
Vol.:(0123456789)

Journal of Network and Systems Management (2020) 28:197–246
https://doi.org/10.1007/s10922-019-09504-0

1 3

Resource Management in a Containerized Cloud: Status
and Challenges

Pieter‑Jan Maenhaut1 · Bruno Volckaert1 · Veerle Ongenae1 · Filip De Turck1

Received: 11 February 2019 / Revised: 9 September 2019 / Accepted: 11 November 2019 /
Published online: 22 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Cloud computing heavily relies on virtualization, as with cloud computing virtual
resources are typically leased to the consumer, for example as virtual machines. Effi‑
cient management of these virtual resources is of great importance, as it has a direct
impact on both the scalability and the operational costs of the cloud environment.
Recently, containers are gaining popularity as virtualization technology, due to the
minimal overhead compared to traditional virtual machines and the offered portabil‑
ity. Traditional resource management strategies however are typically designed for
the allocation and migration of virtual machines, so the question arises how these
strategies can be adapted for the management of a containerized cloud. Apart from
this, the cloud is also no longer limited to the centrally hosted data center infra‑
structure. New deployment models have gained maturity, such as fog and mobile
edge computing, bringing the cloud closer to the end user. These models could also
benefit from container technology, as the newly introduced devices often have lim‑
ited hardware resources. In this survey, we provide an overview of the current state
of the art regarding resource management within the broad sense of cloud comput‑
ing, complementary to existing surveys in literature. We investigate how research is
adapting to the recent evolutions within the cloud, being the adoption of container
technology and the introduction of the fog computing conceptual model. Further‑
more, we identify several challenges and possible opportunities for future research.

Keywords Resource management · Containers · Virtual machines · Cloud
computing · Fog computing · Edge computing · Survey

 * Pieter‑Jan Maenhaut
 pieterjan.maenhaut@ugent.be

1 Ghent University‑imec, iGent, Technologiepark‑Zwijnaarde 126, 9052 Gent, Belgium

http://orcid.org/0000-0002-9385-8000
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-019-09504-0&domain=pdf

198 Journal of Network and Systems Management (2020) 28:197–246

1 3

1 Introduction

Over recent years, cloud computing has become an important aspect of our daily
life, and many novel applications have been developed on top of the cloud. These
applications are often available as online web services, which can be accessed
through a custom app or directly through the web browser. The term cloud com‑
puting has a broad meaning: it not only refers to the online applications and ser‑
vices hosted in the cloud, but also to the underlying frameworks and technologies
that enable them.

One of the key enablers of cloud computing is the so‑called elasticity, which
allows cloud applications to dynamically adjust the amount of provisioned resources
based on the current and/or expected future demand. Given the increasing popu‑
larity and amount of cloud applications, efficient resource management is of great
importance, as it can not only result in higher scalability of the cloud environment,
but also in lower operational costs. Efficient resource management can be benefi‑
cial for multiple actors. For the cloud infrastructure provider, it aids to minimize the
power consumption, as unprovisioned hardware can be put in standby or even turned
off. This also helps to reduce the energy footprint of the data center, which is one of
the main goals of green cloud computing. For the consumer, efficient resource man‑
agement helps to achieve high scalability and high availability while minimizing the
rental costs. And when multiple consumers share the same physical hardware, the
provider can offer its instances at a lower price.

As a result, resource management within cloud environments has been a major
research topic since the introduction of cloud computing. A typical research
objective is to minimize the amount of provisioned computational resources, in
order to lower the operational costs, without violating the objectives described
in so‑called Service Level Agreements (SLAs). An example of this is Virtual
Machine (VM) packing, which aims to consolidate virtual servers onto a minimal
number of physical machines. Multiple resource allocation strategies have been
developed by both academics and industry, often resulting in open source and/
or commercial products. A popular example is Swift [1], a highly scalable cloud
storage system, which is integrated into the OpenStack cloud stack, and Open‑
Stack [2] itself, an open‑source framework for building a private cloud environ‑
ment, which has multiple resource management functions built in.

A recent trend within cloud computing is the uprise of new types of clouds,
such as mobile edge and fog computing [3, 4]. The cloud is no longer limited to the
centrally hosted data center, accessible from a laptop or desktop computer with a
broadband internet connection, but lightweight devices such as mobile phones and
Internet of Things (IoT) devices can also benefit from the near infinite amount of
resources offered by the cloud. These devices can offload computational intensive
tasks to a more powerful cloud environment, and by installing dedicated hardware at
the edge of the network, close to the end user devices, the latency can be reduced, as
well as the consumed network bandwidth towards the public cloud.

When it comes to virtualization, a key enabler for cloud computing, con‑
tainer technology has recently gained popularity, thanks to the minimal overhead

199

1 3

Journal of Network and Systems Management (2020) 28:197–246

compared to traditional VMs, and the great portability it offers [5, 6]. These ben‑
efits could facilitate the migration of containers between different cloud envi‑
ronments, and the deployment of services at the edge of the cloud, for example
onto less powerful ARM hardware located within IoT devices. Furthermore, the
offered portability provides an interesting opportunity for offloading within a fog‑
cloud environment, allowing developers to reconfigure which services are run‑
ning locally or in the cloud, without paying the heavy penalty of traditional VM
migrations.

In this survey, we investigate how recent research related to cloud resource man‑
agement is adapting to support these new technologies. This survey is complemen‑
tary to existing surveys in literature, as most previously published surveys only
handle resource management within traditional cloud environments [5–15] or only
consider virtual machines as virtualization technology [4, 9–12, 14, 15]. Further‑
more, as illustrated in Sect. 3.1, a majority of surveys focus on a specific aspect
of resource management such as resource scheduling or dynamic spot pricing. This
survey covers the broad range of resource management, and is not limited to a single
cloud type or virtualization technology. The remainder of this article is structured
as follows. In the next section, we introduce all relevant concepts and technologies
related to resource management in containerized cloud environments. In Sect. 3 we
provide an overview of recent research related to resource management, and identify
several challenges and opportunities in Sect. 4. We finish this article by presenting
our conclusions in Sect. 5.

2 Related Concepts and Technologies

In this section, we provide an overview of all relevant concepts and technologies.
First, we start with a brief summary of cloud computing, and introduce the main
concepts behind edge/fog computing. Next, we elaborate on virtualization, as this
is one of the key enablers for cloud computing, and introduce containerization (OS‑
level virtualization) as an alternative for VMs. Finally, we describe all main func‑
tions related to cloud resource management.

2.1 Cloud, Edge and Fog Computing

2.1.1 Traditional Cloud Computing

With cloud computing, different deployment models can be distinguished. The
National Institute of Standards and Technology (NIST) defined four main deploy‑
ment models [16]:

• In a Private Cloud, the cloud infrastructure is provisioned for exclusive use by a
single organization comprising multiple consumers.

• A Community Cloud is similar to a private cloud, but the infrastructure is pro‑
visioned for exclusive use by a specific community of consumers.

200 Journal of Network and Systems Management (2020) 28:197–246

1 3

• A Public Cloud is provisioned for open use by the general public, and is usually
fully accessible over the public internet.

• A Hybrid Cloud is a composition of two or more distinct cloud infrastructures.

Applications can either be deployed within a single cloud, or using multiple clouds.
To avoid vendor lock‑in, one can for example choose to deploy its application using
different public cloud platforms offered by different providers. Another example is
a hybrid cloud which consists of a private cloud and a public cloud. In this model,
the main application is typically deployed on the private cloud, and the public cloud
is used for executing computational intensive tasks, or to support the private cloud
when the demand for computing capacity spikes. The latter case is often referred to
as Cloud Bursting.

Within the context of public cloud computing, three main service models can be
distinguished, as defined by the NIST [16]:

• Infrastructure as a Service (IaaS): in this model, the provider offers (typically
virtual) computational resources to the consumer, for example as VMs. The con‑
sumer does not manage or control the underlying cloud infrastructure, but does
have control over operating systems, storage, deployed applications and possibly
limited control over the network (e.g. for defining firewall rules).

• Platform as a Service (PaaS): in this model, the provider offers a set of lan‑
guages, libraries, services, and tools to the consumer for deploying its applica‑
tions. In contrast to IaaS, the consumer typically has no control over the operat‑
ing system and storage, but can control the deployed applications and applicable
configuration settings for the hosting environment.

• Software as a Service (SaaS): in this model, applications running on a cloud
infrastructure are offered to the consumer. These applications are typically
deployed on top of an IaaS or PaaS environment. The consumer has no control
over the underlying infrastructure and software, except for limited application
specific customization.

In the above definitions, a provider offers services to a consumer. The term provider
however has a broad sense, and Armbrust et al. defined three main actors within
Cloud Computing [17]:

• The Cloud Provider or infrastructure provider manages a physical data center,
and offers (virtualized) resources to the cloud users, either as IaaS or PaaS
instances.

• The Cloud User rents virtual resources (e.g. a VM) from the cloud provider to
deploy its cloud applications, which he provides (typically as SaaS) to the end
users.

• The End User uses the SaaS applications provided by the cloud user. The end
user generates workloads that are processed using cloud resources.

The end user typically does not play a direct role in resource management, but
the behavior of the end users can influence, and be influenced by the resource

201

1 3

Journal of Network and Systems Management (2020) 28:197–246

management decisions of the cloud user and the cloud provider [9]. Cloud users
manage cloud resources from the perspective of the deployed applications, whereas
for cloud providers the main focus is the management of the underlying physical
resources.

2.1.2 Fog and Edge Computing

Access to the cloud is no longer limited to traditional devices such as servers, desk‑
tops and laptops. With mobile edge computing (also referred to as mobile cloud
computing) for example, mobile devices collaborate with a cloud environment. As
these mobile devices are usually connected using a less reliable connection with
limited bandwidth, and are often battery powered, some tasks will be executed
directly on the device, whereas other tasks will be transferred to the cloud. Execut‑
ing tasks on the device can reduce the network congestion and lower the latency, but
will increase the energy consumption of the device. Offloading tasks to the cloud on
the contrary can decrease the energy consumption, and can also decrease the execu‑
tion time for computational intensive tasks.

Mobile edge computing is in fact a special case of Edge Computing, which in
general aims to provide context aware storage and distributed computing at the edge
of the network [18, 19]. Another term that is often used is Fog Computing, origi‑
nally coined by Cisco to extend the cloud computing paradigm to the edge of the
network [20]. As of today, there is no clear distinction between both terms, and they
are often used in literature as interchangeable terms. However, in March 2018, the
NIST published a conceptual model for fog computing, which adopts many of the
terms introduced by Cisco [21]. Therefore, in the remainder of this survey, we will
mainly use the term fog computing.

Fog computing can be implemented in different ways, depending on the used
architecture, the function and location of the intermediate fog nodes, the offered
services, and the target applications. In general, a distinction can be made between
three main implementations [22]:

• In a general Fog Computing implementation, dedicated fog nodes (e.g. gate‑
ways, devices, computers or micro data centers) are deployed at any point of the
architecture between the edge devices and the cloud. These heterogeneous nodes
can for example gather data from the edge devices and perform some (pre‑)pro‑
cessing of the gathered data. Doing so can help to reduce the network congestion
towards the central cloud, and can also help to reduce the response time. The
heterogeneity of the fog nodes is often hidden from the end devices, by exposing
a uniform fog abstraction layer which offers a set of functions for resource allo‑
cation, monitoring, security and device management together with storage and
computing services.

• With Mobile Edge Computing, computational and storage capacities are avail‑
able at the edge of the network, in the radio access network, mainly to reduce
latency and to improve context awareness. Mobile edge computing aims to
reduce the network congestion and is often implemented at the cellular base sta‑
tions.

202 Journal of Network and Systems Management (2020) 28:197–246

1 3

• With Cloudlet Computing, trusted clusters of computers are connected to the
Internet, offering resources to nearby mobile devices. A cloudlet is a small‑scale
cloud datacenter, located at the edge of the network, and is mainly used to sup‑
port resource‑intensive and interactive mobile applications with low latency.

An example topology for fog computing is illustrated in Fig. 1. Fog computing
typically aims to reduce the latency and the load on the cloud, and is often used in
the context of IoT, in which large amounts of data are collected for analysis and pro‑
cessing [19, 23–26].

2.2 Virtualization

2.2.1 VMs and Containers

Cloud computing is mainly built on top of virtualization, as cloud users typically
rent virtual resources from the cloud providers. A typical form of virtualization is
the use of VMs, in which multiple VMs are emulated on top of a so‑called hyper‑
visor. This hypervisor creates and runs the virtual machines, and runs on a host
machine (typically a physical server), whereas the VMs are called guest machines.
There are two main types of hypervisors:

• A type‑1 or native/bare-metal hypervisor runs directly on the host’s hardware.
A popular example of a type‑1 hypervisor is VMWare ESX/ESXi.

Edge Devices

Fog Nodes

Cloud Environment

Fig. 1 Example topology for fog computing. Fog nodes bring the cloud closer to the end user, and the
edge devices can offload computational intensive tasks to the central cloud

203

1 3

Journal of Network and Systems Management (2020) 28:197–246

• A Type‑2 or hosted hypervisor runs on top of a conventional Operating Sys‑
tem (OS), possibly together with other computer programs. Popular examples of
hosted hypervisors include VMWare Player and VirtualBox.

In general, type‑1 hypervisors are more efficient than type‑2 hypervisors, and most
cloud environments are built using type‑1 hypervisors.

A VM that is emulated on top of a hypervisor runs the full software stack, mean‑
ing that an OS is deployed on the virtual disk of the VM, and the required software
is installed on top. When deploying a VM, the user can either start from scratch
and create a new virtual machine with an empty virtual disk, install the preferred
OS and all required binaries and libraries, or a pre‑configured template can be used
for deploying a new VM which already contains the operating system and a typical
software stack (e.g. a web server). In the latter case, the cloud user only needs to
customize the packages, and deploy its application on top. Because the full OS is
installed on the virtual disk of the VM, this virtual disk is easily a few gigabytes in
size.

Recently, container technologies have emerged as a more lightweight alterna‑
tive for VMs [27–30]. The major difference with VMs is that a container typically
has no operating system installed, but instead all containers deployed on a single
machine are running directly on the operating system kernel (OS‑level virtualiza‑
tion). As a result, containers are much smaller in size. A typical container image is
a few hundreds megabytes, whereas a similar virtual disk for a VM with the same
applications installed will typically be a few gigabytes. To launch a new container,
the user can either start from a base image (e.g. an Ubuntu‑flavored base image or
an official NodeJS base image) and install and configure all required software pack‑
ages, or he can create a new container based on a pre‑configured image that is pulled
from a central repository, with most of the required software already installed and
configured.

OS‑level virtualization (or containerization) has existed for some time, with LXC
[31] being one of the first popular container engines. LXC was initially released in
2008, but in 2013 Docker [32] was released as a successor for LXC, and quickly
became one of the most popular container engines. Initial releases of Docker were
still using LXC as default execution environment, but in later releases Docker
replaced LXC with its own library. To facilitate the deployment, Docker containers
can be published to Docker Hub [33], a publicly available, centrally hosted reposi‑
tory for storing fully configured container images, or organizations can configure
their own private Docker image repository. Docker however only offers tools for
deploying and managing containers on top of a single physical machine.

For the management and deployment of containerized applications over a clus‑
ter of Docker servers, a container orchestration system such as Kubernetes [34] is
required. Docker initially offered its own orchestration tools, called Docker Swarm
mode, providing limited functionality for managing container clusters [35]. In 2017,
the team behind Docker however announced native Kubernetes support, and recom‑
mended Kubernetes as orchestration tool for enterprise environments [36].

As containers are lightweight, they are often used for deploying applications
that are designed using a Service‑Oriented Architecture (SOA). With SOA, an

204 Journal of Network and Systems Management (2020) 28:197–246

1 3

application is decomposed into several collaborating services, and every service
can be deployed into a separate container. This allows for fine‑grained scalability,
as each service can be scaled up or down individually, instead of scaling the whole
application as a whole. In multi‑cloud environments, the use of lightweight contain‑
ers also offers multiple opportunities for achieving high scalability and cost‑efficient
deployments, thanks to the offered portability [37].

2.2.2 Live Migration

As the demand for resources changes over time, it might be required to migrate
some VMs or containers to a different physical host in order to prevent over‑utiliza‑
tion of the available physical hardware resources. VMs are relatively large in size,
making migration an expensive operation, especially when moving the VM to a dif‑
ferent physical location, as the whole virtual disk needs to transferred [38]. When
migrating a VM, the machine can first be turned off, which facilitates the migration
process as there are almost no risks such as losing state or consistency, but there will
be a noticeable downtime. Most hypervisors however also support the migration of
running virtual machines between different physical machines, without disconnect‑
ing the client or application, referred to as live migration. Live migration will also
include some downtime of the VM, but when this is not noticeable by the end users,
the migration is called a seamless live migration.

Despite the aforementioned advantages of containers, live migration of contain‑
ers still remains an important research challenge [39]. Containers are a hierarchy of
processes, and existing methods for process migration are often applied, for example
using the Checkpoint‑restore in Userspace (CRIU) tool [40]. However, such meth‑
ods could cause significant delays [39, 41], resulting in a relatively high downtime,
e.g. when the application running inside a container modifies large amounts of
memory faster than the container can be transferred over the network to a remote
host. The feasibility of live container migrations in this scenario will therefore be
mainly dependent on the network bandwidth between the source and destination
location and the characteristics of the running container(s).

Furthermore, the migration of containers could introduce some additional prob‑
lems, as they not only share the underlying OS but also some libraries [38]. Dur‑
ing migration, the destination host must support these libraries, together with the
libraries required by other containers. The selection of a feasible destination host is
therefore an important issue. In contrast, a VM can be migrated to any destination
host that can accommodate the VM and is managed by the same type of hypervisor.

2.2.3 Advantages and Risks

The main benefit of containers is that they introduce less virtualization overhead
than VMs, because there is no additional layer of virtualization. Instead, they are
executed directly on the kernel of the host OS. Containers are therefore considered
more efficient and allow for greater scalability. However, the lack of a virtualiza‑
tion layer introduces new security risks due to the lower level of isolation; contain‑
ers were not designed as a security mechanism to isolate between untrusted and

205

1 3

Journal of Network and Systems Management (2020) 28:197–246

potentially malicious containers [42, 43]. Because containers deployed onto the
same host share a common OS, they allow for attacks on shared resources such as
the file system, network and the kernel. Kernel bugs can be exploited through a large
attack surface, or an attack could target the shared host resources to enable mis‑
configuration, side channels or data leakage [44]. As a result, container security is
considered an obstacle for the wide adoption of containerization technologies. To
increase the security of containers, some protection mechanisms can be applied such
as security hardening mechanisms and host based intrusion detection systems [42].
However, adding such mechanisms will introduce an additional overhead which
could negatively impact the scalability and performance of container environments
[43].

VMs and containers thus both have their advantages and disadvantages, and a
combination of both virtualization technologies is also possible, for example when
deploying a container engine on top of VMs [29, 45]. In this scenario, the applica‑
tion is deployed inside a container, and the container runtime is running on top of
the guest OS of the VM. Such hybrid model could potentially combine the advan‑
tages of both technologies.

To summarize, Fig. 2 provides an overview of the typical models for deployment
of an application or service within a virtualized environment. When deploying in a
public cloud environment, the question arises who should be responsible for which
environment, especially for the hybrid model. A cloud provider typically manages
resources at the infrastructure level, for example by offering VMs to the cloud users.
A cloud user could thus rent several VMs and deploy a container system on top, or
the cloud provider itself could offer a containerized environment that is deployed on
top of virtual machines.

2.3 Resource Management

Resource management is a broad term, which refers to all required functionali‑
ties related to the allocation, provisioning and pricing of (virtual) resources. For

VM

Infrastructure

Hypervisor

VM VM

Guest OSGuest OS

Bins/Libs Bins/Libs

AppApp

Infrastructure

Host OS

Container Run�me

Container

Bins/Libs

App
Container

Bins/Libs

App

Container

Bins/Libs

App

Guest OS

Container Run�me

Container

Bins/Libs

App

Host OS

Infrastructure

Hypervisor

Host OS

Virtual Machine - based deployment Container - based deployment Container in VM - based deployment

Fig. 2 Comparison between the different models for deployment within a virtualized environment. The
application or service can be either deployed inside a VM, a container, or a container hosted in a VM

206 Journal of Network and Systems Management (2020) 28:197–246

1 3

the deployment of cloud applications, the minimal required amount of resources
needs to be determined, and in an elastic cloud environment the allocated amount
of resources can change dynamically based on the current demand. Furthermore, by
monitoring and profiling the applications or the resources, an estimate can be made
regarding the future demand. In a public cloud environment, the cloud provider
needs to determine the price billed to the cloud users based on the actual resource
usage, and the cloud user can charge the end users for using the SaaS applications.

