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Abstract
Modern networks and systems pose many challenges to traditional management 
approaches. Not only the number of devices and the volume of network traffic are 
increasing exponentially, but also new network protocols and technologies require 
new techniques and strategies for monitoring controlling and managing up and com‑
ing networks and systems. Moreover, machine learning has recently found its suc‑
cessful applications in many fields due to its capability to learn from data to auto‑
matically infer patterns for network analytics. Thus, the deployment of machine 
learning in network and system management has become imminent. This work 
provides a review of the applications of machine learning in network and system 
management. Based on this review, we aim to present the current opportunities and 
challenges in and highlight the need for dependable, reliable and secure machine 
learning for network and system management.

Keywords Network and system management · Reliable and dependable machine 
learning · Secure machine learning

1 Introduction

Networks are growing at exponential pace and becoming more and more diverse, 
not only connecting people but also machines and digital objects. The vast collec‑
tions of network devices, end user devices and heterogeneous links are also grow‑
ing, both in terms of numbers and types of devices. Naturally, this results in many 
opportunities as well as challenges in the process of managing such networks, 
services and systems. Furthermore, recent network developments, although 
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creating tremendous potential applications and greatly enhancing network capa‑
bilities and user experiences, bring with them new challenges for network and 
system management (NSM). For example, the proliferation of 5G networks has 
been anticipated to open several new opportunities. This next generation mobile 
network technology greatly increases data transfer rates, while reducing latency 
and energy usage. Essentially 5G will enable Internet of Things (IoT) and many 
other use cases, such as smart transportation and high‑performance edge analyt‑
ics. Another example of network expansion and diversification is smart cities 
and homes. These in return create challenges in managing networks and ser‑
vices by introducing new heterogeneity and diversity, as well as cybersecurity 
concerns. Analyzing operational data and network traffic data generated by those 
networks for troubleshooting and detecting anomalies/faults/intrusions would be 
overwhelming to human analysts, given the sheer amounts of data they create. 
Similarly, Network Function Virtualization (NFV) and Software Defined Net‑
work (SDN) technologies bring many opportunities as well as challenges for net‑
work and system management by allowing centralized but potentially dynamic 
management functionalities via on the fly configuration, scheduling and analysis 
operations. Envisioning the scale and variability of networks and their potential 
growth in the near future, one can easily realize the need for more efficient and 
easily adaptable systems for NSM. Thus, machine learning based techniques and 
strategies may find applications which match well for their capabilities to learn 
from network/service data and provide support to analysts in monitoring, analyz‑
ing, and controlling networks and systems.

Machine learning (ML) is the computational process of automatically inferring 
and generalizing a model from sampled data [1]. In the last decade, ML has enjoyed 
an unprecedented surge in interest, thanks to the demonstrations of its usefulness 
(meet or exceed human level) in many tasks, such as computer vision, natural lan‑
guage processing, and computer gaming [2]. Hence, in recent years, with the surging 
popularity of ML, there has been a growing interest for its application to NSM as 
well. In this case, the goal is to leverage ML techniques and algorithms for analyz‑
ing huge data streams to support network and system management teams on daily 
operational tasks and/or to deliver self‑driving networks [3]. In fact, both the current 
trends in networks and services, and the future outlook guarantee key requirements 
for application of ML and big data analytics: large data streams, increasing com‑
plexity and diversity of the services, technologies and protocols used, repetition of 
management tasks, and dynamics in networks/services and users/systems data.

This article aims to review the applications of ML in managing networks and 
systems in the literature. In doing so, we summarize the current state, highlight 
research opportunities for addressing the main challenges as well as preparing for 
future networks, systems and services. We highlight the need for robust and adapta‑
ble ML techniques for NSM applications, considering the dynamics in networks and 
systems of today as well as the trends indicating the future. The rest of the paper is 
organized as follows. Section 2 provides an overview of ML for NSM with an appli‑
cation workflow. Section 3 summarizes the current state of ML applications in NSM 
tasks, while Sect. 4 presents the main research challenges and opportunities in ML 
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for network/system management. Finally, Sect.  5 draws conclusions and discusses 
the future directions.

