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Abstract
Cloud computing heavily relies on virtualization, as with cloud computing virtual 
resources are typically leased to the consumer, for example as virtual machines. Effi‑
cient management of these virtual resources is of great importance, as it has a direct 
impact on both the scalability and the operational costs of the cloud environment. 
Recently, containers are gaining popularity as virtualization technology, due to the 
minimal overhead compared to traditional virtual machines and the offered portabil‑
ity. Traditional resource management strategies however are typically designed for 
the allocation and migration of virtual machines, so the question arises how these 
strategies can be adapted for the management of a containerized cloud. Apart from 
this, the cloud is also no longer limited to the centrally hosted data center infra‑
structure. New deployment models have gained maturity, such as fog and mobile 
edge computing, bringing the cloud closer to the end user. These models could also 
benefit from container technology, as the newly introduced devices often have lim‑
ited hardware resources. In this survey, we provide an overview of the current state 
of the art regarding resource management within the broad sense of cloud comput‑
ing, complementary to existing surveys in literature. We investigate how research is 
adapting to the recent evolutions within the cloud, being the adoption of container 
technology and the introduction of the fog computing conceptual model. Further‑
more, we identify several challenges and possible opportunities for future research.
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1 Introduction

Over recent years, cloud computing has become an important aspect of our daily 
life, and many novel applications have been developed on top of the cloud. These 
applications are often available as online web services, which can be accessed 
through a custom app or directly through the web browser. The term cloud com‑
puting has a broad meaning: it not only refers to the online applications and ser‑
vices hosted in the cloud, but also to the underlying frameworks and technologies 
that enable them.

One of the key enablers of cloud computing is the so‑called elasticity, which 
allows cloud applications to dynamically adjust the amount of provisioned resources 
based on the current and/or expected future demand. Given the increasing popu‑
larity and amount of cloud applications, efficient resource management is of great 
importance, as it can not only result in higher scalability of the cloud environment, 
but also in lower operational costs. Efficient resource management can be benefi‑
cial for multiple actors. For the cloud infrastructure provider, it aids to minimize the 
power consumption, as unprovisioned hardware can be put in standby or even turned 
off. This also helps to reduce the energy footprint of the data center, which is one of 
the main goals of green cloud computing. For the consumer, efficient resource man‑
agement helps to achieve high scalability and high availability while minimizing the 
rental costs. And when multiple consumers share the same physical hardware, the 
provider can offer its instances at a lower price.

As a result, resource management within cloud environments has been a major 
research topic since the introduction of cloud computing. A typical research 
objective is to minimize the amount of provisioned computational resources, in 
order to lower the operational costs, without violating the objectives described 
in so‑called Service Level Agreements (SLAs). An example of this is Virtual 
Machine (VM) packing, which aims to consolidate virtual servers onto a minimal 
number of physical machines. Multiple resource allocation strategies have been 
developed by both academics and industry, often resulting in open source and/
or commercial products. A popular example is Swift [1], a highly scalable cloud 
storage system, which is integrated into the OpenStack cloud stack, and Open‑
Stack [2] itself, an open‑source framework for building a private cloud environ‑
ment, which has multiple resource management functions built in.

A recent trend within cloud computing is the uprise of new types of clouds, 
such as mobile edge and fog computing [3, 4]. The cloud is no longer limited to the 
centrally hosted data center, accessible from a laptop or desktop computer with a 
broadband internet connection, but lightweight devices such as mobile phones and 
Internet of Things (IoT) devices can also benefit from the near infinite amount of 
resources offered by the cloud. These devices can offload computational intensive 
tasks to a more powerful cloud environment, and by installing dedicated hardware at 
the edge of the network, close to the end user devices, the latency can be reduced, as 
well as the consumed network bandwidth towards the public cloud.

When it comes to virtualization, a key enabler for cloud computing, con‑
tainer technology has recently gained popularity, thanks to the minimal overhead 
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compared to traditional VMs, and the great portability it offers [5, 6]. These ben‑
efits could facilitate the migration of containers between different cloud envi‑
ronments, and the deployment of services at the edge of the cloud, for example 
onto less powerful ARM hardware located within IoT devices. Furthermore, the 
offered portability provides an interesting opportunity for offloading within a fog‑
cloud environment, allowing developers to reconfigure which services are run‑
ning locally or in the cloud, without paying the heavy penalty of traditional VM 
migrations.

In this survey, we investigate how recent research related to cloud resource man‑
agement is adapting to support these new technologies. This survey is complemen‑
tary to existing surveys in literature, as most previously published surveys only 
handle resource management within traditional cloud environments [5–15] or only 
consider virtual machines as virtualization technology [4, 9–12, 14, 15]. Further‑
more, as illustrated in Sect.  3.1, a majority of surveys focus on a specific aspect 
of resource management such as resource scheduling or dynamic spot pricing. This 
survey covers the broad range of resource management, and is not limited to a single 
cloud type or virtualization technology. The remainder of this article is structured 
as follows. In the next section, we introduce all relevant concepts and technologies 
related to resource management in containerized cloud environments. In Sect. 3 we 
provide an overview of recent research related to resource management, and identify 
several challenges and opportunities in Sect. 4. We finish this article by presenting 
our conclusions in Sect. 5.

2  Related Concepts and Technologies

In this section, we provide an overview of all relevant concepts and technologies. 
First, we start with a brief summary of cloud computing, and introduce the main 
concepts behind edge/fog computing. Next, we elaborate on virtualization, as this 
is one of the key enablers for cloud computing, and introduce containerization (OS‑
level virtualization) as an alternative for VMs. Finally, we describe all main func‑
tions related to cloud resource management.

2.1  Cloud, Edge and Fog Computing

2.1.1  Traditional Cloud Computing

With cloud computing, different deployment models can be distinguished. The 
National Institute of Standards and Technology (NIST) defined four main deploy‑
ment models [16]:

• In a Private Cloud, the cloud infrastructure is provisioned for exclusive use by a 
single organization comprising multiple consumers.

• A Community Cloud is similar to a private cloud, but the infrastructure is pro‑
visioned for exclusive use by a specific community of consumers.
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• A Public Cloud is provisioned for open use by the general public, and is usually 
fully accessible over the public internet.

• A Hybrid Cloud is a composition of two or more distinct cloud infrastructures.

Applications can either be deployed within a single cloud, or using multiple clouds. 
To avoid vendor lock‑in, one can for example choose to deploy its application using 
different public cloud platforms offered by different providers. Another example is 
a hybrid cloud which consists of a private cloud and a public cloud. In this model, 
the main application is typically deployed on the private cloud, and the public cloud 
is used for executing computational intensive tasks, or to support the private cloud 
when the demand for computing capacity spikes. The latter case is often referred to 
as Cloud Bursting.

Within the context of public cloud computing, three main service models can be 
distinguished, as defined by the NIST [16]:

• Infrastructure as a Service (IaaS): in this model, the provider offers (typically 
virtual) computational resources to the consumer, for example as VMs. The con‑
sumer does not manage or control the underlying cloud infrastructure, but does 
have control over operating systems, storage, deployed applications and possibly 
limited control over the network (e.g. for defining firewall rules).

• Platform as a Service (PaaS): in this model, the provider offers a set of lan‑
guages, libraries, services, and tools to the consumer for deploying its applica‑
tions. In contrast to IaaS, the consumer typically has no control over the operat‑
ing system and storage, but can control the deployed applications and applicable 
configuration settings for the hosting environment.

• Software as a Service (SaaS): in this model, applications running on a cloud 
infrastructure are offered to the consumer. These applications are typically 
deployed on top of an IaaS or PaaS environment. The consumer has no control 
over the underlying infrastructure and software, except for limited application 
specific customization.

In the above definitions, a provider offers services to a consumer. The term provider 
however has a broad sense, and Armbrust et  al. defined three main actors within 
Cloud Computing [17]:

• The Cloud Provider or infrastructure provider manages a physical data center, 
and offers (virtualized) resources to the cloud users, either as IaaS or PaaS 
instances.

• The Cloud User rents virtual resources (e.g. a VM) from the cloud provider to 
deploy its cloud applications, which he provides (typically as SaaS) to the end 
users.

• The End User uses the SaaS applications provided by the cloud user. The end 
user generates workloads that are processed using cloud resources.

The end user typically does not play a direct role in resource management, but 
the behavior of the end users can influence, and be influenced by the resource 
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management decisions of the cloud user and the cloud provider [9]. Cloud users 
manage cloud resources from the perspective of the deployed applications, whereas 
for cloud providers the main focus is the management of the underlying physical 
resources.

2.1.2  Fog and Edge Computing

Access to the cloud is no longer limited to traditional devices such as servers, desk‑
tops and laptops. With mobile edge computing (also referred to as mobile cloud 
computing) for example, mobile devices collaborate with a cloud environment. As 
these mobile devices are usually connected using a less reliable connection with 
limited bandwidth, and are often battery powered, some tasks will be executed 
directly on the device, whereas other tasks will be transferred to the cloud. Execut‑
ing tasks on the device can reduce the network congestion and lower the latency, but 
will increase the energy consumption of the device. Offloading tasks to the cloud on 
the contrary can decrease the energy consumption, and can also decrease the execu‑
tion time for computational intensive tasks.

Mobile edge computing is in fact a special case of Edge Computing, which in 
general aims to provide context aware storage and distributed computing at the edge 
of the network [18, 19]. Another term that is often used is Fog Computing, origi‑
nally coined by Cisco to extend the cloud computing paradigm to the edge of the 
network [20]. As of today, there is no clear distinction between both terms, and they 
are often used in literature as interchangeable terms. However, in March 2018, the 
NIST published a conceptual model for fog computing, which adopts many of the 
terms introduced by Cisco [21]. Therefore, in the remainder of this survey, we will 
mainly use the term fog computing.

Fog computing can be implemented in different ways, depending on the used 
architecture, the function and location of the intermediate fog nodes, the offered 
services, and the target applications. In general, a distinction can be made between 
three main implementations [22]:

• In a general Fog Computing implementation, dedicated fog nodes (e.g. gate‑
ways, devices, computers or micro data centers) are deployed at any point of the 
architecture between the edge devices and the cloud. These heterogeneous nodes 
can for example gather data from the edge devices and perform some (pre‑)pro‑
cessing of the gathered data. Doing so can help to reduce the network congestion 
towards the central cloud, and can also help to reduce the response time. The 
heterogeneity of the fog nodes is often hidden from the end devices, by exposing 
a uniform fog abstraction layer which offers a set of functions for resource allo‑
cation, monitoring, security and device management together with storage and 
computing services.

• With Mobile Edge Computing, computational and storage capacities are avail‑
able at the edge of the network, in the radio access network, mainly to reduce 
latency and to improve context awareness. Mobile edge computing aims to 
reduce the network congestion and is often implemented at the cellular base sta‑
tions.
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• With Cloudlet Computing, trusted clusters of computers are connected to the 
Internet, offering resources to nearby mobile devices. A cloudlet is a small‑scale 
cloud datacenter, located at the edge of the network, and is mainly used to sup‑
port resource‑intensive and interactive mobile applications with low latency.

An example topology for fog computing is illustrated in Fig. 1. Fog computing 
typically aims to reduce the latency and the load on the cloud, and is often used in 
the context of IoT, in which large amounts of data are collected for analysis and pro‑
cessing [19, 23–26].

2.2  Virtualization

2.2.1  VMs and Containers

Cloud computing is mainly built on top of virtualization, as cloud users typically 
rent virtual resources from the cloud providers. A typical form of virtualization is 
the use of VMs, in which multiple VMs are emulated on top of a so‑called hyper‑
visor. This hypervisor creates and runs the virtual machines, and runs on a host 
machine (typically a physical server), whereas the VMs are called guest machines. 
There are two main types of hypervisors:

• A type‑1 or native/bare-metal hypervisor runs directly on the host’s hardware. 
A popular example of a type‑1 hypervisor is VMWare ESX/ESXi.

Edge Devices

Fog Nodes

Cloud Environment

Fig. 1  Example topology for fog computing. Fog nodes bring the cloud closer to the end user, and the 
edge devices can offload computational intensive tasks to the central cloud
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• A Type‑2 or hosted hypervisor runs on top of a conventional Operating Sys‑
tem (OS), possibly together with other computer programs. Popular examples of 
hosted hypervisors include VMWare Player and VirtualBox.

