
Vol:.(1234567890)

Journal of Network and Systems Management (2019) 27:860–882
https://doi.org/10.1007/s10922-019-09489-w

1 3

An Energy‑Efficient Strategy for Virtual Machine Allocation
over Cloud Data Centers

Xiuchen Qie1,2 · Shunfu Jin1,2 · Wuyi Yue3

Received: 21 December 2017 / Revised: 23 December 2018 / Accepted: 8 January 2019 /
Published online: 17 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
With the increase in the scale of cloud data centers, more attention is being focused
on the issue of energy conservation. In order to achieve greener, more efficient com-
puting in cloud data centers, in this paper, we propose an energy-efficient Virtual
Machine (VM) allocation strategy with an asynchronous multi-sleep mode and an
adaptive task-migration scheme. The VMs hosted in a virtual cluster are divided into
two modules, namely, Module I and Module II. The VMs in Module I are always
awake, whereas the VMs in Module II will go to sleep independently, if possi-
ble. Accordingly, a queuing model with a partial asynchronous multiple vacations
is established to capture the working principle of the proposed strategy. Using the
method of a matrix-geometric solution, performance measures in terms of the aver-
age response time of tasks and the energy saving rate of the system are mathemati-
cally derived. Numerical experiments with analysis and simulation are provided to
validate the proposed VM allocation strategy and to estimate the influence of system
parameters on performance measures. Finally, a system cost function is constructed
to trade off different performance measures, and an intelligent searching algorithm is
employed to optimize the number of VMs in Module II and the sleeping parameter
in the same time.

 * Shunfu Jin
 jsf@ysu.edu.cn

 Xiuchen Qie
 qiexiuchen@126.com

 Wuyi Yue
 yue@konan-u.ac.jp

1 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004,
China

2 Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,
Qinhuangdao 066004, China

3 Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

http://orcid.org/0000-0002-5845-5601
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-019-09489-w&domain=pdf

861

1 3

Journal of Network and Systems Management (2019) 27:860–882

Keywords Cloud data center · Energy-efficient strategy · VM allocation · Multi-
sleep · Task-migration · Intelligent searching algorithm

1 Introduction

Cloud data centers are growing exponentially in number and size to accommodate an
escalating number of users and an expansion in applications. In the current “Cisco
Global Cloud Index”, IT manufacturer Cisco predicts that by 2019, more than four-
fifths of the workload in data centers will be handled in cloud data centers [1]. As a
result, the tremendous amount of energy consumption and carbon dioxide emissions
from cloud data centers are becoming a great concern worldwide. According to a
report from Natural Resources Defense Council (NRDC), cloud data center energy
consumption is estimated to reach 140 billion kW h by 2020, which will be respon-
sible for the emission of nearly 150 million tons of carbon pollution [2]. Therefore,
producing energy-efficient systems has become a focus for the development and
operation of cloud data centers.

The main contributions of this paper are summarized as follows:

1. For reducing energy consumption and achieving greener cloud computing, we
propose an energy-efficient Virtual Machine (VM) allocation strategy with an
asynchronous multi-sleep mode and an adaptive task-migration scheme.

2. We present a method to model the proposed VM allocation strategy and to evalu-
ate the system performance in terms of the average response time of tasks and the
energy saving rate of the system.

3. With the help of an intelligent searching algorithm, we optimize the proposed
VM allocation strategy to trade off different performance measures, such as the
average response time of tasks and the energy saving rate of the system.

2 Review of Related Literature

In this section, we review the research studies into energy saving strategies in
cloud data centers, sleep mode based energy saving strategies and enhanced par-
ticle swarm optimization algorithms. And then, we outline the motivation for our
research.

2.1 Energy Saving Strategies in Cloud Data Centers

In cloud data centers, an enormous amount of energy can be wasted due to excessive
provisioning [3, 4], while Service Level Agreements (SLA) violations can be risked
by insufficient provisioning [5, 6]. In [7], by introducing dynamic voltage and fre-
quency scaling (DVFS) methods as part of a consolidation approach, Arianyan et al.
proposed a novel fuzzy multi-criteria and multi-objective resource management

862 Journal of Network and Systems Management (2019) 27:860–882

1 3

solution to reduce energy consumption and alleviate SLA violation. In [8], Jungmin
et al. proposed a dynamic overbooking strategy, allocating a more precise amount of
resources to VMs and traffic with a dynamically changing workload. In this strategy,
both of the energy consumption and the SLA violations were considered. In [9], for
the purpose of minimizing the energy consumption, Hosseinimotlagh et al. intro-
duced an optimal utilization level of a host to execute a certain number of instruc-
tions. Furthermore, they proposed a VM scheduling algorithm based on unsurpassed
utilization level in order to derive the optimal energy consumption while satisfying
a given Quality of Service (QoS) requirement. The literature mentioned above has
contributed to reducing energy consumption while guaranteeing response perfor-
mance in cloud data centers. However, the energy consumption generated by idle
hosts in cloud data centers has been ignored.

2.2 Sleep Mode Based Energy Saving Strategies

The use of a sleep mode is an efficient approach for reducing the energy consump-
tion in data centers [10]. In [11], Duan et al. proposed a dynamic idle interval pre-
diction scheme that can estimate the future idle interval length of a CPU and thereby
choose the most cost-effective sleep state to minimize the power consumption dur-
ing runtime. In [12], Sarji et al. proposed two energy models based on the statisti-
cal analysis of a server’s operational behavior. With these models, the Energy Sav-
ings Engine (ESE) in the cloud provider decided either to migrate the VMs from
a lightly-loaded server and then put the machine into a sleep mode, or to keep the
current server running and ready for receiving any new tasks. In [13], Liu et al. pro-
posed a sleep state management model to balance the system’s energy consumption
and the response performance. In this model, idle nodes were classified into differ-
ent groups according to their sleep states. In the resource allocation process, nodes
with the highest level of readiness were preferentially provided to the application.
This research emphasized applying a sleep mode to a Physical Machine (PM).

To improve the energy efficiency of cloud data centers, Jin et al. proposed an
energy-efficient strategy with a speed switch on PMs and a synchronous multi-sleep
mode on partial VMs [14]. In [15], by applying dynamic power management (DPM)
technology to PMs and introducing synchronous semi-sleep mode to partial VMs,
Jin et al. proposed a novel VM scheduling strategy for reducing energy consumption
in cloud data centers. Both of the studies mentioned above applied a synchronous
sleep mode to the VMs. However, there has so far been no research into the effect of
asynchronous sleep modes on the level of VMs in cloud data centers.