2  ML for Network/System Management: An Overview

Figure 1 presents a workflow for ML adaptation in NSM applications, from data 
collection and processing steps to ML model construction, deployment, and infer‑
ence steps. Although similar to a typical machine learning application workflow 
[4, 5], in this case, we emphasize the involvement of a network administrator/
human analyst in the workflow, especially for the data processing as well as the 
results and analysis steps. The steps in the workflow are detailed as follows:

Data collection ML is a data‑driven methodology for building analytical mod‑
els automatically, so everything starts with data. A good monitoring and data 
collection procedure generates adequate data for employing ML techniques and 
supporting human analysts in making correct decisions [1, 6]. Data for network/
service management may come from many sources, such as captured network traf‑
fic data (traffic traces or network flows), system and service event operation log 
data, and related information collected at different Internet protocol stack layers 
and devices. Depending on the application requirements and the ML algorithm 
used, the data collection step needs to be tailored to provide the suitable informa‑
tion. For example, in traffic prediction and classification tasks, the most important 
data source is network traffic captures, while for the fault prediction task, system 
event logs may be of more importance. Moreover, making decisions about what 
data to include and what not to include, may introduce biases into the type of ML 
solution one finds. Specific examples might include attempts to sample data to 

Fig. 1  A ML workflow in network/system management (adapted with changes from [5])
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address class imbalance. This will ‘prioritize’ the detection or characterization 
of certain data properties. In traditional supervised learning, training data is usu‑
ally collected and labelled to train the ML models in an offline fashion before the 
deployment of the ML based system.

Data processing This step essentially transforms the raw collected data into suit‑
able data formats for training the ML algorithms. Usually, input data is represented 
as a finite set of fixed‑length vectors, X = {x1, x2, ..., xn}, where xi ∈ ℝ

m . Therefore, 
different data processing phases need to be carried out. If data is collected from mul‑
tiple sources, data fusion can be performed to unify the sources into a single data 
stream for further processing. Feature engineering or extraction can be performed 
to generate data features that are representative of the original data but in a more 
desired format. The process often includes data normalization, data imputation, fea‑
ture selection and reduction. It should be noted here that too many features might 
result in ML solutions that do not generalize well. Last but not the least, the major‑
ity of ML techniques find correlations, not causations. Thus, the supervision of a 
network analyst is necessary in this step to provide any domain‑specific knowledge 
that may be required for the subsequent ML application. This is often based on data 
analysis and exploration using visualization, alerts or unusual patterns in daily net‑
work/service operations and anomaly detection.

ML model construction This step involves selecting the ML algorithms to be 
used, and training them to address the needs of a specific analysis. There is a wide 
variety of ML techniques in the literature (Sect. 2.1). For example, for traffic classi‑
fication, supervised learning techniques can be employed to learn from labelled data 
to predict future unknown data instances, while in network anomaly detection tasks, 
unsupervised learning techniques might be the primary option. Similarly, for appli‑
cations involving temporal data properties, learning from data sequences using ML 
algorithms such as Hidden Markov Models (HMM) or Recurrent Neural Networks 
(RNN) can be adopted.

ML model validation ML models need to be validated in order to allow effi‑
cient and effective real‑world deployment. Common metrics for validation include 
accuracy, precision, recall, F‑score, detection and false alarm rates. Moreover, con‑
straints related to the deployment environment, such as computational power and the 
response time are usually needed to be considered as well. Additionally, ML model 
validation should to be performed not only after the model construction step but also 
perpetually during the lifetime of the model deployment. We believe this is neces‑
sary in order to maintain a certain production level of performance that is accept‑
able to the organization. Many factors can negatively affect the ML model’s per‑
formance, especially in dynamic network/service environments. Examples of such 
factors include changes in the networking environment (expansion of the network, 
topology changes, device replacements/upgrades) and behavioural changes such as 
concept shifts and drifts in the network, system, application and user activities.

ML model deployment Upon confirming that the trained ML solutions meet cer‑
tain application requirements, the model is ready for deployment in network and 
systems. Specifically, this step involves preparing the necessary hardware, software, 
and manpower to ensure a smooth transition of the ML models to the production 
network/service environments.
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Results and analysis (inference) This step presents the output of the ML model 
in a meaningful way in order to support network/service operations and manage‑
ment teams in making decisions regarding the related network/service behaviours 
and events. Traditional ML performance metrics include accuracy, precision, recall, 
detection rate, false positive/alarm rate, F‑score, Receiver Operating Characteris‑
tic (ROC) curve and Area Under the Curve (AUC) [7]. However, there are specific 
needs of an output (reporting mechanism) of a network/service management system 
in order to allow a successful application of ML. Often, these may not be required 
in traditional data mining/machine learning applications. For example, in botnet 
detection using network traffic flows, a ML based botnet detector may simply out‑
put alarms based on individual suspicious flows. However, such a reporting scheme 
may overflow the analysts with alarms regarding a few hosts. This can also easily 
overlook the fact that other infected hosts may even be missed. Furthermore, if the 
botnet performs data exfiltration, all the important files may already be lost before 
a warning appears if the detection is taking too long. Hence, we take the view that 
for better understanding of the performance and for facilitating more meaningful 
responses (outputs), suitable metrics need to be reported by the solutions/models, 
such as host/user based results and detection delays. On the other hand, in this step, 
responses and adjustments in network/service systems can be made automatically by 
using the ML output.