In general, type‑1 hypervisors are more efficient than type‑2 hypervisors, and most 
cloud environments are built using type‑1 hypervisors.

A VM that is emulated on top of a hypervisor runs the full software stack, mean‑
ing that an OS is deployed on the virtual disk of the VM, and the required software 
is installed on top. When deploying a VM, the user can either start from scratch 
and create a new virtual machine with an empty virtual disk, install the preferred 
OS and all required binaries and libraries, or a pre‑configured template can be used 
for deploying a new VM which already contains the operating system and a typical 
software stack (e.g. a web server). In the latter case, the cloud user only needs to 
customize the packages, and deploy its application on top. Because the full OS is 
installed on the virtual disk of the VM, this virtual disk is easily a few gigabytes in 
size.

Recently, container technologies have emerged as a more lightweight alterna‑
tive for VMs [27–30]. The major difference with VMs is that a container typically 
has no operating system installed, but instead all containers deployed on a single 
machine are running directly on the operating system kernel (OS‑level virtualiza‑
tion). As a result, containers are much smaller in size. A typical container image is 
a few hundreds megabytes, whereas a similar virtual disk for a VM with the same 
applications installed will typically be a few gigabytes. To launch a new container, 
the user can either start from a base image (e.g. an Ubuntu‑flavored base image or 
an official NodeJS base image) and install and configure all required software pack‑
ages, or he can create a new container based on a pre‑configured image that is pulled 
from a central repository, with most of the required software already installed and 
configured.

OS‑level virtualization (or containerization) has existed for some time, with LXC 
[31] being one of the first popular container engines. LXC was initially released in 
2008, but in 2013 Docker [32] was released as a successor for LXC, and quickly 
became one of the most popular container engines. Initial releases of Docker were 
still using LXC as default execution environment, but in later releases Docker 
replaced LXC with its own library. To facilitate the deployment, Docker containers 
can be published to Docker Hub [33], a publicly available, centrally hosted reposi‑
tory for storing fully configured container images, or organizations can configure 
their own private Docker image repository. Docker however only offers tools for 
deploying and managing containers on top of a single physical machine.

For the management and deployment of containerized applications over a clus‑
ter of Docker servers, a container orchestration system such as Kubernetes [34] is 
required. Docker initially offered its own orchestration tools, called Docker Swarm 
mode, providing limited functionality for managing container clusters [35]. In 2017, 
the team behind Docker however announced native Kubernetes support, and recom‑
mended Kubernetes as orchestration tool for enterprise environments [36].

As containers are lightweight, they are often used for deploying applications 
that are designed using a Service‑Oriented Architecture (SOA). With SOA, an 
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application is decomposed into several collaborating services, and every service 
can be deployed into a separate container. This allows for fine‑grained scalability, 
as each service can be scaled up or down individually, instead of scaling the whole 
application as a whole. In multi‑cloud environments, the use of lightweight contain‑
ers also offers multiple opportunities for achieving high scalability and cost‑efficient 
deployments, thanks to the offered portability [37].

2.2.2  Live Migration

As the demand for resources changes over time, it might be required to migrate 
some VMs or containers to a different physical host in order to prevent over‑utiliza‑
tion of the available physical hardware resources. VMs are relatively large in size, 
making migration an expensive operation, especially when moving the VM to a dif‑
ferent physical location, as the whole virtual disk needs to transferred [38]. When 
migrating a VM, the machine can first be turned off, which facilitates the migration 
process as there are almost no risks such as losing state or consistency, but there will 
be a noticeable downtime. Most hypervisors however also support the migration of 
running virtual machines between different physical machines, without disconnect‑
ing the client or application, referred to as live migration. Live migration will also 
include some downtime of the VM, but when this is not noticeable by the end users, 
the migration is called a seamless live migration.

Despite the aforementioned advantages of containers, live migration of contain‑
ers still remains an important research challenge [39]. Containers are a hierarchy of 
processes, and existing methods for process migration are often applied, for example 
using the Checkpoint‑restore in Userspace (CRIU) tool [40]. However, such meth‑
ods could cause significant delays [39, 41], resulting in a relatively high downtime, 
e.g. when the application running inside a container modifies large amounts of 
memory faster than the container can be transferred over the network to a remote 
host. The feasibility of live container migrations in this scenario will therefore be 
mainly dependent on the network bandwidth between the source and destination 
location and the characteristics of the running container(s).

Furthermore, the migration of containers could introduce some additional prob‑
lems, as they not only share the underlying OS but also some libraries [38]. Dur‑
ing migration, the destination host must support these libraries, together with the 
libraries required by other containers. The selection of a feasible destination host is 
therefore an important issue. In contrast, a VM can be migrated to any destination 
host that can accommodate the VM and is managed by the same type of hypervisor.

2.2.3  Advantages and Risks

The main benefit of containers is that they introduce less virtualization overhead 
than VMs, because there is no additional layer of virtualization. Instead, they are 
executed directly on the kernel of the host OS. Containers are therefore considered 
more efficient and allow for greater scalability. However, the lack of a virtualiza‑
tion layer introduces new security risks due to the lower level of isolation; contain‑
ers were not designed as a security mechanism to isolate between untrusted and 
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potentially malicious containers [42, 43]. Because containers deployed onto the 
same host share a common OS, they allow for attacks on shared resources such as 
the file system, network and the kernel. Kernel bugs can be exploited through a large 
attack surface, or an attack could target the shared host resources to enable mis‑
configuration, side channels or data leakage [44]. As a result, container security is 
considered an obstacle for the wide adoption of containerization technologies. To 
increase the security of containers, some protection mechanisms can be applied such 
as security hardening mechanisms and host based intrusion detection systems [42]. 
However, adding such mechanisms will introduce an additional overhead which 
could negatively impact the scalability and performance of container environments 
[43].

VMs and containers thus both have their advantages and disadvantages, and a 
combination of both virtualization technologies is also possible, for example when 
deploying a container engine on top of VMs [29, 45]. In this scenario, the applica‑
tion is deployed inside a container, and the container runtime is running on top of 
the guest OS of the VM. Such hybrid model could potentially combine the advan‑
tages of both technologies.

To summarize, Fig. 2 provides an overview of the typical models for deployment 
of an application or service within a virtualized environment. When deploying in a 
public cloud environment, the question arises who should be responsible for which 
environment, especially for the hybrid model. A cloud provider typically manages 
resources at the infrastructure level, for example by offering VMs to the cloud users. 
A cloud user could thus rent several VMs and deploy a container system on top, or 
the cloud provider itself could offer a containerized environment that is deployed on 
top of virtual machines.

2.3  Resource Management

Resource management is a broad term, which refers to all required functionali‑
ties related to the allocation, provisioning and pricing of (virtual) resources. For 
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Fig. 2  Comparison between the different models for deployment within a virtualized environment. The 
application or service can be either deployed inside a VM, a container, or a container hosted in a VM
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the deployment of cloud applications, the minimal required amount of resources 
needs to be determined, and in an elastic cloud environment the allocated amount 
of resources can change dynamically based on the current demand. Furthermore, by 
monitoring and profiling the applications or the resources, an estimate can be made 
regarding the future demand. In a public cloud environment, the cloud provider 
needs to determine the price billed to the cloud users based on the actual resource 
usage, and the cloud user can charge the end users for using the SaaS applications.

2.3.1  Management Objectives

With public cloud computing, cloud providers need to satisfy the SLAs agreed upon 
with the cloud users regarding the provisioning of virtual infrastructure. Such an 
SLA can consist of multiple constraints which must always be satisfied, and Service‑
Level Objectives (SLOs) which should be satisfied. A typical management objective 
is a specified monthly uptime percentage for the virtual instances, or a maximum 
allowed response time for the cloud environment. The provider can choose to offer 
its infrastructure to all cloud users using a single SLA, or can pursue service dif‑
ferentiation by offering different service levels to the customers. The provider could 
also choose to apply different objectives during different operational conditions, for 
example by guaranteeing different objectives during low load or overload.

The cloud user can also have an SLA with the end‑users, consisting of objectives 
regarding the offered services (typically as SaaS). To comply with these objectives, 
the cloud user may seek to exploit the elasticity property of the cloud environment. 
The cloud user could for example over‑provision resources in order to guarantee the 
objectives, or could try to minimize the operational costs but with the risk of violat‑
ing the SLA with the end users.

2.3.2  Resource Elasticity

In an optimal scenario, every cloud application would be deployed in a location 
close to the end users in order to minimize latency, on hardware that is powerful 
enough to guarantee compliance with the selected SLAs, and on a dedicated server 
to maximize performance isolation. This scenario however would lead to high oper‑
ational costs and energy consumption, and a waste of resources as most of the time 
the provisioned server instances would be in an idle state. Resource allocation strat‑
egies aim to solve this issue, by packing multiple applications belonging to different 
customers onto the same physical hardware, while guaranteeing performance and 
data isolation and compliance with SLA requirements. Resource management con‑
sists of multiple tasks, with the main tasks being the allocation, provisioning and 
scheduling of (virtual) resources.

• Resource Allocation refers to the allocation (reservation) of a pool of resources 
(e.g. computational resources, network bandwidth and storage) for a given con‑
sumer.

• Resource Provisioning on the other hand is the effective provisioning of (a part 
of) the allocated resources in order to execute a given task. A typical example 
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of resource provisioning is the deployment of a new virtual machine by the con‑
sumer, which uses a subset of the allocated CPU, network and storage resources.

• When executing a large batch of tasks in the cloud, Resource Scheduling aims 
to find a feasible execution order for these tasks, making optimal usage of the 
available resources while respecting the deadlines defined for each individual 
task.

• Resource Orchestration is a broad term, that includes both scheduling, man‑
agement and provisioning of additional resources. Orchestrators typically man‑
age complex cross‑domain processes, and aim to meet the defined objectives, for 
example meeting the application performance goals while minimizing costs and 
maximizing performance.

Resource allocation, provisioning, scheduling and orchestration are closely related, 
and are the main building blocks for application elasticity within a cloud environ‑
ment. When allocating resources, a further distinction can be made between static 
and dynamic allocation.

• With a Static Resource Allocation strategy, the required amount of resources is 
determined during deployment, and the allocation of resources does not change 
during the lifetime of the deployed applications. Static resource allocation how‑
ever can lead to under‑ or over‑provisioning, when the amount of allocated 
resources is not in line with the current demand.

• With Dynamic Resource Allocation, the amount of allocated resources can 
change during execution, in order to meet the current demand. Dynamic resource 
allocation can lead to a higher utilization of the physical resources, and allows 
for server consolidation in order to reduce the operating costs.

Dynamic resource allocation is often seen as the most efficient means to allocate 
hardware resources in a data center [46]. However, dynamic resource allocation typ‑
ically involves migration of running applications, which leads to an overhead and 
possible service disruptions.

2.3.3  Resource Profiling

When allocating resources, a distinction can be made between reactivity and 
proactivity:

• With a Reactive control mechanism, the amount of allocated resources is 
adjusted over time in response to a detected change in demand.

• With a Proactive control mechanism, the amount of allocated resources is 
adjusted based on a predicted change in demand.

For proactive control mechanisms, a prediction of the demand is often made using 
historical measurements. This is typically done using Demand Profiling, and can 
happen either at the application level, when predicting the demand for individ‑
ual applications, or at the infrastructure (data center) level, when predicting the 
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global demand within the cloud environment. Apart from estimating the demand, 
an estimation can also be made regarding the state of the physical and virtualized 
resources, often referred to as Resource Utilization Estimation. An estimation can 
be made for the different types of resources, such as compute, network, storage and 
power resources, and these estimations serve as input for both the monitoring and 
scheduling processes.

By Monitoring the actual resource utilization, the provider can detect if the cur‑
rent allocation scheme fits the current demand. In an elastic cloud environment, 
additional resources can be provisioned on the fly if there is an over‑utilization of 
the provisioned resources (under‑provisioning), and when more resources are allo‑
cated than required (over‑provisioning), a certain amount of resources can be deal‑
located to decrease the operational costs. Monitoring processes can also be used to 
determine failure of certain components. Furthermore, monitoring information can 
provide useful input for both demand profiling and resource utilization estimation.