2.3 Enhanced Particle Swarm Optimization Algorithms

In 1995, particle swarm optimization (PSO) was developed as an effective tool for func-
tion optimization. Since then, numerous research studies on improving the searching
ability of PSO algorithms have appeared. In [16], to enhance the performance of PSO
algorithms, Cao et al. improved PSO algorithms by introducing a nonlinear dynamic
inertia weight and two dynamic learning factors. In [17], Zhang et al. proposed a novel

863

1 3

Journal of Network and Systems Management (2019) 27:860–882

PSO algorithm based on an adaptive inertia weight and chaos optimization, which
enhanced the local optimization ability of the PSO algorithm and helped objective
functions easily jump out of local optimum. In [18], Tian presented a new PSO algo-
rithm by introducing chaotic maps (Tent and Logistic), a Gaussian mutation mecha-
nism, and a local re-initialization strategy into the standard PSO algorithm. The chaotic
map is utilized to generate uniformly distributed particles for the purpose of improving
the quality of the initial population. From the research mentioned above, we note that
the searching ability of PSO algorithms are greatly influenced by the inertia weight and
the initial positions of particles.

2.4 Motivation for Our Research

Inspired by the literature mentioned above, in this paper, we propose an energy-efficient
strategy for VM allocation over cloud data centers. We note that letting all the VMs in
a virtual cluster go to sleep may degrade the quality of cloud service. Taking both the
response performance and the energy conservation level into consideration, we divide
the VMs in a virtual cluster into two parts: Module I and Module II. The VMs in Mod-
ule I stay awake all the time to provide an instant cloud service for accomplishing tasks,
while the VMs in Module II may go to sleep whenever possible to reduce energy con-
sumption. The energy consumption of a VM is related to the processing speed of the
VM. Generally speaking, the higher the processing speed is, the more energy will be
consumed. In our proposed strategy, the VMs in Module I process tasks at a higher
speed to guarantee the response performance, while the VMs in Module II process
tasks at a lower speed to save more energy. In order to further enhance the energy effi-
ciency of the proposed strategy, we introduce an adaptive task-migration scheme which
shifts an unfinished task in Module II to an idle VM in Module II. When an idle VM
appears in Module I, a task being processed on a VM in Module II will migrate to the
idle VM in Module I, and then the just evacuated VM in Module II will go to sleep
independently. To analyze the proposed strategy, we build a queueing model with par-
tial asynchronous multiple vacations by using a matrix geometric solution, and investi-
gate the system performance through theoretical analysis and simulation experiments.
Finally, in order to optimize the proposed strategy, we construct a cost function to bal-
ance different system performance levels, such as the average response time of tasks
and the energy saving rate of the system, and apply the PSO algorithm to optimize the
system parameter settings.

The rest of this paper is organized as follows. In Sect. 3, a novel energy-efficient VM
allocation strategy is proposed and a queueing model is built accordingly. In Sect. 4,
the queueing model is analyzed by using a matrix geometric solution. In Sect. 5, the
expressions of the average response time of tasks and the energy saving rate of the sys-
tem are derived. With numerical experiments, the system performance is evaluated in
Sect. 6. In Sect. 7, an intelligent searching algorithm is used to optimize the number
of the VMs in Module II and the sleeping parameter together. Finally, Sect. 8 outlines
conclusions from the research.

864 Journal of Network and Systems Management (2019) 27:860–882

1 3

3 Energy‑Efficient VM Allocation Strategy and System Model

In this section, an energy-efficient VM allocation strategy with an asynchronous
multi-sleep mode and an adaptive task-migration scheme is proposed. Accord-
ingly, a type of continuous-time multi-server queueing model with partial asyn-
chronous multiple vacations is established.

3.1 Energy‑Efficient VM Allocation Strategy

In conventional cloud data centers, all the VMs remain open waiting for the
arrival of tasks regardless of current traffic. This may result in a great deal of
energy waste. To get around this problem, a novel VM allocation strategy with
an asynchronous multi-sleep mode and an adaptive task-migration scheme is pro-
posed in this paper. It should be emphasized that the asynchronous multi-sleep
mode considered in this paper is at the level of VMs rather than that of PMs.

Given the processing capability and the energy conservation level, all the VMs
hosted in a virtual cluster are divided into two modules, namely, Module I and
Module II. The VMs in Module I stay awake all the time and run on a high speed
when tasks arrive. Whereas, the VMs in Module II switch between the sleep state
and the busy state.

For a busy VM in Module II, state transition only happens at the instant when
a task is completely processed. Given that a task is completely processed in Mod-
ule II, if the system buffer is empty, the evacuated VM in Module II will go to
sleep. Once a VM in Module II switches to the sleep state, a sleep timer will be
started, the data in the memory will be saved to a hibernation file on the hard
disk, and then the power of the other accessories, except for the memory, will be
cut off, so that the VM will no longer be available for processing tasks in the sys-
tem. Given that a task is completely processed in Module I, if the system buffer
is empty and there is at least one task being processed in Module II, one of the
tasks being processed in Module II will be migrated to Module I, and then the
evacuated VM in Module II will go to sleep. We note that the task-migration con-
sidered in this paper is a kind of online VM-migration between different modules
within a virtual cluster.

For a sleeping VM in Module II, state transition only happens at the instant
when a sleep timer expires. At the moment that a sleep timer expires, the sleeping
VM in Module II will listen to the system and decide whether to keep sleeping or
to wake up. If the system buffer is empty, another sleep timer will be started and
the sleeping VM in Module II will begin another sleep period, so that multiple
sleep periods are formed. Otherwise, the sleeping VM in Module II will wake
up to process the first task waiting in the system buffer on a lower speed. Once a
VM in Module II switches to the awake state, the corresponding sleep timer will
be turned off, the data of the hibernation file on the hard disk will be read into the
memory, and then the power of all accessories will be turned on, so that the VM
will be available for processing tasks in the system.

865

1 3

Journal of Network and Systems Management (2019) 27:860–882

With our proposed sleep mode, energy consumption could be saved, but the
incoming tasks may not receive timely service. We speculate that the average
response time of tasks is lower with a smaller number of VMs in Module II, while
the energy saving rate of the system is higher with a suitable number of VMs in
Module II. We also speculate that the average response time of tasks is lower with
a shorter sleep period, while the energy saving rate of the system is higher with
a longer sleep period. Given this, we should optimize the proposed strategy by
trading off the average response time and the energy saving rate of the system.
(The optimization approach will be given in Sect. 7.)

We show the state transition of a virtual cluster in the cloud data center under the
proposed VM allocation strategy in Fig. 1.