2.1  ML Concepts

In this part, we present a brief overview to high level ML concepts used in the rest 
of the article. More detailed descriptions of these concepts can be found in [7]. This 
section is organized by the well‑known ML tasks: classification, reinforcement 
learning, regression, clustering and anomaly/outlier detection. We note that by the 
use of labels (ground truth) in the learning process, ML methods can also be clas‑
sified into: (i) supervised learning—where labels (ground truth information) are 
required for training the ML model; (ii) unsupervised learning—where labels are 
not required for training; and (iii) semi‑supervised learning—where both labelled 
(typically a small amount) and unlabelled data are used during training.

Classification and regression Classification and regression are the most common 
supervised learning tasks in machine learning. In these tasks, the aim of a trained 
ML model is to identify the class/category (in classification) or output value (in 
regression) for a new data instance (observation) based on a set of training examples 
whose category membership/value (ground truth) are known. Some examples of the 
most popular classification algorithms are Artificial Neural Networks (ANN), Deci‑
sion Trees, Random Forest, k‑Nearest Neighbour (k‑NN), Naive Bayes (NB), Logis‑
tic Regression (LR), and Support Vector Machines (SVM) [7]. In network/system 
management, classification is widely employed for many tasks, such as traffic/ser‑
vice classification, intrusion detection, or botnet detection (Sect. 3). Popular regres‑
sion methods are Linear Regression, Polynomial Regression, Logistic Regression, 
and Lasso Regression [8]. In NSM, regression is mostly employed for time series 
prediction tasks, such as load and traffic prediction (Sect. 3.2).
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Clustering and anomaly detection Cluster analysis and anomaly detection 
are typical unsupervised ML tasks. They are exploratory methods that are usu‑
ally based on unlabelled training data. The aim of clustering is to group a set of 
data instances into sets/collections (clusters) so that instances in the same cluster 
are more similar to each other than to those in other clusters. Anomaly (outlier) 
detection aims to identify anomalous (rare, suspicious) events or observations 
(data instances) that deviate from a modelled norm. Clustering may act as a basis 
for anomaly detection in many cases [9]. In NSM, by modelling on the observed 
network data, which might not have the ground truth information, clustering and 
anomaly detection may allow the network analyst to discover anomalous and unu‑
sual patterns/clusters in network and systems operations. For example, anoma‑
lies in network traffic may indicate abnormal activities, such as botnets and intru‑
sions, or performance and configuration problems. We note that as unsupervised 
methods, this category of ML usually generates a higher number of false alarms. 
This in return may require a higher level of attention from human analyst in order 
to identify the true network/system related issues or interesting patterns. Exam‑
ples of their applications in NSM are network anomaly detection for intrusion/
fault detection [10] (Sect. 3.3), and change detection [11] (Sect. 3.4).

In addition to supervised and unsupervised learning, another ML paradigm is 
reinforcement learning, which deals with how software agents interact with an 
environment in order to maximize cumulative reward. This differs from the super‑
vised learning, where the labelled input/output pairs are used. In reinforcement 
learning, the agent is given an immediate reward (but not long‑term reward) after 
choosing an action [12]. As such reinforcement learning is the ML equivalent of 
learning a policy for controlling a process by interacting directly with the envi‑
ronment. Naturally, significant effort might be necessary to ensure that the result‑
ing policy satisfies all performance objectives.