2.3.4  Resource Pricing

Especially with public cloud computing, the cloud user or end user will be charged 
based on its usage of the cloud resources or cloud services. In this context, a distinc‑
tion can be made between application pricing and infrastructure pricing [9].

• With Application Pricing, the cloud user determines the price for the services 
(typically offered as SaaS applications) provided to the end users.

• With (Virtual) Infrastructure Pricing, the cloud provider determines the price 
charged for the virtual resources rented to the cloud users.

For application pricing, the cloud user could either provide its application for free, 
at a fixed price (e.g. a monthly incurring bill, with the price based on the number of 
active users) or he could charge the cloud user based on the actual usage (e.g. the 
total amount of bandwidth or data storage used by the consumer).

For infrastructure pricing, cloud providers traditionally use a Static Pricing 
scheme to cover the infrastructure and operational costs of the data center, especially 
within the context of public cloud computing. With static pricing, a price point is 
established and maintained for an extended period of time. The cloud provider can 
choose to offer its services using flat rate pricing, usage based pricing or a tiered 
pricing strategy. With flat rate pricing, cloud users are charged a fixed price for a 
package which could consist of the required services and a given number of users. 
As long as the package doesn’t change, the price remains constant and is therefore 
predictable. Tiered pricing is similar, but in this case the provider offers multiple 
packages, with different combinations of features offered at different price points. 
Because cloud users can select the package that best fits their needs, tiered pric‑
ing allows for a broader market. With usage based pricing, often referred to as the 
‘Pay As You Go’ model, cloud users are charged based on the actual resource usage. 
A combination of different pricing models is also possible. The cloud provider can 
for example charge a fixed price based on the number of instantiated VMs, together 
with a variable price based on the amount of consumed network bandwidth and/or 
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additional storage. Other pricing models also exist, but these are often derived from 
one of the three previously mentioned models. For example, price per request is 
commonly found within cloud computing pricing schemes, which is a form of usage 
based pricing. It is also worth noting that flat rate pricing, usage based pricing and 
tiered pricing strategies are also often applied at SaaS level (application pricing).

Recently, Dynamic Pricing schemes are gaining popularity as an alternative to 
static pricing, mainly to increase the utilization of the data center [10, 47–51]. With 
dynamic pricing, the price of a product or service can change over time. The cloud 
provider can for example lease its resources at a lower price when the demand is low, 
and increase the prices as the demand increases. Another example of dynamic pric‑
ing is spot pricing, in which the cloud provider offers dynamically priced resources 
at a lower price, but with less guarantee of availability [10]. Dynamic pricing can 
also be based on an auction‑based pricing model, in which multiple cloud users bid 
for a bundle of virtual cloud resources [48, 49]. The cloud provider will then select a 
set of cloud users, the winners, and needs to determine a feasible allocation over its 
physical hardware.

3  Cloud Resource Management: State of the Art

This section provides an overview of recent research (published between 2015 and 
2018) focusing on resource management within cloud environments. We selected 
this time period as this chapter extends the survey previously published by Jennings 
and Stadler [9], which already provides an extensive overview of research related to 
resource management published before 2015. We reviewed over 150 research papers 
from five main publishers, namely ACM, Elsevier, IEEE, Springer and Wiley. A 
majority of the reviewed articles were published in either ACM Transactions on 
Internet Technology (TOIT) [52], IEEE Transactions on Cloud Computing (TCC) 
[53], IEEE Transactions on Parallel and Distributed Systems (TPDS) [54], IEEE 
Transactions on Network and Service Management (TNSM) [55], Springer Journal 
of Network and Systems Management (JNSM) [56] or Wiley Journal of Software: 
Practice and Experience (SPE) [57].

In the remainder of this section, a brief summary of previous surveys focusing on 
resource management is first provided. We then categorize the research items within 
three main areas, as illustrated in Fig. 3. For each category, an overview of all rel‑
evant research items is provided, and in this overview, we added attributes to denote 
the used cloud type (traditional or fog), the scope (single cloud or multi‑cloud) and 
the virtual allocation entity (VM or container). Furthermore, a summary of the most 
relevant research is provided for each resource management functional element, 
and we especially investigate the impact of containers and new cloud deployment 
models.

As a reference, Table 1 provides a mapping from all research items (excluding 
surveys) to the covered resource management functional elements of Fig. 3. As can 
be seen from this table, some publications can be attributed to multiple categories 
and/or functional elements. For these items, we selected the most relevant category 
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and/or element, and in the remainder of this section these items are included in the 
corresponding subsection.

3.1  Previous Surveys

Table 2 provides an overview of previous surveys related to resource management 
within cloud environments. In 2015, Jennings and Stadler published an extensive 
overview of resource management within the public cloud [9]. In their survey, the 
authors introduced a conceptual framework for cloud resource management consist‑
ing of multiple functional elements, as illustrated in Fig. 4. In this figure, we added 
a mapping from the different resource management functional elements to the cat‑
egories used in this article, namely Elasticity, Profiling and Pricing. Furthermore, 
Jennings and Stadler characterized cloud provisioning schemes based on the place‑
ment approach (static, dynamic, network aware and/or energy aware) and the control 
architecture (centralized, hierarchical or distributed). The authors did briefly men‑
tion mobile edge computing as one of the challenges, but the main focus of their 
survey is the management of VMs in traditional cloud environments.

Yousafzai et al. extended the research of Jennings and Stadler by introducing 
a taxonomy for categorizing cloud resource allocation schemes [14]. The intro‑
duced taxonomy is based on multiple attributes, being the optimization objective, 
the design approach, the target resource allocation type, the applied optimization 
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Fig. 3  Cloud resource management taxonomy used in this article, based on the conceptual framework 
introduced by Jennings and Stadler [9]. For each functional element, the corresponding subsection is 
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Table 1  Mapping from all research items (excluding surveys) to the resource management functional ele‑
ments of Fig. 3

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Aazam and Huh [58] 2015 ✓ ✓ ✓ ✓

AbdelBaky and Unuvar [59] 2015 ✓

Amannejad et al. [60] 2015 ✓ ✓

Chiang et al. [61] 2015 ✓

Dabbagh et al. [62] 2015 ✓ ✓ ✓ ✓

Dhakate and Godbole [63] 2015 ✓

Huang et al. [64] 2015 ✓ ✓

Jin et al. [65] 2015 ✓

Katsalis et al. [66] 2015 ✓

Kumbhare et al. [67] 2015 ✓ ✓

Lee et al. [68] 2015 ✓ ✓

Li and Kanso [69] 2015 ✓ ✓ ✓ ✓

Liu et al. [70] 2015 ✓ ✓

Mashayekhy et al. [48] 2015 ✓ ✓

Moens et al. [71] 2015 ✓

Mukherjee et al. [72] 2015 ✓

Petri et al. [73] 2015 ✓ ✓

Sharma et al. [74] 2015 ✓

Stankovski et al. [75] 2015 ✓ ✓

Wang et al. [76] 2015 ✓ ✓

Wuhib et al. [77] 2015 ✓ ✓ ✓ ✓

Zhang et al. [78] 2015 ✓

Aazam et al. [79] 2016 ✓ ✓

Ayoubi et al. [80] 2016 ✓ ✓

Choi et al. [81] 2016 ✓ ✓

D.C. Rodrigues et al. [82] 2016 ✓

Dai et al. [83] 2016 ✓

Elgazzar et al. [84] 2016 ✓

Espling et al. [85] 2016 ✓

Goudarzi et al. [86] 2016 ✓ ✓ ✓

Huang and Tsang [87] 2016 ✓

Kang et al. [88] 2016 ✓

Khatua et al. [89] 2016 ✓

Mashayekhy et al. [49] 2016 ✓ ✓

Mishra and Bellur [90] 2016 ✓

Nakagawa and Oikawa [91] 2016 ✓ ✓ ✓

Pantazoglou et al. [92] 2016 ✓

Righi et al. [93] 2016 ✓

Salah et al. [94] 2016 ✓

Sharma et al. [29] 2016 ✓
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Table 1  (continued)

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Wajid et al. [95] 2016 ✓ ✓

Wan et al. [96] 2016 ✓ ✓

Wanis et al. [97] 2016 ✓ ✓

Wolke et al. [46] 2016 ✓ ✓ ✓

Wu et al. [98] 2016 ✓

Xu et al. [99] 2016 ✓ ✓

Zhou et al. [100] 2016 ✓

Awada and Barker [101] 2017 ✓

Awada and Barker [102] 2017 ✓

Babaioff et al. [103] 2017 ✓ ✓ ✓

Chard et al. [104] 2017 ✓ ✓

Chi et al. [47] 2017 ✓ ✓

Dalmazo et al. [105] 2017 ✓

Hai and Nguyen [106] 2017 ✓ ✓ ✓

Hoque et al. [107] 2017 ✓

Jin et al. [108] 2017 ✓

Khasnabish et al. [109] 2017 ✓ ✓

Li et al. [110] 2017 ✓

Li et al. [111] 2017 ✓

Lloyd et al. [112] 2017 ✓

Maenhaut et al. [113] 2017 ✓ ✓

Mebrek et al. [114] 2017 ✓

Mechtri et al. [115] 2017 ✓

Merzoug et al. [116] 2017 ✓

Mireslami et al. [117] 2017 ✓

Nardelli et al. [118] 2017 ✓

Nitu et al. [119] 2017 ✓

Paya and Marinescu [120] 2017 ✓

Rankothge et al. [121] 2017 ✓ ✓

Tang et al. [122] 2017 ✓ ✓

Xu et al. [123] 2017 ✓ ✓

Yang et al. [124] 2017 ✓

Yi et al. [125] 2017 ✓ ✓

Yu and Pan [126] 2017 ✓

Zhang et al. [127] 2017 ✓ ✓ ✓

Alam et al. [128] 2018 ✓

Aral and Ovatman [129] 2018 ✓ ✓

Atrey et al. [130] 2018 ✓ ✓ ✓

Barkat et al. [131] 2018 ✓

Balos et al. [132] 2018 ✓ ✓ ✓ ✓

Barrameda and Samaan [133] 2018 ✓ ✓ ✓
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Table 1  (continued)

Publication Year Elasticity Profiling Pricing

WM AEP GPS LPS ADP IDP Est Mon APr IPr

Borjigin et al. [134] 2018 ✓ ✓

Bouet and Conan [135] 2018 ✓ ✓

Cheng et al. [136] 2018 ✓ ✓ ✓

Diaz‑Montes et al. [137] 2018 ✓ ✓ ✓

Gill et al. [138] 2018 ✓

Govindaraj and Artemenko [41] 2018 ✓ ✓

Guo and Shenoy [139] 2018 ✓ ✓ ✓

Guo et al. [140] 2018 ✓ ✓

Guo et al. [141] 2018 ✓

Hauser and Wesner [142] 2018 ✓ ✓ ✓ ✓

Heidari and Buyya [143] 2018 ✓

Jia et al. [144] 2018 ✓

Jia et al. [145] 2018 ✓ ✓ ✓

Khabbaz and Assi [146] 2018 ✓ ✓

Lahmann et al. [147] 2018 ✓

Lin et al. [148] 2018 ✓ ✓

Mikavica et al. [50] 2018 ✓

Nawrocki and Sniezynski [149] 2018 ✓ ✓

Prakash et al. [45] 2018 ✓ ✓ ✓

Prats et al. [150] 2018 ✓ ✓ ✓ ✓

Rahimi et al. [151] 2018 ✓ ✓ ✓

Sahni and Vidyarthi [152] 2018 ✓ ✓

Santos et al. [24] 2018 ✓ ✓

Scheuner and Leitner [153] 2018 ✓ ✓

Simonis [154] 2018 ✓ ✓

Sofia and GaneshKumar [155] 2018 ✓ ✓ ✓

Stoyanov and Kollingbaum [39] 2018 ✓ ✓

Takahashi et al. [156] 2018 ✓ ✓

Tesfatsion et al. [30] 2018 ✓ ✓

Trihinas et al. [157] 2018 ✓

Wang and Gelenbe [158] 2018 ✓

Wei et al. [159] 2018 ✓ ✓

Xie and Jia [160] 2018 ✓ ✓

Yao and Ansari [26] 2018 ✓ ✓

Zhang and Wen [161] 2018 ✓ ✓

Zhang et al. [162] 2018 ✓ ✓

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and 
scheduling, LPS local provisioning and scheduling, ADP application demand profiling, IDP (Virtual) 
infrastructure demand profiling, Est resource utilization estimation, Mon monitoring, APr dynamic appli‑
cation pricing, IPr dynamic virtual infrastructure Pricing
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method, the utility function, the processing mode, and the target instances. Poul‑
lie et al. also focused on the allocation of resources, and presented an overview of 
multi‑resource allocation schemes for data centers [13]. Both surveys also mainly 
focus on the allocation of VMs in traditional cloud environments.
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Fig. 4  Conceptual framework for resource management in a cloud environment, as introduced by Jen‑
nings and Stadler [9]. In this figure, we added a mapping from the functional elements of the framework 
to the categories used in this article (Elasticity, Profiling and Pricing)

