].

(15)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

1

0

… 0 ⋯

… 0 …

0

0

⋮

0

⋮

0

⋮

…

⋮

1

⋮

1

⋮

0

⋱

… 0 …

⋮

0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(16)T(Δx) =

������
Δx√

Δx2 + 1

������

(17)Xt+1 =

{
X̄t if rand < T(Δxt+1)

Xt if rand ≥ T(Δxt+1)

1328	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

However, eq. 16 does not provide a balanced approach between exploitation
and exploration as some better area remains unexplored. Therefore, in the pro-
posed model, a time varying transfer function [41] is used as shown in eq. 18.

Here, time variable � starts with some value and is reduced over the time as
shown in eq. 19.

Here, t is current iteration, T is maximum number of iteration and �max and �min
are maximum and minimum values of controlling parameter. Based on the above
transfer function, new position of a dragonfly can be calculated as in eq. 20.

In binary search space, the distance between two dragonflies cannot be calcu-
lated, therefore, all dragonflies are assumed to be in a single swarm. All the weights
corresponding to separation, alignment, cohesion, attraction, distraction and inertia
i.e. s, a, c, f, e and w are adaptively tuned.

Proper problem formulation, with the above-mentioned modification in the drag-
onfly algorithm, will lead towards an optimal solution of the problem in a binary
search space.

5.2 � Proposed Dragonfly Algorithm for VM Placement Problem

The virtual machine placement algorithm using dragonfly algorithm in a binary
search space is given as Algorithm 3.

(18)T(Δx, 𝜏) =

⎧
⎪⎨⎪⎩

1 −
2

1 + e
−2x∕𝜏

if x ≤ 0

2

1 + e
−2x∕𝜏

− 1 if x > 0

(19)� =
(
1 −

t

T

)
�max +

t

T
�min

(20)Xt+1 =

⎧
⎪⎨⎪⎩

0 if rand ≤ T(Δxt+1) and Δxt+1 ≤ 0

1 if rand ≤ T(Δxt+1) and Δxt+1 > 0

Xt if rand > T(Δxt+1)

,

1329

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

The flowchart of VMPDA algorithm is given in Fig. 2.

6 � Simulation Experiments and Analysis

The performance and effectiveness of the proposed VMPDA algorithm is done by
comparing it with state of art such as VM placement using ant colony search opti-
mization (VMPACS) [20], VM placement using genetic algorithm (VMPGA) [18],
VM placement using artificial bee colony (VMPABC) and VM placement using
binary particle swarm optimization (VMPBPSO) [26]. These implementation is
done using CloudSim simulation toolkit [42]. The experiments are carried out using
synthesized data from similar work [20] and also real data from Amazon EC2 [43].

For the realistic verification and analysis of the proposed model, experiments are
conducted for two types of VM sets: small set of VMs which consist of 50 VMs
with certain CPU and memory requirements and large set of VMs which consist
of 2000 VMs with certain CPU and memory requirement. The physical servers are
simulated with the same dimension of resources as the VMs. To cater the worst-case
possibility, the number of PMs are kept same as number of VMs. For simplicity,
PMs’ configuration are considered homogeneous, though heterogeneous environ-
ment can also be simulated with the proposed model. For each algorithm, ten Monte
Carlo simulations are performed and their average is reported. Keeping in mind the
complexity of the simulated algorithms the termination condition is kept in form of

1330	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Fig. 2   The VMPDA flowchart

1331

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

number of function evaluations which is set to 70,000 for both types of data sets so
that the algorithm could settle.

6.1 � Comparison Based on Resource Wastage Cost

Entire experiment is divided into two test cases based on their reference CPU
requirement 𝜌̄c and memory requirement 𝜌̄m using the VM_configuration
Algorithm 4.

Test case 1 comprise of 𝜌̄c = 𝜌̄m = 25% and test case 2 comprise of
𝜌̄c = 𝜌̄m = 45%. For test case 1, distribution values of CPU and memory require-
ment lies between [0, 50]. For test case 2, distribution values of CPU and memory
requirement lies between [0, 90]. Note that the threshold value of physical servers
is set to 90%. For both the test cases, probability P is set to 0.00, 0.25, 0.50, 0.75,
and 1.0. For test case 1, the obtained correlation coefficients are − 0.754, − 0.348,
− 0.072, 0.371 and 0.755 for respective probabilities. These correlation coefficients
correspond to strong-negative, weak-negative, no, weak-positive, and strong-posi-
tive correlations. Similarly, for test case 2, the obtained correlation coefficients are
− 0.755, − 0.374, − 0.052, 0.398 and 0.751.