Other important approaches in ML that have been employed or could poten‑
tially have applications in network/system management include online learn‑
ing and transfer learning [13]. Online learning differs from traditional machine 
learning approaches in that data for training the ML models arrive in a sequential 
order and the models are updated at each step, as opposed to generating the best 
ML model by learning on the entire training data set at once [14]. Thus, online 
learning is commonly used in situations where it is computationally infeasible to 
train over the entire dataset, or when the algorithm needs to dynamically adapt 
to new patterns/trends in the data. On the other hand, transfer learning focuses 
on adapting knowledge learned by the ML solutions for solving a different but 
related problem [15]. In real‑world situations, there are many cases where there is 
a classification task in one domain of interest, but sufficient training data is only 
available for a related domain. The differences between the domains may appear 
in feature space or data distribution. In such cases, knowledge transfer, if done 
successfully, would enable the ML application in the domains where training data 
is scarce. It will also improve the sample efficiency for the learning process by 
significantly lowering the data‑labelling requirement. These methods may allow 
the ML models to actively adapt to dynamic and emerging patterns in the stream 
of data, which are commonly found in network environments [6]. It should also 
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be noted here that the feature engineering [16], structured prediction (e.g Hidden 
Markov Model (HMM) [11]), and ensemble learning (bagging, boosting [17]) 
paradigms have also found several applications in NSM.

3  ML for Network Operations and Management

Machine learning has a long and vibrant history of applications in many network 
management tasks, which are related to the growth of networks and connected sys‑
tems. There has been a considerable number of ML adaptations and developments 
for NSM by researchers. In this section, we summarize the ML based approaches 
for a wide range of NSM tasks [18, 19], including (but are not limited to) traffic and 
service classification, traffic prediction, performance management, security manage‑
ment, configuration management and fault management. Table 1 summarizes the lit‑
erature review of ML approaches for NSM.

In summary, networks are diverse collections of devices and links, in which man‑
agement tasks are complex and strongly correlated/connected. Furthermore, we 
emphasize the fact that almost all tasks in NSM are quintessentially related to the 
network monitoring and forensics, especially with the application of data mining 
and machine learning. Monitoring ensures that the network performance is recorded 
and allows systems and analysts to operate/control based on the events and activities 
observed on the various networks and services. Almost every task (functionality) in 
NSM starts with an adequate monitoring process to provide sufficient information 
for decision‑making.

3.1  Traffic/Service Classification

The traffic/service classification task aims to identify the underlying traffic as well as 
the applications/services in the traffic. Accurate traffic classification provides critical 
information for network operators in order to manage the network bandwidth and 
to ensure the Quality of Service (QoS) and Quality of Experience (QoE) for their 
users. Furthermore, the understanding of traffic and services in a network enables 
the successful deployment of other management tasks, such as intrusion/anomaly 
detection, throughput modelling and prediction, and accounting management [20, 
22].

Traditionally, network traffic and service classification has relied on the packet 
inspection and port number information. For example, traffic destined to port 80 can 
be categorized as web traffic. However, with the proliferation of traffic encryption 
and widespread usage of virtual private networks, anonymity networks such as Tor, 
and network tunnelling practices (e.g. SSH tunnelling), network traffic have become 
essentially indistinguishable under the traditional approach, making the traffic clas‑
sification much more challenging. Another challenge comes from the fact of the 
growing number of Internet services, which are also dynamically changing based 
on user demands, network capacity, and trends. Hence the data driven approaches 
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for pattern recognition and behaviour identification, become useful for analyzing the 
underlying traffic and services [21].

Early ML applications to traffic classification dates back to 2005, in which Zander 
et al. employed autoclass, an unsupervised Bayesian based algorithm, for categoriz‑
ing network flows. Kim et al. and Williams et al. employed different ML approaches, 
including Decision Trees and Naive Bayes, for traffic classification based on network 
flows, and compared them to traditional approaches, such as port based, host based, 
and signature based [23, 24, 85] classification. Encrypted traffic analysis via the use 
of ML from detecting SSH to Skype to HTTPS traffic using network traffic flows 
(without using IP addresses and port numbers) also gained a lot of interest during 
the last decade [86]. Additionally, UDP flow extraction based on packet inspection 
has been applied in conjunction with a ML decision process in [25]. These works 
show that ML has the potential to support network/system management tasks under 
a high volume and dynamic network/system conditions [26, 27]. Recently, [28] dem‑
onstrated the use of ML for malware traffic classification in industrial environments 
with noise and non‑stationarity traffic properties taken into account.

The variety of ML methods for traffic and service classification further demon‑
strates its potential in this application case. Along with popular supervised learning 
methods, such as the Decision tree, Random Forest, RIPPER, Logistic regression, 
C4.5 and C5.0, Neural networks, Genetic Programming [23–25, 28, 86, 87], semi‑
supervised and unsupervised learning methods, such as autoclass, k‑means, Gauss‑
ian Mixture models have been employed as well [29, 35, 88–90]. Similarly, trending 
approaches, such as deep learning, has also found its application in this field [30].