Table 2  Overview of previous surveys focusing on resource management within cloud environments

Publication Year Elasticity Profiling Pricing Traditional Fog VM Container

Jennings and Stadler [9] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Mann [11] 2015 ✓ ✓ ✓ ✓

Yi et al. [4] 2015 ✓ ✓ ✓ ✓

Zhan et al. [15] 2015 ✓ ✓ ✓ ✓

Herrera and Botero [8] 2016 ✓ ✓ ✓ ✓

Masdari et al. [12] 2017 ✓ ✓ ✓

Yousafzai et al. [14] 2017 ✓ ✓ ✓

Bittencourt et al. [7] 2018 ✓ ✓ ✓ ✓

Kumar et al. [10] 2018 ✓ ✓ ✓ ✓

Mouradian et al. [3] 2018 ✓ ✓ ✓ ✓ ✓

Pahl et al. [5] 2018 ✓ ✓ ✓

Poullie et al. [13] 2018 ✓ ✓ ✓ ✓

Rodriguez and Buyya [6] 2018 ✓ ✓ ✓ ✓

Zhang et al. [38] 2018 ✓ ✓ ✓ ✓ ✓
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Other surveys are mainly focusing on scheduling and orchestration [5–8, 12, 15]. 
Bittencourt et  al. for example introduced a taxonomy for scheduling in traditional 
cloud environments [7]. Masdari et al. also investigated the topic of scheduling, but 
their main focus is on scheduling schemes based on particle swarm optimization 
[12]. Herrera and Botero focus on Network Functions Virtualization (NFV), and pre‑
sented an overview of allocation and scheduling schemes for virtual network func‑
tions [8]. Rodriguez et al. recently published an extensive overview of orchestration 
systems specific for container‑based clusters [6]. Similarly, Pahl et  al. provide an 
overview of recent research focusing on the orchestration of containers [5]. Zhang 
et al. recently published a survey on the migration of virtual instances in cloud envi‑
ronments [38]. The authors briefly mention containers and fog computing, but the 
main focus is the migration of VMs in traditional cloud environments.

When it comes to resource pricing, Kumar et  al. provided an overview of 
dynamic (spot) pricing within traditional clouds [10]. The authors categorized dif‑
ferent spot pricing models in three main categories, namely economics based mod‑
els (auction‑based or game theory based), statistics based models and optimization 
based models.

Recently, Mouradian et al. published an extensive survey on fog computing [3]. 
In their survey, the authors provided some comments regarding resource allocation, 
scheduling and pricing in the context of fog computing. Their survey however is not 
limited to resource management, but instead aims to provide a general overview of 
all aspects of fog computing. The authors for example also discussed several possi‑
ble architectures within fog computing.

As can be seen from this overview, previously published surveys either focus on 
a specific aspect of resource management, or a specific cloud type. Most surveys 
cover resource management within traditional cloud environments, and do not yet 
consider containers as an alternative for VMs. In this article however, our goal is to 
cover the broad range of resource management, and we also do not limit ourselves to 
a single cloud type or virtualization technology.

3.2  Resource Elasticity

3.2.1  Workload Management

Table 3 provides an overview of recent work with the main focus on the manage‑
ment of user workloads. The scheduling of workloads within a cloud environment 
differs from scheduling on traditional distributed systems, due to the on‑demand 
resource provisioning and the pay‑as‑you‑go pricing model which is often used by 
infrastructure providers [152]. A special type of workload is a workflow, which con‑
sist of multiple individual tasks that can have several relationships between them. 
The scheduling of such workflows is often bound by multiple constraints, such 
as strict deadlines for individual tasks [138, 140, 146, 152] and task dependencies 
[136].

Multiple solutions have been proposed for the scheduling of workflows in a 
VM-based environment [99, 136, 138, 140, 146, 152, 155]. Sahni and Vidyarthi 
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for example proposed a dynamic cost‑effective deadline‑constrained heuristic algo‑
rithm for scheduling of scientific workflows using VMs in a public cloud environ‑
ment [152]. The proposed algorithm aims to minimize the costs, while taking into 
account the VM performance variability and instance acquisition delay to identify a 
just‑in‑time schedule for a deadline‑constrained workflow. Guo et al. also introduced 
a strategy for scheduling of deadline‑constrained scientific workflows, but within 
multi‑cloud environments [140]. Their strategy aims to minimize the execution cost 
of the workflow, while meeting the defined deadline. Similarly, Xu et al. proposed a 
strategy for the scheduling of scientific workflows in a multi‑cloud environment, but 
their focus is on reducing the energy consumption [99]. Khabbaz et al. proposed a 
deadline‑aware scheduling scheme [146], and focus on improving the data center’s 
Quality of Service (QoS) performance, by considering the request blocking prob‑
ability and the data center’s response time. Sathya Sofia and GaneshKumar on the 
other hand introduced a multi‑objective task scheduling strategy based on a non‑
dominated sorting genetic algorithm [155]. The proposed algorithm uses a neural 
network for predicting the required amount of VM resources, based on the charac‑
teristics of the tasks and the resource features. Cheng et al. presented a system for 
resource provisioning and scheduling with task dependencies, based on deep rein‑
forcement learning [136]. The proposed solution also invokes a deep Q‑learning‑
based two‑stage resource provisioning and task scheduling processor, for the auto‑
matic generation of long‑term decisions. Gill et al. argue that few existing resource 

Table 3  Overview of recent research with the main focus on workload management

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and 
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single 
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Kumbhare et al. [67] 2015 ✓ ✓ ✓ ✓ ✓

Kang et al. [88] 2016 ✓ ✓ ✓ ✓

Xu et al. [99] 2016 ✓ ✓ ✓ ✓ ✓

Xu et al. [123] 2017 ✓ ✓ ✓ ✓

Atrey et al. [130] 2018 ✓ ✓ ✓ ✓ ✓

Cheng et al. [136] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Diaz‑Montes et al. [137] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Gill et al. [138] 2018 ✓ ✓ ✓ ✓

Guo et al. [140] 2018 ✓ ✓ ✓ ✓ ✓

Heidari and Buyya [143] 2018 ✓ ✓ ✓ ✓

Khabbaz and Assi [146] 2018 ✓ ✓ ✓ ✓ ✓

Sahni and Vidyarthi [152] 2018 ✓ ✓ ✓ ✓ ✓

Sofia et al. [155] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Simonis [154] 2018 ✓ ✓ ✓ ✓ ✓

Takahashi et al. [156] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Xie and Jia [160] 2018 ✓ ✓ ✓ ✓
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scheduling algorithms consider cost and execution time constraints [138]. As a 
result, the authors present a novel strategy for the scheduling of workloads on the 
available cloud resources, based on Particle Swarm Optimization.

Xu et al. note that inside data centers, there exist a vast amount of delay‑toler‑
ant jobs, such as background and maintenance jobs [123]. As a result, the authors 
proposed a scheme for the provisioning of both delay sensitive and delay‑tolerant 
jobs, that aims to minimize the total operational costs, while still guaranteeing the 
required QoS for the delay sensitive jobs, and achieving a desirable delay perfor‑
mance for the delay‑tolerant jobs.

Big-data computing applications can also benefit from the elasticity of cloud 
environments [143, 154, 160]. Such applications typically demand concurrent data 
transfers among the computing nodes, and it is important to determine an optimal 
transfer schedule in order to achieve a maximum throughput. Xie and Jia how‑
ever claim that some existing methods cannot achieve this, as they often ignore 
link bandwidths and the diversity of data replicas and paths [160]. As a result, the 
authors proposed a max‑throughput data transfer scheduling approach that aims to 
minimize the data retrieval time. Large amounts of data generated by internet and 
enterprise applications are often stored in the form of graphs. To process such data, 
graph processing systems are typically used. In this context, Heidari and Buyya pro‑
posed two dynamic repartitioning‑based algorithms for scheduling of large‑scale 
graphs in a cloud environment [143]. The proposed algorithms consider network 
factors in order to reduce the costs. The authors also introduced a novel classifi‑
cation for graph algorithms and graph processing systems, which can aid to select 
the best strategy for processing a given input graph. For real‑time big‑data applica‑
tions, stream processing systems are often used instead of batch processing systems 
as these allow for processing of data upon arrival. However, according to Kumbhare 
et al., traditional stream processing systems often use simple scaling techniques with 
elastic cloud resources to handle variable data rates, which can have a significant 
impact on the application QoS [67]. To tackle this issue, the authors introduced the 
concept of dynamic dataflows for the scheduling of high‑velocity data streams with 
low latency in the cloud. These dataflows use alternate tasks as additional control 
over the dataflow’s cost and QoS.

In a federated multi-cloud environment, different types of resources that may 
be geographically distributed can be collectively exposed as a single elastic infra‑
structure. By doing so, the execution of application workflows with heterogeneous 
and dynamic requirements can be optimized, and the federated multi‑cloud can 
tackle larger scale problems. Diaz‑Montes et al. introduced a framework for man‑
aging the end‑to‑end execution of data‑intensive application workflows within a 
federated cloud [137]. The proposed framework also supports dynamic federation, 
in which computational sites can join or leave on the fly, and the framework can 
recover from failures happening within a site.

For scheduling of workloads that are executed inside containers, Kang et  al. 
proposed a brokering system that aims to minimize the energy consumption, while 
guaranteeing an acceptable performance level [88]. The authors also proposed a new 
metric, called Power consumption Per Application (ppA), and the proposed system 
applies workload clustering using the k‑medoids algorithm. Simonis on the other 
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hand presented a container‑based architecture for big‑data applications, that allows 
for interoperability across data providers, integrators and users [154]. By using self‑
contained containers, the presented architecture allows for horizontal scale‑out, high 
reliability and maintainability. Takahashi et al. introduced a portable load balancer 
for Kubernetes clusters, which is usable in any environment, and hence facilitates 
the integration of web services [156].

Highlights for workload management: Workloads that are being executed in a 
cloud environment are often bound by multiple constraints, which should be taken 
into account by the scheduling strategy to guarantee the required QoS. In recent 
years, several strategies have been proposed, but most of them focus on the execu‑
tion inside VM instances, for example by predicting the minimal amount of VM 
resources required for a given set of tasks.

In a federated multi‑cloud environment, geographically distributed resources can 
be exposed as a single elastic infrastructure, to optimize the execution of application 
workflows and to tackle large scale problems. An important challenge in this context 
is support for dynamic federation, meaning that computational sites should be able 
to join or leave on the fly, and the used framework should be able to cope with such 
changes.

Container technology can be beneficial for the execution of workloads, espe‑
cially when using a service oriented architecture, as self‑contained containers 
allow for transparent microservices, horizontal scale‑out and high reliability and 
maintainability.

3.2.2  Application Elasticity and Provisioning

Table  4 provides an overview of recent work with the main focus on application 
elasticity and provisioning. Applications deployed in a cloud environment can bene‑
fit from the offered elasticity by adjusting the provisioned amount of resources based 
on the current demand. Additional instances can be deployed on the fly, and a load 
balancer will typically be used to distribute the load over the available instances. 
Cloud applications however are often stringent to given SLOs, agreed upon between 
the cloud user and the application end user. In order to satisfy a given service level 
objective, the minimal amount of cloud resources required for the given task needs 
to be determined.