As shown in Fig. 1, in the proposed strategy, the numbers of the VMs in Module
I and Module II are denoted as c and d, respectively. All the VMs hosted in one
virtual cluster are dominated by a control server, in which several sleep timers and a
VM scheduler are deployed. Each sleep timer is responsible for controlling the sleep
time of a VM in Module II. The numbers of tasks in the system, busy VMs in Mod-
ule I and sleeping VMs in Module II are denoted as M, b and s, respectively. Given
these parameters, the VM scheduler adjusts the VM state.

According to the state of VMs both in Module I and in Module II, we consider
three cases as follows:

Case 1 There is at least one idle VM in Module I, and all the VMs in Module II
are sleeping.

Fig. 1 State transition of a virtual cluster considered in three cases in this paper

866 Journal of Network and Systems Management (2019) 27:860–882

1 3

In Case 1, each arriving task could be processed immediately on a high speed in
Module I. However, as more tasks arrive at the system, more VMs in Module I will
be occupied. If there are no VMs available, a newly incoming task has to wait in the
system buffer. Once a sleep timer expires, the corresponding VM in Module II will
wake up to process the first task queueing in the system buffer on a low speed, and
then the system will be converted to Case 2.

Case 2 All the VMs in Module I are busy, and there is at least one sleeping VM in
Module II.

In Case 2, with the departures of the tasks, more VMs in Module II will go to
sleep. At the moment a task process is completed in Module I and there are no tasks
waiting in the system buffer, i.e., M > c and b < c , one of the tasks being processed
in Module II will be migrated to Module I, then the just evacuated VM in Module
II will go to sleep. When all the VMs in Module II are asleep, i.e., M ≤ c and s = d ,
the system will be converted back to Case 1.

We note that for Case 2, there are no VMs available in the system, so a newly
incoming task will queue in the system buffer. When a task is completely processed
on one of the VMs in Module I, the just evacuated VM in Module I will process the
first task queueing in the system buffer on a high speed. Also, when one of the sleep
timers expires, the corresponding VM in Module II will wake up and process the
first task queueing in the system buffer on a low speed. Once all the VMs in Module
II wake up, i.e., M ≥ c + d and s = 0 , the system will be converted to Case 3.

Case 3 All the VMs in both Module I and Module II are busy.

In Case 3, a newly incoming task has to wait in the system buffer since all the
VMs hosted in the virtual cluster are occupied. With the departures of the tasks,
more tasks in the system buffer will be processed on the evacuated VMs. Once the
system buffer is empty and there exists at least one sleeping VM in Module II, i.e.,
M < c + d and s > 0 , the system will be converted back to Case 2.

3.2 System Model

In cloud data centers, there are many available task scheduling schemes, such as
event-driven scheduling schemes, preemptive scheduling schemes and random
scheduling schemes. In our paper, we assume that an available VM can be assigned
to the first task queueing in the system buffer. Regarding a task as a customer, a VM
as an independent server, a sleep period as a vacation and multiple sleep periods
as multiple vacations, we model the proposed strategy as a type of novel queueing
model with partial asynchronous multiple vacations.

The system model is described as being in an infinite state. Let random varia-
ble N(t) = i, i ∈ {0, 1,…} be the total number of tasks in system at instant t. N(t)
is also called the system level. Let random variable J(t) = j, j ∈ {0, 1,… , d} be
the number of busy VMs in Module II at instant t. J(t) is also called the system

867

1 3

Journal of Network and Systems Management (2019) 27:860–882

stage. {N(t), J(t), t ≥ 0} constitutes a two-dimensional continuous-time stochastic
process with the state-space � as follows:

In our research, we focus on user initiated tasks [19], and we make the fol-
lowing assumptions. We suppose that the arrival intervals of tasks, the service
times of a task processed in Module I and in Module II, and the time lengths
of a sleep timer are independent, identically distributed (i.i.d) random vari-
ables. Task arrivals are assumed to follow a Poisson process with parameter
𝜆 (𝜆 > 0) , the service times of a task processed in Module I and in Module II
are assumed to follow exponential distributions with parameters 𝜇1 (𝜇1 > 0) and
𝜇2 (0 < 𝜇2 < 𝜇1) , respectively. In addition, the time length of a sleep timer is
assumed to follow an exponential distribution with parameter � , called the sleep-
ing parameter. It should be noted that in the system model, we assume that no
time is taken for a task to migrate or for a sleeping VM to wake up.

Based on the assumptions above, {N(t), J(t), t ≥ 0} can be regarded as a two-
dimensional continuous time Markov chain (CTMC).

We define �i,j as the steady-state probability distribution of the system model
for the system level being equal to i and the system stage being equal to j. �i,j is
then given as follows:

We define �i as the steady-state probability distribution when the system level
is i. �i can be given as follows:

The steady-state probability distribution � of the two-dimensional CTMC is
composed of �i (i ≥ 0) . � is given as follows:

4 Model Analysis

In this section, the transition rate matrix of the two-dimensional CTMC is firstly
investigated. Then, the steady-state probability distribution of system model is
derived.

(1)
� = {(i, 0) ∶ 0 ≤ i ≤ c} ∪ {(i, j) ∶ c < i ≤ c + d, 0 ≤ j ≤ i − c}

∪ {(i, j) ∶ i > c + d, 0 ≤ j ≤ d}.

(2)�i,j = lim
t→∞

P{N(t) = i, J(t) = j}, (i, j) ∈ �.

(3)�i =

⎧⎪⎨⎪⎩

𝜋i,0, 0 ⩽ i ⩽ c

(𝜋i,0,𝜋i,1,… ,𝜋i,i−c), c < i ⩽ c + d

(𝜋i,0,𝜋i,1,… ,𝜋i,d), i > c + d.

(4)� = (�0,�1,…).

868 Journal of Network and Systems Management (2019) 27:860–882

1 3

4.1 Transition Rate Matrix

Let Q be the one step state transition rate matrix of the two-dimensional CTMC
{(N(t), J(t)), t ≥ 0} . Based on the system level, Q is separated into several sub-
matrices. Let Qk,l be the one step state transition rate sub-matrix for the system level
changing from k (k = 0, 1,…) to l (l = 0, 1,…) . For convenience of presentation, we
denote Qk,k−1 , Qk,k+1 and Qk,k as Bk , Ck and Ak , respectively. Bk , Ck and Ak are dis-
cussed in the following cases.

1. When the initial system level k ranges from 0 to c, k VMs in Module I are busy
and all the VMs in Module II are sleeping.