On the other hand, many ML based solutions have been proposed to solve closely 
related problems to traffic classification, such as network host identification [31, 32], 
anonymity networks (e.g Tor) traffic identification [33, 34], QoS class identification 
[35], as well as network security (Sect. 3.3) and traffic prediction (Sect. 3.2).

3.2  Performance Management

Maintaining the network performance at production levels is the aim of performance 
management. The task requires monitoring and processing network data at differ‑
ent levels and devices for estimating the performance related key measures, such 
as throughput, delay, network utilization, and error rates. Network information for 
performance management is usually collected from the deployment of Simple Net‑
work Management Protocol (SNMP) agents, remote monitoring agents and/or active 
management agents, such as Nagios [10, 91]. The analysis of the monitored per‑
formance measures enables the identification of the health status of the network as 
well as the potential problems (i.e faults, Sect. 3.4). Additionally, trends in differ‑
ent performance measures can provide valuable information for long‑term capacity 
planning and deployment. Given the current developments in networks and systems, 
machine learning has naturally found its place in performance management tasks for 
its ability to learn from large amounts of data to predict possible network conditions 
as well as to aggregate patterns automatically in order to identify suitable triggers 
for management actions.
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In performance management, traffic prediction is a task that has seen multiple 
ML based proposals. The ML based traffic prediction methods, however, are mostly 
based on neural networks [36]. The advantages of neural network based methods 
over traditional time series forecasting methods (ARIMA, Holt‑Winters [37]) in 
real‑time, short‑term, and mid‑term forecasting of network traffic are demonstrated 
in several works in the literature [38–40, 92]. Other ML methods including Genetic 
Algorithms [45], SVR [93], Self Organizing Feature Maps [41], and HMMs [94] 
where they have been employed in different traffic prediction scenarios. In addition 
to traffic prediction, many other tasks in performance management have seen several 
proposed ML based solutions: Traffic management in cloud and mobile edge com‑
puting [45, 95], network resource management and allocation [8, 46, 47, 96], QoS 
assurance [97, 98], and congestion control [48, 49].

Given the latest developments in ML for other application areas, such as transfer 
learning, reinforcement learning, and online learning, one can easily imagine their 
uses in specific network performance management scenarios as well. These lever‑
age the capabilities of certain ML techniques to learn from temporal and dynamic 
patterns of data. Current examples of such developments include deep neural net‑
works such as Long Short Term Memory (LSTM) [42], transfer learning [43], deep 
reinforcement learning [47, 48], and online learning [44]. Recently, Fadlullah et al. 
summarizes the use of deep learning in network traffic control tasks and indicates 
the potential of intelligent network traffic control using the state‑of‑the‑art ML tech‑
niques [40].

3.3  Security Management

Security management is one of the network and service management functionali‑
ties that has observed extensive and early endorsement of ML techniques. Network 
anomaly detection is a prime example, in which machine learning techniques are 
applied for their ability to automatically learn from the data and extract patterns 
that can be used for identifying network anomalies in a timely manner [51]. In 
anomaly detection, unsupervised learning is the most widely applied technique due 
to its ability to learn without a priori knowledge of anomalies, which is the defin‑
ing characteristic of the task. Generally, a model generalizing normal network and 
user behaviours is constructed using unsupervised learning. Then, measures can be 
derived from the model to detect anomalies in network traffic/behaviours. Examples 
of works in this approach are [99], where temporal correlation, wavelet analysis and 
traditional change point detection approaches are applied to produce a network sig‑
nal model and worm traffic model, [52] and [69], where the sequence of user actions 
in a time window is used to create user profiles using clustering techniques and Hid‑
den Markov Models. A more straightforward approach is to apply clustering analysis 
and outlier detection methods directly to the collected data, with the assumption that 
normal behaviours account for the majority of the collected data [51]. For example, 
clustering algorithms are used to find significant clusters representing majority of 
normal network/system behaviours. Then, from clustering results, anomalies can be 
detected automatically using outlier detection methods to identify the data instances 
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that do not fit into the constructed clusters [53, 54, 100, 101]. Unsupervised learning 
results can also be analyzed by human experts with or without the use of visualiza‑
tion as well as other supervised learning methods to give deeper insight [55, 56]. 
The Self Organizing Map (SOM) is a well‑known unsupervised learning technique 
with the ability of summarizing and visualizing the data learned in a topologically 
preserved way for further inspection [55, 85]. Recently, Veeramachaneni et al. [57] 
applied the concept of big data for anomaly detection, where human experts, multi‑
ple outlier detection techniques, and supervised learning are combined to learn from 
large amounts of data to detect network anomalies and intrusions at the same time.