Several models have been proposed for the cost‑efficient SLA‑aware allocation 
of VM resources in a traditional cloud environment [71, 93, 94, 117]. Salah et al. 
for example presented an analytical model based on Markov chains, to predict 
the minimal number of VMs required for satisfying a given SLO performance 
requirement [94]. Their model takes the offered workload and number of VM 
instances as input, together with the capacity of each VM instance. The model not 
only returns the minimal number of VMs required for the workload, but also the 
required number of load balancers needed for achieving proper elasticity. Mire‑
slami et  al. presented a multi‑objective cost‑effective algorithm for minimizing 
the deployment cost while meeting the QoS performance requirements [117]. 
The proposed algorithm offers the cloud user an optimal choice when deploy‑
ing a web application in a traditional cloud environment. Righi et al. introduced 
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a fully‑organizing PaaS‑level elasticity model, designed specifically for running 
High‑Performance Computing (HPC) applications in the cloud [93]. Their model 
does not require any user intervention or modifications to the application’s source 
code, but (de‑)allocates VMs using an aging‑based approach to avoid unnecessary 
VM re‑configurations. The model also uses asynchronism for creating and termi‑
nating VMs in order to minimize the execution time of the HPC applications.

In multi-cloud environments, applications or individual components should 
be deployed in the environment that is best suited. Cloud providers may offer 
their services using different pricing models, and some models may be more suit‑
able for either short term or long term tasks. For the storage of data in heteroge‑
neous multi‑cloud environments, Zhang et al. introduced a data hosting scheme 
which aims to help the cloud user by selecting the most suitable cloud environ‑
ment, together with an appropriate redundancy strategy for achieving high avail‑
ability [78]. The proposed solution considers the used pricing strategy, the avail‑
ability requirements and the data access patterns. For deploying applications in a 
multi‑cloud environment, Khatua et al. introduced several algorithms which aim 
to determine the optimal amount of resources to be reserved, while minimizing 
the total cost by selecting the most appropriate pricing model [89].

Table 4  Overview of recent research with the main focus on application elasticity and provisioning

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and 
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single 
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Moens et al. [71] 2015 ✓ ✓ ✓ ✓

Zhang et al. [78] 2015 ✓ ✓ ✓

Elgazzar et al. [84] 2016 ✓ ✓ ✓ ✓ ✓

Khatua et al. [89] 2016 ✓ ✓ ✓ ✓

Righi et al. [93] 2016 ✓ ✓ ✓ ✓

Salah et al. [94] 2016 ✓ ✓ ✓ ✓

Mebrek et al. [114] 2017 ✓ ✓ ✓ ✓

Mireslami et al. [117] 2017 ✓ ✓ ✓ ✓

Paya and Marinescu [120] 2017 ✓ ✓ ✓ ✓

Alam et al. [128] 2018 ✓ ✓ ✓ ✓ ✓

Barrameda and Samaan [133] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Bouet and Conan [135] 2018 ✓ ✓ ✓ ✓ ✓

Guo and Shenoy [139] 2018 ✓ ✓ ✓ ✓ ✓

Nawrocki et al. [149] 2018 ✓ ✓ ✓ ✓ ✓

Rahimi et al. [151] 2018 ✓ ✓ ✓ ✓ ✓

Santos et al. [24] 2018 ✓ ✓ ✓ ✓ ✓

Yao and Ansari [26] 2018 ✓ ✓ ✓ ✓ ✓

Zhang and Wen [161] 2018 ✓ ✓ ✓ ✓ ✓
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In a mobile edge environment, mobile devices can transfer resource‑intensive 
computations to a more resourceful computing infrastructure, such as a public 
cloud environment. Multiple offloading approaches exist, often focusing on differ‑
ent objectives or following a different approach [26, 84, 133, 149, 161]. Nawrocki 
and Sniezynsky for example proposed an agent‑based architecture with learning 
possibilities, based on supervised and reinforcement learning, to optimally schedule 
services and tasks between the mobile device and the cloud [149]. Elgazzar et al. 
introduced a framework for cloud‑assisted mobile service provisioning, which aims 
to assist mobile devices in delivering reliable services [84]. The presented frame‑
work supports dynamic offloading, based on the current resource utilization and 
network conditions, while satisfying the user‑defined energy constraints. Barrameda 
and Samaan focus on the costs, and presented a statistical cost model for offloading 
in a mobile edge environment [133]. In this cost model, the application is modeled 
as a tree structure for representing dependencies and relations among the applica‑
tion modules. The cost for each module is then modeled as a cumulative distribution 
function that is statistically estimated through profiling. Zhang et  al. on the other 
hand investigate the topic of energy‑efficient task offloading, and proposed an algo‑
rithm that aims to minimize the energy consumption on the mobile devices while 
still guaranteeing deadlines [161]. Somehow related, Mebrek et al. also focus on the 
energy efficiency, but in the context of a multi‑tier IoT‑fog‑cloud environment, and 
the authors presented a model for the power consumption and delay for IoT applica‑
tions within both fog and traditional cloud environments [114]. Similarly, Yao and 
Ansari presented an approach for offloading and resource provisioning in an IoT‑fog 
environment, but the authors aim to minimize the VM rental cost for the fog envi‑
ronment while still guaranteeing QoS requirements.

For applications running in a multi-tiered (layered) cloud environment, which 
for example could consist of edge devices, a fog and a central cloud layer, Alam 
et al. presented a layered modular and scalable architecture that aims to increase the 
efficiency of the applications [128]. The proposed architecture collects and analyzes 
data at the most efficient and logical place, balances the load, and pushes computa‑
tion and intelligence to the appropriate layers. Furthermore, the proposed architec‑
ture uses Docker containers, which simplifies the management and enables distrib‑
uted deployments. Similarly, Santos et al. proposed a framework for the autonomous 
management and orchestration of IoT applications in an edge‑fog‑cloud environment 
[24]. The authors introduced a Peer‑to‑Peer fog protocol for the exchange of appli‑
cation service provisioning information between fog nodes. Rahimi et al. focus on 
multi‑tiered mobile edge environments, and presented a framework for modeling 
mobile applications as location‑time workflows, in which user mobility patterns are 
translated to mobile service usage patterns [151]. These workflows are then mapped 
to the appropriate cloud resources using an efficient heuristic algorithm. Bouet and 
Conan also focus on multi‑tiered mobile edge environments, and proposed a geo‑
clustering approach for optimizing the edge computing resources [135]. The authors 
introduced an algorithm that provides a partition of mobile edge computing clusters, 
which consolidates as many communications as possible at the edge.

Highlights for application elasticity and provisioning: Applications deployed in 
a cloud environment can be stringent to given SLOs. To satisfy these objectives, 
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the required amount of resources needs to be determined. Multiple prediction mod‑
els have been presented, but most of them focus on the deployment of applications 
inside VMs. However, VM re‑configurations are typically costly and should hence 
be avoided.

With fog computing, and especially mobile cloud computing, less powerful 
devices can transfer computational intensive tasks to another environment. This 
requires an offloading approach, that could for example focus on energy efficiency 
or minimizing the operational costs. For these environments, containers offer clear 
benefits, as they facilitate the management and allow for distributed deployments. 
In multi‑cloud environments, the application or individual components should be 
deployed in the optimal environment, for example to balance the load or to minimize 
the operational costs.

3.2.3  Local Provisioning and Scheduling

Table 5 provides an overview of recent work with the main focus on local provision‑
ing and scheduling. In VM-based cloud environments, multiple VMs are deployed 
onto a single server, and a hypervisor is used for allocating the virtual resources on 
top of the physical hardware. Zhang et al. argue that when VMs deployed onto the 
same physical server compete for memory, the performance of the applications dete‑
riorates, especially for memory‑intensive applications [127]. To tackle this issue, the 
authors proposed an approach for optimizing the memory control using a balloon 
driver for server consolidation. Li et al. on the other hand argue that the accuracy 
of CPU proportional sharing and the responsiveness of I/O processing are heav‑
ily dependent on the proportion of the allocated CPU resources [110]. The authors 
illustrate that an inaccurate CPU share ratio, together with CPU proportion depend‑
ent I/O responsiveness, can affect the performance of the hypervisor. This could lead 

Table 5  Overview of recent research with the main focus on local provisioning and scheduling

WM workload management, AEP application elasticity and provisioning, GPS global provisioning and 
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single 
cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

Amannejad et al. [60] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Katsalis et al. [66] 2015 ✓ ✓ ✓ ✓

Mukherjee et al. [72] 2015 ✓ ✓ ✓ ✓

Nakagawa and Oikawa [91] 2016 ✓ ✓ ✓ ✓

Sharma et al. [29] 2016 ✓ ✓ ✓ ✓ ✓

Li et al. [110] 2017 ✓ ✓ ✓ ✓

Zhang et al. [127] 2017 ✓ ✓ ✓ ✓ ✓

Lahmann et al. [147] 2018 ✓ ✓ ✓ ✓ ✓

Prakash et al. [45] 2018 ✓ ✓ ✓ ✓ ✓

Tesfatsion et al. [30] 2018 ✓ ✓ ✓ ✓ ✓
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to unstable performance and therefore could violate SLA requirements. As a result, 
the authors proposed a novel scheduling scheme that achieves accurate CPU propor‑
tional sharing and predictable I/O responsiveness. Katsalis et al. also focus on CPU 
sharing, and presented several CPU provisioning algorithms for service differentia‑
tion in cloud environments [66]. The algorithms are based on dynamic weighted 
round robin, and guarantee CPU service shares in clusters of servers. Mukherjee 
et al. argue that, while resource management methods may manage application per‑
formance by controlling the sharing of processing time and input‑output rates, there 
is generally no management of contention for virtualization kernel resources or for 
the memory hierarchy and subsystems [72]. Such contention however can have a 
significant impact on the application performance. As a result, the authors presented 
an approach for detecting contention for shared platform resources in virtualized 
environments. Amennejad et al. illustrate that when VMs compete for shared physi‑
cal machine resources, the web services deployed on these VMs could suffer perfor‑
mance issues [60]. Cloud users however typically have only access to VM‑level met‑
rics and application‑level metrics, but these metrics are often not useful for detecting 
inter‑VM contention. To tackle this issue, the authors proposed a machine‑learning 
based interference detection technique to predict whether a given transaction being 
processed by a web service is suffering from interference. The proposed technique 
only relies on web transaction response times, and does not require any access to 
performance metrics of the physical resources.

For container-based deployments, Nakagawa and Oikawa argue that deployed 
containers often consume much more memory than expected [91]. Although there 
are several methods to prevent such memory overuse, most existing methods have 
their shortcomings such as an increase in operational costs, or the detection of false‑
positives. In their paper, the authors proposed a new memory management method 
for container‑based virtualization environments. The proposed method detects con‑
tainers that have a sign of memory overuse, and puts a limitation on the allowed 
memory consumption for these containers. Lahmann et  al. investigated if VM 
resource allocation schemes are appropriate for container deployments [147]. Spe‑
cifically, they focus on the gaps between memory allocation and memory utilization 
for application deployments in container clusters. Their main conclusion is that VM 
resource allocation schemes should not simply be used for the allocation of con‑
tainers, but a fine‑grained allocation scheme should be used instead. Sharma et al. 
studied the differences between hardware virtualization (VMs) and OS virtualization 
(containers) regarding performance, manageability and software development [29]. 
According to their findings, containers promise bare metal performance, but they 
may suffer from performance interference as they share the underlying OS kernel. 
Unlike VMs which typically have strict resource limits, containers also allow for 
soft limits, which can be helpful in over‑commitment scenarios as they can make 
use of underutilized resources allocated to other containers. Tesfatsion et  al. also 
studied the differences between VMs and containers, but with a focus on the virtu‑
alization overhead [30]. According to the presented results, no single virtualization 
technology is a clear winner, but each platform has its advantages and shortcomings. 
Containers for example offer a lower virtualization overhead, but can raise security 
issues due to the lower level of isolation. Both Tesfatsion and Sharma however note 
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that a hybrid form, in which containers are deployed on top of VMs, could offer 
promising solutions that combine the advantages of both virtualization technologies.