For the case of k = 0 , there are no tasks at all in the system. This means that the
possible state transitions are from (0, 0) to (1, 0) and from (0, 0) to (0, 0). If a task
arrives at the system, the system level will increase by one but the system stage will
remain unchanged, i.e., the system state will transform to (1, 0) from (0, 0) with the
transition rate � . Otherwise, the system state will remain fixed at (0, 0) with the tran-
sition rate −� . Thus, C0 and A0 are given as follows:

For the case of 0 < k ⩽ c , all the tasks in the system are being processed on the
VMs in Module I. If a task is completely processed, the system level will decrease
by one but the system stage will remain unchanged, i.e., the system state will trans-
form to (k − 1, 0) from (k, 0) with the transition rate k�1 . If a task arrives at the
system, the system level will increase by one but the system stage will remain
unchanged, i.e., the system state will transfer to (k + 1, 0) from (k, 0) with the transi-
tion rate � . Otherwise, the system state will remain fixed at (k, 0) with the transition
rate −(� + k�1) . Thus, Bk , Ck and Ak are given as follows:

2. When the initial system level k ranges from (c + 1) to (c + d) , all the VMs in
Module I are busy, while at most (k − c) VMs in Module II are busy.

For the case of k = c + x, x = 1, 2,… , d − 1 , the number of busy VMs in Module
I is c, while in Module II, there are at most x busy VMs.

If a task is completely processed and there is at least one task in the system buffer,
the first task queueing in the system buffer will occupy the evacuated VM to receive
service. Consequently, the system level will decrease by one, but the system stage will
remain fixed, i.e., the system state will transform to (k − 1, n) from (k, n) with the tran-
sition rate (c�1 + n�2) , where n (0 ≤ n ≤ x) is the number of busy VMs in Module II.
If a task is completely processed on the VM in Module I and there are no tasks in the
system buffer, one of the tasks being processed in Module II will migrate to the evacu-
ated VM in Module I and the just-evacuated VM in Module II will start sleeping. If a
task is completely processed on the VM in Module II and there are no tasks in the sys-
tem buffer, the evacuated VM in Module II will start sleeping directly. Consequently,
both the system level and the system stage will decrease by one, i.e., the system state

C0 = �, A0 = −�.

Bk = k�1, Ck = �, Ak = −(� + k�1).

869

1 3

Journal of Network and Systems Management (2019) 27:860–882

will transform to (k − 1, x − 1) from (k, x) with the transition rate (c�1 + x�2) . Thus, Bk
is a rectangular (x + 1) × x matrix and is given as follows:

None of VMs in Module II will wake up before their corresponding sleep timers
expire, even though the system buffer is not empty. If a task arrives at the system before
one of the sleep timers expires, the system level will increase by one but the system
stage will remain fixed, i.e., the system state will transform to (k + 1, n) from (k, n) with
the transition rate � . Thus, Ck is a rectangular (x + 1) × (x + 2) matrix and is given as
follows:

If one of the sleep timers expires, the corresponding VM in Module II will wake
up and process the first task queueing in the buffer. Consequently, the system level k
will remain fixed but the system stage n will increase by one, i.e., the system state will
transform to (k, n + 1) from (k, n) with the transition rate (d − n)� . Otherwise, the sys-
tem state will remain fixed: when the system buffer is not empty, the transition rate is
−hn , where hn = � + c�1 + n�2 + (d − n)� ; when the system buffer is empty, the tran-
sition rate is −(� + c�1 + x�2) . Thus, Ak is a rectangular (x + 1) × (x + 1) matrix and
is given as follows:

For the case of k = c + d , the number of tasks in the system is equal to the total num-
ber of VMs. This is really just a specialized case discussed previously. Bk is a rectangu-
lar (d + 1) × d matrix, Ck and Ak are square matrices of the order (d + 1) × (d + 1) . Bk ,
Ck and Ak are given as follows:

Bk =

⎛
⎜⎜⎜⎜⎝

c�1

c�1 + �2

⋱

c�1 + (x − 1)�2

c�1 + x�2

⎞
⎟⎟⎟⎟⎠
.

Ck =

⎛
⎜⎜⎜⎜⎝

� 0

� 0

⋱ ⋮

� 0

� 0

⎞
⎟⎟⎟⎟⎠
.

Ak =

⎛
⎜⎜⎜⎜⎝

−h0 d�

− h1 (d − 1)�

⋱ ⋱

− hx−1 (d − x + 1)�

− (� + c�1 + x�2)

⎞
⎟⎟⎟⎟⎠
.

870 Journal of Network and Systems Management (2019) 27:860–882

1 3

3. When the initial system level is greater than the total number of VMs, i.e.,
k > c + d , all the VMs in Module I are busy, while the VMs in Module II
are either busy or sleeping. Bk , Ck and Ak are square matrices of the order
(d + 1) × (d + 1) . Similar to the discussion in item (2), the sub-matrices Bk , Ck
and Ak are given as follows:

Bk =

⎛
⎜⎜⎜⎜⎝

c�1

c�1 + �2

⋱

c�1 + (d − 1)�2

c�1 + d�2

⎞
⎟⎟⎟⎟⎠
,

Ck =

⎛
⎜⎜⎜⎜⎝

�

�

⋱

�

�

⎞
⎟⎟⎟⎟⎠
,

Ak =

⎛⎜⎜⎜⎜⎝

−h0 d�

− h1 (d − 1)�

⋱ ⋱

− hd−1 �

− hd

⎞⎟⎟⎟⎟⎠
.

Bk =

⎛
⎜⎜⎜⎜⎝

c�1

c�1 + �2

⋱

c�1 + (d − 1)�2

c�1 + d�2

⎞
⎟⎟⎟⎟⎠
,

Ck =

⎛⎜⎜⎜⎜⎝

�

�

⋱

�

�

⎞⎟⎟⎟⎟⎠
,

Ak =

⎛⎜⎜⎜⎜⎝

−h0 d�

− h1 (d − 1)�

⋱ ⋱

− hd−1 �

− hd

⎞⎟⎟⎟⎟⎠
.

871

1 3

Journal of Network and Systems Management (2019) 27:860–882

Now, all the sub-matrices in the one step state transition rate matrix Q have been
addressed. Starting from the system level (c + d) , the sub-matrices Ak and Ck in Q
are repeated forever. Starting from the system level (c + d + 1) , the sub-matrices Bk
in Q are repeated forever. The repetitive sub-matrices Bk , Ak and Ck are represented
by B , A and C , respectively. For this, Q is written as follows:

The block-tridiagonal structure of the one step state transition rate matrix Q
shows that the state transitions occur only between adjacent system levels. Referring
to [20], we know that the two-dimensional CTMC {N(t), J(t), t ≥ 0} can be seen as a
type of Quasi Birth-and-Death (QBD) process.

4.2 Steady‑State Probability Distribution

For the QBD process {N(t), J(t), t ≥ 0} with the one step state transition rate matrix
Q, the necessary and sufficient condition for positive recurrence is that the matrix
quadratic equation

has the minimal non-negative solution R with the spectral radius SP(R) < 1 . This
solution, called the rate matrix and denoted by R , can be explicitly determined.