Resource wastage of VMPDA is compared with VMPACS, VMPGA, VMPABC
and VMPBPSO algorithms. In Table 3, resource wastage is computed for these
algorithms after 70,000 function evaluations. It has been observed, from the table,
that VMPDA algorithm leads to least resource wastage as compared to VMPACS,
VMPGA, VMPABC and VMPBPSO for all correlations in both the test cases.
VMPDA possess high exploration making it suitable for discovering the promis-
ing regions of the binary search space. Abrupt change, in the flying path of dragon-
flies, makes it suitable in avoiding local optima and forces it to move towards global
optima.

Genetic algorithm does not guarantee optimal solution as it largely depends upon
the initial population. In VMPGA, poor initial population leads to highest resource
wastage as compared to other algorithms. This results in highest resource wast-
age for VMPGA among other compared algorithms in all the cases. It can also be
observed that VMPBPSO results in less resource wastage as compared to other algo-
rithms except VMPDA. VMPBPSO responds to quality and diversity of the solu-
tions as here only ��������⃗gbest shares the information with others. So, overall behavior of

1332	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Table 3   Resource wastage comparison of various algorithms

Reference value Correlation
coefficient

Algorithm Resource wastage for
small set of VMs

Resource wastage
for large set of VMs

𝜌̄c = 𝜌̄m = 25% − 0.754 VMPACS 3.61 2.10
VMPGA 5.43 2.54
VMPABC 4.98 2.32
VMPBPSO 3.12 1.92
VMPDA 2.88 1.84

− 0.348 VMPACS 2.86 1.94
VMPGA 5.12 2.42
VMPABC 4.81 2.20
VMPBPSO 2.54 1.71
VMPDA 2.49 1.63

− 0.072 VMPACS 2.78 1.79
VMPGA 4.86 2.21
VMPABC 4.37 2.07
VMPBPSO 2.62 1.65
VMPDA 2.53 1.50

0.371 VMPACS 2.47 1.68
VMPGA 4.70 2.09
VMPABC 3.98 1.91
VMPBPSO 1.97 1.55
VMPDA 1.82 1.39

0.755 VMPACS 2.31 1.45
VMPGA 4.10 1.92
VMPABC 3.64 1.73
VMPBPSO 1.89 1.32
VMPDA 1.76 1.20

1333

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

the above mentioned algorithms for resource wastage order is summarized as VMP
GA > VMPABC > VMPACS > VMPBPSO > VMPDA.

In order to show the convergence behavior of all five algorithms, mean cost curve
is drawn as shown in right half of Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Mean value of
resource wastage cost, for each function evaluation, is represented with the curves.
Statistical distribution of these costs are shown with boxplot. Middle value of costs
is represented by median in the boxplots which is evaluated from 70,000 function

Table 3   (continued)

Reference value Correlation
coefficient

Algorithm Resource wastage for
small set of VMs

Resource wastage
for large set of VMs

𝜌̄c = 𝜌̄m = 45% − 0.755 VMPACS 14.72 12.80

VMPGA 18.21 15.42

VMPABC 17.24 13.17

VMPBPSO 13.83 11.43

VMPDA 12.90 10.02

− 0.374 VMPACS 13.66 11.74

VMPGA 17.19 14.42

VMPABC 16.04 12.00

VMPBPSO 11.97 10.13

VMPDA 10.32 9.20

− 0.052 VMPACS 12.85 10.84

VMPGA 16.48 13.11

VMPABC 15.44 11.50

VMPBPSO 11.91 9.15

VMPDA 11.05 8.60

0.398 VMPACS 11.35 9.87

VMPGA 15.92 12.76

VMPABC 14.83 11.93

VMPBPSO 10.66 8.10

VMPDA 9.91 7.54

0.751 VMPACS 10.32 8.64

VMPGA 15.01 11.84

VMPABC 14.22 10.78

VMPBPSO 9.74 7.56

VMPDA 8.99 6.12

Bold values indicate the findings of proposed algorithm VMPDA

1334	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Fig. 3   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.754