2.3.1 Management Objectives

With public cloud computing, cloud providers need to satisfy the SLAs agreed upon
with the cloud users regarding the provisioning of virtual infrastructure. Such an
SLA can consist of multiple constraints which must always be satisfied, and Service‑
Level Objectives (SLOs) which should be satisfied. A typical management objective
is a specified monthly uptime percentage for the virtual instances, or a maximum
allowed response time for the cloud environment. The provider can choose to offer
its infrastructure to all cloud users using a single SLA, or can pursue service dif‑
ferentiation by offering different service levels to the customers. The provider could
also choose to apply different objectives during different operational conditions, for
example by guaranteeing different objectives during low load or overload.

The cloud user can also have an SLA with the end‑users, consisting of objectives
regarding the offered services (typically as SaaS). To comply with these objectives,
the cloud user may seek to exploit the elasticity property of the cloud environment.
The cloud user could for example over‑provision resources in order to guarantee the
objectives, or could try to minimize the operational costs but with the risk of violat‑
ing the SLA with the end users.

2.3.2 Resource Elasticity

In an optimal scenario, every cloud application would be deployed in a location
close to the end users in order to minimize latency, on hardware that is powerful
enough to guarantee compliance with the selected SLAs, and on a dedicated server
to maximize performance isolation. This scenario however would lead to high oper‑
ational costs and energy consumption, and a waste of resources as most of the time
the provisioned server instances would be in an idle state. Resource allocation strat‑
egies aim to solve this issue, by packing multiple applications belonging to different
customers onto the same physical hardware, while guaranteeing performance and
data isolation and compliance with SLA requirements. Resource management con‑
sists of multiple tasks, with the main tasks being the allocation, provisioning and
scheduling of (virtual) resources.

• Resource Allocation refers to the allocation (reservation) of a pool of resources
(e.g. computational resources, network bandwidth and storage) for a given con‑
sumer.

• Resource Provisioning on the other hand is the effective provisioning of (a part
of) the allocated resources in order to execute a given task. A typical example

207

1 3

Journal of Network and Systems Management (2020) 28:197–246

of resource provisioning is the deployment of a new virtual machine by the con‑
sumer, which uses a subset of the allocated CPU, network and storage resources.

• When executing a large batch of tasks in the cloud, Resource Scheduling aims
to find a feasible execution order for these tasks, making optimal usage of the
available resources while respecting the deadlines defined for each individual
task.

• Resource Orchestration is a broad term, that includes both scheduling, man‑
agement and provisioning of additional resources. Orchestrators typically man‑
age complex cross‑domain processes, and aim to meet the defined objectives, for
example meeting the application performance goals while minimizing costs and
maximizing performance.

Resource allocation, provisioning, scheduling and orchestration are closely related,
and are the main building blocks for application elasticity within a cloud environ‑
ment. When allocating resources, a further distinction can be made between static
and dynamic allocation.

• With a Static Resource Allocation strategy, the required amount of resources is
determined during deployment, and the allocation of resources does not change
during the lifetime of the deployed applications. Static resource allocation how‑
ever can lead to under‑ or over‑provisioning, when the amount of allocated
resources is not in line with the current demand.

• With Dynamic Resource Allocation, the amount of allocated resources can
change during execution, in order to meet the current demand. Dynamic resource
allocation can lead to a higher utilization of the physical resources, and allows
for server consolidation in order to reduce the operating costs.

Dynamic resource allocation is often seen as the most efficient means to allocate
hardware resources in a data center [46]. However, dynamic resource allocation typ‑
ically involves migration of running applications, which leads to an overhead and
possible service disruptions.

2.3.3 Resource Profiling

When allocating resources, a distinction can be made between reactivity and
proactivity:

• With a Reactive control mechanism, the amount of allocated resources is
adjusted over time in response to a detected change in demand.

• With a Proactive control mechanism, the amount of allocated resources is
adjusted based on a predicted change in demand.

For proactive control mechanisms, a prediction of the demand is often made using
historical measurements. This is typically done using Demand Profiling, and can
happen either at the application level, when predicting the demand for individ‑
ual applications, or at the infrastructure (data center) level, when predicting the

208 Journal of Network and Systems Management (2020) 28:197–246

1 3

global demand within the cloud environment. Apart from estimating the demand,
an estimation can also be made regarding the state of the physical and virtualized
resources, often referred to as Resource Utilization Estimation. An estimation can
be made for the different types of resources, such as compute, network, storage and
power resources, and these estimations serve as input for both the monitoring and
scheduling processes.

By Monitoring the actual resource utilization, the provider can detect if the cur‑
rent allocation scheme fits the current demand. In an elastic cloud environment,
additional resources can be provisioned on the fly if there is an over‑utilization of
the provisioned resources (under‑provisioning), and when more resources are allo‑
cated than required (over‑provisioning), a certain amount of resources can be deal‑
located to decrease the operational costs. Monitoring processes can also be used to
determine failure of certain components. Furthermore, monitoring information can
provide useful input for both demand profiling and resource utilization estimation.

2.3.4 Resource Pricing

Especially with public cloud computing, the cloud user or end user will be charged
based on its usage of the cloud resources or cloud services. In this context, a distinc‑
tion can be made between application pricing and infrastructure pricing [9].

• With Application Pricing, the cloud user determines the price for the services
(typically offered as SaaS applications) provided to the end users.

• With (Virtual) Infrastructure Pricing, the cloud provider determines the price
charged for the virtual resources rented to the cloud users.

For application pricing, the cloud user could either provide its application for free,
at a fixed price (e.g. a monthly incurring bill, with the price based on the number of
active users) or he could charge the cloud user based on the actual usage (e.g. the
total amount of bandwidth or data storage used by the consumer).

For infrastructure pricing, cloud providers traditionally use a Static Pricing
scheme to cover the infrastructure and operational costs of the data center, especially
within the context of public cloud computing. With static pricing, a price point is
established and maintained for an extended period of time. The cloud provider can
choose to offer its services using flat rate pricing, usage based pricing or a tiered
pricing strategy. With flat rate pricing, cloud users are charged a fixed price for a
package which could consist of the required services and a given number of users.
As long as the package doesn’t change, the price remains constant and is therefore
predictable. Tiered pricing is similar, but in this case the provider offers multiple
packages, with different combinations of features offered at different price points.
Because cloud users can select the package that best fits their needs, tiered pric‑
ing allows for a broader market. With usage based pricing, often referred to as the
‘Pay As You Go’ model, cloud users are charged based on the actual resource usage.
A combination of different pricing models is also possible. The cloud provider can
for example charge a fixed price based on the number of instantiated VMs, together
with a variable price based on the amount of consumed network bandwidth and/or

209

1 3

Journal of Network and Systems Management (2020) 28:197–246

additional storage. Other pricing models also exist, but these are often derived from
one of the three previously mentioned models. For example, price per request is
commonly found within cloud computing pricing schemes, which is a form of usage
based pricing. It is also worth noting that flat rate pricing, usage based pricing and
tiered pricing strategies are also often applied at SaaS level (application pricing).

Recently, Dynamic Pricing schemes are gaining popularity as an alternative to
static pricing, mainly to increase the utilization of the data center [10, 47–51]. With
dynamic pricing, the price of a product or service can change over time. The cloud
provider can for example lease its resources at a lower price when the demand is low,
and increase the prices as the demand increases. Another example of dynamic pric‑
ing is spot pricing, in which the cloud provider offers dynamically priced resources
at a lower price, but with less guarantee of availability [10]. Dynamic pricing can
also be based on an auction‑based pricing model, in which multiple cloud users bid
for a bundle of virtual cloud resources [48, 49]. The cloud provider will then select a
set of cloud users, the winners, and needs to determine a feasible allocation over its
physical hardware.

3 Cloud Resource Management: State of the Art

This section provides an overview of recent research (published between 2015 and
2018) focusing on resource management within cloud environments. We selected
this time period as this chapter extends the survey previously published by Jennings
and Stadler [9], which already provides an extensive overview of research related to
resource management published before 2015. We reviewed over 150 research papers
from five main publishers, namely ACM, Elsevier, IEEE, Springer and Wiley. A
majority of the reviewed articles were published in either ACM Transactions on
Internet Technology (TOIT) [52], IEEE Transactions on Cloud Computing (TCC)
[53], IEEE Transactions on Parallel and Distributed Systems (TPDS) [54], IEEE
Transactions on Network and Service Management (TNSM) [55], Springer Journal
of Network and Systems Management (JNSM) [56] or Wiley Journal of Software:
Practice and Experience (SPE) [57].

In the remainder of this section, a brief summary of previous surveys focusing on
resource management is first provided. We then categorize the research items within
three main areas, as illustrated in Fig. 3. For each category, an overview of all rel‑
evant research items is provided, and in this overview, we added attributes to denote
the used cloud type (traditional or fog), the scope (single cloud or multi‑cloud) and
the virtual allocation entity (VM or container). Furthermore, a summary of the most
relevant research is provided for each resource management functional element,
and we especially investigate the impact of containers and new cloud deployment
models.

As a reference, Table 1 provides a mapping from all research items (excluding
surveys) to the covered resource management functional elements of Fig. 3. As can
be seen from this table, some publications can be attributed to multiple categories
and/or functional elements. For these items, we selected the most relevant category

210 Journal of Network and Systems Management (2020) 28:197–246

1 3

and/or element, and in the remainder of this section these items are included in the
corresponding subsection.

3.1 Previous Surveys

Table 2 provides an overview of previous surveys related to resource management
within cloud environments. In 2015, Jennings and Stadler published an extensive
overview of resource management within the public cloud [9]. In their survey, the
authors introduced a conceptual framework for cloud resource management consist‑
ing of multiple functional elements, as illustrated in Fig. 4. In this figure, we added
a mapping from the different resource management functional elements to the cat‑
egories used in this article, namely Elasticity, Profiling and Pricing. Furthermore,
Jennings and Stadler characterized cloud provisioning schemes based on the place‑
ment approach (static, dynamic, network aware and/or energy aware) and the control
architecture (centralized, hierarchical or distributed). The authors did briefly men‑
tion mobile edge computing as one of the challenges, but the main focus of their
survey is the management of VMs in traditional cloud environments.

Yousafzai et al. extended the research of Jennings and Stadler by introducing
a taxonomy for categorizing cloud resource allocation schemes [14]. The intro‑
duced taxonomy is based on multiple attributes, being the optimization objective,
the design approach, the target resource allocation type, the applied optimization

Cloud
Resource

Management

3.2
Resource
Elas�city

3.3
Resource
Profiling

3.4
Resource

Pricing

3.2.1
Workload Management (WM)

3.2.2
Applica�on Elas�city / Provisioning (AEP)

3.2.3
Global Provisioning / Scheduling (GPS)

3.2.4
Local Provisioning / Scheduling (LPS)

3.3.1
Applica�on Demand Profiling (ADP)

3.3.2
Virtual Infrastructure Demand Profiling (IDP)

3.3.2
Monitoring (Mon)

3.3.2
Resource U�liza�on Es�ma�on (Est)

Dynamic Applica�on Pricing (APr)

3.4
Dynamic Virtual Infrastructure Pricing (IPr)

Cloud
User

Cloud
Provider

Fig. 3 Cloud resource management taxonomy used in this article, based on the conceptual framework
introduced by Jennings and Stadler [9]. For each functional element, the corresponding subsection is
denoted in the figure

211

1 3

Journal of Network and Systems Management (2020) 28:197–246

Table 1 Mapping from all research items (excluding surveys) to the resource management functional ele‑
ments of Fig. 3

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Aazam and Huh [58] 2015 ✓ ✓ ✓ ✓

AbdelBaky and Unuvar [59] 2015 ✓

Amannejad et al. [60] 2015 ✓ ✓

Chiang et al. [61] 2015 ✓

Dabbagh et al. [62] 2015 ✓ ✓ ✓ ✓

Dhakate and Godbole [63] 2015 ✓

Huang et al. [64] 2015 ✓ ✓

Jin et al. [65] 2015 ✓

Katsalis et al. [66] 2015 ✓

Kumbhare et al. [67] 2015 ✓ ✓

Lee et al. [68] 2015 ✓ ✓

Li and Kanso [69] 2015 ✓ ✓ ✓ ✓

Liu et al. [70] 2015 ✓ ✓

Mashayekhy et al. [48] 2015 ✓ ✓

Moens et al. [71] 2015 ✓

Mukherjee et al. [72] 2015 ✓

Petri et al. [73] 2015 ✓ ✓

Sharma et al. [74] 2015 ✓

Stankovski et al. [75] 2015 ✓ ✓

Wang et al. [76] 2015 ✓ ✓

Wuhib et al. [77] 2015 ✓ ✓ ✓ ✓

Zhang et al. [78] 2015 ✓

Aazam et al. [79] 2016 ✓ ✓

Ayoubi et al. [80] 2016 ✓ ✓

Choi et al. [81] 2016 ✓ ✓

D.C. Rodrigues et al. [82] 2016 ✓

Dai et al. [83] 2016 ✓

Elgazzar et al. [84] 2016 ✓

Espling et al. [85] 2016 ✓

Goudarzi et al. [86] 2016 ✓ ✓ ✓

Huang and Tsang [87] 2016 ✓

Kang et al. [88] 2016 ✓

Khatua et al. [89] 2016 ✓

Mashayekhy et al. [49] 2016 ✓ ✓

Mishra and Bellur [90] 2016 ✓

Nakagawa and Oikawa [91] 2016 ✓ ✓ ✓

Pantazoglou et al. [92] 2016 ✓

Righi et al. [93] 2016 ✓

Salah et al. [94] 2016 ✓

Sharma et al. [29] 2016 ✓

212 Journal of Network and Systems Management (2020) 28:197–246

1 3

Table 1 (continued)

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Wajid et al. [95] 2016 ✓ ✓

Wan et al. [96] 2016 ✓ ✓

Wanis et al. [97] 2016 ✓ ✓

Wolke et al. [46] 2016 ✓ ✓ ✓

Wu et al. [98] 2016 ✓

Xu et al. [99] 2016 ✓ ✓

Zhou et al. [100] 2016 ✓

Awada and Barker [101] 2017 ✓

Awada and Barker [102] 2017 ✓

Babaioff et al. [103] 2017 ✓ ✓ ✓

Chard et al. [104] 2017 ✓ ✓

Chi et al. [47] 2017 ✓ ✓

Dalmazo et al. [105] 2017 ✓

Hai and Nguyen [106] 2017 ✓ ✓ ✓

Hoque et al. [107] 2017 ✓

Jin et al. [108] 2017 ✓

Khasnabish et al. [109] 2017 ✓ ✓

Li et al. [110] 2017 ✓

Li et al. [111] 2017 ✓

Lloyd et al. [112] 2017 ✓

Maenhaut et al. [113] 2017 ✓ ✓

Mebrek et al. [114] 2017 ✓

Mechtri et al. [115] 2017 ✓

Merzoug et al. [116] 2017 ✓

Mireslami et al. [117] 2017 ✓

Nardelli et al. [118] 2017 ✓

Nitu et al. [119] 2017 ✓

Paya and Marinescu [120] 2017 ✓

Rankothge et al. [121] 2017 ✓ ✓

Tang et al. [122] 2017 ✓ ✓

Xu et al. [123] 2017 ✓ ✓

Yang et al. [124] 2017 ✓

Yi et al. [125] 2017 ✓ ✓

Yu and Pan [126] 2017 ✓

Zhang et al. [127] 2017 ✓ ✓ ✓

Alam et al. [128] 2018 ✓

Aral and Ovatman [129] 2018 ✓ ✓

Atrey et al. [130] 2018 ✓ ✓ ✓

Barkat et al. [131] 2018 ✓

Balos et al. [132] 2018 ✓ ✓ ✓ ✓

Barrameda and Samaan [133] 2018 ✓ ✓ ✓

213

1 3

Journal of Network and Systems Management (2020) 28:197–246

Table 1 (continued)

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Borjigin et al. [134] 2018 ✓ ✓

Bouet and Conan [135] 2018 ✓ ✓

Cheng et al. [136] 2018 ✓ ✓ ✓

Diaz‑Montes et al. [137] 2018 ✓ ✓ ✓

Gill et al. [138] 2018 ✓

Govindaraj and Artemenko [41] 2018 ✓ ✓

Guo and Shenoy [139] 2018 ✓ ✓ ✓

Guo et al. [140] 2018 ✓ ✓

Guo et al. [141] 2018 ✓

Hauser and Wesner [142] 2018 ✓ ✓ ✓ ✓

Heidari and Buyya [143] 2018 ✓

Jia et al. [144] 2018 ✓

Jia et al. [145] 2018 ✓ ✓ ✓

Khabbaz and Assi [146] 2018 ✓ ✓

Lahmann et al. [147] 2018 ✓

Lin et al. [148] 2018 ✓ ✓

Mikavica et al. [50] 2018 ✓

Nawrocki and Sniezynski [149] 2018 ✓ ✓

Prakash et al. [45] 2018 ✓ ✓ ✓

Prats et al. [150] 2018 ✓ ✓ ✓ ✓

Rahimi et al. [151] 2018 ✓ ✓ ✓

Sahni and Vidyarthi [152] 2018 ✓ ✓

Santos et al. [24] 2018 ✓ ✓

Scheuner and Leitner [153] 2018 ✓ ✓

Simonis [154] 2018 ✓ ✓

Sofia and GaneshKumar [155] 2018 ✓ ✓ ✓

Stoyanov and Kollingbaum [39] 2018 ✓ ✓

Takahashi et al. [156] 2018 ✓ ✓

Tesfatsion et al. [30] 2018 ✓ ✓

Trihinas et al. [157] 2018 ✓

Wang and Gelenbe [158] 2018 ✓

Wei et al. [159] 2018 ✓ ✓

Xie and Jia [160] 2018 ✓ ✓

Yao and Ansari [26] 2018 ✓ ✓

Zhang and Wen [161] 2018 ✓ ✓

Zhang et al. [162] 2018 ✓ ✓

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and
scheduling, LPS local provisioning and scheduling, ADP application demand profiling, IDP (Virtual)
infrastructure demand profiling, Est resource utilization estimation, Mon monitoring, APr dynamic appli‑
cation pricing, IPr dynamic virtual infrastructure Pricing

214 Journal of Network and Systems Management (2020) 28:197–246

1 3

method, the utility function, the processing mode, and the target instances. Poul‑
lie et al. also focused on the allocation of resources, and presented an overview of
multi‑resource allocation schemes for data centers [13]. Both surveys also mainly
focus on the allocation of VMs in traditional cloud environments.

Resource Management Func onal Elementsal Elementsource Management Funco cou c

Resource Management Func�onal Elements

Elas�cityProfilingPricing

Management Console

Management
Objec�ves / SLAs

Monitored
Metrics

Dynamic
Applica�on

Pricing
(APr)

Management Console

Management
Objec�ves / SLAs

Monitored
Metrics

Applica�on
Demand
Profiling

(ADP)

Workload
Management

(WM)

Applica�on
Elas�city /

Provisioning
(AEP)

Dynamic
Virtual Inf.