Similar to anomaly detection, ML has been extensively applied to network intru‑
sion detection [6, 50]. ML methods for Intrusion Detection Systems (IDSs) include 
mostly supervised learning techniques, such as Neural Networks, Decision Trees, 
Evolutionary Computing, Bayesian Networks, SVMs, and Logistic Regression [58, 
59, 68, 102, 103] and recently deep and reinforcement learning [60, 61, 103]. Unsu‑
pervised learning [64, 104] and stream online learning [62, 68] have been employed 
for security tasks as well. The diverse employment of ML in IDS can also be rep‑
resented through different detection points of ML based IDSs: Network based IDS 
[105, 106], Host based IDS [107, 108], or hybrid systems [64, 65]. Furthermore, 
in many works, ML based methods are demonstratively superior to traditional 
approaches where the detection system uses handcrafted rules based on the expert 
knowledge [6, 63, 109]. Other notable examples of ML applications in security 
management include moving target defence [66, 67], insider threat detection [69, 
102], and network content filtering [70, 110].

3.4  Configuration and Fault Management

The adoption of ML in configuration management has been slow in traditional wire‑
line networks but quite widespread in wireless networks. However, with the advent 
of network function virtualization and software defined networking, this is chang‑
ing as well. A particular example of network configuration management with ML 
approaches in recent years is self‑organizing networks, which focus on the plan‑
ning, configuration, management, optimization and healing of mobile radio access 
networks [72, 73]. With the development of 5G, several ML based solutions for 
self‑organizing mobile networks are proposed based on techniques from deep rein‑
forcement learning to bio‑inspired algorithms [74, 75, 111]. Other example tasks 
in configuration management employing ML are service configuration management 
[76], network routing [77, 112], and network load balancing [78, 113].

In fault management, detection and prediction of network/system faults attracted 
the most ML applications. Fault detection is mostly formalized as anomaly/change 
detection, in which a normal baseline of a network/system operation and parame‑
ters are profiled using ML techniques. After which, any faults or abnormal activi‑
ties observed on the network are detected as deviations from those models [79, 80, 
82]. Notable ML methods employed in fault management include online learning 
for change point detection [79], fuzzy probabilistic neural networks [114], HMMs 
[80], decision trees [81], and several unsupervised learning algorithms [82, 115]. 



839

1 3

Journal of Network and Systems Management (2020) 28:827–849 

Additionally, some ML approaches have been introduced in fault prediction [83], 
fault [84], and automated fault mitigation [116]. With the proliferation of SDN and 
NFV approaches, which allow centralized configuration and management of net‑
works, it is expected that ML will be adopted much more extensively in network 
configuration and fault management in the near future [71].

4  Challenges and Research Opportunities

Although machine learning has been extensively applied in many tasks in NSM, 
there are certain challenges that need to be overcome for a successful realization 
of the potentials in production network/service environments. Some challenges and 
research opportunities that come along with them are presented in this section.

4.1  Data Related Challenges

Network data is diverse and abundance, yet obtaining high quality data for designing 
and evaluating ML based systems for network /service operations and management 
poses many challenges. Firstly, most companies and organizations are prevented 
from sharing or even analyzing network data by agreements protecting users’ identi‑
ties and privacy related issues. Moreover, there are not many benchmarking data 
sets with ground truth to utilize in this area. The data sets that are publicly available 
for benchmarking purposes are old and out of date in terms of the behaviours they 
include (e.g. DARPA 1998, 1999 and 2000 IDS data sets) or they are more up to 
date but very small (e.g. Snort VRT Labs). Even when the data is shared, most of it 
comes heavily anonymized, encrypted, and without any forms of ground truth infor‑
mation for training and evaluating ML systems. Secondly, network data is usually 
highly imbalanced and impure. Most of the time only a small unidentified portion 
of the data is representing interesting patterns/events/behaviours, such as anomalous 
activities. For example, in the case of Advanced Persistent Threats (APTs), attackers 
can perform stealthy malicious actions over a very long duration to evade monitor‑
ing systems. Hence, the sign of network anomalies/events could be overlooked by 
ML based systems. Furthermore, impurity and noise in network data may cause ML 
models inadvertently to be built using abnormal/malicious data encoded as normal 
behaviour, e.g. advesarial training. This in return, makes them incapable of detect‑
ing the future anomalies/malicious activities of the targeted type. Finally, network, 
service and system data are presented at multiple levels of granularity and in wide 
variety of formats. The data can be acquired at host or network level, from end‑
user devices, network devices, security devices, and/or systems and servers, in many 
formats and structures. In organizations and networks of all sizes, the problem of 
data acquisition, data representation and data processing must be addressed sys‑
tematically in order to provide high quality data for training ML systems efficiently. 
Furthermore, reducing computational complexity in pre‑processing, training and 
deployment of ML based systems is also a priority for deployment of ML based 
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NSM solutions. Indeed, the computational overhead of deploying some ML para‑
digms might be prohibitive for some real‑time network applications.