From Sect. 4.1, we find that the sub-matrices B , A and C are upper-triangular
matrices. So, the rate matrix R must be an upper-triangular matrix and can be
expressed as follows:

Then, the elements of R2 are

(5)Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B1 A1 C1

⋱ ⋱ ⋱

Bc Ac Cc

Bc+1 Ac+1 Cc+1

⋱ ⋱ ⋱

Bc+d A C

B A C

⋱ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)R2B + RA + C = �

(7)
R =

⎛
⎜⎜⎜⎜⎜⎜⎝

r0 r01 r02 ⋯ r0d−1 r0d
r1 r12 ⋯ r1d−1 r1d

r2 ⋯ r2d−1 r2d
⋱ ⋮ ⋮

rd−1 rd−1d
rd

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(R2)kk = r2
k
, 0 ⩽ k ⩽ d,

(R2)jk =

k∑
i=j

rjirik, 0 ⩽ j ⩽ d − 1, j + 1 ⩽ k ⩽ d.

872 Journal of Network and Systems Management (2019) 27:860–882

1 3

Substituting R2 , R , A , B and C into Eq. (6) yields a set of equations:

If the traffic load 𝜌 = 𝜆(c𝜇1 + d𝜇2)
−1 < 1 , it can be proven that the first equation

of Eq. (8) has two real roots 0 < rk < 1 and r∗
k
≥ 1 . Note that the diagonal elements

of R are rk (0 ≤ k ≤ d) and the spectral radius of R satisfies:

The off-diagonal elements of R satisfy the last equation of Eq. (8). It is an ardu-
ous task to give a general expression for rjk (0 ≤ j ≤ d − 1, j + 1 ≤ k ≤ d) in closed-
form, so we recursively compute the off-diagonal elements based on the diagonal
elements.

Since the QBD process with the one step state transition rate matrix Q is positive
recurrent, the stationary distribution is easily expressed in the matrix geometric form
with the rate matrix R as follows:

In order to obtain the unknown stationary distribution �0 , �1 , … , �c+d , we construct
a square matrix B[R] of the order

[
c +

(d+1)(d+2)

2

]
×

[
c +

(d+1)(d+2)

2

]
 as follows:

Using the method of a matrix geometric solution, we can construct an augmented
matrix equation as

where e1 is a
[
c +

d(d+1)

2

]
× 1 vector with ones, and e2 is a (d + 1) × 1 vector with

ones.
Applying the Gauss–Seidel method [21] to solve Eq. (12), we can obtain �0 ,

�1 , ..., �c+d . Substituting �c+d obtained in Eq. (12) into Eq. (10), we can obtain

(8)

⎧
⎪⎨⎪⎩

(c�1 + k�2)r
2

k
− hkrk + � = 0, 0 ⩽ k ⩽ d

(c�1 + k�2)
∑k

i=j
rjirik − hkrjk + (d − k + 1)�rj,k−1

= 0, 0 ⩽ j ⩽ d − 1, j + 1 ⩽ k ⩽ d.

(9)SP(R) = max{r0, r0,… , rd} < 1.

(10)�i = �c+dR
i−(c+d)

, i ≥ c + d.

(11)B[R] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 C0

B1 A1 C1

⋱ ⋱ ⋱

Bc Ac Cc

Bc+1 Ac+1 Cc+1

⋱ ⋱ ⋱

Bc+d−1 Ac+d−1 Cc+d−1

Bc+d RB + A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(12)

873

1 3

Journal of Network and Systems Management (2019) 27:860–882

�i (i = c + d + 1, c + d + 2,…) . Then the steady-state probability distribution
� = (�0,�1,…) of the system can be given mathematically.

5 Performance Measures

In this section, the performance measures in terms of the average response time of tasks
and the energy saving rate of the system are mathematically evaluated.

We define the response time of a task as the duration from the instant a task arrives
at the system to the instant this task is completely processed.

Based on the steady-state probability distribution of the system model given in
Sect. 4.2, the average response time E[T] of tasks is given as follows:

In our proposed VM allocation strategy, energy consumption can be reduced
during the sleep period. We let 𝜔 (𝜔 > 0) be the energy consumption per unit time
for a busy VM in Module II, and 𝜔s (𝜔s > 0) be the energy consumption per unit
time for a sleeping VM in Module II. Obviously, 𝜔 > 𝜔s . We note that additional
energy will be consumed when a task migrates from Module II to Module I, when
a VM in Module II listens to the system buffer, as well as when a VM in Module
II wakes up from sleep state. Let 𝜔m (𝜔m > 0) , 𝜔l (𝜔l > 0) and 𝜔u (𝜔u > 0) be the
energy consumption for each migration, listening and wakeup, respectively.

We define the energy saving rate of the system as the energy conservation per
unit time with our proposed strategy. Based on the discussions above and the
steady-state probability distribution of the system model given in Sect. 4.2, the
energy saving rate � of the system is given as follows:

6 Numerical Experiments

In order to evaluate the average response time of tasks and the energy saving rate
of the system with the proposed VM allocation strategy, we provide numerical
experiments with analysis and simulation. The analysis results are obtained based
on Eqs. (13) and (14) using Matlab 2011a. The simulation results are obtained
by using MyEclipse 2014. We create a JOB class with attributes in terms of
UNARRIVE, WAIT, RUNHIGH, RUNLOW and FINISH to record the task
state. We also create a SERVER class with attributes in terms of SLEEP, IDLE,

(13)E[T] =
1

�

(
c∑

i=0

i�i0 +

c+d∑
i=c+1

i−c∑
j=0

i�i,j +

∞∑
i=c+d+1

d∑
j=0

i�i,j

)
.

(14)

� = (� − �s)

∞∑
i=0

d∑
j=0

(d − j)�ij −

(
�m

c+d∑
i=c+1

d∑
j=1

c�1�ij

+�l

∞∑
i=0

d∑
j=0

�(d − j)�ij + �u

∞∑
i=c+j+1

d−1∑
j=0

�(d − j)�ij

)

874 Journal of Network and Systems Management (2019) 27:860–882

1 3

BUSYLOW and BUSYHIGH to record the state of a VM. The necessary and
sufficient condition for the system being stable is 𝜌 < 1 . We analyze the system
model and evaluate the system performance under the condition that 𝜌 < 1 . To
compare our proposed strategy with the existing VM allocation strategies, we set
parameters in numerical experiments by referencing [14]. The parameter settings
in the numerical experiments are shown in Table 1.

We note that, with different parameter settings, as long as the system is stable,
the trend for all the performance measures will not change much.