Fig. 4   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.348

Fig. 5   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = − 0.072

1335

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

Fig. 6   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = 0.371

Fig. 7   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 25% Corr. = 0.755

Fig. 8   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.755

1336	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

Fig. 9   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.374

Fig. 10   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = − 0.052

Fig. 11   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = 0.398

1337

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

evaluations for synthesized data. All figures, on mean cost curve, indicate that
VMPDA converges faster than VMPACS, VMPGA, VMPABC and VMPBPSO. The
order of resource wastage at different function evaluations is VMPDA < VMPBPSO
< VMPACS < VMPABC < VMPGA. VMPDA, at successive function evaluations,
provide better solutions with better resource utilization. It is because VMPDA exhib-
its high exploration and exploitation as it incorporates V-shaped transfer function.
The problem of local optima in VMPGA leads to mapping of the VMs onto more
number of PMs. Therefore, VMPGA performs worst in all the cases. For higher ref-
erence value i.e. 𝜌̄c=𝜌̄m = 45%, it is also observed that at lower function evaluations
VMPBPSO exhibits lower resource wastage as compared to other algorithms though
this behavior is visible for very short duration. After few more function evaluations,
VMPDA outperforms VMPBPSO.

Box plots, of all five algorithms for both test cases, are also shown at the left half
of Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. Median values of all the boxes can be relatively
analyzed for the performance study of the VM placement algorithms into consid-
eration. By analyzing the boxplots, it can be inferred that most of the mean cost
values of VMPDA are comparatively smaller than minimum values of VMPGA,
VMPABC, VMPACS and VMPBPSO. Figures 8, 9, 10, 11 for test case 2, infer
that initially VMPBPSO performs better than rest of the algorithms but after some
function evaluation VMPDA outperforms others. This behavior is shown for all cor-
relation coefficients. The reason for this behavior being VMPBPSO more prone to
local convergence but after sufficient function evaluation, it shows the actual cost.
VMPDA facilitates tracking of position of dragonflies during the optimization pro-
cess. Therefore, it is possible to monitor the values of parameters and tune it to bal-
ance the exploitation and exploration of the search space. This property results in
lower resource wastage while placing the VMs.

6.2 � Comparison Based on Placement Time

Placement time of VMPDA is compared with VMPACS, VMPGA, VMPABC and
VMPBPSO as represented in Fig. 13. It reflects the faster convergence of VMPDA

Fig. 12   Boxplot and mean cost curve for resource wastage in 𝜌̄c=𝜌̄m = 45% Corr. = 0.751

1338	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

than all other algorithms i.e. time taken to place the VMs in VMPDA is smaller than
other four. Use of V-shaped transfer function do not limit dragonflies to take values
0 or 1 and therefore it provides an efficient exploitation of search space leading to
quick convergence. Despite the fact that VMPGA is very simple, it highly depends
upon the initial population. Poor initial population leads to longer run time to find
the optimal solution.

6.3 � Comparison of VMPDA with Original Binary Dragonfly Algorithm

The performance of the proposed VMPDA algorithm is compared with VM place-
ment algorithm based on original binary dragonfly algorithm VMPODA. This

Fig. 13   Placement time on number of VMs

Fig. 14   Comparison of VMPDA and VMPODA for resource wastage

1339

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

comparison is performed for the reference value of 25% and for large set of VM
placement problem. Figure 14 shows resource wastage of these two algorithms at
different correlation coefficient which shows that VMPDA performs better as com-
pared to original binary dragonfly algorithm. Since the step vector is linked with
the momentum of the individual dragonfly, it should be very small when dragonfly
is close to the best solution. Transfer function affects the step vector hence is also
responsible for the position update. VMPODA uses eq. 16 as transfer function and
eq. 17 for position update. At the beginning, exploration rate should be more than
exploitation rate which is not so in case of eq. 16. Therefore, some promising areas
may not have been explored efficiently. Further, VMPDA with transfer function in
eq. 18 and position updating rule in eq. 20 provides better solution. Figure 15 shows
that time taken to place VMs in VMPDA is slightly more than VMPODA.