However, when containers are provisioned inside VMs, the guest OS man‑
ages virtual resources inside a VM, whereas the hypervisor manages the physical 
resources distributed among the VMs. As a result, two control centers are manag‑
ing the set of resources used by the containers. The hypervisor typically takes con‑
trol actions such as memory ballooning, which allows a host system to artificially 
enlarge its memory pool by reclaiming unused memory allocated to other virtual 
machines, or withdrawal of a virtual CPU to manage over‑provisioning, without 
being aware of the effects of those actions on individual containers deployed inside 
the VM. Prakash et al. illustrated that such actions can have unpredictable and non‑
deterministic effects on the nested containers [45]. To tackle this issue, the authors 
proposed a policy driven controller that smooths over the effects of hypervisor 
actions on the nested containers.

Highlights for local provisioning and scheduling: In VM‑based environments, a 
hypervisor will strictly allocate resources to the deployed VMs. The deployed VMs 
however can compete for the shared physical resources, but the hypervisor should 
detect and prevent this to not violate SLA requirements. With OS‑level virtualiza‑
tion, the underlying OS kernel is shared, and containers can use unutilized resources 
allocated to other containers. These soft limits should be taken into account, as they 
can have unpredictable effects on other unrelated containers deployed on the same 
physical hardware. Each virtualization technology clearly has its advantages and 
limitations, and deploying containers inside VMs could combine the advantages of 
both technologies, but this introduces challenges for resource management as two 
control centers are managing the set of resources used by the containers.

3.2.4  Global Provisioning and Scheduling

Table  6 provides an overview of recent work with the main focus on global pro‑
visioning and scheduling. As can be seen from this table, a majority of research 
is focusing on this resource management functional element. When it comes to 
resource allocation, the used scheme can be either static or dynamic, with the latter 
indicating that the amount of resources allocated for a specific task can change over 
time.

For the allocation of resources in a VM-based environment, Wolke et al. did an 
experimental study on the benefits of dynamic resource allocation [46]. According 
to their findings, reactive or proactive control mechanisms do not always decrease 
the average server demand, but instead can lead to a high number of migrations, 
which negatively impacts the response times and could even lead to network conges‑
tion. The authors note that in general, live VM migrations should be exceptional, 
and capacity planning via optimization should be used instead, especially in environ‑
ments with long‑running and predictable application workloads. Somewhat related, 
Wu et al. studied the overhead introduced by launching new VMs in the context of 
Cloud bursting [98]. According to their findings, this overhead is not constant, but 
instead depends on the physical resource utilization (e.g. CPU and I/O device utili‑
zation) at the time when the VM is launched. This variation in overhead can have a 
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Table 6  Overview of recent research with the main focus on global provisioning and scheduling

Publication Year Function Cloud Scope Entity

WM AEP GPS LPS TC FC SC MC VM CT

AbdelBaky and Unuvar [59] 2015 ✓ ✓ ✓

Chiang et al. [61] 2015 ✓ ✓ ✓ ✓

Li and Kanso [69] 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Liu et al. [70] 2015 ✓ ✓ ✓ ✓

Stankovski et al. [75] 2015 ✓ ✓ ✓ ✓

Wuhib et al. [77] 2015 ✓ ✓ ✓

Ayoubi et al. [80] 2016 ✓ ✓ ✓ ✓ ✓

Choi et al. [81] 2016 ✓ ✓ ✓ ✓

Dai et al. [83] 2016 ✓ ✓ ✓ ✓

Espling et al. [85] 2016 ✓ ✓ ✓ ✓

Goudarzi et al. [86] 2016 ✓ ✓ ✓ ✓

Huang and Tsang [87] 2016 ✓ ✓ ✓ ✓

Mishra and Bellur [90] 2016 ✓ ✓ ✓ ✓

Pantazoglou et al. [92] 2016 ✓ ✓ ✓ ✓

Wajid et al. [95] 2016 ✓ ✓ ✓ ✓

Wolke et al. [46] 2016 ✓ ✓ ✓ ✓

Wu et al. [98] 2016 ✓ ✓ ✓ ✓

Awada and Barker [101] 2017 ✓ ✓ ✓ ✓

Awada and Barker [102] 2017 ✓ ✓ ✓ ✓

Hoque et al. [107] 2017 ✓ ✓ ✓ ✓

Jin et al. [108] 2017 ✓ ✓ ✓ ✓

Khasnabish et al. [109] 2017 ✓ ✓ ✓

Li et al. [111] 2017 ✓ ✓ ✓ ✓

Maenhaut et al. [113] 2017 ✓ ✓ ✓ ✓

Mechtri et al. [115] 2017 ✓ ✓ ✓ ✓

Merzoug et al. [116] 2017 ✓ ✓ ✓ ✓

Nardelli et al. [118] 2017 ✓ ✓ ✓ ✓ ✓

Nitu et al. [119] 2017 ✓ ✓ ✓ ✓ ✓

Rankothge et al. [121] 2017 ✓ ✓ ✓ ✓ ✓

Yang et al. [124] 2017 ✓ ✓ ✓ ✓

Yu and Pan [126] 2017 ✓ ✓ ✓

Aral and Ovatman [129] 2018 ✓ ✓ ✓ ✓ ✓

Barkat et al. [131] 2018 ✓ ✓ ✓ ✓

Govindaraj and Artemenko [41] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Guo et al. [141] 2018 ✓ ✓ ✓ ✓

Jia et al. [144] 2018 ✓ ✓ ✓

Jia et al. [145] 2018 ✓ ✓ ✓ ✓

Lin et al. [148] 2018 ✓ ✓ ✓ ✓ ✓

Stoyanov and Kollingbaum [39] 2018 ✓ ✓ ✓ ✓ ✓

Wang and Gelenbe [158] 2018 ✓ ✓ ✓

Wei et al. [159] 2018 ✓ ✓ ✓ ✓
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significant impact on cloud bursting strategies. As a result, the authors introduced 
a VM launching overhead reference model based on operational data, which could 
help to decide when and where a new VM should be launched.

Global provisioning and scheduling often includes VM consolidation [85, 87, 
90, 108, 119, 131, 141], which typically aims to pack the virtual machines onto few 
physical servers in order to reduce the operational costs. Huang et al. for example 
presented a framework for VM consolidation that aims to achieve a balance among 
multiple objectives [87], which can also be used in a context that requires mini‑
mal system re‑configurations. Similarly, Guo et  al. presented an approach for the 
real‑time adaptive placement of VMs in large data centers [141]. The authors use a 
shadow routing based approach, which allows for a large variety of objectives and 
constraints to be treated within a common framework. When consolidating VMs, 
both the relationships and possible interference between collocated VMs, as well 
as the tightness of packing should be taken into account. Espling et al. for example 
introduced an approach for the placement of VMs with an internal service structure, 
component relationships and placement constraints between them [85]. Jin et al. pre‑
sented an approach that takes into account the possible interference between col‑
located VMs, as this interference can have a negative impact on the performance of 
the deployed applications [108]. Mishra et al. on the other hand presented a study 
on the tightness of VM packing [90]. A tight packing approach can lead to future 
issues as there is no room to expand, whereas provisioning VMs for their peak usage 
can result in wasted resources as peaks occur infrequently and typically for a short 
time. Liu et al. however prefer an aggressive resource provisioning approach [70], 
by initially over‑provisioning resources and later reducing the amount of resources if 
needed. Doing so can increase the performance by reducing the adaption time, while 
limiting SLO violations when dealing with rapidly increasing workloads. On the 
physical servers hosting the VMs, some resources could be left unused and there‑
fore wasted when they are insufficient for hosting a new VM. In this context, Nitu 
et al. proposed a consolidation strategy that dynamically divides a VM into smaller 
‘pieces’, so that each piece fits into the available ‘holes’ on the servers [119].

Some provisioning and scheduling schemes have been proposed that focus on the 
deployment of containers in a cloud environment [59, 81, 101, 102, 107, 118]. Awada 
and Barker for example presented a cloud‑based container management service frame‑
work, that offers the required functionalities for orchestrating containerized applica‑
tions [102]. Their framework takes into account the heterogeneous requirements of the 
applications, and jointly optimizes sets of containerized applications and resource pools 
within a cloud environment. The authors also presented an extension of their frame‑
work for use in multi‑region cloud container‑instance clusters [101]. Abdelbaky et al. 
also focus on a multi‑cloud environment, and introduced a framework that enables the 
deployment and management of containers across multiple hybrid clouds and clusters 

Table 6  (continued)
WM workload management, AEP application elasticity and provisioning, GPS global provisioning and 
scheduling, LPS local provisioning and scheduling, TC traditional cloud, FC fog computing, SC single 
cloud, MC multi‑cloud, VM virtual machine, CT container
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[59]. Their framework takes into account the objectives and constraints of both the 
cloud provider and cloud user, and uses a constraint‑programming model for selecting 
the required resources. For the deployment of containers within VMs, Nardelli et al. 
introduced a strategy for the elastic provisioning of VMs required for deploying the 
containers [118]. Hoque et al. analyzed different container orchestration tools, and pre‑
sented a framework for the orchestration of containers within a fog cloud environment 
[107].

Although containers have distinctive advantages over VMs, the live migration of 
containers could still introduce a comparatively high overhead and downtime [39, 41]. 
Stoyanov and Kollingbaum investigated live migration of containers using the popu‑
lar Checkpoint‑Restore in Userspace (CRIU) tool [39]. The authors proposed a novel 
approach for the live migration that utilizes a recently published CRIU feature called 
image cache/proxy. Similarly, Govindaraj and Artemenko also proposed a new live 
migration scheme for containers that aims to reduce the downtime of the migrated con‑
tainer [41].

Live migration is often used for achieving high availability, together with other tech‑
nologies such as failure detection and checkpoint/restore mechanisms. In this context, 
Li and Kanso presented a general comparison between VMs and containers from a 
high availability perspective [69]. According to their findings, there are many solutions 
available for achieving high availability in a VM environment, typically implemented 
by the hypervisor as failover clustering. However, current container platforms still lack 
many of these features. There is some initial work available on container clustering, but 
the authors note that there are no mature features yet for monitoring or failure detection 
and recovery, and therefore additional extensions are required on top of container tech‑
nologies to support high availability in a container‑based environment.

Highlights for global provisioning and scheduling: The allocation of resources can 
be either static or dynamic. A dynamic allocation strategy can lead to a higher effi‑
ciency, but the introduced reconfiguration overhead should not be neglected. There‑
fore, using a dynamic allocation strategy will not always be beneficial, especially when 
provisioning VMs. The (re)allocation of VMs often includes VM consolidation, which 
aims to pack the VMs onto few physical servers. During the VM consolidation process, 
the tightness of packing plays an important role, and possible relationships between 
VMs should be taken into account.

When deploying containers, an orchestrator is typically used to optimize the alloca‑
tion scheme over the available resources. Existing container orchestration tools exist for 
the deployment and management of containers, but these are still relatively young and 
still lack some important features that are offered in VM environments, for example for 
achieving high availability which includes live migration of running applications.

3.3  Resource Profiling

Table  7 provides an overview of recent work related to resource profiling, which 
includes application and infrastructure demand profiling, resource utilization esti‑
mation and monitoring.
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3.3.1  Application Demand Profiling

When deploying applications in an IaaS cloud environment, both the quantity and 
type of VM resources need to be determined. Application demand profiling can be 
used for assessing demand patterns for individual applications, which can be used as 
input for workload management and application pricing. In this context, Lloyd et al. 
introduced a workload cost prediction methodology which harnesses operating sys‑
tem time accounting principles to support equivalent workload performance using 
alternate virtual machine types [112]. By using resource utilization checkpoints, the 
total resource utilization profile is captured for service oriented application work‑
loads executed across a pool of VM. Based on the obtained workload profiles, the 
estimated cost is calculated, which could help cloud users for finding alternate infra‑
structures that afford lower hosting costs while offering equal or better performance. 
Somewhat related, Prats et al. introduced an approach for the automatic generation 
of workload profiles [150]. The authors examined and modeled application behavior 
by finding phases of similar behavior in the workloads. In the presented approach, 
resource monitoring data is first passed through conditional restricted Boltzmann 
machines to generate a low‑dimensional and time‑aware vector. This vector is then 
passed through clustering methods such as k‑means and hidden Markov models to 
detect the similar behavior phases.