Figure 2 examines the influence of the sleeping parameter � on the average
response time E[T] of the tasks for the different number d of VMs in Module II.

From Fig. 2, we observe that if there are less VMs in Module II (such as
d < 24), the average response time E[T] of tasks remains nearly constant across
all the values of the sleeping parameter � . For this case, the capability of the VMs
in Module I is strong enough to process all the arriving tasks, and there are no
tasks waiting in the system buffer. As a result, it is likely that the VMs in Module
II keep sleeping. So, the average response time of tasks is approximately the aver-
age service time (�−1

1
) of tasks processed in Module I.

From Fig. 2, we also observe that if there are more VMs in Module II (such
as d = 24, 41, 44, 50), the average response time E[T] of tasks initially decreases
sharply from a high value, then decreases slightly before finally converging to a cer-
tain value as the sleeping parameter � increases. For this case, the processing capa-
bility of the VMs in Module I is insufficient to cope with the existing traffic load,
so some arriving tasks have to wait in the system buffer. As a result, the VMs in
Module II are more likely to be awake after a sleep period and process the tasks
waiting in the system buffer. The influence of the sleeping parameter on the average
response time of tasks is discussed as follows.

When the sleeping parameter � is relatively small (such as 0 < 𝜃 < 0.4 for
d = 41), the tasks arriving in the sleep period will have to wait longer in the system
buffer. This results in a higher average response time of tasks. For this case, the
influence on the average response time of tasks exerted by the sleeping parameter
is greater than that exerted by the arrival rate of tasks and the service rate of tasks.

Table 1 Parameter settings in numerical experiments

Parameters Value

Total number of VMs in the system c + d = 50

Arrival rate of tasks � = 4.50 ms−1

Service rate of a task on the VM in Module I �1 = 0.20 ms−1

Energy consumption per unit time of a busy VM in Module II � = 0.50 mJ
Energy consumption per unit time of a sleeping VM in Module II �

s
= 0.10 mJ

Additional energy consumption for each migration �
m
= 0.20 mJ

Additional energy consumption for each listening �
l
= 0.15 mJ

Additional energy consumption for each wakeup �
u
= 0.20 mJ

875

1 3

Journal of Network and Systems Management (2019) 27:860–882

Consequently, the average response time of tasks will decrease sharply as the sleep-
ing parameter increases.

When the sleeping parameter � becomes larger (such as 0.4 < 𝜃 < 2.0 for d = 41),
the tasks arriving during a sleep period will be processed earlier. This results in
a lower average response time of tasks. For this case, the arrival rate of tasks and
the service rate of tasks are the dominate factors influencing the average response
time of tasks. Consequently, there is only a slight decreasing trend in the average
response time of tasks in respect to the sleeping parameter.

(a) µ2 = 0.10

(b) µ2 = 0.12

Fig. 2 Average response time E[T] of tasks versus sleeping parameter �

876 Journal of Network and Systems Management (2019) 27:860–882

1 3

From Fig. 2, we also notice that for the same sleeping parameter � , the average
response time E[T] of tasks will increase as the number d of VMs in Module II
increases. As the number of VMs in Module II increases, and the system capability
becomes weaker, and tasks will sojourn longer in the system. This will inevitably
increase the average response time of tasks.

Comparing the results in Fig. 2a, b, we find that for the same number d of VMs in
Module II and the same sleeping parameter � , a larger service rate �2 of a task on the
VM in Module II leads a lower average response time E[T] of tasks. This is because

(a) µ2 = 0.10

(b) µ2 = 0.12

Fig. 3 Energy saving rate � of the system versus sleeping parameter �

877

1 3

Journal of Network and Systems Management (2019) 27:860–882

the fact that the larger the service rate of a task on the VM in Module II is, the more
quickly the VMs in Module II will process the tasks, and the fewer tasks will wait in
the buffer. Therefore, the average response time of potential users will be lower.

Figure 3 examines the influence of the sleeping parameter � on the energy saving
rate � of the system for the different number d of VMs in Module II.

From Fig. 3, we observe that for the same number d of VMs in Module II,
the energy saving rate � of the system decreases as the sleeping parameter �
increases. The larger the sleeping parameter is, the more frequently the VM in
Module II listens to the system buffer and consumes additional energy. Therefore,
the energy saving rate of the system will decrease.

From Fig. 3, we also notice that for the same sleeping parameter � , either too
few or too many VMs being deployed in Module II will lead to a lower energy
saving rate � of the system. When the number of VMs in Module II is very
small (such as d = 0, 1, 4), less energy can be saved even though all the VMs in
Module II are sleeping. This results in a lower energy saving rate of the system.
When the number of VMs in Module II is very large (such as d = 41, 44, 50), the
system capability gets weaker. There is hardly any chance for the VMs in Mod-
ule II to go to sleep. This results in a lower energy saving rate of the system.

Comparing the results shown in Fig. 3a, b, we find that the different numbers
d of the VMs in Module II and the different service rates �2 of a task on the VM
in Module II have different influence on the energy saving rate � of the system.

When less VMs are deployed in Module II (such as d = 4 for � = 0.2), the
service capability of Module I is strong enough to process most of the arriv-
ing tasks, therefore only a few VMs in Module II will wake up and process
other remaining tasks. In this case, the energy saving rate of the system mainly
depends on the service rate of a task on the awake VM in Module II. As the ser-
vice rate of a task on the VM in Module II increases, the VMs in Module II will
consume more energy. This results in a lower energy saving rate of the system.

When more VMs are deployed in Module II (such as d = 41, 44, 50 for
� = 0.2), the service capability of Module I is weaker, therefore more VMs in
Module II have to wake up and process the arriving tasks. In this case, the num-
ber of sleeping VMs in Module II is the dominant factor to influence the energy
saving rate of the system. The larger the service rate of a task on the VM in
Module II is, the more quickly the VMs in Module II will process the tasks,
and the more VMs in Module II will go to sleep, therefore more energy will be
saved. This results the energy saving rate of the system to be higher.

From the discussions above, we foresee that when deploying the VMs in
Module II and setting the sleeping parameter, we need to consider the service
rate of a task on the VM in Module II.

In Figs. 2 and 3, the experiment results with d = 0 are for the conventional
strategy where all the VMs always stay awake. The experiment results with
d = 50 are for the conventional strategy where all the VMs are under an asyn-
chronous multi-sleep mode. Compared to the conventional strategy where all
the VMs always stay awake, our proposed strategy results in greater energy
consumption without significantly affecting the response performance. Com-
pared to the conventional strategy where all the VMs are under an asynchronous

878 Journal of Network and Systems Management (2019) 27:860–882

1 3

multi-sleep mode, our proposed strategy performs better in guaranteeing the
response performance at the cost of occasional degradation in energy saving
effect.