7 � Conclusion

The resource utilization is very important in a cloud data center for which proper
VM placement is a key activity. This work proposes an effective VM placement
technique based on dragonfly algorithm to minimize the resource wastage. Few
modifications, such as use of time varied V-shaped transfer function, solution gen-
erator function etc. are incorporated in simple Dragonfly algorithm to suit it well for
the VM placement problem. The proposed model is simulated and extensive experi-
mentation is done on real as well as synthetic data sets. The performance of the
proposed VMPDA algorithm is also compared with state of the art e.g. VMPACS,
VMPGA, VMPABC and VMPBPSO.

It has been concluded, through simulation experiments, that the proposed
model using modified Dragonfly algorithm performs verywell for VM placement
problem. In most of the cases, the proposed VMPDA outperforms mainly due

Fig. 15   Comparison of VMPDA and VMPODA for placement time

1340	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

to its greater coordination and its capacity to maintain a good balance between
exploration and exploitation. VMPDA also results in quick convergence and
offers least placement time as compared to others. We foresee the applicability of
the VMPDA algorithm in a real cloud environment. The proposed model will be
extended to incorporate the dynamic behavior of the cloud environment where,
with time, new VM requests will be generated and after some time few VMs may
get terminated.

Authors would like to acknowledge the editors and the anonymous reviewers for
their useful suggestions resulting in the quality improvement of the paper. Also to
acknowledge, MGCU Bihar, IIIT Kota and JNU for their support.

References

	 1.	 Zhang, Q., Cheng, L., Boutaba, R.: Cloud Coimputing: state-of-the-art and research challenges. In: J
Internet Serv, pp. 626–631. Springer Verlag, IEEE, (2010)

	 2.	 Rhoton, J.: Cloud computing explained: implementation handbook for enterprises (2009)
	 3.	 Addya, S.K., Turuk, A.K., Sahoo, B., Sarkar, M., Biswash, S.K.: Simulated annealing based VM

placement strategy to maximize the profit for Cloud Service Providers. Eng. Sci. Technol. Int. J. 20,
1249–1259 (2017). https​://doi.org/10.1016/j.jestc​h.2017.09.003

	 4.	 Békési, J., Galambos, G., Kellerer, H.: A 5/4 linear time bin packing algorithm. J. Comput. Syst.
Sci. 60, 145–160 (2000). https​://doi.org/10.1006/jcss.1999.1667

	 5.	 Grit, L., Irwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for networked clusters:
Building the foundations for “autonomic” orchestration. In: VTDC 2006 2nd International Work-
shop on virtualization technology in distributed computing; held in conjunction with SC06. IEEE
Computer Society, pp. 1–7 (2006)

	 6.	 Speitkamp, B., Bichler, M.: A mathematical programming approach for server consolidation
problems in virtualized data centers. IEEE Trans. Serv. Comput. 3, 266–278 (2010). https​://doi.
org/10.1109/TSC.2010.25

	 7.	 Cardosa, M., Korupolu, MR., Singh. A .: Shares and utilities based power consolidation in virtual-
ized server environments. In: 2009 IFIP/IEEE International Symposium on integrated network man-
agement, IM 2009, pp. 327–334. IEEE, New York (2009)

	 8.	 Bichler, M., Setzer, T., Speitkamp, B.: Capacity planning for virtualized servers. In: Workshop on
information technologies and systems, Milwaukee, Wisconsin. Milwaukee, Wisconsin, USA (2006)

	 9.	 Srikantaiah, S., Kansal, A., Zhao, F,: Energy aware consolidation for cloud computing. In: Proceed-
ings of the 2008 Conference on power aware computing and systems (HotPower) (2008)

	10.	 Verma, A., Ahuja, P., Neogi, A.: pMapper: Power and migration cost aware application placement
in virtualized systems. Lecture notes in computer science (including subseries lecture notes in arti-
ficial intelligence and lecture notes in bioinformatics), pp. 243–264. Springer-Verlag, New York Inc
(2008)

	11.	 Li, B., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: EnaCloud: an energy-saving application live place-
ment approach for cloud computing environments. In: CLOUD 2009–2009 IEEE International Con-
ference on cloud computing, pp. 2009. IEEE, New York (2009)