Pricing
(IPr)

Virtual Inf.
Demand
Profiling

(IDP)

Workload
Scheduling

Workload
Requests

Cloud
User

Cloud
Provider

End
User

Monitoring
(Mon)

Resource
U�liza�on
Es�ma�on

(Est)

Global
Provisioning
/ Scheduling

(GPS)

Local
Provisioning
/ Scheduling

(LPS)

Fig. 4 Conceptual framework for resource management in a cloud environment, as introduced by Jen‑
nings and Stadler [9]. In this figure, we added a mapping from the functional elements of the framework
to the categories used in this article (Elasticity, Profiling and Pricing)

Table 2 Overview of previous surveys focusing on resource management within cloud environments

Publication Year Elasticity Profiling Pricing Traditional Fog VM Container

Jennings and Stadler [9] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Mann [11] 2015 ✓ ✓ ✓ ✓

Yi et al. [4] 2015 ✓ ✓ ✓ ✓

Zhan et al. [15] 2015 ✓ ✓ ✓ ✓

Herrera and Botero [8] 2016 ✓ ✓ ✓ ✓

Masdari et al. [12] 2017 ✓ ✓ ✓

Yousafzai et al. [14] 2017 ✓ ✓ ✓

Bittencourt et al. [7] 2018 ✓ ✓ ✓ ✓

Kumar et al. [10] 2018 ✓ ✓ ✓ ✓

Mouradian et al. [3] 2018 ✓ ✓ ✓ ✓ ✓

Pahl et al. [5] 2018 ✓ ✓ ✓

Poullie et al. [13] 2018 ✓ ✓ ✓ ✓

Rodriguez and Buyya [6] 2018 ✓ ✓ ✓ ✓

Zhang et al. [38] 2018 ✓ ✓ ✓ ✓ ✓

215

1 3

Journal of Network and Systems Management (2020) 28:197–246

Other surveys are mainly focusing on scheduling and orchestration [5–8, 12, 15].
Bittencourt et al. for example introduced a taxonomy for scheduling in traditional
cloud environments [7]. Masdari et al. also investigated the topic of scheduling, but
their main focus is on scheduling schemes based on particle swarm optimization
[12]. Herrera and Botero focus on Network Functions Virtualization (NFV), and pre‑
sented an overview of allocation and scheduling schemes for virtual network func‑
tions [8]. Rodriguez et al. recently published an extensive overview of orchestration
systems specific for container‑based clusters [6]. Similarly, Pahl et al. provide an
overview of recent research focusing on the orchestration of containers [5]. Zhang
et al. recently published a survey on the migration of virtual instances in cloud envi‑
ronments [38]. The authors briefly mention containers and fog computing, but the
main focus is the migration of VMs in traditional cloud environments.

When it comes to resource pricing, Kumar et al. provided an overview of
dynamic (spot) pricing within traditional clouds [10]. The authors categorized dif‑
ferent spot pricing models in three main categories, namely economics based mod‑
els (auction‑based or game theory based), statistics based models and optimization
based models.

Recently, Mouradian et al. published an extensive survey on fog computing [3].
In their survey, the authors provided some comments regarding resource allocation,
scheduling and pricing in the context of fog computing. Their survey however is not
limited to resource management, but instead aims to provide a general overview of
all aspects of fog computing. The authors for example also discussed several possi‑
ble architectures within fog computing.

As can be seen from this overview, previously published surveys either focus on
a specific aspect of resource management, or a specific cloud type. Most surveys
cover resource management within traditional cloud environments, and do not yet
consider containers as an alternative for VMs. In this article however, our goal is to
cover the broad range of resource management, and we also do not limit ourselves to
a single cloud type or virtualization technology.

3.2 Resource Elasticity

3.2.1 Workload Management

Table 3 provides an overview of recent work with the main focus on the manage‑
ment of user workloads. The scheduling of workloads within a cloud environment
differs from scheduling on traditional distributed systems, due to the on‑demand
resource provisioning and the pay‑as‑you‑go pricing model which is often used by
infrastructure providers [152]. A special type of workload is a workflow, which con‑
sist of multiple individual tasks that can have several relationships between them.
The scheduling of such workflows is often bound by multiple constraints, such
as strict deadlines for individual tasks [138, 140, 146, 152] and task dependencies
[136].

Multiple solutions have been proposed for the scheduling of workflows in a
VM-based environment [99, 136, 138, 140, 146, 152, 155]. Sahni and Vidyarthi

216 Journal of Network and Systems Management (2020) 28:197–246

1 3

for example proposed a dynamic cost‑effective deadline‑constrained heuristic algo‑
rithm for scheduling of scientific workflows using VMs in a public cloud environ‑
ment [152]. The proposed algorithm aims to minimize the costs, while taking into
account the VM performance variability and instance acquisition delay to identify a
just‑in‑time schedule for a deadline‑constrained workflow. Guo et al. also introduced
a strategy for scheduling of deadline‑constrained scientific workflows, but within
multi‑cloud environments [140]. Their strategy aims to minimize the execution cost
of the workflow, while meeting the defined deadline. Similarly, Xu et al. proposed a
strategy for the scheduling of scientific workflows in a multi‑cloud environment, but
their focus is on reducing the energy consumption [99]. Khabbaz et al. proposed a
deadline‑aware scheduling scheme [146], and focus on improving the data center’s
Quality of Service (QoS) performance, by considering the request blocking prob‑
ability and the data center’s response time. Sathya Sofia and GaneshKumar on the
other hand introduced a multi‑objective task scheduling strategy based on a non‑
dominated sorting genetic algorithm [155]. The proposed algorithm uses a neural
network for predicting the required amount of VM resources, based on the charac‑
teristics of the tasks and the resource features. Cheng et al. presented a system for
resource provisioning and scheduling with task dependencies, based on deep rein‑
forcement learning [136]. The proposed solution also invokes a deep Q‑learning‑
based two‑stage resource provisioning and task scheduling processor, for the auto‑
matic generation of long‑term decisions. Gill et al. argue that few existing resource

Table 3 Overview of recent research with the main focus on workload management

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Kumbhare et al. [67] 2015 ✓ ✓ ✓ ✓ ✓

Kang et al. [88] 2016 ✓ ✓ ✓ ✓

Xu et al. [99] 2016 ✓ ✓ ✓ ✓ ✓

Xu et al. [123] 2017 ✓ ✓ ✓ ✓

Atrey et al. [130] 2018 ✓ ✓ ✓ ✓ ✓

Cheng et al. [136] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Diaz‑Montes et al. [137] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Gill et al. [138] 2018 ✓ ✓ ✓ ✓

Guo et al. [140] 2018 ✓ ✓ ✓ ✓ ✓

Heidari and Buyya [143] 2018 ✓ ✓ ✓ ✓

Khabbaz and Assi [146] 2018 ✓ ✓ ✓ ✓ ✓

Sahni and Vidyarthi [152] 2018 ✓ ✓ ✓ ✓ ✓

Sofia et al. [155] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Simonis [154] 2018 ✓ ✓ ✓ ✓ ✓

Takahashi et al. [156] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Xie and Jia [160] 2018 ✓ ✓ ✓ ✓

217

1 3

Journal of Network and Systems Management (2020) 28:197–246

scheduling algorithms consider cost and execution time constraints [138]. As a
result, the authors present a novel strategy for the scheduling of workloads on the
available cloud resources, based on Particle Swarm Optimization.

Xu et al. note that inside data centers, there exist a vast amount of delay‑toler‑
ant jobs, such as background and maintenance jobs [123]. As a result, the authors
proposed a scheme for the provisioning of both delay sensitive and delay‑tolerant
jobs, that aims to minimize the total operational costs, while still guaranteeing the
required QoS for the delay sensitive jobs, and achieving a desirable delay perfor‑
mance for the delay‑tolerant jobs.

Big-data computing applications can also benefit from the elasticity of cloud
environments [143, 154, 160]. Such applications typically demand concurrent data
transfers among the computing nodes, and it is important to determine an optimal
transfer schedule in order to achieve a maximum throughput. Xie and Jia how‑
ever claim that some existing methods cannot achieve this, as they often ignore
link bandwidths and the diversity of data replicas and paths [160]. As a result, the
authors proposed a max‑throughput data transfer scheduling approach that aims to
minimize the data retrieval time. Large amounts of data generated by internet and
enterprise applications are often stored in the form of graphs. To process such data,
graph processing systems are typically used. In this context, Heidari and Buyya pro‑
posed two dynamic repartitioning‑based algorithms for scheduling of large‑scale
graphs in a cloud environment [143]. The proposed algorithms consider network
factors in order to reduce the costs. The authors also introduced a novel classifi‑
cation for graph algorithms and graph processing systems, which can aid to select
the best strategy for processing a given input graph. For real‑time big‑data applica‑
tions, stream processing systems are often used instead of batch processing systems
as these allow for processing of data upon arrival. However, according to Kumbhare
et al., traditional stream processing systems often use simple scaling techniques with
elastic cloud resources to handle variable data rates, which can have a significant
impact on the application QoS [67]. To tackle this issue, the authors introduced the
concept of dynamic dataflows for the scheduling of high‑velocity data streams with
low latency in the cloud. These dataflows use alternate tasks as additional control
over the dataflow’s cost and QoS.

In a federated multi-cloud environment, different types of resources that may
be geographically distributed can be collectively exposed as a single elastic infra‑
structure. By doing so, the execution of application workflows with heterogeneous
and dynamic requirements can be optimized, and the federated multi‑cloud can
tackle larger scale problems. Diaz‑Montes et al. introduced a framework for man‑
aging the end‑to‑end execution of data‑intensive application workflows within a
federated cloud [137]. The proposed framework also supports dynamic federation,
in which computational sites can join or leave on the fly, and the framework can
recover from failures happening within a site.

For scheduling of workloads that are executed inside containers, Kang et al.
proposed a brokering system that aims to minimize the energy consumption, while
guaranteeing an acceptable performance level [88]. The authors also proposed a new
metric, called Power consumption Per Application (ppA), and the proposed system
applies workload clustering using the k‑medoids algorithm. Simonis on the other

218 Journal of Network and Systems Management (2020) 28:197–246

1 3

hand presented a container‑based architecture for big‑data applications, that allows
for interoperability across data providers, integrators and users [154]. By using self‑
contained containers, the presented architecture allows for horizontal scale‑out, high
reliability and maintainability. Takahashi et al. introduced a portable load balancer
for Kubernetes clusters, which is usable in any environment, and hence facilitates
the integration of web services [156].

Highlights for workload management: Workloads that are being executed in a
cloud environment are often bound by multiple constraints, which should be taken
into account by the scheduling strategy to guarantee the required QoS. In recent
years, several strategies have been proposed, but most of them focus on the execu‑
tion inside VM instances, for example by predicting the minimal amount of VM
resources required for a given set of tasks.

In a federated multi‑cloud environment, geographically distributed resources can
be exposed as a single elastic infrastructure, to optimize the execution of application
workflows and to tackle large scale problems. An important challenge in this context
is support for dynamic federation, meaning that computational sites should be able
to join or leave on the fly, and the used framework should be able to cope with such
changes.

Container technology can be beneficial for the execution of workloads, espe‑
cially when using a service oriented architecture, as self‑contained containers
allow for transparent microservices, horizontal scale‑out and high reliability and
maintainability.

3.2.2 Application Elasticity and Provisioning

Table 4 provides an overview of recent work with the main focus on application
elasticity and provisioning. Applications deployed in a cloud environment can bene‑
fit from the offered elasticity by adjusting the provisioned amount of resources based
on the current demand. Additional instances can be deployed on the fly, and a load
balancer will typically be used to distribute the load over the available instances.
Cloud applications however are often stringent to given SLOs, agreed upon between
the cloud user and the application end user. In order to satisfy a given service level
objective, the minimal amount of cloud resources required for the given task needs
to be determined.

Several models have been proposed for the cost‑efficient SLA‑aware allocation
of VM resources in a traditional cloud environment [71, 93, 94, 117]. Salah et al.
for example presented an analytical model based on Markov chains, to predict
the minimal number of VMs required for satisfying a given SLO performance
requirement [94]. Their model takes the offered workload and number of VM
instances as input, together with the capacity of each VM instance. The model not
only returns the minimal number of VMs required for the workload, but also the
required number of load balancers needed for achieving proper elasticity. Mire‑
slami et al. presented a multi‑objective cost‑effective algorithm for minimizing
the deployment cost while meeting the QoS performance requirements [117].
The proposed algorithm offers the cloud user an optimal choice when deploy‑
ing a web application in a traditional cloud environment. Righi et al. introduced

219

1 3

Journal of Network and Systems Management (2020) 28:197–246

a fully‑organizing PaaS‑level elasticity model, designed specifically for running
High‑Performance Computing (HPC) applications in the cloud [93]. Their model
does not require any user intervention or modifications to the application’s source
code, but (de‑)allocates VMs using an aging‑based approach to avoid unnecessary
VM re‑configurations. The model also uses asynchronism for creating and termi‑
nating VMs in order to minimize the execution time of the HPC applications.

In multi-cloud environments, applications or individual components should
be deployed in the environment that is best suited. Cloud providers may offer
their services using different pricing models, and some models may be more suit‑
able for either short term or long term tasks. For the storage of data in heteroge‑
neous multi‑cloud environments, Zhang et al. introduced a data hosting scheme
which aims to help the cloud user by selecting the most suitable cloud environ‑
ment, together with an appropriate redundancy strategy for achieving high avail‑
ability [78]. The proposed solution considers the used pricing strategy, the avail‑
ability requirements and the data access patterns. For deploying applications in a
multi‑cloud environment, Khatua et al. introduced several algorithms which aim
to determine the optimal amount of resources to be reserved, while minimizing
the total cost by selecting the most appropriate pricing model [89].

Table 4 Overview of recent research with the main focus on application elasticity and provisioning

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Moens et al. [71] 2015 ✓ ✓ ✓ ✓

Zhang et al. [78] 2015 ✓ ✓ ✓

Elgazzar et al. [84] 2016 ✓ ✓ ✓ ✓ ✓

Khatua et al. [89] 2016 ✓ ✓ ✓ ✓

Righi et al. [93] 2016 ✓ ✓ ✓ ✓

Salah et al. [94] 2016 ✓ ✓ ✓ ✓

Mebrek et al. [114] 2017 ✓ ✓ ✓ ✓

Mireslami et al. [117] 2017 ✓ ✓ ✓ ✓

Paya and Marinescu [120] 2017 ✓ ✓ ✓ ✓

Alam et al. [128] 2018 ✓ ✓ ✓ ✓ ✓

Barrameda and Samaan [133] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Bouet and Conan [135] 2018 ✓ ✓ ✓ ✓ ✓

Guo and Shenoy [139] 2018 ✓ ✓ ✓ ✓ ✓

Nawrocki et al. [149] 2018 ✓ ✓ ✓ ✓ ✓

Rahimi et al. [151] 2018 ✓ ✓ ✓ ✓ ✓

Santos et al. [24] 2018 ✓ ✓ ✓ ✓ ✓

Yao and Ansari [26] 2018 ✓ ✓ ✓ ✓ ✓

Zhang and Wen [161] 2018 ✓ ✓ ✓ ✓ ✓

220 Journal of Network and Systems Management (2020) 28:197–246

1 3

In a mobile edge environment, mobile devices can transfer resource‑intensive
computations to a more resourceful computing infrastructure, such as a public
cloud environment. Multiple offloading approaches exist, often focusing on differ‑
ent objectives or following a different approach [26, 84, 133, 149, 161]. Nawrocki
and Sniezynsky for example proposed an agent‑based architecture with learning
possibilities, based on supervised and reinforcement learning, to optimally schedule
services and tasks between the mobile device and the cloud [149]. Elgazzar et al.
introduced a framework for cloud‑assisted mobile service provisioning, which aims
to assist mobile devices in delivering reliable services [84]. The presented frame‑
work supports dynamic offloading, based on the current resource utilization and
network conditions, while satisfying the user‑defined energy constraints. Barrameda
and Samaan focus on the costs, and presented a statistical cost model for offloading
in a mobile edge environment [133]. In this cost model, the application is modeled
as a tree structure for representing dependencies and relations among the applica‑
tion modules. The cost for each module is then modeled as a cumulative distribution
function that is statistically estimated through profiling. Zhang et al. on the other
hand investigate the topic of energy‑efficient task offloading, and proposed an algo‑
rithm that aims to minimize the energy consumption on the mobile devices while
still guaranteeing deadlines [161]. Somehow related, Mebrek et al. also focus on the
energy efficiency, but in the context of a multi‑tier IoT‑fog‑cloud environment, and
the authors presented a model for the power consumption and delay for IoT applica‑
tions within both fog and traditional cloud environments [114]. Similarly, Yao and
Ansari presented an approach for offloading and resource provisioning in an IoT‑fog
environment, but the authors aim to minimize the VM rental cost for the fog envi‑
ronment while still guaranteeing QoS requirements.

For applications running in a multi-tiered (layered) cloud environment, which
for example could consist of edge devices, a fog and a central cloud layer, Alam
et al. presented a layered modular and scalable architecture that aims to increase the
efficiency of the applications [128]. The proposed architecture collects and analyzes
data at the most efficient and logical place, balances the load, and pushes computa‑
tion and intelligence to the appropriate layers. Furthermore, the proposed architec‑
ture uses Docker containers, which simplifies the management and enables distrib‑
uted deployments. Similarly, Santos et al. proposed a framework for the autonomous
management and orchestration of IoT applications in an edge‑fog‑cloud environment
[24]. The authors introduced a Peer‑to‑Peer fog protocol for the exchange of appli‑
cation service provisioning information between fog nodes. Rahimi et al. focus on
multi‑tiered mobile edge environments, and presented a framework for modeling
mobile applications as location‑time workflows, in which user mobility patterns are
translated to mobile service usage patterns [151]. These workflows are then mapped
to the appropriate cloud resources using an efficient heuristic algorithm. Bouet and
Conan also focus on multi‑tiered mobile edge environments, and proposed a geo‑
clustering approach for optimizing the edge computing resources [135]. The authors
introduced an algorithm that provides a partition of mobile edge computing clusters,
which consolidates as many communications as possible at the edge.

Highlights for application elasticity and provisioning: Applications deployed in
a cloud environment can be stringent to given SLOs. To satisfy these objectives,

221

1 3

Journal of Network and Systems Management (2020) 28:197–246

the required amount of resources needs to be determined. Multiple prediction mod‑
els have been presented, but most of them focus on the deployment of applications
inside VMs. However, VM re‑configurations are typically costly and should hence
be avoided.

With fog computing, and especially mobile cloud computing, less powerful
devices can transfer computational intensive tasks to another environment. This
requires an offloading approach, that could for example focus on energy efficiency
or minimizing the operational costs. For these environments, containers offer clear
benefits, as they facilitate the management and allow for distributed deployments.
In multi‑cloud environments, the application or individual components should be
deployed in the optimal environment, for example to balance the load or to minimize
the operational costs.

3.2.3 Local Provisioning and Scheduling

Table 5 provides an overview of recent work with the main focus on local provision‑
ing and scheduling. In VM-based cloud environments, multiple VMs are deployed
onto a single server, and a hypervisor is used for allocating the virtual resources on
top of the physical hardware. Zhang et al. argue that when VMs deployed onto the
same physical server compete for memory, the performance of the applications dete‑
riorates, especially for memory‑intensive applications [127]. To tackle this issue, the
authors proposed an approach for optimizing the memory control using a balloon
driver for server consolidation. Li et al. on the other hand argue that the accuracy
of CPU proportional sharing and the responsiveness of I/O processing are heav‑
ily dependent on the proportion of the allocated CPU resources [110]. The authors
illustrate that an inaccurate CPU share ratio, together with CPU proportion depend‑
ent I/O responsiveness, can affect the performance of the hypervisor. This could lead

Table 5 Overview of recent research with the main focus on local provisioning and scheduling

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Amannejad et al. [60] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Katsalis et al. [66] 2015 ✓ ✓ ✓ ✓

Mukherjee et al. [72] 2015 ✓ ✓ ✓ ✓

Nakagawa and Oikawa [91] 2016 ✓ ✓ ✓ ✓

Sharma et al. [29] 2016 ✓ ✓ ✓ ✓ ✓

Li et al. [110] 2017 ✓ ✓ ✓ ✓

Zhang et al. [127] 2017 ✓ ✓ ✓ ✓ ✓

Lahmann et al. [147] 2018 ✓ ✓ ✓ ✓ ✓

Prakash et al. [45] 2018 ✓ ✓ ✓ ✓ ✓

Tesfatsion et al. [30] 2018 ✓ ✓ ✓ ✓ ✓

222 Journal of Network and Systems Management (2020) 28:197–246

1 3

to unstable performance and therefore could violate SLA requirements. As a result,
the authors proposed a novel scheduling scheme that achieves accurate CPU propor‑
tional sharing and predictable I/O responsiveness. Katsalis et al. also focus on CPU
sharing, and presented several CPU provisioning algorithms for service differentia‑
tion in cloud environments [66]. The algorithms are based on dynamic weighted
round robin, and guarantee CPU service shares in clusters of servers. Mukherjee
et al. argue that, while resource management methods may manage application per‑
formance by controlling the sharing of processing time and input‑output rates, there
is generally no management of contention for virtualization kernel resources or for
the memory hierarchy and subsystems [72]. Such contention however can have a
significant impact on the application performance. As a result, the authors presented
an approach for detecting contention for shared platform resources in virtualized
environments. Amennejad et al. illustrate that when VMs compete for shared physi‑
cal machine resources, the web services deployed on these VMs could suffer perfor‑
mance issues [60]. Cloud users however typically have only access to VM‑level met‑
rics and application‑level metrics, but these metrics are often not useful for detecting
inter‑VM contention. To tackle this issue, the authors proposed a machine‑learning
based interference detection technique to predict whether a given transaction being
processed by a web service is suffering from interference. The proposed technique
only relies on web transaction response times, and does not require any access to
performance metrics of the physical resources.