Comparing the results shown in Figs. 2 and 3, we find that a larger sleeping
parameter leads to not only a shorter average response time of tasks but also
a lower energy saving rate of the system, while a smaller sleeping parameter
leads to not only a higher energy saving rate of the system but also a longer
average response time of tasks. We also find that the energy saving rate of the
system is higher with a moderate number of VMs in Module II, while the aver-
age response time of tasks is lower with a smaller number of VMs in Module II.
Therefore, a trade-off between the average response time of tasks and the energy
saving rate of the system should be aimed for when setting the number of VMs
in Module II and the sleeping parameter in our proposed VM allocation strategy.

7 Performance Optimization

By trading off the average response time of tasks against the energy saving rate of
the system, we establish a system cost function F(d, �) as follows:

where f1 and f2 are treated as the impact factors for the average response time E[T]
of tasks and the energy saving rate � of the system on the system cost function.

We note that the mathematical expressions for the average response time E[T] of
tasks and the energy saving rate � of the system are difficult to express in closed-
forms. The monotonicity of the system cost function is uncertain. In order to jointly
optimize the number of the VMs in Module II and the sleeping parameter with the
minimum system cost function, we turn to the Particle Swarm Optimization (PSO)
intelligent searching algorithm.

Compared with other intelligent optimization algorithms, the PSO algorithm is
simple to implement, and there are not many parameters to be adjusted [22, 23].
However, the traditional PSO algorithm has the disadvantage of premature conver-
gence and easily falling into a local extreme. For this, in this paper, we turn to a PSO
algorithm with a chaotic mapping mechanism and a nonlinear decreasing inertia
weight to optimize the number of the VMs in Module II and the sleeping parameter
together.

The main steps to jointly optimize the number of the VMs in Module II and the
sleeping parameter are given in Table 2.

In Table 2, we use the system parameters given in Table 1, and set f1 = 4 , f2 = 1 ,
N = 100 , itermax = 200 , c1 = 1.4962 , c2 = 1.4962 , wmax = 0.95 , wmin = 0.40 ,
Ub = 2 , Lb = 0 and X = 50 . For different service rates �2 , we obtain the optimal
combination (d∗, �∗) for the number of VMs in Module II and the sleeping param-
eter with the minimum system cost function F∗ in Table 3.

The optimization results in Table 3 depend on the arrival intensity of tasks, the
serving capability of VMs and the cloud capacity. By substituting the arrival rate � ,
the service rate �2 of a task on the VM in Module II, and the total number (c + d)

(15)F(d, �) = f1E[T] − f2�

879

1 3

Journal of Network and Systems Management (2019) 27:860–882

Table 2 Main steps to obtain optimal combination (d∗, �∗)

880 Journal of Network and Systems Management (2019) 27:860–882

1 3

of VMs in a virtual cluster, etc. into the algorithm in Table 2, the optimal parameter
combination (d∗, �∗) for the number of VMs in Module II and the sleeping param-
eter can be obtained for the proposed strategy.

8 Conclusions

In this paper, with the aim of reducing energy consumption and achieving greener
computing, we proposed a novel energy-efficient Virtual Machine (VM) allo-
cation strategy. Considering an asynchronous multi-sleep mode and an adap-
tive task-migration scheme with the proposed strategy, we established a type of
queueing model with partial asynchronous multiple vacations, and derived the
steady-state distribution of the system model. The queueing model quantified the
effects of the number of VMs in Module II and the sleeping parameter. These
effects were measured by two performance measures: the average response time
of tasks and the energy saving rate of the system. Experimental results showed
that the energy saving rate of the system is higher with a moderate number of
VMs in Module II, while the average response time of tasks is lower with a
smaller number of VMs in Module II. Accordingly, we built a system cost func-
tion to investigate a trade-off between different performance measures. By using
a PSO algorithm with a chaotic mapping mechanism and a nonlinear decreasing
inertia weight, we jointly optimized the number of VMs in Module II and the
sleeping parameter with the minimum system cost function. In our future work,
we would investigate a VM allocation strategy with (N, T) policy to trade off the
average response time of tasks and the energy saving rate of the system, and build
a four-dimensional Markov chain to have insight into the proposed strategy by
considering the migration time and the wakeup time. Moreover, we would intro-
duce a more versatile stochastic process, such as Markov Modulated Poisson Pro-
cess (MMPP) or Interrupted Poisson Process (IPP), to model the task arrivals,
and use a real-world dataset to enhance the contribution of our research.

Acknowledgements This work was supported in part by National Science Foundations (Nos. 61872311,
61472342) and Natural Science Foundation of Hebei Province (F2017203141), China, and was supported
in part by MEXT, Japan.

Table 3 Optimization results:
(d∗, �∗) and F∗

Service rate �
2

Optimal combination
(d∗, �∗)

Minimum
system cost
function F∗

0.05 (22, 0.0001) 11.9046
0.10 (23, 0.0330) 11.8698
0.15 (25, 0.0816) 11.6391
0.20 (49, 0.1593) 11.0410

881

1 3

Journal of Network and Systems Management (2019) 27:860–882

References

 1. Hintemann, R., Clausen, J.: Green cloud? The current and future development of energy consump-
tion by data centers, networks and end-user devices. In: Proceedings of the 4th International Confer-
ence on ICT for Sustainability (ICT4S 2016), pp. 109–115 (2016)

 2. Jin, X., Zhang, F., Vasilakos, A., Liu, Z.: Green data centers: A survey, perspectives, and future
directions (2016). https ://arxiv .org/pdf/1608.00687 v1.pdf. Accessed 9 Dec 2017

 3. Singh, S., Chana, I.: Resource provisioning and scheduling in clouds: QoS perspective. J. Super-
comput. 72(3), 926–960 (2016)

 4. Haddar, I., Raouyane, B., Bellafkih, M.: Generating a service broker framework for service selec-
tion and SLA-based provisioning within network environments. In: Proceedings of the 9th Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN 2017), pp. 630–635 (2017)

 5. Nakamura, L., Azevedo, L., Batista, B., Meneguette, R., Toledo, C., Estrella, J.: An analysis of opti-
mization algorithms designed to fully comply with SLA in cloud computing. IEEE Latin Am. Trans.
15(8), 1497–1505 (2017)

 6. Hasan, S., Kouki, Y., Ledoux, T., Pazat, J.: Exploiting renewable sources: when green SLA becomes
a possible reality in cloud computing. IEEE Trans. Cloud Comput. 5(2), 249–262 (2017)