The presented challenges create research opportunities as well. In order to 
address data privacy requirements, new privacy aware machine learning approaches 
can be employed. Notable examples of such techniques are federated learning [117] 
approaches, which consist of training ML models collectively across multiple 
decentralized edge devices without exchanging local data samples. Moreover, pri‑
vacy preserving practices, such as differentially private ML [118] and homomorphic 
encryption [119] have been attracting attention in terms of privacy aware ML based 
solutions. On the lack of data with established ground truth, unsupervised ML and 
anomaly detection techniques may find further application [120]. Finally, we note 
that many ML approaches for big data can be applied in network data to meet the 
requirements for processing and analyzing the huge amounts of data generated by 
networks, systems and services [36].

4.2  Towards Automatic Network Management

Networks and services are continuously evolving, with new protocols and technolo‑
gies introduced in order to address current problems and improve the QoS/QoE of 
the services provided. Several recent examples include (but are not limited to) the 
development and adoption of SDNs, OpenFlow, and NFV systems. The ability to 
separate network control functions from network forwarding functions or to abstract 
network forwarding and other networking functions from the hardware brought by 
the SDN and NFV technologies create many opportunities for ML applications. For 
example, the centralized network intelligence in SDN controllers allow unified data 
storing and processing for ML based network analyzers. Furthermore, newly intro‑
duced network technologies, such as 5G, HTTP/2, HTTP/3, bring new challenges in 
collecting and analyzing the network/service data. Yet the ML approaches consider‑
ing the new technologies and protocols are still lacking.

Similarly, with the development of automated systems, self‑driving cars, vehicu‑
lar networks, zero touch and self‑driving networks have been proposed [3]. As a 
consequence, managing such systems and services, ML solutions, which are data 
driven, would be a very good match going forward. Self‑driving networks will also 
require the ability of the ML based operation and management systems to be able 
to make decisions automatically and behave proactively based on the activities and 
events occurring on the networks and systems. Furthermore, comprehensive ML 
approaches for designing and actively monitoring the networks and services are also 
needed.

4.3  Human Involvement in ML Based Network/System Management

The feasibility for human network operators to understand and command ML based 
systems is of utmost importance for successful deployment in real‑world network/
service environments. Even self‑driving networks still require transparency for 
human involvement and troubleshooting.
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It is evident that ML applications for network management have to meet special‑
ized requirements that do not necessarily exist in traditional ML applications. These 
are presented in ML workflow, such as data ingestion, specialized performance met‑
rics, and/or analytic steps. Many of those need domain expert knowledge for suitable 
implementations. For example, network data comes from a wide variety of sources 
at arbitrary times, hence human experts’ knowledge is required for designing solu‑
tions to aggregate data and extract features in a meaningful way for training the ML 
algorithms. Another example is in the case of network anomaly/intrusion detection 
systems, considering the dominance of normal data and the scale of networks, even 
a small false positive rate (in traditional ML standards) may result in a catastrophic 
amount of false alarms that require attention from cybersecurity analysts. Thus, the 
ML based anomaly/intrusion detection systems need to be able to correlate alerts 
and events (e.g. based on host, user, or subnet) to reduce the amount of alarms.

Human–machine interactions need to be addressed in designing ML based NSM 
solutions for future deployments. For these interactions, the ML models are needed 
to be transparent so that the automatic systems using these models could provide 
human understandable solutions for decision making and support purposes. Moreo‑
ver, the ML models used need to allow/provide trace‑back as a service to identify 
the source of problems/events for correct and timely human intervention. Further‑
more, to incorporate the ability to learn from the human verdicts on ML output (e.g 
intrusion alarms) would help to continuously evolve the deployed ML based man‑
agement systems and would greatly enhance the system capabilities. Finally, we 
note that the recent ML approaches for human–machine interactions, such as [121], 
may be advantageous in many NSM scenarios as well.