For container-based deployments, Nakagawa and Oikawa argue that deployed
containers often consume much more memory than expected [91]. Although there
are several methods to prevent such memory overuse, most existing methods have
their shortcomings such as an increase in operational costs, or the detection of false‑
positives. In their paper, the authors proposed a new memory management method
for container‑based virtualization environments. The proposed method detects con‑
tainers that have a sign of memory overuse, and puts a limitation on the allowed
memory consumption for these containers. Lahmann et al. investigated if VM
resource allocation schemes are appropriate for container deployments [147]. Spe‑
cifically, they focus on the gaps between memory allocation and memory utilization
for application deployments in container clusters. Their main conclusion is that VM
resource allocation schemes should not simply be used for the allocation of con‑
tainers, but a fine‑grained allocation scheme should be used instead. Sharma et al.
studied the differences between hardware virtualization (VMs) and OS virtualization
(containers) regarding performance, manageability and software development [29].
According to their findings, containers promise bare metal performance, but they
may suffer from performance interference as they share the underlying OS kernel.
Unlike VMs which typically have strict resource limits, containers also allow for
soft limits, which can be helpful in over‑commitment scenarios as they can make
use of underutilized resources allocated to other containers. Tesfatsion et al. also
studied the differences between VMs and containers, but with a focus on the virtu‑
alization overhead [30]. According to the presented results, no single virtualization
technology is a clear winner, but each platform has its advantages and shortcomings.
Containers for example offer a lower virtualization overhead, but can raise security
issues due to the lower level of isolation. Both Tesfatsion and Sharma however note

223

1 3

Journal of Network and Systems Management (2020) 28:197–246

that a hybrid form, in which containers are deployed on top of VMs, could offer
promising solutions that combine the advantages of both virtualization technologies.

However, when containers are provisioned inside VMs, the guest OS man‑
ages virtual resources inside a VM, whereas the hypervisor manages the physical
resources distributed among the VMs. As a result, two control centers are manag‑
ing the set of resources used by the containers. The hypervisor typically takes con‑
trol actions such as memory ballooning, which allows a host system to artificially
enlarge its memory pool by reclaiming unused memory allocated to other virtual
machines, or withdrawal of a virtual CPU to manage over‑provisioning, without
being aware of the effects of those actions on individual containers deployed inside
the VM. Prakash et al. illustrated that such actions can have unpredictable and non‑
deterministic effects on the nested containers [45]. To tackle this issue, the authors
proposed a policy driven controller that smooths over the effects of hypervisor
actions on the nested containers.

Highlights for local provisioning and scheduling: In VM‑based environments, a
hypervisor will strictly allocate resources to the deployed VMs. The deployed VMs
however can compete for the shared physical resources, but the hypervisor should
detect and prevent this to not violate SLA requirements. With OS‑level virtualiza‑
tion, the underlying OS kernel is shared, and containers can use unutilized resources
allocated to other containers. These soft limits should be taken into account, as they
can have unpredictable effects on other unrelated containers deployed on the same
physical hardware. Each virtualization technology clearly has its advantages and
limitations, and deploying containers inside VMs could combine the advantages of
both technologies, but this introduces challenges for resource management as two
control centers are managing the set of resources used by the containers.

3.2.4 Global Provisioning and Scheduling

Table 6 provides an overview of recent work with the main focus on global pro‑
visioning and scheduling. As can be seen from this table, a majority of research
is focusing on this resource management functional element. When it comes to
resource allocation, the used scheme can be either static or dynamic, with the latter
indicating that the amount of resources allocated for a specific task can change over
time.

For the allocation of resources in a VM-based environment, Wolke et al. did an
experimental study on the benefits of dynamic resource allocation [46]. According
to their findings, reactive or proactive control mechanisms do not always decrease
the average server demand, but instead can lead to a high number of migrations,
which negatively impacts the response times and could even lead to network conges‑
tion. The authors note that in general, live VM migrations should be exceptional,
and capacity planning via optimization should be used instead, especially in environ‑
ments with long‑running and predictable application workloads. Somewhat related,
Wu et al. studied the overhead introduced by launching new VMs in the context of
Cloud bursting [98]. According to their findings, this overhead is not constant, but
instead depends on the physical resource utilization (e.g. CPU and I/O device utili‑
zation) at the time when the VM is launched. This variation in overhead can have a

224 Journal of Network and Systems Management (2020) 28:197–246

1 3

Table 6 Overview of recent research with the main focus on global provisioning and scheduling

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

AbdelBaky and Unuvar [59] 2015 ✓ ✓ ✓

Chiang et al. [61] 2015 ✓ ✓ ✓ ✓

Li and Kanso [69] 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [70] 2015 ✓ ✓ ✓ ✓

Stankovski et al. [75] 2015 ✓ ✓ ✓ ✓

Wuhib et al. [77] 2015 ✓ ✓ ✓

Ayoubi et al. [80] 2016 ✓ ✓ ✓ ✓ ✓

Choi et al. [81] 2016 ✓ ✓ ✓ ✓

Dai et al. [83] 2016 ✓ ✓ ✓ ✓

Espling et al. [85] 2016 ✓ ✓ ✓ ✓

Goudarzi et al. [86] 2016 ✓ ✓ ✓ ✓

Huang and Tsang [87] 2016 ✓ ✓ ✓ ✓

Mishra and Bellur [90] 2016 ✓ ✓ ✓ ✓

Pantazoglou et al. [92] 2016 ✓ ✓ ✓ ✓

Wajid et al. [95] 2016 ✓ ✓ ✓ ✓

Wolke et al. [46] 2016 ✓ ✓ ✓ ✓

Wu et al. [98] 2016 ✓ ✓ ✓ ✓

Awada and Barker [101] 2017 ✓ ✓ ✓ ✓

Awada and Barker [102] 2017 ✓ ✓ ✓ ✓

Hoque et al. [107] 2017 ✓ ✓ ✓ ✓

Jin et al. [108] 2017 ✓ ✓ ✓ ✓

Khasnabish et al. [109] 2017 ✓ ✓ ✓

Li et al. [111] 2017 ✓ ✓ ✓ ✓

Maenhaut et al. [113] 2017 ✓ ✓ ✓ ✓

Mechtri et al. [115] 2017 ✓ ✓ ✓ ✓

Merzoug et al. [116] 2017 ✓ ✓ ✓ ✓

Nardelli et al. [118] 2017 ✓ ✓ ✓ ✓ ✓

Nitu et al. [119] 2017 ✓ ✓ ✓ ✓ ✓

Rankothge et al. [121] 2017 ✓ ✓ ✓ ✓ ✓

Yang et al. [124] 2017 ✓ ✓ ✓ ✓

Yu and Pan [126] 2017 ✓ ✓ ✓

Aral and Ovatman [129] 2018 ✓ ✓ ✓ ✓ ✓

Barkat et al. [131] 2018 ✓ ✓ ✓ ✓

Govindaraj and Artemenko [41] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Guo et al. [141] 2018 ✓ ✓ ✓ ✓

Jia et al. [144] 2018 ✓ ✓ ✓

Jia et al. [145] 2018 ✓ ✓ ✓ ✓

Lin et al. [148] 2018 ✓ ✓ ✓ ✓ ✓

Stoyanov and Kollingbaum [39] 2018 ✓ ✓ ✓ ✓ ✓

Wang and Gelenbe [158] 2018 ✓ ✓ ✓

Wei et al. [159] 2018 ✓ ✓ ✓ ✓

225

1 3

Journal of Network and Systems Management (2020) 28:197–246

significant impact on cloud bursting strategies. As a result, the authors introduced
a VM launching overhead reference model based on operational data, which could
help to decide when and where a new VM should be launched.

Global provisioning and scheduling often includes VM consolidation [85, 87,
90, 108, 119, 131, 141], which typically aims to pack the virtual machines onto few
physical servers in order to reduce the operational costs. Huang et al. for example
presented a framework for VM consolidation that aims to achieve a balance among
multiple objectives [87], which can also be used in a context that requires mini‑
mal system re‑configurations. Similarly, Guo et al. presented an approach for the
real‑time adaptive placement of VMs in large data centers [141]. The authors use a
shadow routing based approach, which allows for a large variety of objectives and
constraints to be treated within a common framework. When consolidating VMs,
both the relationships and possible interference between collocated VMs, as well
as the tightness of packing should be taken into account. Espling et al. for example
introduced an approach for the placement of VMs with an internal service structure,
component relationships and placement constraints between them [85]. Jin et al. pre‑
sented an approach that takes into account the possible interference between col‑
located VMs, as this interference can have a negative impact on the performance of
the deployed applications [108]. Mishra et al. on the other hand presented a study
on the tightness of VM packing [90]. A tight packing approach can lead to future
issues as there is no room to expand, whereas provisioning VMs for their peak usage
can result in wasted resources as peaks occur infrequently and typically for a short
time. Liu et al. however prefer an aggressive resource provisioning approach [70],
by initially over‑provisioning resources and later reducing the amount of resources if
needed. Doing so can increase the performance by reducing the adaption time, while
limiting SLO violations when dealing with rapidly increasing workloads. On the
physical servers hosting the VMs, some resources could be left unused and there‑
fore wasted when they are insufficient for hosting a new VM. In this context, Nitu
et al. proposed a consolidation strategy that dynamically divides a VM into smaller
‘pieces’, so that each piece fits into the available ‘holes’ on the servers [119].

Some provisioning and scheduling schemes have been proposed that focus on the
deployment of containers in a cloud environment [59, 81, 101, 102, 107, 118]. Awada
and Barker for example presented a cloud‑based container management service frame‑
work, that offers the required functionalities for orchestrating containerized applica‑
tions [102]. Their framework takes into account the heterogeneous requirements of the
applications, and jointly optimizes sets of containerized applications and resource pools
within a cloud environment. The authors also presented an extension of their frame‑
work for use in multi‑region cloud container‑instance clusters [101]. Abdelbaky et al.
also focus on a multi‑cloud environment, and introduced a framework that enables the
deployment and management of containers across multiple hybrid clouds and clusters

Table 6 (continued)
WM workload management, AEP application elasticity and provisioning, GPS global provisioning and
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single
cloud, MC multi‑cloud, VM virtual machine, CT container

226 Journal of Network and Systems Management (2020) 28:197–246

1 3

[59]. Their framework takes into account the objectives and constraints of both the
cloud provider and cloud user, and uses a constraint‑programming model for selecting
the required resources. For the deployment of containers within VMs, Nardelli et al.
introduced a strategy for the elastic provisioning of VMs required for deploying the
containers [118]. Hoque et al. analyzed different container orchestration tools, and pre‑
sented a framework for the orchestration of containers within a fog cloud environment
[107].

Although containers have distinctive advantages over VMs, the live migration of
containers could still introduce a comparatively high overhead and downtime [39, 41].
Stoyanov and Kollingbaum investigated live migration of containers using the popu‑
lar Checkpoint‑Restore in Userspace (CRIU) tool [39]. The authors proposed a novel
approach for the live migration that utilizes a recently published CRIU feature called
image cache/proxy. Similarly, Govindaraj and Artemenko also proposed a new live
migration scheme for containers that aims to reduce the downtime of the migrated con‑
tainer [41].

Live migration is often used for achieving high availability, together with other tech‑
nologies such as failure detection and checkpoint/restore mechanisms. In this context,
Li and Kanso presented a general comparison between VMs and containers from a
high availability perspective [69]. According to their findings, there are many solutions
available for achieving high availability in a VM environment, typically implemented
by the hypervisor as failover clustering. However, current container platforms still lack
many of these features. There is some initial work available on container clustering, but
the authors note that there are no mature features yet for monitoring or failure detection
and recovery, and therefore additional extensions are required on top of container tech‑
nologies to support high availability in a container‑based environment.

Highlights for global provisioning and scheduling: The allocation of resources can
be either static or dynamic. A dynamic allocation strategy can lead to a higher effi‑
ciency, but the introduced reconfiguration overhead should not be neglected. There‑
fore, using a dynamic allocation strategy will not always be beneficial, especially when
provisioning VMs. The (re)allocation of VMs often includes VM consolidation, which
aims to pack the VMs onto few physical servers. During the VM consolidation process,
the tightness of packing plays an important role, and possible relationships between
VMs should be taken into account.

When deploying containers, an orchestrator is typically used to optimize the alloca‑
tion scheme over the available resources. Existing container orchestration tools exist for
the deployment and management of containers, but these are still relatively young and
still lack some important features that are offered in VM environments, for example for
achieving high availability which includes live migration of running applications.

3.3 Resource Profiling

Table 7 provides an overview of recent work related to resource profiling, which
includes application and infrastructure demand profiling, resource utilization esti‑
mation and monitoring.

227

1 3

Journal of Network and Systems Management (2020) 28:197–246

3.3.1 Application Demand Profiling

When deploying applications in an IaaS cloud environment, both the quantity and
type of VM resources need to be determined. Application demand profiling can be
used for assessing demand patterns for individual applications, which can be used as
input for workload management and application pricing. In this context, Lloyd et al.
introduced a workload cost prediction methodology which harnesses operating sys‑
tem time accounting principles to support equivalent workload performance using
alternate virtual machine types [112]. By using resource utilization checkpoints, the
total resource utilization profile is captured for service oriented application work‑
loads executed across a pool of VM. Based on the obtained workload profiles, the
estimated cost is calculated, which could help cloud users for finding alternate infra‑
structures that afford lower hosting costs while offering equal or better performance.
Somewhat related, Prats et al. introduced an approach for the automatic generation
of workload profiles [150]. The authors examined and modeled application behavior
by finding phases of similar behavior in the workloads. In the presented approach,
resource monitoring data is first passed through conditional restricted Boltzmann
machines to generate a low‑dimensional and time‑aware vector. This vector is then
passed through clustering methods such as k‑means and hidden Markov models to
detect the similar behavior phases.

Chard et al. introduced a middleware for the profiling, prediction and provision‑
ing of applications in a cloud environment [104]. The authors have developed an
automated profiling service that is able to derive approximate profiles for applica‑
tions executed on different environments. Based on these profiles, the expected cost
is calculated for executing a particular workload in a dynamic cloud market, with the

Table 7 Overview of recent research with the main focus on resource profiling

ADP application demand profiling, IDP (Virtual) infrastructure demand profiling, Est resource utilization
estimation, Mon monitoring, TC traditional cloud, FC fog computing, SC single cloud, MC multi‑cloud,
VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

ADP IDP Est Mon TC FC SC MC VM CT

Dabbagh et al. [62] 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dhakate and Godbole [63] 2015 ✓ ✓ ✓ ✓ ✓

D.C. Rodrigues et al. [82] 2016 ✓ ✓ ✓ ✓

Zhou et al. [100] 2016 ✓ ✓ ✓ ✓

Chard et al. [104] 2017 ✓ ✓ ✓ ✓

Dalmazo et al. [105] 2017 ✓ ✓ ✓ ✓

Lloyd et al. [112] 2017 ✓ ✓ ✓ ✓

Balos et al. [132] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Hauser and Wesner [142] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Prats et al. [150] 2018 ✓ ✓ ✓ ✓ ✓

Scheuner and Leitner [153] 2018 ✓ ✓ ✓ ✓

Trihinas et al. [157] 2018 ✓ ✓ ✓ ✓ ✓

228 Journal of Network and Systems Management (2020) 28:197–246

1 3

aim of computing bids that are based on probabilistic‑durability guarantees. Once
the results from profiling and market prediction are obtained, the middleware provi‑
sions infrastructure and manages it throughout the course of the workload execution.

Due to the immense growth in the cloud computing market and the resulting wide
diversity of cloud services, micro‑benchmarks could be used for identifying the best
performing cloud services. As a result, Scheuner and Leitner have developed a cloud
benchmarking methodology that uses micro‑benchmarks to profile applications,
in order to predict how an application performs on a wide range of cloud services
[153]. The authors validated their approach using several metrics and micro‑bench‑
marks with two applications from different domain. Although micro‑benchmarking
is a useful approach, the results illustrate that only few selected micro‑benchmarks
are relevant when estimating the performance of a particular application.

Within the context of scientific computing, Balos et al. present an analytical
model that matches scientific applications to effective cloud instances for achieving
high application performance [132]. The model constructs two vectors, an applica‑
tion vector consisting of application performance components and a cloud vector
comprising cloud‑instance performance components. By profiling both the applica‑
tion and cloud instances, an inner product of both vectors is calculated to produce an
application‑to‑cloud score, which represents the application’s execution time on the
selected cloud instance.

Highlights for application demand profiling: Application demand profiling can
be useful for estimating the required amount of resources, as well as the expected
operational costs. In a public cloud market, profiling applications can also be used
to determine the best suited environment. Applications can either be profiled as a
whole, or micro‑benchmarks can be used to predict how an application would
perform.

3.3.2 Monitoring, Infrastructure Demand Profiling and Resource Utilization
Estimation

Cloud monitoring systems play a crucial role for supporting scalability, elasticity,
and migrations within a cloud environment. Da Cunha Rodriguez et al. presented a
general overview of cloud monitoring [82]. The authors also provided a comparison
among relevant cloud monitoring solutions, focusing on abilities such as the accu‑
racy, autonomy and comprehensiveness.

For automatic resource provisioning, the deployed applications, services and the
underlying platforms need to be continuously monitored at multiple levels and time
intervals. Trihinas et al. however argue that current cloud monitoring tools are either
bound to specific cloud platforms, or have limited portability to provide elasticity
support [157]. The authors described several challenges for monitoring elastically
adaptive multi‑cloud services, and introduced an automated, modular, multi‑layer
and portable cloud monitoring framework. The presented framework can automat‑
ically adapt when elasticity actions are enforced to either the cloud service or to
the monitoring topology, and can recover from faults introduced in the monitoring
configuration.

229

1 3

Journal of Network and Systems Management (2020) 28:197–246

Hauser and Wesner presented an approach for monitoring resource statistics on
the physical infrastructure level [142], to provide the required information for pro‑
filing of the physical resources. Based on the monitoring information, a resource
utilization profile is provided to the cloud middleware and customer. Such a profile
consists of both a static (e.g. number of CPU cores) and dynamic part (e.g. cur‑
rent utilization), and is generated using statistical computations like histograms and
Markov chains.

Dabbagh et al. proposed an energy‑aware resource provisioning framework that
predicts future workloads [62]. Based on monitoring information, the proposed
framework predicts the number of future VM requests, along with the amount of
CPU and memory resources associated with each of these requests, and provides
accurate estimations of the number of physical machines required. Although the
proposed solution is based on the provisioning of VMs, the authors note that their
framework could easily be adapted for estimating the number of physical machines
required for the provisioning of containers.

Monitoring can also play an important role for achieving high availability and
reliability. As the public cloud is a multi‑tenant environment, failure of a single
physical component can have a significant impact on a large number of tenants.
To increase cloud reliability, Zhou et al. presented a recovery approach based on
checkpoint images, which consist of service checkpoint images and delta checkpoint
images [100].

Dhakate and Godbole proposed an architecture for monitoring, testing, reporting
and alerting of an entire cloud environment [63]. The required monitoring software
is packed inside Docker containers, which can be deployed directly from the Docker
Hub repository. The authors also developed a dashboard that provides a general
overview of the health status of the whole cloud environment.

Highlights for monitoring, infrastructure demand profiling and resource utiliza‑
tion estimation: Monitoring systems play a crucial role for supporting scalability,
elasticity, and migrations within a cloud environment. Together with resource uti‑
lization estimation, a resource utilization profile can be generated. Monitoring can
also aid in achieving high availability and reliability. When the monitoring system
detects a failure, it can initiate a recovery approach, or alert the cloud provider.

3.4 Resource Pricing

Table 8 provides an overview of recent research focusing on resource pricing. As
most items focus on (virtual) infrastructure pricing, in the remainder of this section,
we will only discuss this functional element. We will first provide a brief overview
of research built on top of static pricing models, followed by research focusing on
dynamic pricing models.