 7. Arianyan, E., Taheri, H., Khoshdel, V.: Novel fuzzy multi objective DVFS-aware consolidation heu-
ristics for energy and SLA efficient resource management in cloud data centers. J. Netw. Comput.
Appl. 78, 43–61 (2017)

 8. Son, J., Dastjerdi, A., Calheiros, R., Buyya, R.: SLA-aware and energy-efficient dynamic overbook-
ing in SDN-based cloud data centers. IEEE Trans. Sustain. Comput. 2(2), 76–89 (2017)

 9. Hosseinimotlagh, S., Khunjush, F., Samadzadeh, R.: SEATS: smart energy-aware task scheduling in
real-time cloud computing. J. Supercomput. 71(1), 45–66 (2015)

 10. Luo, J., Zhang, S., Yin, L., Guo, Y.: Dynamic flow scheduling for power optimization of data center
networks. In: Proceedings of the 5th International Conference on Advanced Cloud and Big Data
(CBD 2017), pp. 57–62 (2017)

 11. Duan, L., Zhan, D., Hohnerlein, J.: Optimizing cloud data center energy efficiency via dynamic
prediction of CPU idle intervals. In: Proceedings of the 8th IEEE International Conference on Cloud
Computing (IEEE CLOUD 2015), pp. 985–988 (2015)

 12. Sarji, I., Ghali, C., Chehab, A., Kayssi, A.: CloudESE: Energy efficiency model for cloud computing
environments. In: Proceedings of the 2011 International Conference on Energy Aware Computing
(ICEAC 2011), pp. 1–6 (2011)

 13. Liu, Y., Zhu, H., Lu, K., Wang, X.: Self-adaptive management of the sleep depths of idle nodes in
large scale systems to balance between energy consumption and response times. In: Proceedings of
the 4th IEEE International Conference on Cloud Computing Technology and Science (CloudCom
2012), pp. 633–639 (2012)

 14. Jin, S., Hao, S., Yue, W.: Energy-efficient strategy with a speed switch and a multiple-sleep mode in
cloud data centers. In: Proceedings of the 12th International Conference on Queueing Theory and
Network Applications (QTNA2017), pp. 143–154 (2017)

 15. Jin, S., Hao, S., Wang, B.: Virtual machine scheduling strategy based on dual-speed and work vaca-
tion mode and its parameter optimization. J. Commun. 38(12), 10–20 (2017). (in Chinese)

 16. Cao, H., Xu, J., Ke, D., Jin, C., Deng, S., Tang, C., Cui, M., Liu, J.: Economic dispatch of micro-
grid based on improved particle-swarm optimization algorithm (2016). https ://doi.org/10.1109/
NAPS.2016.77478 75

 17. Zhang, Y., Zhao, Y., Fu, X., Xu, J.: A feature extraction method of the particle swarm optimization
algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra.
Opt. Commun. 376, 56–66 (2016)

 18. Tian, D.: Particle swarm optimization with chaos-based initialization for numerical optimization
(2016). https ://doi.org/10.1080/10798 587.2017.12938 81

 19. Paxson, V., Floyd, S.: Wide-area traffic: the failure of Poisson modeling. IEEE/ACM Trans. Netw.
3(3), 226–244 (1995)

 20. Tian, N., Zhang, Z.: Vacation Queueing Models: Theory and Applications. Springer, New York
(2006)

 21. Jiang, M., Hu, J., Zhao, R., Wei, X., Nie, Z.: Hybrid IE-DDM-MLFMA with Gauss–Seidel iterative
technique for scattering from conducting body of translation. Appl. Comput. Electromagn. Soc. J.
30(2), 148–156 (2015)

https://arxiv.org/pdf/1608.00687v1.pdf
https://doi.org/10.1109/NAPS.2016.7747875
https://doi.org/10.1109/NAPS.2016.7747875
https://doi.org/10.1080/10798587.2017.1293881

882 Journal of Network and Systems Management (2019) 27:860–882

1 3

 22. Rahmat-Samii, Y., Gies, D., Robinson, J.: Particle swarm optimization (PSO): a novel paradigm for
antenna designs. Ursi Radio Sci. Bull. 76(3), 14–22 (2017)

 23. Guedria, N.: Improved accelerated PSO algorithm for mechanical engineering optimization prob-
lems. Appl. Soft Comput. 40, 455–467 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Xiuchen Qie received the B.Eng. degree in Computer Science and Technology from Harbin Normal
University, Harbin, China. Now Miss. Qie is a postgraduate student at School of Information Science
and Engineering, Yanshan University, Qinhuangdao, China. Xiuchen Qie’s reserch interests include cloud
computing, virtual machine management and stochastic modeling.

Shunfu Jin received the B.Eng. degree in Computer Science from North-East Heavier Machinery Col-
lege, China, M.Eng. degree in Computer Science from Yanshan University, China, and Dr.Eng degree in
Circuits and System from Yanshan University. Now she is a professor at School of Information Science
and Engineering, Yanshan University, China. Dr. Jin’s research interests include stochastic modeling for
telecommunication, performance evaluation for computer system and network and application for queue-
ing system.

Wuyi Yue received the B.Eng. degree in Electronic Engineering from Tsinghua University, China, the
M.Eng. and Dr.Eng. degrees in Applied Mathematics and Physics from Kyoto University, Japan. Dr.
Yue is currently a professor at the Faculty of Intelligence and Informatics, and Dean of the Graduate
School of Natural Science, Konan University, Japan. Dr. Yue is a fellow of the ORSJ, a senior number
of IEICE, Japan and a member of the IEEE. Dr. Yue’s research interests include queueing theory, sto-
chastic processes and optimal methods as well applied to system modeling, performance analysis and
optimal resource allocation of communication networks, systems engineering, and operations research.
Dr. Yue is an author (a co-author) and a co-editor of more than 10 monographs published by Springer and
other Publishers, and more than 300 refereed papers published in journals such as IEEE Transactions and
IEICE Transactions, and in proceedings of IEEE, ACM, LNCS, Springer.

	An Energy-Efficient Strategy for Virtual Machine Allocation over Cloud Data Centers
	Abstract
	1 Introduction
	2 Review of Related Literature
	2.1 Energy Saving Strategies in Cloud Data Centers
	2.2 Sleep Mode Based Energy Saving Strategies
	2.3 Enhanced Particle Swarm Optimization Algorithms
	2.4 Motivation for Our Research

	3 Energy-Efficient VM Allocation Strategy and System Model
	3.1 Energy-Efficient VM Allocation Strategy
	3.2 System Model

	4 Model Analysis
	4.1 Transition Rate Matrix
	4.2 Steady-State Probability Distribution

	5 Performance Measures
	6 Numerical Experiments
	7 Performance Optimization
	8 Conclusions
	Acknowledgements
	References