	12.	 Verma, A., Ahuja, P. Neogi, A .: Power-aware dynamic placement of HPC applications. In: Proceed-
ings of the 22nd annual international conference on ACM, pp. 175–184 (2008)

	13.	 Lin, J.W., Chen, C.H., Lin, C.Y.: Integrating QoS awareness with virtualization in cloud computing
systems for delay-sensitive applications. Futur. Gener. Comput. Syst 37, 478–487 (2014). https​://
doi.org/10.1016/j.futur​e.2013.12.034

	14.	 Liao, X., Jin, H., Liu, H.: Towards a green cluster through dynamic remapping of virtual machines.
Futur. Gener. Comput. Syst 28, 469–477 (2012). https​://doi.org/10.1016/j.futur​e.2011.04.013

	15.	 Van, H.N., Tran, F.D., Menaud, J.M.: Performance and power management for cloud infrastructures.
In: Proceedings 2010 IEEE 3rd International Conference on cloud computing, CLOUD 2010, pp.
329–336. IEEE, New York. (2010)

https://doi.org/10.1016/j.jestch.2017.09.003
https://doi.org/10.1006/jcss.1999.1667
https://doi.org/10.1109/TSC.2010.25
https://doi.org/10.1109/TSC.2010.25
https://doi.org/10.1016/j.future.2013.12.034
https://doi.org/10.1016/j.future.2013.12.034
https://doi.org/10.1016/j.future.2011.04.013

1341

1 3

Journal of Network and Systems Management (2020) 28:1316–1342	

	16.	 Feller, E., Rilling, L., Morin, C.: Energy-aware ant colony based workload placement in clouds. In:
Proceedings 2011 12th IEEE/ACM International Conference on grid computing, Grid 2011. IEEE
Computer Society, pp. 26–33 (2011)

	17.	 Jeyarani, R., Nagaveni, N., Ram, R.V.: Self adaptive particle swarm optimization for efficient virtual
machine provisioning in Cloud. In: International Journal of intelligent information technologies, pp.
88–107. IGI Global, Pennsylvania (2011)

	18.	 Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration with perfor-
mance guarantee for energy-efficient large-scale cloud computing data centers.In:Proceedings 2010
IEEE 7th International Conference on services computing, SCC 2010, pp.514–521. IEEE, New
York (2010)

	19.	 Xu, J., Fortes, J.A.B.: Multi-objective virtual machine placement in virtualized data center environ-
ments. In: Proceedings 2010 IEEE/ACM International Conference on green computing and commu-
nications, GreenCom 2010, 2010 IEEE/ACM International Conference on cyber, physical and social
computing, CPSCom 2010, pp. 179–188. IEEE, New York (2010)

	20.	 Gao, Y., Guan, H., Qi, Z., Hou, Y., Liu, L.: A multi-objective ant colony system algorithm for vir-
tual machine placement in cloud computing. J. Comput. Syst. Sci. 79, 1230–1242 (2013). https​://
doi.org/10.1016/j.jcss.2013.02.004

	21.	 Jeyarani, R., Nagaveni, N., Vasanth Ram, R.: Design and implementation of adaptive power-aware
virtual machine provisioner (APA-VMP) using swarm intelligence. Futur. Gener. Comput. Syst 28,
811–821 (2012). https​://doi.org/10.1016/j.futur​e.2011.06.002

	22.	 Wood, T., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box strategies for virtual
machine migration. In: 4th USENIX Symposium on networked systems design and implementation,
pp. 229–242 (2007)

	23.	 Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient
management of data centers for Cloud computing. Futur. Gener. Comput. Syst 28, 755–768 (2012).
https​://doi.org/10.1016/j.futur​e.2011.04.017

	24.	 Hermenier, F., Lorca, X., Menaud, J.M., Muller, G., Lawall, J.: Entropy: a Consolidation Manager
for Clusters. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on vir-
tual execution environments VEE’09. ACM, pp 41–50 (2009)

	25.	 Duong-Ba, T.H., Nguyen, T., Bose, B., Tran, T.T.: A dynamic virtual machine placement and
migration scheme for data centers. IEEE Trans. Serv, Comput (2018)