3.4.1 Static Pricing

In the IaaS market, virtual resources are typically priced using a pay‑per‑use pricing
model, and the granularity of usage for such pricing is often at VM level. However,

230 Journal of Network and Systems Management (2020) 28:197–246

1 3

a majority of applications running on top of VMs struggle to fully utilize the allo‑
cated amount of resources, leading to a waste of unused resources and are therefore
not cost‑efficient due to these coarse‑grained pricing schemes [65, 68].

Jin et al. investigated an optimized fine‑grained and fair pricing scheme [65].
The authors address two main issues: the profits of resource providers and cus‑
tomers often contradict mutually, and the VM maintenance overhead like startup
costs are often too huge to be neglected. The presented solution not only derives
an optimal price in the acceptable price range, that satisfies both customers and
providers, but also finds a best‑fill billing cycle to maximize social welfare. Lee
et al. also proposed a resource management mechanism for fine‑grained resource
sharing, which allows for real pay‑per‑use pricing [68]. Their mechanism consists
of a container‑based resource allocator, and a real‑usage based pricing scheme.
By using containers instead of virtual machines, a higher resource utilization
can be achieved and the authors also illustrate that the proposed mechanism can
achieve a near‑optimal cost efficiency.

Tang et al. investigated the problem of joint pricing and capacity planning
in the IaaS provider market [122]. The authors studied two models, in the first

Table 8 Overview of recent research with the main focus on resource pricing

APr dynamic application pricing, IPr dynamic virtual infrastructure Pricing, TC traditional cloud, FC
fog computing, SC single cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

APr IPr TC FC SC MC VM CT

Aazam and Huh [58] 2015 ✓ ✓ ✓ ✓

Huang et al. [64] 2015 ✓ ✓ ✓ ✓

Jin et al. [65] 2015 ✓ ✓ ✓ ✓

Lee et al. [68] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Mashayekhy et al. [48] 2015 ✓ ✓ ✓ ✓

Petri et al. [73] 2015 ✓ ✓ ✓ ✓

Sharma et al. [74] 2015 ✓ ✓ ✓

Wang et al. [76] 2015 ✓ ✓ ✓

Aazam et al. [79] 2016 ✓ ✓ ✓ ✓

Mashayekhy et al. [49] 2016 ✓ ✓ ✓ ✓

Wan et al. [96] 2016 ✓ ✓ ✓

Wanis et al. [97] 2016 ✓ ✓ ✓ ✓ ✓

Babaioff et al. [103] 2017 ✓ ✓ ✓ ✓ ✓

Chi et al. [47] 2017 ✓ ✓ ✓ ✓

Hai and Nguyen [106] 2017 ✓ ✓ ✓ ✓ ✓

Tang et al. [122] 2017 ✓ ✓ ✓ ✓ ✓

Yi et al. [125] 2017 ✓ ✓ ✓ ✓ ✓

Borjigin et al. [134] 2018 ✓ ✓ ✓

Mikavica et al. [50] 2018 ✓ ✓ ✓ ✓

Zhang et al. [162] 2018 ✓ ✓ ✓

231

1 3

Journal of Network and Systems Management (2020) 28:197–246

model there is a single IaaS provider (monopoly market), whereas the second
model considers multiple IaaS providers. For the monopoly market model, the
authors proposed a method for determining the optimal amount of end‑user
requests to admit and number of VMs to lease for SaaS providers, based on the
current resource price charged by the IaaS provider. For the model with multiple
IaaS providers, the authors proposed an iterative game‑theory based algorithm for
finding the so‑called Nash equilibrium. Borjigin et al. also presented an approach
for finding the Nash equilibrium, but within NFV markets [134]. The presented
double‑auction approach aims to maximize the profits for all participants, being
the brokers, the cloud users and the cloud providers.

Yi et al. argue that cloud users with small and short demands, typically cannot
find an instance type offered by a cloud provider that fits their needs or fully utilizes
the purchased instance‑hours [125]. On the other hand, cloud providers are faced
with the challenge of consolidating small, short jobs, which exhibit strong dynam‑
ics, to effectively improve resource utilization. To address these issues, the authors
proposed a novel group buying mechanism that organizes jobs with complementary
resource demands into groups, and allocates them to container group buying deals
predefined by cloud providers. Each group buying deal offers a resource pool for all
the jobs in the deal, which can be implemented as a virtual machine or a physical
server. By running each job inside a container, the proposed solution allows for flex‑
ible resource sharing among the different users in the same group buying deal, while
improving resource utilization for the cloud providers.

Highlights for static virtual infrastructure pricing: Static pricing models are often
based on the number of provisioned VMs. A majority of applications however strug‑
gle to fully utilize the allocated amount of resources, leading to a waste of unused
resources. A fine‑grained pricing model could tackle this issue, presenting an inter‑
esting opportunity for the deployment of applications inside containers. Small and
short tasks can be executed in containers, which can then be grouped and allocated
to VMs. A group buying approach can be used for acquiring the required set of
VMs.

3.4.2 Dynamic Pricing

When using a dynamic, auction-based pricing model, multiple cloud users bid
for a bundle of typically heterogeneous cloud instances. The cloud provider will
then select a set of cloud users, and needs to determine a feasible allocation over
its set of physical machines. A major issue with dynamic auction‑based pricing is
that cloud users are typically self‑interested, meaning that they want to maximize
their own utility. The cloud users could untruthfully alter their requests, for example
by requesting several sets of resources different from their actual need, in order to
manipulate the outcomes of the bidding and to gain an unfair advantage [48, 76, 79].

To tackle this issue, Mashayekhy et al. [48] proposed a resource management
mechanism that consists of three phases: winner determination, provisioning and
allocation, and pricing. In the winner determination phase, the cloud provider
decides which users receive the requested bundles. In the provisioning and alloca‑
tion phase, VM instances are provisioned to the winning users. In the pricing phase,

232 Journal of Network and Systems Management (2020) 28:197–246

1 3

the cloud provider dynamically determines the price that the winning users should
pay for their requests. The authors claim that their solution is strategy‑proof, mean‑
ing that cloud users have no incentives to lie about their requested bundles and their
valuations. In [49], the authors proposed an auction‑based online mechanism for
VM provisioning, allocation and pricing in clouds that considers several types of
resources. The proposed mechanism allocates VM instances to selected users for
the period they are requested for, and ensures that users will continue using their
VM instances for the requested period. In addition, the mechanism determines the
price users have to pay for using the allocated resources. The authors proved that
the mechanism is incentive‑compatible, meaning that it gives incentives to users to
reveal their actual requests.

Cloud data centers often consist of heterogeneous infrastructure, and the cloud
provider could adapt the offered prices based on the used hardware. Zhang et al. for
example presented an approach for the pricing of cloud storage for data centers con‑
sisting of multiple storage tiers that offer distinct characteristics [162]. The approach
is based on a two‑stage auction process for requesting storage capacity and accesses
with given latency requirements. The presented solution provides a hybrid storage
and access optimization framework, which aims to maximize the cloud provider’s
net profit over multiple dimensions.

When the current demand is low, cloud providers can offer their services at a
lower price, e.g. Amazon’s spot instances. Recently, Amazon introduced a new
variety of spot instances, namely spot block instances [163]. These instances run
continuously for a finite duration (1 to 6 hours). Pricing is based on the requested
duration and the available resources, and spot block prices are typically 30 to 45%
less than on‑demand prices. Mikavica et al. analyzed two auction‑based pricing
mechanisms, namely uniform price auction and generalized second‑price auction,
for pricing the cloud provider’s idle resources in the form of spot block instances
[50]. Furthermore, the authors proposed a model for spot block price determina‑
tion under these pricing mechanisms. The presented results show that, regardless of
the chosen auction mechanism and bidding strategy, spot block instances are a cost‑
effective solution that embodies advantages of both on‑demand instances and spot
instances. Wan et al. on the other hand present a reactive pricing algorithm, allow‑
ing the cloud provider to determine the server price based on the actual resource
demand [96]. The presented approach takes into account the renewable energy, spot
power price and the battery level, and dynamically tunes the server price in response
to state changes. The authors focus on pricing of physical servers, but the presented
approach can easily be extended for pricing of VMs.

In a multi-cloud environment, service and resource providers can co‑exist in a
market where the relationship between clients and services depends on the nature of
the application and can be subject to a variety of different QoS constraints. Deciding
whether a cloud provider should host a service in the long‑term would be influenced
by parameters such as the service price, the QoS guarantees required by the custom‑
ers, the deployment costs and the constraints. In this context, Petri et al. introduced a
market model to support federated clouds and investigate its efficiency using two real
application scenarios [73]. The authors also identified a cost‑decision based mechanism
to determine when tasks should be outsourced to external sites in the federation. Wang

233

1 3

Journal of Network and Systems Management (2020) 28:197–246

et al. also focused on multi‑cloud environments, by introducing an intelligent economic
approach for dynamic resource allocation, which can be used for the trading of vari‑
ous kinds of resources among multiple consumers and providers [76]. The presented
approach is based on intelligent combinatorial double auction, and includes a price
formation mechanism, consisting of price prediction and matching. The authors also
proposed a reputation system to exclude dishonest participants, as well as a paddy field
algorithm for selecting the winners.

In a federated cloud environment, services can be provided through two or more
clouds, which is often done using a middleware entity, called a cloud broker. Such cloud
broker is responsible for reserving and managing the resources, discovering services
according to the customer’s demands, SLA negotiation and match‑making between the
involved service provider and the customer. Aazam et al. presented a holistic brokerage
model to manage on‑demand and advanced service reservation, pricing and reimburse‑
ment [79]. The authors consider dynamic management of customer’s characteristics as
well as taking into account historical records when evaluating the economics related
factors. Futhermore, they introduced a mechanism of incentives and penalties, which
helps to establish trust between the cloud users and service providers.

Highlights for dynamic virtual infrastructure pricing: With a dynamic, auction‑
based pricing model, multiple cloud users bid for a bundle of cloud resources. A major
issue with this is that the cloud users can alter their requests in order to manipulate
the bidding outcomes. To tackle this issue, the cloud provider could give incentives
to the users to reveal their actual requests. In federated and other multi‑cloud environ‑
ments, a broker is typically used for reserving and managing resources. When allocat‑
ing resources, this broker could take into account the actual prices offered by the differ‑
ent environments, in order to minimize the costs.

4 Challenges and Opportunities

Virtualization is the fundamental technology that powers cloud computing, and the
majority of cloud providers are still providing virtual resources in the form of VMs
to the cloud users. As a result, most research related to resource management in cloud
environments is focusing on the different aspects related to the provisioning, profiling
and pricing of such VMs. Container technology however is gaining popularity, as it
offers a more lightweight alternative to traditional VMs. Apart from this new virtual‑
ization technology, new cloud models are emerging, bringing the cloud closer to the
end user, which is especially useful for devices with a limited network connection, or
for low‑latency applications. In this section, we identify several challenges and oppor‑
tunities for resource management in cloud environments, mainly related to these recent
trends.

4.1 Dynamic Resource Allocation for Containerized Applications

Dynamic resource allocation for VMs will not always be beneficial for the cloud
environment, due to the costly nature of VM migrations [46]. Existing dynamic

234 Journal of Network and Systems Management (2020) 28:197–246

1 3

resource allocation approaches therefore often put a heavy penalty on such migra‑
tions to avoid unnecessary VM re‑configurations. Containers on the other hand are
more lightweight and portable, but the live migration of containers still remains an
important research challenge [39]. Existing methods can cause significant delays
[39, 41], resulting in a relatively high downtime. Furthermore, when migrating con‑
tainers, a feasible destination host must be selected, which for example supports the
libraries required by the migrated container.

In this context, future research could investigate how existing dynamic alloca‑
tion strategies designed for the allocation of VMs perform when handling con‑
tainers. Lahmann et al. already did some initial research [147], but with the main
focus on memory allocation and memory utilization. Existing methods should also
be extended to support automated destination host selection, which requires suffi‑
cient knowledge about the deployed containers. Furthermore, when containers are
deployed inside VMs, it could be interesting to study the effects of using a static
resource allocation strategy for the provisioning of the virtual machines, combined
with a dynamic strategy for the deployment of containers inside the provisioned
VMs.

4.2 Cloud Management Systems for Bare‑Metal Containers

When containers are deployed inside VMs, actions taken by the hypervisor can have
unpredictable and non‑deterministic effects on the nested containers [45]. Virtual
machines also introduce a noticeable overhead, as they typically run a full software
stack. When running containers directly on the OS of the physical machine, this
overhead could be eliminated, which could lead to a higher scalability, efficiency
and a higher resource utilization. This however introduces the need for a cloud man‑
agement system that manages the allocation of containers on the physical hardware.

There are already some valuable tools available to implement such management
system. Juju for example is an open source tool developed by Canonical, to facili‑
tate the deployment and scaling in cloud environments, and can also be used for
the management of containers [164]. Kubernetes on the other hand is a container
orchestration system, designed for the deployment, scaling and management of
containerized applications, and can be deployed using juju. However, a bare‑metal
cloud container management system should not only provide the required function‑
ality for allocating and provisioning containers, but should also guarantee sufficient
security and isolation between the different tenants. Achieving a clear isolation is
challenging, as containers share the underlying OS kernel [29]. The use of contain‑
ers could introduce some security risks, and a container management system should
implement some protection mechanisms [42–44]. Furthermore, the system should
also monitor the actual amount of resources used over time by the deployed con‑
tainers, in order to charge the customers based on the actual resource usage. Unlike
VMs, containers often have soft limits, meaning that the actual usage can be differ‑
ent from the allocated amount of resources [29, 91]. This presents opportunities for
achieving a higher overall resource utilization, but the management system should

235

1 3

Journal of Network and Systems Management (2020) 28:197–246

also have built‑in functionalities for preventing starvation when highly demanding
containers clog up all available resources.

4.3 Management of a Hybrid Edge/Fog/Cloud Environment

In a hybrid edge‑fog‑cloud environment, resources that may be geographically dis‑
tributed can be collectively exposed as a single elastic infrastructure. This however
introduces the need for a framework that coordinates the management of resources
among the different environments. While there is already some initial research avail‑
able [165], many research challenges are still remaining.

To achieve an efficient deployment of applications in such an environment, a fea‑
sible location for each component needs to be determined [128], ideally in an auton‑
omous way. Computation offloading can be used for transferring resource‑intensive
computations from less powerful devices to a more powerful cloud environment
[84], but tasks and applications can also be offloaded to the fog environment to
reduce latency and preserve bandwidth [135]. The management framework should
support dynamic offloading based on the resource status of the mobile systems and
the current network conditions, but should also satisfy the user‑defined objectives
and constraints.

The use of portable containers presents interesting opportunities to facilitate
the management and migration of the components. For components deployed in a
public cloud environment, security challenges introduced by the multi‑tenant cloud
environment should also be addressed [166, 167]. A hybrid environment should also
allow for auditing in order to create reliable and secure cloud services [168].

4.4 Experimental Validation of Resource Management Strategies

Resource management strategies are often only validated by means of simulations
[169], for example by using CloudSim [170], in which the whole cloud comput‑
ing environment is modeled and simulated in software. This is mainly because of
the nature of the research, as resource allocation strategies for example are often
designed for managing large sets of applications within large cloud environments.
Experimental validation using real cloud hardware would not only be costly as it
would require multiple cloud instances for a relative long time period, the validation
process would also be time‑consuming. Some large‑scale academic testbed environ‑
ments have been developed to support experimentation in a wide variety of research
domains and with increased realism compared to simulations, such as the Fed4Fire
[171] and the FUTEBOL [172] projects. Although these environments allow for
large‑scale system validation and offer valuable toolsets for experimentation, they
have limited infrastructure resource availability as they are heavily used by research‑
ers worldwide, as well as considerable software and hardware maintenance costs.
Typically, these testbeds are used for large and mature validation tests and are less
suited for small repetitive tests with highly frequent updates.

The rise of new cloud types such as fog cloud environments, as well as the
adoption of container technology however can facilitate the validation of resource

236 Journal of Network and Systems Management (2020) 28:197–246

1 3

management strategies. Using low‑cost hardware, a small‑scale test bed could be
built for the initial validation. A Raspberry Pi for example is already powerful
enough to host several containers. By combining experiments on a small‑scale
test bed with simulations using large‑scale scenarios, the research would not only
gain credibility, but an implementation of the proposed solution on real hardware
would also illustrate that the resource management strategy works in practice.

4.5 Towards Serverless Cloud Computing

Although container technology is gaining popularity, cloud computing is still
mainly built around the provisioning of VMs, and cloud users are typically
charged based on the number of provisioned VMs. A majority of applications
however struggle to fully utilize the allocated amount of resources, leading to a
waste of unused resources [65]. A fine‑grained pricing model could tackle this
issue, presenting an interesting opportunity for the deployment of applications
inside containers. This is also one of the main ideas behind serverless computing
[173]. Serverless computing is an event‑driven cloud execution model, in which
the cloud user provides the code and the cloud provider manages the life‑cycle of
the execution environment of that code. Cloud users are then charged based on
the actual amount of resources consumed by an application, rather than on pre‑
purchased units of capacity. Serverless computing could facilitate cloud deploy‑
ments, as the cloud user no longer needs to deploy and manage several cloud
instances, and could also offer economic advantages especially for the execution
of small, short jobs. Furthermore, containers could play an important role in the
evolution of serverless computing, as they can be deployed easily and fast and
introduce minimal overhead. Therefore, serverless computing could become more
adopted in the near future, and it could also facilitate the step towards cloud com‑
puting for a broader audience.

5 Conclusions

In this article, we presented an overview of recent research, published between
2015 and 2018, with the main focus on resource management within cloud envi‑
ronments. We especially investigated how cloud resource management is adapting
to support newly introduced trends, such as containers as the virtualization tech‑
nology and the rise of fog/edge computing. We categorized the research items
based on the main resource management functional element, and provided a brief
summary for each element. While the majority of recent research is still focus‑
ing on the management of virtual machines in a traditional single cloud environ‑
ment, we identified several interesting opportunities for resource management in
a future fully containerized multi‑tiered edge‑fog‑cloud, which could overcome
many shortcomings of today’s cloud environments.