Chard et al. introduced a middleware for the profiling, prediction and provision‑
ing of applications in a cloud environment [104]. The authors have developed an 
automated profiling service that is able to derive approximate profiles for applica‑
tions executed on different environments. Based on these profiles, the expected cost 
is calculated for executing a particular workload in a dynamic cloud market, with the 

Table 7  Overview of recent research with the main focus on resource profiling

ADP application demand profiling, IDP (Virtual) infrastructure demand profiling, Est resource utilization 
estimation, Mon monitoring, TC traditional cloud, FC fog computing, SC single cloud, MC multi‑cloud, 
VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

ADP IDP Est Mon TC FC SC MC VM CT

Dabbagh et al. [62] 2015 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dhakate and Godbole [63] 2015 ✓ ✓ ✓ ✓ ✓

D.C. Rodrigues et al. [82] 2016 ✓ ✓ ✓ ✓

Zhou et al. [100] 2016 ✓ ✓ ✓ ✓

Chard et al. [104] 2017 ✓ ✓ ✓ ✓

Dalmazo et al. [105] 2017 ✓ ✓ ✓ ✓

Lloyd et al. [112] 2017 ✓ ✓ ✓ ✓

Balos et al. [132] 2018 ✓ ✓ ✓ ✓ ✓ ✓

Hauser and Wesner [142] 2018 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Prats et al. [150] 2018 ✓ ✓ ✓ ✓ ✓

Scheuner and Leitner [153] 2018 ✓ ✓ ✓ ✓

Trihinas et al. [157] 2018 ✓ ✓ ✓ ✓ ✓
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aim of computing bids that are based on probabilistic‑durability guarantees. Once 
the results from profiling and market prediction are obtained, the middleware provi‑
sions infrastructure and manages it throughout the course of the workload execution.

Due to the immense growth in the cloud computing market and the resulting wide 
diversity of cloud services, micro‑benchmarks could be used for identifying the best 
performing cloud services. As a result, Scheuner and Leitner have developed a cloud 
benchmarking methodology that uses micro‑benchmarks to profile applications, 
in order to predict how an application performs on a wide range of cloud services 
[153]. The authors validated their approach using several metrics and micro‑bench‑
marks with two applications from different domain. Although micro‑benchmarking 
is a useful approach, the results illustrate that only few selected micro‑benchmarks 
are relevant when estimating the performance of a particular application.

Within the context of scientific computing, Balos et  al. present an analytical 
model that matches scientific applications to effective cloud instances for achieving 
high application performance [132]. The model constructs two vectors, an applica‑
tion vector consisting of application performance components and a cloud vector 
comprising cloud‑instance performance components. By profiling both the applica‑
tion and cloud instances, an inner product of both vectors is calculated to produce an 
application‑to‑cloud score, which represents the application’s execution time on the 
selected cloud instance.

Highlights for application demand profiling: Application demand profiling can 
be useful for estimating the required amount of resources, as well as the expected 
operational costs. In a public cloud market, profiling applications can also be used 
to determine the best suited environment. Applications can either be profiled as a 
whole, or micro‑benchmarks can be used to predict how an application would 
perform.

3.3.2  Monitoring, Infrastructure Demand Profiling and Resource Utilization 
Estimation

Cloud monitoring systems play a crucial role for supporting scalability, elasticity, 
and migrations within a cloud environment. Da Cunha Rodriguez et al. presented a 
general overview of cloud monitoring [82]. The authors also provided a comparison 
among relevant cloud monitoring solutions, focusing on abilities such as the accu‑
racy, autonomy and comprehensiveness.

For automatic resource provisioning, the deployed applications, services and the 
underlying platforms need to be continuously monitored at multiple levels and time 
intervals. Trihinas et al. however argue that current cloud monitoring tools are either 
bound to specific cloud platforms, or have limited portability to provide elasticity 
support [157]. The authors described several challenges for monitoring elastically 
adaptive multi‑cloud services, and introduced an automated, modular, multi‑layer 
and portable cloud monitoring framework. The presented framework can automat‑
ically adapt when elasticity actions are enforced to either the cloud service or to 
the monitoring topology, and can recover from faults introduced in the monitoring 
configuration.
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Hauser and Wesner presented an approach for monitoring resource statistics on 
the physical infrastructure level [142], to provide the required information for pro‑
filing of the physical resources. Based on the monitoring information, a resource 
utilization profile is provided to the cloud middleware and customer. Such a profile 
consists of both a static (e.g. number of CPU cores) and dynamic part (e.g. cur‑
rent utilization), and is generated using statistical computations like histograms and 
Markov chains.

Dabbagh et al. proposed an energy‑aware resource provisioning framework that 
predicts future workloads [62]. Based on monitoring information, the proposed 
framework predicts the number of future VM requests, along with the amount of 
CPU and memory resources associated with each of these requests, and provides 
accurate estimations of the number of physical machines required. Although the 
proposed solution is based on the provisioning of VMs, the authors note that their 
framework could easily be adapted for estimating the number of physical machines 
required for the provisioning of containers.

Monitoring can also play an important role for achieving high availability and 
reliability. As the public cloud is a multi‑tenant environment, failure of a single 
physical component can have a significant impact on a large number of tenants. 
To increase cloud reliability, Zhou et  al. presented a recovery approach based on 
checkpoint images, which consist of service checkpoint images and delta checkpoint 
images [100].

Dhakate and Godbole proposed an architecture for monitoring, testing, reporting 
and alerting of an entire cloud environment [63]. The required monitoring software 
is packed inside Docker containers, which can be deployed directly from the Docker 
Hub repository. The authors also developed a dashboard that provides a general 
overview of the health status of the whole cloud environment.

Highlights for monitoring, infrastructure demand profiling and resource utiliza‑
tion estimation: Monitoring systems play a crucial role for supporting scalability, 
elasticity, and migrations within a cloud environment. Together with resource uti‑
lization estimation, a resource utilization profile can be generated. Monitoring can 
also aid in achieving high availability and reliability. When the monitoring system 
detects a failure, it can initiate a recovery approach, or alert the cloud provider.

3.4  Resource Pricing

Table 8 provides an overview of recent research focusing on resource pricing. As 
most items focus on (virtual) infrastructure pricing, in the remainder of this section, 
we will only discuss this functional element. We will first provide a brief overview 
of research built on top of static pricing models, followed by research focusing on 
dynamic pricing models.

3.4.1  Static Pricing

In the IaaS market, virtual resources are typically priced using a pay‑per‑use pricing 
model, and the granularity of usage for such pricing is often at VM level. However, 
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a majority of applications running on top of VMs struggle to fully utilize the allo‑
cated amount of resources, leading to a waste of unused resources and are therefore 
not cost‑efficient due to these coarse‑grained pricing schemes [65, 68].

Jin et al. investigated an optimized fine‑grained and fair pricing scheme [65]. 
The authors address two main issues: the profits of resource providers and cus‑
tomers often contradict mutually, and the VM maintenance overhead like startup 
costs are often too huge to be neglected. The presented solution not only derives 
an optimal price in the acceptable price range, that satisfies both customers and 
providers, but also finds a best‑fill billing cycle to maximize social welfare. Lee 
et al. also proposed a resource management mechanism for fine‑grained resource 
sharing, which allows for real pay‑per‑use pricing [68]. Their mechanism consists 
of a container‑based resource allocator, and a real‑usage based pricing scheme. 
By using containers instead of virtual machines, a higher resource utilization 
can be achieved and the authors also illustrate that the proposed mechanism can 
achieve a near‑optimal cost efficiency.

Tang et  al. investigated the problem of joint pricing and capacity planning 
in the IaaS provider market [122]. The authors studied two models, in the first 

Table 8  Overview of recent research with the main focus on resource pricing

APr dynamic application pricing, IPr dynamic virtual infrastructure Pricing, TC traditional cloud, FC 
fog computing, SC single cloud, MC multi‑cloud, VM virtual machine, CT container

Publication Year Function Cloud Scope Entity

APr IPr TC FC SC MC VM CT

Aazam and Huh [58] 2015 ✓ ✓ ✓ ✓

Huang et al. [64] 2015 ✓ ✓ ✓ ✓

Jin et al. [65] 2015 ✓ ✓ ✓ ✓

Lee et al. [68] 2015 ✓ ✓ ✓ ✓ ✓ ✓

Mashayekhy et al. [48] 2015 ✓ ✓ ✓ ✓

Petri et al. [73] 2015 ✓ ✓ ✓ ✓

Sharma et al. [74] 2015 ✓ ✓ ✓

Wang et al. [76] 2015 ✓ ✓ ✓

Aazam et al. [79] 2016 ✓ ✓ ✓ ✓

Mashayekhy et al. [49] 2016 ✓ ✓ ✓ ✓

Wan et al. [96] 2016 ✓ ✓ ✓

Wanis et al. [97] 2016 ✓ ✓ ✓ ✓ ✓

Babaioff et al. [103] 2017 ✓ ✓ ✓ ✓ ✓

Chi et al. [47] 2017 ✓ ✓ ✓ ✓

Hai and Nguyen [106] 2017 ✓ ✓ ✓ ✓ ✓

Tang et al. [122] 2017 ✓ ✓ ✓ ✓ ✓

Yi et al. [125] 2017 ✓ ✓ ✓ ✓ ✓

Borjigin et al. [134] 2018 ✓ ✓ ✓

Mikavica et al. [50] 2018 ✓ ✓ ✓ ✓

Zhang et al. [162] 2018 ✓ ✓ ✓
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model there is a single IaaS provider (monopoly market), whereas the second 
model considers multiple IaaS providers. For the monopoly market model, the 
authors proposed a method for determining the optimal amount of end‑user 
requests to admit and number of VMs to lease for SaaS providers, based on the 
current resource price charged by the IaaS provider. For the model with multiple 
IaaS providers, the authors proposed an iterative game‑theory based algorithm for 
finding the so‑called Nash equilibrium. Borjigin et al. also presented an approach 
for finding the Nash equilibrium, but within NFV markets [134]. The presented 
double‑auction approach aims to maximize the profits for all participants, being 
the brokers, the cloud users and the cloud providers.

Yi et al. argue that cloud users with small and short demands, typically cannot 
find an instance type offered by a cloud provider that fits their needs or fully utilizes 
the purchased instance‑hours [125]. On the other hand, cloud providers are faced 
with the challenge of consolidating small, short jobs, which exhibit strong dynam‑
ics, to effectively improve resource utilization. To address these issues, the authors 
proposed a novel group buying mechanism that organizes jobs with complementary 
resource demands into groups, and allocates them to container group buying deals 
predefined by cloud providers. Each group buying deal offers a resource pool for all 
the jobs in the deal, which can be implemented as a virtual machine or a physical 
server. By running each job inside a container, the proposed solution allows for flex‑
ible resource sharing among the different users in the same group buying deal, while 
improving resource utilization for the cloud providers.

Highlights for static virtual infrastructure pricing: Static pricing models are often 
based on the number of provisioned VMs. A majority of applications however strug‑
gle to fully utilize the allocated amount of resources, leading to a waste of unused 
resources. A fine‑grained pricing model could tackle this issue, presenting an inter‑
esting opportunity for the deployment of applications inside containers. Small and 
short tasks can be executed in containers, which can then be grouped and allocated 
to VMs. A group buying approach can be used for acquiring the required set of 
VMs.

3.4.2  Dynamic Pricing

When using a dynamic, auction-based pricing model, multiple cloud users bid 
for a bundle of typically heterogeneous cloud instances. The cloud provider will 
then select a set of cloud users, and needs to determine a feasible allocation over 
its set of physical machines. A major issue with dynamic auction‑based pricing is 
that cloud users are typically self‑interested, meaning that they want to maximize 
their own utility. The cloud users could untruthfully alter their requests, for example 
by requesting several sets of resources different from their actual need, in order to 
manipulate the outcomes of the bidding and to gain an unfair advantage [48, 76, 79].

To tackle this issue, Mashayekhy et  al. [48] proposed a resource management 
mechanism that consists of three phases: winner determination, provisioning and 
allocation, and pricing. In the winner determination phase, the cloud provider 
decides which users receive the requested bundles. In the provisioning and alloca‑
tion phase, VM instances are provisioned to the winning users. In the pricing phase, 
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the cloud provider dynamically determines the price that the winning users should 
pay for their requests. The authors claim that their solution is strategy‑proof, mean‑
ing that cloud users have no incentives to lie about their requested bundles and their 
valuations. In [49], the authors proposed an auction‑based online mechanism for 
VM provisioning, allocation and pricing in clouds that considers several types of 
resources. The proposed mechanism allocates VM instances to selected users for 
the period they are requested for, and ensures that users will continue using their 
VM instances for the requested period. In addition, the mechanism determines the 
price users have to pay for using the allocated resources. The authors proved that 
the mechanism is incentive‑compatible, meaning that it gives incentives to users to 
reveal their actual requests.