	26.	 Tripathi, A., Pathak, I., Vidyarthi, D.P.: Energy efficient VM placement for effective resource utili-
zation using modified binary PSO. Comput. J. 61, 832–846 (2018). https​://doi.org/10.1093/comjn​l/
bxx09​6

	27.	 Zheng, Q., Li, R., Li, X., Shah, N., Zhang, J., Tian, F., Chao, K.M., Li, J.: Virtual machine consoli-
dated placement based on multi-objective biogeography-based optimization. Futur. Gener. Comput.
Syst. 54, 95–122 (2016). https​://doi.org/10.1016/j.futur​e.2015.02.010

	28.	 Abdel-Basset, M., Abdle-Fatah, L., Sangaiah, A.K.: An improved Lévy based whale optimization
algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Clus-
ter Comput (2018). https​://doi.org/10.1007/s1058​6-018-1769-z

	29.	 Satpathy, A., Addya, S.K., Turuk, A.K., Majhi, B., Sahoo, G.: Crow search based virtual machine
placement strategy in cloud data centers with live migration. Comput. Electr. Eng. 69, 334–350
(2018).https​://doi.org/10.1016/j.compe​lecen​g.2017.12.032

	30.	 Singh, A., Korupolu, M., Mohapatra, D.:Server-storage virtualization: Integration and load balanc-
ing in data centers. In: 2008 SC International Conference for high performance computing, network-
ing, storage and analysis, SC 2008, pp. 1–12. IEEE, New York (2008)

	31.	 Ghribi, C., Hadji, M., Zeghlache, D.: Energy efficient VM scheduling for cloud data centers: Exact
allocation and migration algorithms. In: Proceedings 13th IEEE/ACM International Symposium on
cluster, cloud, and grid computing, CCGrid 2013. pp. 671–678. IEEE, New York (2013)

	32.	 Wang, M., Meng, X., Zhang, L.: Consolidating virtual machines with dynamic bandwidth demand
in data centers. In: Proceedings IEEE INFOCOM, pp. 71–75. IEEE, New York (2011)

	33.	 Alahmadi, A., Alnowiser, A., Zhu, M.M., Che, D., Ghodous, P.: Enhanced first-fit decreasing algo-
rithm for energy-aware job scheduling in cloud. In: Proceedings 2014 International Conference on
computational science and computational intelligence, CSCI 2014, pp. 69–74 (2014)

	34.	 Chen, W., Hu, Z.-H., You-Gan, W.: Exact algorithms for energy-efficient virtual machine place-
ment in data centers. Futur. Gener. Comput. Syst 106, 77–91 (2020). https​://doi.org/10.1016/j.futur​
e.2019.12.043

https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1016/j.future.2011.06.002
https://doi.org/10.1016/j.future.2011.04.017
https://doi.org/10.1093/comjnl/bxx096
https://doi.org/10.1093/comjnl/bxx096
https://doi.org/10.1016/j.future.2015.02.010
https://doi.org/10.1007/s10586-018-1769-z
https://doi.org/10.1016/j.compeleceng.2017.12.032
https://doi.org/10.1016/j.future.2019.12.043
https://doi.org/10.1016/j.future.2019.12.043

1342	 Journal of Network and Systems Management (2020) 28:1316–1342

1 3

	35.	 Ponraj, A.: Optimistic virtual machine placement in cloud data centers using queuing approach.
Futur. Gener. Comput. Syst. 93, 338–344 (2019). https​://doi.org/10.1016/j.futur​e.2018.10.022

	36.	 Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-
objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016).
https​://doi.org/10.1007/s0052​1-015-1920-1

	37.	 Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model, in computer graphics.
ACM SIGGRAPH Comput. Graph 21, 25–34 (1987)

	38.	 Yang, X.-S.: Nature-inspired metaheuristic algorithms (2010)
	39.	 Mirjalili, S., Lewis, A.: S-shaped versus V-shaped transfer functions for binary Particle Swarm

Optimization. Swarm. Evol. Comput. 9, 1–14 (2013). https​://doi.org/10.1016/j.swevo​.2012.09.002
	40.	 Mirjalili, S., Wang, G.G., dos Coelho L, S.: Binary optimization using hybrid particle swarm opti-

mization and gravitational search algorithm. Neural Comput. Appl. 25, 1423–1435 (2014). https​://
doi.org/10.1007/s0052​1-014-1629-6