237

1 3

Journal of Network and Systems Management (2020) 28:197–246

References

 1. Swift—openstack. https ://wiki.opens tack.org/wiki/Swift . Accessed 9 Sept 2019
 2. Openstack—build the future of open infrastructure. http://opens tack.org. Accessed 9 Sept 2019
 3. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A compre‑

hensive survey on fog computing: state‑of‑the‑art and research challenges. IEEE Commun. Surv.
Tutor. 20(1), 416–464 (2018). https ://doi.org/10.1109/COMST .2017.27711 53

 4. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues. In: Proceedings
of the 2015 Workshop on Mobile Big Data, Mobidata ’15, pp. 37–42. ACM, New York (2015).
https ://doi.org/10.1145/27573 84.27573 97

 5. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state‑of‑the‑art
review. In: IEEE Transactions on Cloud Computing, pp. 1–1 (2018). https ://doi.org/10.1109/
TCC.2017.27025 86

 6. Rodriguez, M.A., Buyya, R.: Container‑based cluster orchestration systems: a taxonomy and future
directions. Softw. Pract. Exp. (2018). https ://doi.org/10.1002/spe.2660

 7. Bittencourt, L.F., Goldman, A., Madeira, E.R., da Fonseca, N.L., Sakellariou, R.: Scheduling in
distributed systems: a cloud computing perspective. Comput. Sci. Rev. 30, 31–54 (2018). https ://
doi.org/10.1016/j.cosre v.2018.08.002

 8. Herrera, J.G., Botero, J.F.: Resource allocation in NFV: a comprehensive survey. IEEE Trans.
Netw. Serv. Manag. 13(3), 518–532 (2016). https ://doi.org/10.1109/TNSM.2016.25984 20

 9. Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. IEEE
Trans. Netw. Serv. Manag. 23(3), 567–619 (2015). https ://doi.org/10.1007/s1092 2‑014‑9307‑7

 10. Kumar, D., Baranwal, G., Raza, Z., Vidyarthi, D.P.: A survey on spot pricing in cloud computing.
J. Netw. Syst. Manag. 26(4), 809–856 (2018). https ://doi.org/10.1007/s1092 2‑017‑9444‑x

 11. Mann, Z.A.: Allocation of virtual machines in cloud data centers—a survey of problem mod‑
els and optimization algorithms. ACM Comput. Surv. 48(1), 11:1–11:34 (2015). https ://doi.
org/10.1145/27972 11

 12. Masdari, M., Salehi, F., Jalali, M., Bidaki, M.: A survey of PSO‑based scheduling algorithms in
cloud computing. J. Netw. Syst. Manag. 25(1), 122–158 (2017). https ://doi.org/10.1007/s1092
2‑016‑9385‑9

 13. Poullie, P., Bocek, T., Stiller, B.: A survey of the state‑of‑the‑art in fair multi‑resource allocations
for data centers. IEEE Trans. Netw. Serv. Manag. 15(1), 169–183 (2018). https ://doi.org/10.1109/
TNSM.2017.27430 66

 14. Yousafzai, A., Gani, A., Noor, R.M., Sookhak, M., Talebian, H., Shiraz, M., Khan, M.K.: Cloud
resource allocation schemes: review, taxonomy, and opportunities. Knowl. Inf. Syst. 50(2), 347–
381 (2017). https ://doi.org/10.1007/s1011 5‑016‑0951‑y

 15. Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud computing resource
scheduling and a survey of its evolutionary approaches. ACM Comput. Surv. 47(4), 63:1–63:33
(2015). https ://doi.org/10.1145/27883 97

 16. Mell, P., Grance, T.: Sp 800‑145. The NIST definition of cloud computing. Technical report (2011)
 17. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun. ACM 53(4), 50–58
(2010). https ://doi.org/10.1145/17216 54.17216 72

 18. Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., Barcellos, M.,
Felber, P., Riviere, E.: Edge‑centric computing: vision and challenges. SIGCOMM Comput. Com‑
mun. Rev. 45(5), 37–42 (2015). https ://doi.org/10.1145/28313 47.28313 54

 19. Hong, H.: From cloud computing to FOG computing: unleash the power of edge and end devices.
In: 2017 IEEE International Conference on Cloud Computing Technology and Science (Cloud‑
Com), pp. 331–334 (2017). https ://doi.org/10.1109/Cloud Com.2017.53

 20. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things.
In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pp. 13–16. ACM, New York (2012). https ://doi.org/10.1145/23425 09.23425 13

 21. Iorga, M., Feldman, L.B., Barton, R., Martin, M., Goren, N.S., Mahmoudi, C.: Sp 500‑325. Fog
computing conceptual model. Technical report (2018)

 22. Dolui, K., Datta, S.K.: Comparison of edge computing implementations: Fog computing, cloudlet
and mobile edge computing. In: 2017 Global Internet of Things Summit (GIoTS), pp. 1–6 (2017).
https ://doi.org/10.1109/GIOTS .2017.80162 13

https://wiki.openstack.org/wiki/Swift
http://openstack.org
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1002/spe.2660
https://doi.org/10.1016/j.cosrev.2018.08.002
https://doi.org/10.1016/j.cosrev.2018.08.002
https://doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/s10922-017-9444-x
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1007/s10922-016-9385-9
https://doi.org/10.1007/s10922-016-9385-9
https://doi.org/10.1109/TNSM.2017.2743066
https://doi.org/10.1109/TNSM.2017.2743066
https://doi.org/10.1007/s10115-016-0951-y
https://doi.org/10.1145/2788397
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1109/CloudCom.2017.53
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/GIOTS.2017.8016213

238 Journal of Network and Systems Management (2020) 28:197–246

1 3

 23. Haouari, F., Faraj, R., AlJa’am, J.M.: Fog computing potentials, applications, and challenges. In:
2018 International Conference on Computer and Applications (ICCA), pp. 399–406 (2018). https ://
doi.org/10.1109/COMAP P.2018.84601 82

 24. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Fog computing: enabling the management and
orchestration of smart city applications in 5G networks. Entropy (2018). https ://doi.org/10.3390/
e2001 0004

 25. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the con‑
text of internet of things. IEEE Trans. Cloud Comput. 6(1), 46–59 (2018). https ://doi.org/10.1109/
TCC.2015.24852 06

 26. Yao, J., Ansari, N.: Qos‑aware fog resource provisioning and mobile device power control
in IOT networks. IEEE Trans. Netw. Serv. Manag. 16(1), 1 (2018). https ://doi.org/10.1109/
TNSM.2018.28884 81

 27. Adufu, T., Choi, J., Kim, Y.: Is container‑based technology a winner for high performance scien‑
tific applications? In: 2015 17th Asia‑Pacific Network Operations and Management Symposium
(APNOMS), pp. 507–510 (2015). https ://doi.org/10.1109/APNOM S.2015.72753 79

 28. Eberbach, E., Reuter, A.: Toward El Dorado for cloud computing: lightweight VMs, contain‑
ers, meta‑containers and oracles. In: Proceedings of the 2015 European Conference on Soft‑
ware Architecture Workshops, ECSAW ’15, pp. 13:1–13:7. ACM, New York (2015). https ://doi.
org/10.1145/27974 33.27974 46

 29. Sharma, P., Chaufournier, L., Shenoy, P., Tay, Y.C.: Containers and virtual machines at scale: A
comparative study. In: Proceedings of the 17th International Middleware Conference, Middleware
’16, pp. 1:1–1:13. ACM, New York (2016). https ://doi.org/10.1145/29883 36.29883 37

 30. Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization techniques compared: performance,
resource, and power usage overheads in clouds. In: Proceedings of the 2018 ACM/SPEC Interna‑
tional Conference on Performance Engineering, ICPE ’18, pp. 145–156. ACM, New York (2018).
https ://doi.org/10.1145/31844 07.31844 14

 31. Linux containers. https ://linux conta iners .org. Accessed 9 Sept 2019
 32. Docker—enterprise container platform. https ://www.docke r.com. Accessed 9 Sept 2019
 33. Docker–docker hub. https ://www.docke r.com/produ cts/docke r‑hub. Accessed 9 Sept 2019
 34. Kubernetes—production‑grade container orchestration. https ://kuber netes .io. Accessed 9 Sept

2019
 35. Docker—swarm mode overview. https ://docs.docke r.com/engin e/swarm /. Accessed 9 Sept 2019
 36. Docker blog—extending docker enterprise edition to support kubernetes. https ://blog.docke

r.com/2017/10/docke r‑enter prise ‑editi on‑kuber netes /. Accessed 9 Sept 2019
 37. Reniers, V.: The prospects for multi‑cloud deployment of SaaS applications with container orches‑

tration platforms. In: Proceedings of the Doctoral Symposium of the 17th International Middle‑
ware Conference, Middleware Doctoral Symposium’16, pp. 5:1–5:2. ACM, New York (2016).
https ://doi.org/10.1145/30099 25.30099 30

 38. Zhang, F., Liu, G., Fu, X., Yahyapour, R.: A survey on virtual machine migration: challenges,
techniques, and open issues. IEEE Commun. Surv. Tutor. 20(2), 1206–1243 (2018). https ://doi.
org/10.1109/COMST .2018.27948 81

 39. Stoyanov, R., Kollingbaum, M.J.: Efficient live migration of Linux containers. In: Yokota, R., Wei‑
land, M., Shalf, J., Alam, S. (eds.) High Performance Computing, pp. 184–193. Springer Interna‑
tional Publishing, Cham (2018)

 40. CRIU—checkpoint/restore in userspace. https ://criu.org. Accessed 9 Sept 2019
 41. Govindaraj, K., Artemenko, A.: Container live migration for latency critical industrial applications

on edge computing. In: 2018 IEEE 23rd International Conference on Emerging Technologies and
Factory Automation (ETFA), vol. 1, pp. 83–90. (2018). https ://doi.org/10.1109/ETFA.2018.85026
59

 42. Mattetti, M., Shulman‑Peleg, A., Allouche, Y., Corradi, A., Dolev, S., Foschini, L.: Securing the
infrastructure and the workloads of Linux containers. In: 2015 IEEE Conference on Communica‑
tions and Network Security (CNS), pp. 559–567 (2015). https ://doi.org/10.1109/CNS.2015.73468
69

 43. Young, E.G., Zhu, P., Caraza‑Harter, T., Arpaci‑Dusseau, A.C., Arpaci‑Dusseau, R.H.: The true
cost of containing: a gvisor case study. In: 11th USENIX Workshop on Hot Topics in Cloud Com‑
puting (HotCloud 19). USENIX Association, Renton (2019). https ://www.useni x.org/confe rence /
hotcl oud19 /prese ntati on/young

 44. Bui, T.: Analysis of Docker Security. arXiv e‑prints (2015)

https://doi.org/10.1109/COMAPP.2018.8460182
https://doi.org/10.1109/COMAPP.2018.8460182
https://doi.org/10.3390/e20010004
https://doi.org/10.3390/e20010004
https://doi.org/10.1109/TCC.2015.2485206
https://doi.org/10.1109/TCC.2015.2485206
https://doi.org/10.1109/TNSM.2018.2888481
https://doi.org/10.1109/TNSM.2018.2888481
https://doi.org/10.1109/APNOMS.2015.7275379
https://doi.org/10.1145/2797433.2797446
https://doi.org/10.1145/2797433.2797446
https://doi.org/10.1145/2988336.2988337
https://doi.org/10.1145/3184407.3184414
https://linuxcontainers.org
https://www.docker.com
https://www.docker.com/products/docker-hub
https://kubernetes.io
https://docs.docker.com/engine/swarm/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://blog.docker.com/2017/10/docker-enterprise-edition-kubernetes/
https://doi.org/10.1145/3009925.3009930
https://doi.org/10.1109/COMST.2018.2794881
https://doi.org/10.1109/COMST.2018.2794881
https://criu.org
https://doi.org/10.1109/ETFA.2018.8502659
https://doi.org/10.1109/ETFA.2018.8502659
https://doi.org/10.1109/CNS.2015.7346869
https://doi.org/10.1109/CNS.2015.7346869
https://www.usenix.org/conference/hotcloud19/presentation/young
https://www.usenix.org/conference/hotcloud19/presentation/young

239

1 3

Journal of Network and Systems Management (2020) 28:197–246

 45. Prakash, C., Prashanth, P., Bellur, U., Kulkarni, P.: Deterministic container resource management
in derivative clouds. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp.
79–89 (2018). https ://doi.org/10.1109/IC2E.2018.00030

 46. Wolke, A., Bichler, M., Setzer, T.: Planning vs. dynamic control: resource allocation in cor‑
porate clouds. IEEE Trans. Cloud Comput. 4(3), 322–335 (2016). https ://doi.org/10.1109/
TCC.2014.23603 99

 47. Chi, Y., Li, X., Wang, X., Leung, V.C.M., Shami, A.: A fairness‑aware pricing methodology for
revenue enhancement in service cloud infrastructure. IEEE Syst. J. 11(2), 1006–1017 (2017). https
://doi.org/10.1109/JSYST .2015.24487 19

 48. Mashayekhy, L., Nejad, M.M., Grosu, D.: Physical machine resource management in clouds:
a mechanism design approach. IEEE Trans. Cloud Comput. 3(3), 247–260 (2015). https ://doi.
org/10.1109/TCC.2014.23694 19

 49. Mashayekhy, L., Nejad, M.M., Grosu, D., Vasilakos, A.V.: An online mechanism for resource
allocation and pricing in clouds. IEEE Trans. Comput. 65(4), 1172–1184 (2016). https ://doi.
org/10.1109/TC.2015.24448 43

 50. Mikavica, B., Kostić‑Ljubisavljević, A.: Pricing and bidding strategies for cloud spot block
instances. In: 2018 41st International Convention on Information and Communication Technol‑
ogy, Electronics and Microelectronics (MIPRO), pp. 0384–0389 (2018). https ://doi.org/10.23919 /
MIPRO .2018.84000 73

 51. Weinman, J.: Cloud pricing and markets. IEEE Cloud Comput. 2(1), 10–13 (2015). https ://doi.
org/10.1109/MCC.2015.3

 52. ACM Transactions on Internet Technology (TOIT). https ://dl.acm.org/citat ion.cfm?id=J780.
Accessed 9 Sept 2019

 53. IEEE transactions on cloud computing (tcc). https ://www.compu ter.org/csdl/journ al/cc. Accessed 9
Sept 2019

 54. IEEE transactions on parallel and distributed systems (TPDS). https ://www.compu ter.org/csdl/
journ al/td. Accessed 9 Sept 2019

 55. IEEE transactions on network and service management (TNSM). https ://www.comso c.org/publi
catio ns/journ als/ieee‑tnsm. Accessed 9 Sept 2019

 56. Springer journal of network and systems management (jnsm). https ://www.sprin ger.com/compu ter/
commu nicat ion+netwo rks/journ al/10922 . Accessed 9 Sept 2019

 57. Wiley journal of software: practice and experience (spe). https ://onlin elibr ary.wiley .com/journ
al/10970 24x. Accessed 9 Sept 2019

 58. Aazam, M., Huh, E.: Fog computing micro datacenter based dynamic resource estimation and pric‑
ing model for iot. In: 2015 IEEE 29th International Conference on Advanced Information Net‑
working and Applications, pp. 687–694 (2015). https ://doi.org/10.1109/AINA.2015.254

 59. Abdelbaky, M., Diaz‑Montes, J., Parashar, M., Unuvar, M., Steinder, M.: Docker containers across
multiple clouds and data centers. In: 2015 IEEE/ACM 8th International Conference on Utility and
Cloud Computing (UCC), pp. 368–371 (2015)

 60. Amannejad, Y., Krishnamurthy, D., Far, B.: Managing performance interference in cloud‑based
web services. IEEE Trans. Netw. Serv. Manag. 12(3), 320–333 (2015). https ://doi.org/10.1109/
TNSM.2015.24561 72

 61. Chiang, Y., Ouyang, Y., Hsu, C.: An efficient green control algorithm in cloud computing for
cost optimization. IEEE Trans. Cloud Comput. 3(2), 145–155 (2015). https ://doi.org/10.1109/
TCC.2014.23504 92

 62. Dabbagh, M., Hamdaoui, B., Guizani, M., Rayes, A.: Energy‑efficient resource allocation and
provisioning framework for cloud data centers. IEEE Trans. Netw. Serv. Manag. 12(3), 377–391
(2015). https ://doi.org/10.1109/TNSM.2015.24364 08

 63. Dhakate, S., Godbole, A.: Distributed cloud monitoring using docker as next generation container
virtualization technology. In: 2015 Annual IEEE India Conference (INDICON), pp. 1–5 (2015).
https ://doi.org/10.1109/INDIC ON.2015.74437 71

 64. Huang, X., Yu, R., Kang, J., Ding, J., Maharjan, S., Gjessing, S., Zhang, Y.: Dynamic resource
pricing and scalable cooperation for mobile cloud computing. In: 2015 IEEE 12th Intl Conf on
Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted
Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its
Associated Workshops (UIC‑ATC‑ScalCom), pp. 786–792 (2015). https ://doi.org/10.1109/UIC‑
ATC‑ScalC om‑CBDCo m‑IoP.2015.155

https://doi.org/10.1109/IC2E.2018.00030
https://doi.org/10.1109/TCC.2014.2360399
https://doi.org/10.1109/TCC.2014.2360399
https://doi.org/10.1109/JSYST.2015.2448719
https://doi.org/10.1109/JSYST.2015.2448719
https://doi.org/10.1109/TCC.2014.2369419
https://doi.org/10.1109/TCC.2014.2369419
https://doi.org/10.1109/TC.2015.2444843
https://doi.org/10.1109/TC.2015.2444843
https://doi.org/10.23919/MIPRO.2018.8400073
https://doi.org/10.23919/MIPRO.2018.8400073
https://doi.org/10.1109/MCC.2015.3
https://doi.org/10.1109/MCC.2015.3
https://dl.acm.org/citation.cfm?id=J780
https://www.computer.org/csdl/journal/cc
https://www.computer.org/csdl/journal/td
https://www.computer.org/csdl/journal/td
https://www.comsoc.org/publications/journals/ieee-tnsm
https://www.comsoc.org/publications/journals/ieee-tnsm
https://www.springer.com/computer/communication+networks/journal/10922
https://www.springer.com/computer/communication+networks/journal/10922
https://onlinelibrary.wiley.com/journal/1097024x
https://onlinelibrary.wiley.com/journal/1097024x
https://doi.org/10.1109/AINA.2015.254
https://doi.org/10.1109/TNSM.2015.2456172
https://doi.org/10.1109/TNSM.2015.2456172
https://doi.org/10.1109/TCC.2014.2350492
https://doi.org/10.1109/TCC.2014.2350492
https://doi.org/10.1109/TNSM.2015.2436408
https://doi.org/10.1109/INDICON.2015.7443771
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.155
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.155

240 Journal of Network and Systems Management (2020) 28:197–246

1 3

 65. Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine‑grained pricing of IaaS
cloud platform. IEEE Trans. Cloud Comput. 3(4), 436–448 (2015). https ://doi.org/10.1109/
TCC.2014.23446 80

 66. Katsalis, K., Paschos, G.S., Viniotis, Y., Tassiulas, L.: Cpu provisioning algorithms for service dif‑
ferentiation in cloud‑based environments. IEEE Trans. Netw. Serv. Manag. 12(1), 61–74 (2015).
https ://doi.org/10.1109/TNSM.2015.23973 45

 67. Kumbhare, A.G., Simmhan, Y., Frincu, M., Prasanna, V.K.: Reactive resource provisioning heu‑
ristics for dynamic dataflows on cloud infrastructure. IEEE Trans. Cloud Comput. 3(2), 105–118
(2015). https ://doi.org/10.1109/TCC.2015.23943 16

 68. Lee, Y.C., Kim, Y., Han, H., Kang, S.: Fine‑grained, adaptive resource sharing for real pay‑per‑
use pricing in clouds. In: 2015 International Conference on Cloud and Autonomic Computing, pp.
236–243 (2015). https ://doi.org/10.1109/ICCAC .2015.36

 69. Li, W., Kanso, A.: Comparing containers versus virtual machines for achieving high availability.
In: 2015 IEEE International Conference on Cloud Engineering, pp. 353–358 (2015). https ://doi.
org/10.1109/IC2E.2015.79

 70. Liu, J., Zhang, Y., Zhou, Y., Zhang, D., Liu, H.: Aggressive resource provisioning for ensuring
qos in virtualized environments. IEEE Trans. Cloud Comput. 3(2), 119–131 (2015). https ://doi.
org/10.1109/TCC.2014.23530 45

 71. Moens, H., Dhoedt, B., Turck, F.D.: Allocating resources for customizable multi‑tenant applica‑
tions in clouds using dynamic feature placement. Future Gener. Comput. Syst. 53, 63–76 (2015).
https ://doi.org/10.1016/j.futur e.2015.05.017

 72. Mukherjee, J., Krishnamurthy, D., Rolia, J.: Resource contention detection in virtualized envi‑
ronments. IEEE Trans. Netw. Serv. Manag. 12(2), 217–231 (2015). https ://doi.org/10.1109/
TNSM.2015.24072 73

 73. Petri, I., Diaz‑Montes, J., Zou, M., Beach, T., Rana, O., Parashar, M.: Market models for fed‑
erated clouds. IEEE Trans. Cloud Comput. 3(3), 398–410 (2015). https ://doi.org/10.1109/
TCC.2015.24157 92

 74. Sharma, B., Thulasiram, R.K., Thulasiraman, P., Buyya, R.: Clabacus: a risk‑adjusted cloud
resources pricing model using financial option theory. IEEE Trans. Cloud Comput. 3(3), 332–344
(2015). https ://doi.org/10.1109/TCC.2014.23820 99

 75. Stankovski, V., Taherizadeh, S., Taylor, I., Jones, A., Mastroianni, C., Becker, B., Suhartanto, H.:
Towards an environment supporting resilience, high‑availability, reproducibility and reliability for
cloud applications. In: 2015 IEEE/ACM 8th International Conference on Utility and Cloud Com‑
puting (UCC), pp. 383–386 (2015). https ://doi.org/10.1109/UCC.2015.61

 76. Wang, X., Wang, X., Che, H., Li, K., Huang, M., Gao, C.: An intelligent economic approach for
dynamic resource allocation in cloud services. IEEE Trans. Cloud Comput. 3(3), 275–289 (2015).
https ://doi.org/10.1109/TCC.2015.24157 76

 77. Wuhib, F., Yanggratoke, R., Stadler, R.: Allocating compute and network resources under manage‑
ment objectives in large‑scale clouds. J. Netw. Syst. Manag. 23(1), 111–136 (2015). https ://doi.
org/10.1007/s1092 2‑013‑9280‑6

 78. Zhang, Q., Li, S., Li, Z., Xing, Y., Yang, Z., Dai, Y.: Charm: a cost‑efficient multi‑cloud data host‑
ing scheme with high availability. IEEE Trans. Cloud Comput. 3(3), 372–386 (2015). https ://doi.
org/10.1109/TCC.2015.24175 34