Cloud data centers often consist of heterogeneous infrastructure, and the cloud 
provider could adapt the offered prices based on the used hardware. Zhang et al. for 
example presented an approach for the pricing of cloud storage for data centers con‑
sisting of multiple storage tiers that offer distinct characteristics [162]. The approach 
is based on a two‑stage auction process for requesting storage capacity and accesses 
with given latency requirements. The presented solution provides a hybrid storage 
and access optimization framework, which aims to maximize the cloud provider’s 
net profit over multiple dimensions.

When the current demand is low, cloud providers can offer their services at a 
lower price, e.g. Amazon’s spot instances. Recently, Amazon introduced a new 
variety of spot instances, namely spot block instances [163]. These instances run 
continuously for a finite duration (1 to 6 hours). Pricing is based on the requested 
duration and the available resources, and spot block prices are typically 30 to 45% 
less than on‑demand prices. Mikavica et  al. analyzed two auction‑based pricing 
mechanisms, namely uniform price auction and generalized second‑price auction, 
for pricing the cloud provider’s idle resources in the form of spot block instances 
[50]. Furthermore, the authors proposed a model for spot block price determina‑
tion under these pricing mechanisms. The presented results show that, regardless of 
the chosen auction mechanism and bidding strategy, spot block instances are a cost‑
effective solution that embodies advantages of both on‑demand instances and spot 
instances. Wan et al. on the other hand present a reactive pricing algorithm, allow‑
ing the cloud provider to determine the server price based on the actual resource 
demand [96]. The presented approach takes into account the renewable energy, spot 
power price and the battery level, and dynamically tunes the server price in response 
to state changes. The authors focus on pricing of physical servers, but the presented 
approach can easily be extended for pricing of VMs.

In a multi-cloud environment, service and resource providers can co‑exist in a 
market where the relationship between clients and services depends on the nature of 
the application and can be subject to a variety of different QoS constraints. Deciding 
whether a cloud provider should host a service in the long‑term would be influenced 
by parameters such as the service price, the QoS guarantees required by the custom‑
ers, the deployment costs and the constraints. In this context, Petri et al. introduced a 
market model to support federated clouds and investigate its efficiency using two real 
application scenarios [73]. The authors also identified a cost‑decision based mechanism 
to determine when tasks should be outsourced to external sites in the federation. Wang 
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et al. also focused on multi‑cloud environments, by introducing an intelligent economic 
approach for dynamic resource allocation, which can be used for the trading of vari‑
ous kinds of resources among multiple consumers and providers [76]. The presented 
approach is based on intelligent combinatorial double auction, and includes a price 
formation mechanism, consisting of price prediction and matching. The authors also 
proposed a reputation system to exclude dishonest participants, as well as a paddy field 
algorithm for selecting the winners.

In a federated cloud environment, services can be provided through two or more 
clouds, which is often done using a middleware entity, called a cloud broker. Such cloud 
broker is responsible for reserving and managing the resources, discovering services 
according to the customer’s demands, SLA negotiation and match‑making between the 
involved service provider and the customer. Aazam et al. presented a holistic brokerage 
model to manage on‑demand and advanced service reservation, pricing and reimburse‑
ment [79]. The authors consider dynamic management of customer’s characteristics as 
well as taking into account historical records when evaluating the economics related 
factors. Futhermore, they introduced a mechanism of incentives and penalties, which 
helps to establish trust between the cloud users and service providers.

Highlights for dynamic virtual infrastructure pricing: With a dynamic, auction‑
based pricing model, multiple cloud users bid for a bundle of cloud resources. A major 
issue with this is that the cloud users can alter their requests in order to manipulate 
the bidding outcomes. To tackle this issue, the cloud provider could give incentives 
to the users to reveal their actual requests. In federated and other multi‑cloud environ‑
ments, a broker is typically used for reserving and managing resources. When allocat‑
ing resources, this broker could take into account the actual prices offered by the differ‑
ent environments, in order to minimize the costs.

4  Challenges and Opportunities

Virtualization is the fundamental technology that powers cloud computing, and the 
majority of cloud providers are still providing virtual resources in the form of VMs 
to the cloud users. As a result, most research related to resource management in cloud 
environments is focusing on the different aspects related to the provisioning, profiling 
and pricing of such VMs. Container technology however is gaining popularity, as it 
offers a more lightweight alternative to traditional VMs. Apart from this new virtual‑
ization technology, new cloud models are emerging, bringing the cloud closer to the 
end user, which is especially useful for devices with a limited network connection, or 
for low‑latency applications. In this section, we identify several challenges and oppor‑
tunities for resource management in cloud environments, mainly related to these recent 
trends.

4.1  Dynamic Resource Allocation for Containerized Applications

Dynamic resource allocation for VMs will not always be beneficial for the cloud 
environment, due to the costly nature of VM migrations [46]. Existing dynamic 
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resource allocation approaches therefore often put a heavy penalty on such migra‑
tions to avoid unnecessary VM re‑configurations. Containers on the other hand are 
more lightweight and portable, but the live migration of containers still remains an 
important research challenge [39]. Existing methods can cause significant delays 
[39, 41], resulting in a relatively high downtime. Furthermore, when migrating con‑
tainers, a feasible destination host must be selected, which for example supports the 
libraries required by the migrated container.

In this context, future research could investigate how existing dynamic alloca‑
tion strategies designed for the allocation of VMs perform when handling con‑
tainers. Lahmann et al. already did some initial research [147], but with the main 
focus on memory allocation and memory utilization. Existing methods should also 
be extended to support automated destination host selection, which requires suffi‑
cient knowledge about the deployed containers. Furthermore, when containers are 
deployed inside VMs, it could be interesting to study the effects of using a static 
resource allocation strategy for the provisioning of the virtual machines, combined 
with a dynamic strategy for the deployment of containers inside the provisioned 
VMs.

4.2  Cloud Management Systems for Bare‑Metal Containers

When containers are deployed inside VMs, actions taken by the hypervisor can have 
unpredictable and non‑deterministic effects on the nested containers [45]. Virtual 
machines also introduce a noticeable overhead, as they typically run a full software 
stack. When running containers directly on the OS of the physical machine, this 
overhead could be eliminated, which could lead to a higher scalability, efficiency 
and a higher resource utilization. This however introduces the need for a cloud man‑
agement system that manages the allocation of containers on the physical hardware.

There are already some valuable tools available to implement such management 
system. Juju for example is an open source tool developed by Canonical, to facili‑
tate the deployment and scaling in cloud environments, and can also be used for 
the management of containers [164]. Kubernetes on the other hand is a container 
orchestration system, designed for the deployment, scaling and management of 
containerized applications, and can be deployed using juju. However, a bare‑metal 
cloud container management system should not only provide the required function‑
ality for allocating and provisioning containers, but should also guarantee sufficient 
security and isolation between the different tenants. Achieving a clear isolation is 
challenging, as containers share the underlying OS kernel [29]. The use of contain‑
ers could introduce some security risks, and a container management system should 
implement some protection mechanisms [42–44]. Furthermore, the system should 
also monitor the actual amount of resources used over time by the deployed con‑
tainers, in order to charge the customers based on the actual resource usage. Unlike 
VMs, containers often have soft limits, meaning that the actual usage can be differ‑
ent from the allocated amount of resources [29, 91]. This presents opportunities for 
achieving a higher overall resource utilization, but the management system should 
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also have built‑in functionalities for preventing starvation when highly demanding 
containers clog up all available resources.

4.3  Management of a Hybrid Edge/Fog/Cloud Environment

In a hybrid edge‑fog‑cloud environment, resources that may be geographically dis‑
tributed can be collectively exposed as a single elastic infrastructure. This however 
introduces the need for a framework that coordinates the management of resources 
among the different environments. While there is already some initial research avail‑
able [165], many research challenges are still remaining.

To achieve an efficient deployment of applications in such an environment, a fea‑
sible location for each component needs to be determined [128], ideally in an auton‑
omous way. Computation offloading can be used for transferring resource‑intensive 
computations from less powerful devices to a more powerful cloud environment 
[84], but tasks and applications can also be offloaded to the fog environment to 
reduce latency and preserve bandwidth [135]. The management framework should 
support dynamic offloading based on the resource status of the mobile systems and 
the current network conditions, but should also satisfy the user‑defined objectives 
and constraints.

The use of portable containers presents interesting opportunities to facilitate 
the management and migration of the components. For components deployed in a 
public cloud environment, security challenges introduced by the multi‑tenant cloud 
environment should also be addressed [166, 167]. A hybrid environment should also 
allow for auditing in order to create reliable and secure cloud services [168].

4.4  Experimental Validation of Resource Management Strategies

Resource management strategies are often only validated by means of simulations 
[169], for example by using CloudSim [170], in which the whole cloud comput‑
ing environment is modeled and simulated in software. This is mainly because of 
the nature of the research, as resource allocation strategies for example are often 
designed for managing large sets of applications within large cloud environments. 
Experimental validation using real cloud hardware would not only be costly as it 
would require multiple cloud instances for a relative long time period, the validation 
process would also be time‑consuming. Some large‑scale academic testbed environ‑
ments have been developed to support experimentation in a wide variety of research 
domains and with increased realism compared to simulations, such as the Fed4Fire 
[171] and the FUTEBOL [172] projects. Although these environments allow for 
large‑scale system validation and offer valuable toolsets for experimentation, they 
have limited infrastructure resource availability as they are heavily used by research‑
ers worldwide, as well as considerable software and hardware maintenance costs. 
Typically, these testbeds are used for large and mature validation tests and are less 
suited for small repetitive tests with highly frequent updates.

The rise of new cloud types such as fog cloud environments, as well as the 
adoption of container technology however can facilitate the validation of resource 
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management strategies. Using low‑cost hardware, a small‑scale test bed could be 
built for the initial validation. A Raspberry Pi for example is already powerful 
enough to host several containers. By combining experiments on a small‑scale 
test bed with simulations using large‑scale scenarios, the research would not only 
gain credibility, but an implementation of the proposed solution on real hardware 
would also illustrate that the resource management strategy works in practice.

4.5  Towards Serverless Cloud Computing

Although container technology is gaining popularity, cloud computing is still 
mainly built around the provisioning of VMs, and cloud users are typically 
charged based on the number of provisioned VMs. A majority of applications 
however struggle to fully utilize the allocated amount of resources, leading to a 
waste of unused resources [65]. A fine‑grained pricing model could tackle this 
issue, presenting an interesting opportunity for the deployment of applications 
inside containers. This is also one of the main ideas behind serverless computing 
[173]. Serverless computing is an event‑driven cloud execution model, in which 
the cloud user provides the code and the cloud provider manages the life‑cycle of 
the execution environment of that code. Cloud users are then charged based on 
the actual amount of resources consumed by an application, rather than on pre‑
purchased units of capacity. Serverless computing could facilitate cloud deploy‑
ments, as the cloud user no longer needs to deploy and manage several cloud 
instances, and could also offer economic advantages especially for the execution 
of small, short jobs. Furthermore, containers could play an important role in the 
evolution of serverless computing, as they can be deployed easily and fast and 
introduce minimal overhead. Therefore, serverless computing could become more 
adopted in the near future, and it could also facilitate the step towards cloud com‑
puting for a broader audience.

5  Conclusions

In this article, we presented an overview of recent research, published between 
2015 and 2018, with the main focus on resource management within cloud envi‑
ronments. We especially investigated how cloud resource management is adapting 
to support newly introduced trends, such as containers as the virtualization tech‑
nology and the rise of fog/edge computing. We categorized the research items 
based on the main resource management functional element, and provided a brief 
summary for each element. While the majority of recent research is still focus‑
ing on the management of virtual machines in a traditional single cloud environ‑
ment, we identified several interesting opportunities for resource management in 
a future fully containerized multi‑tiered edge‑fog‑cloud, which could overcome 
many shortcomings of today’s cloud environments.
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