4.4  Robust, Adaptable, and Dependable ML for Networking

There are inherent dynamics in networks, systems and services. Network data are 
generated perpetually in streams of high volume and velocity. Remarkably, changes 
may happen in network devices and user/system behaviours, gradually as drifts in 
user behaviours, or suddenly (shifts) as in the cases of network failures or high vol‑
ume Distributed Denial of Service (DDoS) attacks. Hence, ML models for network 
and service management needs to take the dynamics and changes into account in 
order to ensure successful deployment. In this respect, we emphasize the need for 
robust, reliable, and dependable ML based systems for NSM. Notable approaches 
for addressing the challenges include online learning, adversarial learning, and 
transfer learning.

The very nature of networks and services is data streams. In small scale networks 
and services, the gradual drifting and shifting of behaviours and concepts in data 
may be addressed by retraining the ML models periodically. However, in large scale 
networks and services, dynamic and adaptive learning algorithms and self‑evolving 
architectures that are capable of working on high speed data streams are neces‑
sary. This is because predicting the intervals for retraining the ML models could 
become more and more challenging in large scale networks and services. There is 
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a great potential for ML systems that have capabilities to revise or update them‑
selves actively and timely according to the ever changing dynamics in networks and 
services, as well as the continuous feedback provided by human analysts (experts) 
without sacrificing their performances. Stream online learning may shine in this 
regard. There have been some applications of stream online learning, mostly in net‑
work security [44, 62, 68]. However, the technique has tremendous potential for fur‑
ther exploration in ML based NSM systems.

In many network management tasks, such as intrusion detection and fault 
detection, adversarial situations are inherent. In intrusion detection, the attackers 
are continuously evolving their attacks to evade detection systems. This creates 
an arm‑race between attackers and defenders. In fact, with the recent waves of 
deep learning applications in networking, network adversaries may exploit dif‑
ferent perturbations [122] in order to trick the defense system to make false deci‑
sions [123]. Similarly, in anomaly detection and fault detection, defining network 
anomalies/faults and distinguishing them from normal behaviours (i.e. learned 
patterns) present a challenge to the traditional ML models, such as classification 
and recommendation systems, which are designed to find similarities instead. 
Developing ML based NSM systems with adversaries in mind will definitely 
enhance their practicality, especially in terms of securing the ML model against 
(i) evasions and adversarial training, (ii) generalization to different deployment 
locations and (iii) robustness over time. An example is an artificial arm‑race 
employing Evolutionary Algorithms or Generative Adversarial Neural Networks 
(GAN) for evolving attacks (or generating network anomalies) and defence mech‑
anisms at the same time to prepare for future threats and anomalies [16, 124, 
125]. Recent advances in adversary aware and resistant machine learning, such as 
[126], could provide resiliency to network threats as well. Other examples include 
ML applications in moving target defence [66] and traffic obfuscation [127].

Finally, there are significant challenges in generalizing ML based management 
systems, in order to become independent of the environment. Different network 
and service environments usually have different data, requirements, and condi‑
tions for defining the basic ML settings based on different user/system behav‑
iours. Transfer learning techniques provide tools for addressing these scenarios, 
which have been applied in [43]. Adaptable ML methods aiming to provide 
dependable operations under changing and dynamic network/service conditions 
are explored in [128, 129] as well.

5  Conclusions and Future Work

Given the scale and dynamics of today’s networks, systems and services, it is 
easy to envision that ML based network and service management solutions will 
become more and more prevalent and crucial for monitoring and securing the 
systems and devices of the future. Developing practical ML applications for the 
aforementioned management and operations tasks is an open field of research. 
This creates many opportunities for addressing the NSM challenges, while also 



843

1 3

Journal of Network and Systems Management (2020) 28:827–849 

bringing their own challenges such as secure and robust ML techniques. In this 
article, we briefly surveyed the current state of the ML applications in NSM. For 
the future research directions, we highlight the main challenges that relate to data 
for ML, new network technologies, human involvement, and specifically the need 
for robust and adaptable ML methods. We believe that creating reliable, depend‑
able and secure ML models for network, system and service management will be 
the next frontier in this era.
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