 79. Aazam, M., Huh, E., St‑Hilaire, M., Lung, C., Lambadaris, I.: Cloud customer’s historical record
based resource pricing. IEEE Trans. Parallel Distrib. Syst. 27(7), 1929–1940 (2016). https ://doi.
org/10.1109/TPDS.2015.24738 50

 80. Ayoubi, S., Zhang, Y., Assi, C.: A reliable embedding framework for elastic virtualized services
in the cloud. IEEE Trans. Netw. Serv. Manag. 13(3), 489–503 (2016). https ://doi.org/10.1109/
TNSM.2016.25814 84

 81. Choi, S., Myung, R., Choi, H., Chung, K., Gil, J., Yu, H.: GPSF: General‑purpose scheduling
framework for container based on cloud environment. In: 2016 IEEE International Conference on
Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp.
769–772 (2016). https ://doi.org/10.1109/iThin gs‑Green Com‑CPSCo m‑Smart Data.2016.162

 82. Da Cunha Rodrigues, G., Calheiros, R.N., Guimaraes, V.T., Santos, G.L.d., de Carvalho, M.B.,
Granville, L.Z., Tarouco, L.M.R., Buyya, R.: Monitoring of cloud computing environments:
concepts, solutions, trends, and future directions. In: Proceedings of the 31st Annual ACM

https://doi.org/10.1109/TCC.2014.2344680
https://doi.org/10.1109/TCC.2014.2344680
https://doi.org/10.1109/TNSM.2015.2397345
https://doi.org/10.1109/TCC.2015.2394316
https://doi.org/10.1109/ICCAC.2015.36
https://doi.org/10.1109/IC2E.2015.79
https://doi.org/10.1109/IC2E.2015.79
https://doi.org/10.1109/TCC.2014.2353045
https://doi.org/10.1109/TCC.2014.2353045
https://doi.org/10.1016/j.future.2015.05.017
https://doi.org/10.1109/TNSM.2015.2407273
https://doi.org/10.1109/TNSM.2015.2407273
https://doi.org/10.1109/TCC.2015.2415792
https://doi.org/10.1109/TCC.2015.2415792
https://doi.org/10.1109/TCC.2014.2382099
https://doi.org/10.1109/UCC.2015.61
https://doi.org/10.1109/TCC.2015.2415776
https://doi.org/10.1007/s10922-013-9280-6
https://doi.org/10.1007/s10922-013-9280-6
https://doi.org/10.1109/TCC.2015.2417534
https://doi.org/10.1109/TCC.2015.2417534
https://doi.org/10.1109/TPDS.2015.2473850
https://doi.org/10.1109/TPDS.2015.2473850
https://doi.org/10.1109/TNSM.2016.2581484
https://doi.org/10.1109/TNSM.2016.2581484
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.162

241

1 3

Journal of Network and Systems Management (2020) 28:197–246

Symposium on Applied Computing, SAC ’16, pp. 378–383. ACM, New York (2016). https ://doi.
org/10.1145/28516 13.28516 19

 83. Dai, X., Wang, J.M., Bensaou, B.: Energy‑efficient virtual machines scheduling in multi‑ten‑
ant data centers. IEEE Trans. Cloud Comput. 4(2), 210–221 (2016). https ://doi.org/10.1109/
TCC.2015.24814 01

 84. Elgazzar, K., Martin, P., Hassanein, H.S.: Cloud‑assisted computation offloading to support
mobile services. IEEE Trans. Cloud Comput. 4(3), 279–292 (2016). https ://doi.org/10.1109/
TCC.2014.23504 71

 85. Espling, D., Larsson, L., Li, W., Tordsson, J., Elmroth, E.: Modeling and placement of cloud
services with internal structure. IEEE Trans. Cloud Comput. 4(4), 429–439 (2016). https ://doi.
org/10.1109/TCC.2014.23621 20

 86. Goudarzi, H., Pedram, M.: Hierarchical sla‑driven resource management for peak power‑aware and
energy‑efficient operation of a cloud datacenter. IEEE Trans. Cloud Comput. 4(2), 222–236 (2016).
https ://doi.org/10.1109/TCC.2015.24743 69

 87. Huang, Z., Tsang, D.H.K.: M‑convex VM consolidation: towards a better VM workload consolida‑
tion. IEEE Trans. Cloud Comput. 4(4), 415–428 (2016). https ://doi.org/10.1109/TCC.2014.23694
23

 88. Kang, D., Choi, G., Kim, S., Hwang, I., Youn, C.: Workload‑aware resource management for
energy efficient heterogeneous docker containers. In: 2016 IEEE Region 10 Conference (TEN‑
CON), pp. 2428–2431 (2016). https ://doi.org/10.1109/TENCO N.2016.78484 67

 89. Khatua, S., Sur, P.K., Das, R.K., Mukherjee, N.: Heuristic‑based resource reservation strategies
for public cloud. IEEE Trans. Cloud Comput. 4(4), 392–401 (2016). https ://doi.org/10.1109/
TCC.2014.23694 34

 90. Mishra, M., Bellur, U.: Whither tightness of packing? The case for stable VM placement. IEEE
Trans. Cloud Comput. 4(4), 481–494 (2016). https ://doi.org/10.1109/TCC.2014.23787 56

 91. Nakagawa, G., Oikawa, S.: Behavior‑based memory resource management for container‑based vir‑
tualization. In: 2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl
Conf on Computational Science/Intelligence and Applied Informatics/1st Intl Conf on Big Data,
Cloud Computing, Data Science Engineering (ACIT‑CSII‑BCD), pp. 213–217 (2016). https ://doi.
org/10.1109/ACIT‑CSII‑BCD.2016.049

 92. Pantazoglou, M., Tzortzakis, G., Delis, A.: Decentralized and energy‑efficient workload man‑
agement in enterprise clouds. IEEE Trans. Cloud Comput. 4(2), 196–209 (2016). https ://doi.
org/10.1109/TCC.2015.24648 17

 93. d R Righi, R., Rodrigues, V.F., da Costa, C.A., Galante, G., de Bona, L.C.E., Ferreto, T.: Autoelas‑
tic: automatic resource elasticity for high performance applications in the cloud. IEEE Trans.
Cloud Comput. 4(1), 6–19 (2016). https ://doi.org/10.1109/TCC.2015.24248 76

 94. Salah, K., Elbadawi, K., Boutaba, R.: An analytical model for estimating cloud resources of elastic
services. J. Netw. Syst. Manag. 24(2), 285–308 (2016). https ://doi.org/10.1007/s1092 2‑015‑9352‑x

 95. Wajid, U., Cappiello, C., Plebani, P., Pernici, B., Mehandjiev, N., Vitali, M., Gienger, M., Kavous‑
sanakis, K., Margery, D., Perez, D.G., Sampaio, P.: On achieving energy efficiency and reducing
CO

2
 footprint in cloud computing. IEEE Trans. Cloud Comput. 4(2), 138–151 (2016). https ://doi.

org/10.1109/TCC.2015.24539 88
 96. Wan, J., Zhang, R., Gui, X., Xu, B.: Reactive pricing: an adaptive pricing policy for cloud pro‑

viders to maximize profit. IEEE Trans. Netw. Serv. Manag. 13(4), 941–953 (2016). https ://doi.
org/10.1109/TNSM.2016.26183 94

 97. Wanis, B., Samaan, N., Karmouch, A.: Efficient modeling and demand allocation for differentiated
cloud virtual‑network as‑a service offerings. IEEE Trans. Cloud Comput. 4(4), 376–391 (2016).
https ://doi.org/10.1109/TCC.2015.23898 14

 98. Wu, H., Ren, S., Garzoglio, G., Timm, S., Bernabeu, G., Chadwick, K., Noh, S.: A reference model
for virtual machine launching overhead. IEEE Trans. Cloud Comput. 4(3), 250–264 (2016). https ://
doi.org/10.1109/TCC.2014.23694 39

 99. Xu, X., Dou, W., Zhang, X., Chen, J.: Enreal: An energy‑aware resource allocation method for
scientific workflow executions in cloud environment. IEEE Trans. Cloud Comput. 4(2), 166–179
(2016). https ://doi.org/10.1109/TCC.2015.24539 66

 100. Zhou, A., Wang, S., Zheng, Z., Hsu, C., Lyu, M.R., Yang, F.: On cloud service reliability enhance‑
ment with optimal resource usage. IEEE Trans. Cloud Comput. 4(4), 452–466 (2016). https ://doi.
org/10.1109/TCC.2014.23694 21

https://doi.org/10.1145/2851613.2851619
https://doi.org/10.1145/2851613.2851619
https://doi.org/10.1109/TCC.2015.2481401
https://doi.org/10.1109/TCC.2015.2481401
https://doi.org/10.1109/TCC.2014.2350471
https://doi.org/10.1109/TCC.2014.2350471
https://doi.org/10.1109/TCC.2014.2362120
https://doi.org/10.1109/TCC.2014.2362120
https://doi.org/10.1109/TCC.2015.2474369
https://doi.org/10.1109/TCC.2014.2369423
https://doi.org/10.1109/TCC.2014.2369423
https://doi.org/10.1109/TENCON.2016.7848467
https://doi.org/10.1109/TCC.2014.2369434
https://doi.org/10.1109/TCC.2014.2369434
https://doi.org/10.1109/TCC.2014.2378756
https://doi.org/10.1109/ACIT-CSII-BCD.2016.049
https://doi.org/10.1109/ACIT-CSII-BCD.2016.049
https://doi.org/10.1109/TCC.2015.2464817
https://doi.org/10.1109/TCC.2015.2464817
https://doi.org/10.1109/TCC.2015.2424876
https://doi.org/10.1007/s10922-015-9352-x
https://doi.org/10.1109/TCC.2015.2453988
https://doi.org/10.1109/TCC.2015.2453988
https://doi.org/10.1109/TNSM.2016.2618394
https://doi.org/10.1109/TNSM.2016.2618394
https://doi.org/10.1109/TCC.2015.2389814
https://doi.org/10.1109/TCC.2014.2369439
https://doi.org/10.1109/TCC.2014.2369439
https://doi.org/10.1109/TCC.2015.2453966
https://doi.org/10.1109/TCC.2014.2369421
https://doi.org/10.1109/TCC.2014.2369421

242 Journal of Network and Systems Management (2020) 28:197–246

1 3

 101. Awada, U., Barker, A.: Improving resource efficiency of container‑instance clusters on clouds.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pp. 929–934 (2017). https ://doi.org/10.1109/CCGRI D.2017.113

 102. Awada, U., Barker, A.: Resource efficiency in container‑instance clusters. In: Proceedings of the
Second International Conference on Internet of Things, Data and Cloud Computing, ICC ’17, pp.
181:1–181:5. ACM, New York (2017). https ://doi.org/10.1145/30188 96.30567 98

 103. Babaioff, M., Mansour, Y., Nisan, N., Noti, G., Curino, C., Ganapathy, N., Menache, I., Reingold,
O., Tennenholtz, M., Timnat, E.: Era: A framework for economic resource allocation for the cloud.
In: Proceedings of the 26th International Conference on World Wide Web Companion, WWW
’17 Companion, pp. 635–642. International World Wide Web Conferences Steering Committee,
Republic and Canton of Geneva, Switzerland (2017). https ://doi.org/10.1145/30410 21.30541 86

 104. Chard, R., Chard, K., Wolski, R., Madduri, R., Ng, B., Bubendorfer, K., Foster, I.: Cost‑aware
cloud profiling, prediction, and provisioning as a service. IEEE Cloud Comput. 4(4), 48–59 (2017).
https ://doi.org/10.1109/MCC.2017.37910 25

 105. Dalmazo, B.L., Vilela, J.P., Curado, M.: Performance analysis of network traffic predictors in the
cloud. J. Netw. Syst. Manag. 25(2), 290–320 (2017). https ://doi.org/10.1007/s1092 2‑016‑9392‑x

 106. Hai, T.H., Nguyen, P.: A pricing model for sharing cloudlets in mobile cloud computing. In: 2017
International Conference on Advanced Computing and Applications (ACOMP), pp. 149–153
(2017). https ://doi.org/10.1109/ACOMP .2017.13

 107. Hoque, S., d. Brito, M.S., Willner, A., Keil, O., Magedanz, T.: Towards container orchestration
in fog computing infrastructures. In: 2017 IEEE 41st Annual Computer Software and Applica‑
tions Conference (COMPSAC), vol. 2, pp. 294–299 (2017). https ://doi.org/10.1109/COMPS
AC.2017.248

 108. Jin, X., Zhang, F., Wang, L., Hu, S., Zhou, B., Liu, Z.: Joint optimization of operational cost and
performance interference in cloud data centers. IEEE Trans. Cloud Comput. 5(4), 697–711 (2017).
https ://doi.org/10.1109/TCC.2015.24498 39

 109. Khasnabish, J.N., Mithani, M.F., Rao, S.: Tier‑centric resource allocation in multi‑tier cloud sys‑
tems. IEEE Trans. Cloud Comput. 5(3), 576–589 (2017). https ://doi.org/10.1109/TCC.2015.24248
88

 110. Li, J., Ma, R., Guan, H., Wei, D.S.L.: Accurate cpu proportional share and predictable i/o respon‑
siveness for virtual machine monitor: a case study in xen. IEEE Trans. Cloud Comput. 5(4), 604–
616 (2017). https ://doi.org/10.1109/TCC.2015.24417 05

 111. Li, J.Z., Woodside, M., Chinneck, J., Litiou, M.: Adaptive cloud deployment using persistence
strategies and application awareness. IEEE Trans. Cloud Comput. 5(2), 277–290 (2017). https ://
doi.org/10.1109/TCC.2015.24098 73

 112. Lloyd, W.J., Pallickara, S., David, O., Arabi, M., Wible, T., Ditty, J., Rojas, K.: Demystifying the
clouds: harnessing resource utilization models for cost effective infrastructure alternatives. IEEE
Trans. Cloud Comput. 5(4), 667–680 (2017). https ://doi.org/10.1109/TCC.2015.24303 39

 113. Maenhaut, P.J., Moens, H., Volckaert, B., Ongenae, V., Turck, F.D.: A dynamic tenant‑defined
storage system for efficient resource management in cloud applications. J. Netw. Comput. Appl. 93,
182–196 (2017). https ://doi.org/10.1016/j.jnca.2017.05.014

 114. Mebrek, A., Merghem‑Boulahia, L., Esseghir, M.: Efficient green solution for a balanced energy
consumption and delay in the IOT‑fog‑cloud computing. In: 2017 IEEE 16th International Sym‑
posium on Network Computing and Applications (NCA), pp. 1–4 (2017). https ://doi.org/10.1109/
NCA.2017.81713 59

 115. Mechtri, M., Hadji, M., Zeghlache, D.: Exact and heuristic resource mapping algorithms for
distributed and hybrid clouds. IEEE Trans. Cloud Comput. 5(4), 681–696 (2017). https ://doi.
org/10.1109/TCC.2015.24271 92

 116. Merzoug, S., Kazar, O., Derdour, M.: Intelligent strategy of allocation resource for cloud data‑
center based on MAS CP approach. In: Proceedings of the International Conference on Comput‑
ing for Engineering and Sciences, ICCES ’17, pp. 50–55. ACM, New York (2017). https ://doi.
org/10.1145/31291 86.31291 97

 117. Mireslami, S., Rakai, L., Far, B.H., Wang, M.: Simultaneous cost and qos optimization for
cloud resource allocation. IEEE Trans. Netw. Serv. Manag. 14(3), 676–689 (2017). https ://doi.
org/10.1109/TNSM.2017.27380 26

 118. Nardelli, M., Hochreiner, C., Schulte, S.: Elastic provisioning of virtual machines for container
deployment. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance

https://doi.org/10.1109/CCGRID.2017.113
https://doi.org/10.1145/3018896.3056798
https://doi.org/10.1145/3041021.3054186
https://doi.org/10.1109/MCC.2017.3791025
https://doi.org/10.1007/s10922-016-9392-x
https://doi.org/10.1109/ACOMP.2017.13
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1109/COMPSAC.2017.248
https://doi.org/10.1109/TCC.2015.2449839
https://doi.org/10.1109/TCC.2015.2424888
https://doi.org/10.1109/TCC.2015.2424888
https://doi.org/10.1109/TCC.2015.2441705
https://doi.org/10.1109/TCC.2015.2409873
https://doi.org/10.1109/TCC.2015.2409873
https://doi.org/10.1109/TCC.2015.2430339
https://doi.org/10.1016/j.jnca.2017.05.014
https://doi.org/10.1109/NCA.2017.8171359
https://doi.org/10.1109/NCA.2017.8171359
https://doi.org/10.1109/TCC.2015.2427192
https://doi.org/10.1109/TCC.2015.2427192
https://doi.org/10.1145/3129186.3129197
https://doi.org/10.1145/3129186.3129197
https://doi.org/10.1109/TNSM.2017.2738026
https://doi.org/10.1109/TNSM.2017.2738026

243

1 3

Journal of Network and Systems Management (2020) 28:197–246

Engineering Companion, ICPE ’17 Companion, pp. 5–10. ACM, New York (2017). https ://doi.
org/10.1145/30536 00.30536 02

 119. Nitu, V., Teabe, B., Fopa, L., Tchana, A., Hagimont, D.: Stopgap: Elastic VMS to enhance server
consolidation. In: Proceedings of the Symposium on Applied Computing, SAC ’17, pp. 358–363.
ACM, New York (2017). https ://doi.org/10.1145/30196 12.30196 26

 120. Paya, A., Marinescu, D.C.: Energy‑aware load balancing and application scaling for the cloud eco‑
system. IEEE Trans. Cloud Comput. 5(1), 15–27 (2017). https ://doi.org/10.1109/TCC.2015.23960
59

 121. Rankothge, W., Le, F., Russo, A., Lobo, J.: Optimizing resource allocation for virtualized network
functions in a cloud center using genetic algorithms. IEEE Trans. Netw. Serv. Manag. 14(2), 343–
356 (2017). https ://doi.org/10.1109/TNSM.2017.26869 79

 122. Tang, L., Chen, H.: Joint pricing and capacity planning in the IaaS cloud market. IEEE Trans.
Cloud Comput. 5(1), 57–70 (2017). https ://doi.org/10.1109/TCC.2014.23728 11

 123. Xu, D., Liu, X., Niu, Z.: Joint resource provisioning for internet datacenters with diverse and
dynamic traffic. IEEE Trans. Cloud Comput. 5(1), 71–84 (2017). https ://doi.org/10.1109/
TCC.2014.23821 18

 124. Yang, Y., Chang, X., Liu, J., Li, L.: Towards robust green virtual cloud data center provisioning.
IEEE Trans. Cloud Comput. 5(2), 168–181 (2017). https ://doi.org/10.1109/TCC.2015.24597 04

 125. Yi, X., Liu, F., Niu, D., Jin, H., Lui, J.C.S.: Cocoa: dynamic container‑based group buying strate‑
gies for cloud computing. ACM Trans. Model. Perform. Eval. Comput. Syst. 2(2), 81–831 (2017).
https ://doi.org/10.1145/30228 76

 126. Yu, B., Pan, J.: Optimize the server provisioning and request dispatching in distributed memory
cache services. IEEE Trans. Cloud Comput. 5(2), 193–207 (2017). https ://doi.org/10.1109/
TCC.2015.24696 63

 127. Zhang, W., Xie, H., Hsu, C.: Automatic memory control of multiple virtual machines on a
consolidated server. IEEE Trans. Cloud Comput. 5(1), 2–14 (2017). https ://doi.org/10.1109/
TCC.2014.23787 94

 128. Alam, M., Rufino, J., Ferreira, J., Ahmed, S.H., Shah, N., Chen, Y.: Orchestration of microservices
for IOT using docker and edge computing. IEEE Commun. Mag. 56(9), 118–123 (2018). https ://
doi.org/10.1109/MCOM.2018.17012 33

 129. Aral, A., Ovatman, T.: A decentralized replica placement algorithm for edge computing. IEEE
Trans. Netw. Serv. Manag. 15(2), 516–529 (2018). https ://doi.org/10.1109/TNSM.2017.27889 45

 130. Atrey, A., Seghbroeck, G.V., Volckaert, B., Turck, F.D.: Brahma+: a framework for resource scal‑
ing of streaming and asap time‑varying workflows. IEEE Trans. Netw. Serv. Manag. 15(3), 894–
908 (2018). https ://doi.org/10.1109/TNSM.2018.28303 11