	41.	 Mafarja, M., Aljarah, I., Heidari, A.A., Faris, H., Fournier-Viger, P., Li, X., Mirjalili, S.: Binary
dragonfly optimization for feature selection using time-varying transfer functions. Knowledge Based
Syst 161, 185–204 (2018). https​://doi.org/10.1016/j.knosy​s.2018.08.003

	42.	 Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw. Pract. Exp. 41, 23–50 (2011). https​://doi.org/10.1002/spe.995

	43.	 Amazon.: EC2 Instance types–Amazon Web Services (AWS). Amazon, Seattle (2019). http://aws.
amazo​n.com/ec2/insta​nce-types​

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutionalaffiliations.

Atul Tripathi  is an Assistant Professor in Department of Computer Science and Information Technol-
ogy at Mahatma Gandhi Central University, Bihar, India. He had submitted his Ph.D. at the School of
Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India. His research interests
include cloud computing, network virtualization, soft computing etc.

Isha Pathak  is an Assistant Professor in Department of Computer Science and Engineering, Indian
Institute of Information Technology, Kota, India. She did her Ph.D. in Computer Science & Tecnology
from Jawaharlal Nehru University, New Delhi, India. She has published research papers in various peer
reviewed International Journals (Springer, Wiley, Oxford University Press etc.) and in proceedings of
various peer-reviewed conferences. Her research interests include network virtualization, computer net-
works, resource provisioning in cloud computing.

Deo Prakash Vidyarthi  is Professor in the School of Computer and Systems Sciences, Jawaharlal Nehru
University, New Delhi. Dr. Vidyarthi has published more than 100 research papers in various peer
reviewed International Journals and Transactions (including IEEE, Elsevier, Springer, Wiley, World
Scientific etc.) and around 50 research papers in proceedings of various peer-reviewed conferences in
India and abroad. Dr. Vidyarthi has three books (research monograph) to his credit. One entitled “Auction
Based Resource Provisioning in Cloud Computing” published by Springer in 2018 and another entitled
‘‘Technologies and Protocols for the Future Internet Design: Reinventing the Web’’ published by IGI-
Global (USA) released in Feb. 2012. The third book is entitled ‘‘Scheduling in Distributed Computing
Systems: Design, Analysis and Models’’ published by Springer in 2009. He has contributed chapters in
many edited books and volumes. He is in the editorial board and in the reviewer’s panel of many Inter-
national Journals. Dr. Vidyarthi is the senior member of IEEE, International Association of Computer
Science and Information Technology (IACSIT), Singapore, International Society of Research in Science
and Technology (ISRST), USA and International Association of Engineers (IAENG). Research interest
includes Parallel and Distributed System, Grid and Cloud Computing, Mobile Computing, Internet of
Things and Evolutionary Computing.

https://doi.org/10.1016/j.future.2018.10.022
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.swevo.2012.09.002
https://doi.org/10.1007/s00521-014-1629-6
https://doi.org/10.1007/s00521-014-1629-6
https://doi.org/10.1016/j.knosys.2018.08.003
https://doi.org/10.1002/spe.995
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/instance-types

	Modified Dragonfly Algorithm for Optimal Virtual Machine Placement in Cloud Computing
	Abstract
	1 Introduction
	2 Related Work
	2.1 Heuristic Bin Packing
	2.2 Linear Programming
	2.3 Simulated Annealing
	2.4 Constraint Programming
	2.5 Bio-Inspired Techniques

	3 The Problem
	3.1 Dragonfly Algorithm

	4 The Problem Formulation
	4.1 Resource Wastage Modelling
	4.2 Resource Wastage as an Optimization Problem

	5 The Proposed Model
	5.1 Particle Representation and Generator Function
	5.2 Proposed Dragonfly Algorithm for VM Placement Problem

	6 Simulation Experiments and Analysis
	6.1 Comparison Based on Resource Wastage Cost
	6.2 Comparison Based on Placement Time
	6.3 Comparison of VMPDA with Original Binary Dragonfly Algorithm

	7 Conclusion
	References