 131. Barkat, A., Kechadi, M.T., Verticale, G., Filippini, I., Capone, A.: Green approach for joint man‑
agement of geo‑distributed data centers and interconnection networks. IEEE Trans. Netw. Serv.
Manag. 26(3), 723–754 (2018). https ://doi.org/10.1007/s1092 2‑017‑9441‑0

 132. Balos, C., Vega, D.D.L., Abuelhaj, Z., Kari, C., Mueller, D., Pallipuram, V.K.: A2cloud: An ana‑
lytical model for application‑to‑cloud matching to empower scientific computing. In: 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), pp. 548–555 (2018). https ://doi.
org/10.1109/CLOUD .2018.00076

 133. Barrameda, J., Samaan, N.: A novel statistical cost model and an algorithm for efficient application
offloading to clouds. IEEE Trans. Cloud Comput. 6(3), 598–611 (2018). https ://doi.org/10.1109/
TCC.2015.25134 04

 134. Borjigin, W., Ota, K., Dong, M.: In broker we trust: a double‑auction approach for resource allo‑
cation in NFV markets. IEEE Trans. Netw. Serv. Manag. 15(4), 1322–1333 (2018). https ://doi.
org/10.1109/TNSM.2018.28825 35

 135. Bouet, M., Conan, V.: Mobile edge computing resources optimization: a geo‑clustering
approach. IEEE Trans. Netw. Serv. Manag. 15(2), 787–796 (2018). https ://doi.org/10.1109/
TNSM.2018.28162 63

 136. Cheng, M., Li, J., Nazarian, S.: Drl‑cloud: Deep reinforcement learning‑based resource pro‑
visioning and task scheduling for cloud service providers. In: 2018 23rd Asia and South Pacific
Design Automation Conference (ASP‑DAC), pp. 129–134 (2018). https ://doi.org/10.1109/ASPDA
C.2018.82972 94

 137. Diaz‑Montes, J., Diaz‑Granados, M., Zou, M., Tao, S., Parashar, M.: Supporting data‑intensive
workflows in software‑defined federated multi‑clouds. IEEE Trans. Cloud Comput. 6(1), 250–263
(2018). https ://doi.org/10.1109/TCC.2015.24814 10

https://doi.org/10.1145/3053600.3053602
https://doi.org/10.1145/3053600.3053602
https://doi.org/10.1145/3019612.3019626
https://doi.org/10.1109/TCC.2015.2396059
https://doi.org/10.1109/TCC.2015.2396059
https://doi.org/10.1109/TNSM.2017.2686979
https://doi.org/10.1109/TCC.2014.2372811
https://doi.org/10.1109/TCC.2014.2382118
https://doi.org/10.1109/TCC.2014.2382118
https://doi.org/10.1109/TCC.2015.2459704
https://doi.org/10.1145/3022876
https://doi.org/10.1109/TCC.2015.2469663
https://doi.org/10.1109/TCC.2015.2469663
https://doi.org/10.1109/TCC.2014.2378794
https://doi.org/10.1109/TCC.2014.2378794
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/TNSM.2017.2788945
https://doi.org/10.1109/TNSM.2018.2830311
https://doi.org/10.1007/s10922-017-9441-0
https://doi.org/10.1109/CLOUD.2018.00076
https://doi.org/10.1109/CLOUD.2018.00076
https://doi.org/10.1109/TCC.2015.2513404
https://doi.org/10.1109/TCC.2015.2513404
https://doi.org/10.1109/TNSM.2018.2882535
https://doi.org/10.1109/TNSM.2018.2882535
https://doi.org/10.1109/TNSM.2018.2816263
https://doi.org/10.1109/TNSM.2018.2816263
https://doi.org/10.1109/ASPDAC.2018.8297294
https://doi.org/10.1109/ASPDAC.2018.8297294
https://doi.org/10.1109/TCC.2015.2481410

244 Journal of Network and Systems Management (2020) 28:197–246

1 3

 138. Gill, S.S., Buyya, R., Chana, I., Singh, M., Abraham, A.: Bullet: particle swarm optimization
based scheduling technique for provisioned cloud resources. J. Netw. Syst. Manag. 26(2), 361–400
(2018). https ://doi.org/10.1007/s1092 2‑017‑9419‑y

 139. Guo, T., Shenoy, P.: Providing geo‑elasticity in geographically distributed clouds. ACM Trans.
Internet Technol. 18(3), 38:1–38:27 (2018). https ://doi.org/10.1145/31697 94

 140. Guo, W., Lin, B., Chen, G., Chen, Y., Liang, F.: Cost‑driven scheduling for deadline‑based work‑
flow across multiple clouds. IEEE Trans. Netw. Serv. Manag. 15(4), 1571–1585 (2018). https ://doi.
org/10.1109/TNSM.2018.28720 66

 141. Guo, Y., Stolyar, A.L., Walid, A.: Shadow‑routing based dynamic algorithms for virtual machine
placement in a network cloud. IEEE Trans. Cloud Comput. 6(1), 209–220 (2018). https ://doi.
org/10.1109/TCC.2015.24647 95

 142. Hauser, C.B., Wesner, S.: Reviewing cloud monitoring: towards cloud resource profiling. In: 2018
IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 678–685 (2018). https ://
doi.org/10.1109/CLOUD .2018.00093

 143. Heidari, S., Buyya, R.: Cost‑efficient and network‑aware dynamic repartitioning‑based algorithms
for scheduling large‑scale graphs in cloud computing environments. Softw. Pract. Exp. 48(12),
2174–2192 (2018). https ://doi.org/10.1002/spe.2623

 144. Jia, B., Hu, H., Zeng, Y., Xu, T., Yang, Y.: Double‑matching resource allocation strategy in fog
computing networks based on cost efficiency. J. Commun. Netw. 20(3), 237–246 (2018). https ://
doi.org/10.1109/JCN.2018.00003 6

 145. Jia, G., Han, G., Jiang, J., Chan, S., Liu, Y.: Dynamic cloud resource management for efficient
media applications in mobile computing environments. Pers. Ubiquitous Comput. 22(3), 561–573
(2018). https ://doi.org/10.1007/s0077 9‑018‑1118‑5

 146. Khabbaz, M., Assi, C.M.: Modelling and analysis of a novel deadline‑aware scheduling scheme
for cloud computing data centers. IEEE Trans. Cloud Comput. 6(1), 141–155 (2018). https ://doi.
org/10.1109/TCC.2015.24814 29

 147. Lahmann, G., McCann, T., Lloyd, W.: Container memory allocation discrepancies: an investiga‑
tion on memory utilization gaps for container‑based application deployments. In: 2018 IEEE Inter‑
national Conference on Cloud Engineering (IC2E), pp. 404–405 (2018). https ://doi.org/10.1109/
IC2E.2018.00076

 148. Lin, Y., Lai, Y., Huang, J., Chien, H.: Three‑tier capacity and traffic allocation for core, edges, and
devices for mobile edge computing. IEEE Trans. Netw. Serv. Manag. 15(3), 923–933 (2018). https
://doi.org/10.1109/TNSM.2018.28526 43

 149. Nawrocki, P., Sniezynski, B.: Adaptive service management in mobile cloud computing by means
of supervised and reinforcement learning. J. Netw. Syst. Manag. 26(1), 1–22 (2018). https ://doi.
org/10.1007/s1092 2‑017‑9405‑4

 150. Prats, D.B., Berral, J.L., Carrera, D.: Automatic generation of workload profiles using unsuper‑
vised learning pipelines. IEEE Trans. Netw. Serv. Manag. 15(1), 142–155 (2018). https ://doi.
org/10.1109/TNSM.2017.27860 47

 151. Rahimi, M.R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A.V.: On optimal and fair service
allocation in mobile cloud computing. IEEE Trans. Cloud Comput. 6(3), 815–828 (2018). https ://
doi.org/10.1109/TCC.2015.25117 29

 152. Sahni, J., Vidyarthi, D.P.: A cost‑effective deadline‑constrained dynamic scheduling algorithm for
scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2018). https
://doi.org/10.1109/TCC.2015.24516 49

 153. Scheuner, J., Leitner, P.: Estimating cloud application performance based on micro‑benchmark pro‑
filing. In: 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 90–97
(2018). https ://doi.org/10.1109/CLOUD .2018.00019

 154. Simonis, I.: Container‑based architecture to optimize the integration of microservices into cloud‑
based data‑intensive application scenarios. In: Proceedings of the 12th European Conference on
Software Architecture: Companion Proceedings, ECSA ’18, pp. 34:1–34:3. ACM, New York
(2018). https ://doi.org/10.1145/32414 03.32414 39

 155. Sathya Sofia, A., GaneshKumar, P.: Multi‑objective task scheduling to minimize energy consump‑
tion and makespan of cloud computing using NSGA‑II. J. Netw. Syst. Manag. 26(2), 463–485
(2018). https ://doi.org/10.1007/s1092 2‑017‑9425‑0

 156. Takahashi, K., Aida, K., Tanjo, T., Sun, J.: A portable load balancer for kubernetes cluster. In: Pro‑
ceedings of the International Conference on High Performance Computing in Asia‑Pacific Region,
HPC Asia 2018, pp. 222–231. ACM, New York (2018). https ://doi.org/10.1145/31494 57.31494 73

https://doi.org/10.1007/s10922-017-9419-y
https://doi.org/10.1145/3169794
https://doi.org/10.1109/TNSM.2018.2872066
https://doi.org/10.1109/TNSM.2018.2872066
https://doi.org/10.1109/TCC.2015.2464795
https://doi.org/10.1109/TCC.2015.2464795
https://doi.org/10.1109/CLOUD.2018.00093
https://doi.org/10.1109/CLOUD.2018.00093
https://doi.org/10.1002/spe.2623
https://doi.org/10.1109/JCN.2018.000036
https://doi.org/10.1109/JCN.2018.000036
https://doi.org/10.1007/s00779-018-1118-5
https://doi.org/10.1109/TCC.2015.2481429
https://doi.org/10.1109/TCC.2015.2481429
https://doi.org/10.1109/IC2E.2018.00076
https://doi.org/10.1109/IC2E.2018.00076
https://doi.org/10.1109/TNSM.2018.2852643
https://doi.org/10.1109/TNSM.2018.2852643
https://doi.org/10.1007/s10922-017-9405-4
https://doi.org/10.1007/s10922-017-9405-4
https://doi.org/10.1109/TNSM.2017.2786047
https://doi.org/10.1109/TNSM.2017.2786047
https://doi.org/10.1109/TCC.2015.2511729
https://doi.org/10.1109/TCC.2015.2511729
https://doi.org/10.1109/TCC.2015.2451649
https://doi.org/10.1109/TCC.2015.2451649
https://doi.org/10.1109/CLOUD.2018.00019
https://doi.org/10.1145/3241403.3241439
https://doi.org/10.1007/s10922-017-9425-0
https://doi.org/10.1145/3149457.3149473

245

1 3

Journal of Network and Systems Management (2020) 28:197–246

 157. Trihinas, D., Pallis, G., Dikaiakos, M.D.: Monitoring elastically adaptive multi‑cloud services.
IEEE Trans. Cloud Comput. 6(3), 800–814 (2018). https ://doi.org/10.1109/TCC.2015.25117 60

 158. Wang, L., Gelenbe, E.: Adaptive dispatching of tasks in the cloud. IEEE Trans. Cloud Comput.
6(1), 33–45 (2018). https ://doi.org/10.1109/TCC.2015.24744 06

 159. Wei, L., Foh, C.H., He, B., Cai, J.: Towards efficient resource allocation for heterogeneous work‑
loads in iaas clouds. IEEE Trans. Cloud Comput. 6(1), 264–275 (2018). https ://doi.org/10.1109/
TCC.2015.24814 00

 160. Xie, R., Jia, X.: Data transfer scheduling for maximizing throughput of big‑data computing in cloud
systems. IEEE Trans. Cloud Comput. 6(1), 87–98 (2018). https ://doi.org/10.1109/TCC.2015.24648
08

 161. Zhang, W., Wen, Y.: Energy‑efficient task execution for application as a general topology in mobile
cloud computing. IEEE Trans. Cloud Comput. 6(3), 708–719 (2018). https ://doi.org/10.1109/
TCC.2015.25117 27

 162. Zhang, Y., Ghosh, A., Aggarwal, V., Lan, T.: Tiered cloud storage via two‑stage, latency‑aware
bidding. IEEE Trans. Netw. Serv. Manag. (2018). https ://doi.org/10.1109/TNSM.2018.28754 75

 163. Introducing Amazon EC2 spot instances for specific duration workloads. https ://aws.amazo n.com/
about ‑aws/whats ‑new/2015/10/intro ducin g‑amazo n‑ec2‑spot‑insta nces‑for‑speci fic‑durat ion‑workl
oads/. Accessed 9 Sept 2019

 164. Juju solutions for container management. https ://jaas.ai/conta iners . Accessed 9 Sept 2019
 165. Masip‑Bruin, X., Marín‑Tordera, E., Juan‑Ferrer, A., Queralt, A., Jukan, A., Garcia, J., Lezzi, D.,

Jensen, J., Cordeiro, C., Leckey, A., Salis, A., Guilhot, D., Cankar, M.: mf2c: towards a coordi‑
nated management of the IOT‑fog‑cloud continuum. In: Proceedings of the 4th ACM MobiHoc
Workshop on Experiences with the Design and Implementation of Smart Objects, SMARTOB‑
JECTS ’18, pp. 8:1–8:8. ACM, New York (2018). https ://doi.org/10.1145/32132 99.32133 07

 166. Almutairi, A., Sarfraz, M.I., Ghafoor, A.: Risk‑aware management of virtual resources in access
controlled service‑oriented cloud datacenters. IEEE Trans. Cloud Comput. 6(1), 168–181 (2018).
https ://doi.org/10.1109/TCC.2015.24539 81

 167. Zhai, Y., Yin, L., Chase, J., Ristenpart, T., Swift, M.: CQSTR: Securing cross‑tenant applications
with cloud containers. In: Proceedings of the Seventh ACM Symposium on Cloud Computing,
SoCC ’16, pp. 223–236. ACM, New York (2016). https ://doi.org/10.1145/29875 50.29875 58

 168. Lins, S., Schneider, S., Sunyaev, A.: Trust is good, control is better: creating secure clouds by
continuous auditing. IEEE Trans. Cloud Comput. 6(3), 890–903 (2018). https ://doi.org/10.1109/
TCC.2016.25224 11

 169. Maenhaut, P.J., Volckaert, B., Ongenae, V., De Turck, F.: Efficient resource management in the
cloud: from simulation to experimental validation using a low‑cost raspberry pi testbed. Softw.
Pract. Exp. 49(3), 449–477 (2019). https ://doi.org/10.1002/spe.2669

 170. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: a toolkit for mod‑
eling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011). https ://doi.org/10.1002/spe.995

 171. Fed4fire+—federation for fire plus. https ://www.fed4fi re.eu/. Accessed 9 Sept 2019
 172. FUTEBOL Brazil/UFRGS. http://futeb ol.inf.ufrgs .br/. Accessed 9 Sept 2019
 173. Eivy, A.: Be wary of the economics of “serverless” cloud computing. IEEE Cloud Comput. 4(2),

6–12 (2017). https ://doi.org/10.1109/MCC.2017.32

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Pieter‑Jan Maenhaut received his Master of Science degree in Information Engineering Technology
from the University College Ghent, Belgium in June 2009, and his Master of Science degree in Computer
Science Engineering from the University of Ghent in July 2014. In February 2012 he joined the Internet
and Data Science Lab (IDLab, former IBCN), a research group in the Department of Information Tech‑
nology (INTEC). In July 2019, he received his PhD on efficient resource management in a multi‑tenant
cloud environment. His research interests include efficient resource management in cloud environments,
both from the point of view of applications deployed within a cloud environment and from the point of
view of the underlying physical infrastructure.

https://doi.org/10.1109/TCC.2015.2511760
https://doi.org/10.1109/TCC.2015.2474406
https://doi.org/10.1109/TCC.2015.2481400
https://doi.org/10.1109/TCC.2015.2481400
https://doi.org/10.1109/TCC.2015.2464808
https://doi.org/10.1109/TCC.2015.2464808
https://doi.org/10.1109/TCC.2015.2511727
https://doi.org/10.1109/TCC.2015.2511727
https://doi.org/10.1109/TNSM.2018.2875475
https://aws.amazon.com/about-aws/whats-new/2015/10/introducing-amazon-ec2-spot-instances-for-specific-duration-workloads/
https://aws.amazon.com/about-aws/whats-new/2015/10/introducing-amazon-ec2-spot-instances-for-specific-duration-workloads/
https://aws.amazon.com/about-aws/whats-new/2015/10/introducing-amazon-ec2-spot-instances-for-specific-duration-workloads/
https://jaas.ai/containers
https://doi.org/10.1145/3213299.3213307
https://doi.org/10.1109/TCC.2015.2453981
https://doi.org/10.1145/2987550.2987558
https://doi.org/10.1109/TCC.2016.2522411
https://doi.org/10.1109/TCC.2016.2522411
https://doi.org/10.1002/spe.2669
https://doi.org/10.1002/spe.995
https://www.fed4fire.eu/
http://futebol.inf.ufrgs.br/
https://doi.org/10.1109/MCC.2017.32

246 Journal of Network and Systems Management (2020) 28:197–246

1 3

Bruno Volckaert is professor advanced programming and software engineering within the department of
Information Technology (INTEC) at Ghent University, and senior researcher at imec. He obtained his
Master of Computer Science degree in 2001 from Ghent University, after which he worked on his PhD
at Ghent University on resource management for grid computing, which he obtained in 2006. His cur‑
rent research deals with reliable and high performance distributed software systems for a.o. Smart Cities,
distributed decision support systems, scalable cybersecurity detection and mitigation architectures and
autonomous optimization of cloud‑based applications. He has worked on over 45 national and interna‑
tional research projects and is author or co‑author of more than 125 peer‑reviewed papers published in
international journals and conference proceedings.

Veerle Ongenae received a masters degree in Mathematics (1992) from Ghent University. Her research
on left symmetric algebras resulted in a PhD in 1998. In 2003 she became a docent at the Ghent Univer‑
sity College and in 2013 at the University Ghent. She is a member of the Broadband Communication
Networks research group of the Department of Information Technology of the Faculty of Engineering.
Her main research focus is distributed software. She is responsible for various courses on programming,
software development, web technologies, data technologies and distributed applications.

Filip De Turck leads the network and service management research group at the Department of Infor‑
mation Technology of Ghent University, Belgium and imec. He (co‑) authored over 500 peer‑reviewed
papers and his research interests include telecommunication network and service management, and design
of efficient virtualized network systems. In this research area, he is involved in several research projects
with industry and academia, serves as Chair of the IEEE Technical Committee on Network Operations
and Management (CNOM), and is on the TPC of many network and service management conferences and
workshops. He also serves as Editor in Chief of IEEE Transactions of Network and Service Management
(TNSM), and is steering committee member of the IEEE Conference on Network Softwarization (IEEE
NetSoft).

	Resource Management in a Containerized Cloud: Status and Challenges
	Abstract
	1 Introduction
	2 Related Concepts and Technologies
	2.1 Cloud, Edge and Fog Computing
	2.1.1 Traditional Cloud Computing
	2.1.2 Fog and Edge Computing

	2.2 Virtualization
	2.2.1 VMs and Containers
	2.2.2 Live Migration
	2.2.3 Advantages and Risks

	2.3 Resource Management
	2.3.1 Management Objectives
	2.3.2 Resource Elasticity
	2.3.3 Resource Profiling
	2.3.4 Resource Pricing

	3 Cloud Resource Management: State of the Art
	3.1 Previous Surveys
	3.2 Resource Elasticity
	3.2.1 Workload Management
	3.2.2 Application Elasticity and Provisioning
	3.2.3 Local Provisioning and Scheduling
	3.2.4 Global Provisioning and Scheduling

	3.3 Resource Profiling
	3.3.1 Application Demand Profiling
	3.3.2 Monitoring, Infrastructure Demand Profiling and Resource Utilization Estimation

	3.4 Resource Pricing
	3.4.1 Static Pricing
	3.4.2 Dynamic Pricing

	4 Challenges and Opportunities
	4.1 Dynamic Resource Allocation for Containerized Applications
	4.2 Cloud Management Systems for Bare-Metal Containers
	4.3 Management of a Hybrid EdgeFogCloud Environment
	4.4 Experimental Validation of Resource Management Strategies
	4.5 Towards Serverless Cloud Computing

	5 Conclusions
	References

