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Abstract Every time an Internet user downloads a video, shares a picture, or sends

an email, his/her device addresses a data center and often several of them. These

complex systems feed the web and all Internet applications with their computing

power and information storage, but they are very energy hungry. The energy con-

sumed by Information and Communication Technology (ICT) infrastructures is

currently more than 4% of the worldwide consumption and it is expected to double

in the next few years. Data centers and communication networks are responsible for

a large portion of the ICT energy consumption and this has stimulated in the last

years a research effort to reduce or mitigate their environmental impact. Most of the

approaches proposed tackle the problem by separately optimizing the power con-

sumption of the servers in data centers and of the network. However, the Cloud

computing infrastructure of most providers, which includes traditional telcos that

are extending their offer, is rapidly evolving toward geographically distributed data
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centers strongly integrated with the network interconnecting them. Distributed data

centers do not only bring services closer to users with better quality, but also

provide opportunities to improve energy efficiency exploiting the variation of prices

in different time zones, the locally generated green energy, and the storage systems

that are becoming popular in energy networks. In this paper, we propose an energy

aware joint management framework for geo-distributed data centers and their

interconnection network. The model is based on virtual machine migration and

formulated using mixed integer linear programming. It can be solved using state-of-

the art solvers such as CPLEX in reasonable time. The proposed approach covers

various aspects of Cloud computing systems. Alongside, it jointly manages the use

of green and brown energies using energy storage technologies. The obtained results

show that significant energy cost savings can be achieved compared to a baseline

strategy, in which data centers do not collaborate to reduce energy and do not use

the power coming from renewable resources.

Keywords Green cloud � Energy consumption � Green energy � VM
migration � Energy efficiency � Joint optimization

1 Introduction

In recent years, the wide adoption of Information and Communication Technologies

(ICT) and the exponential growth of Internet users have significantly contributed to

the increase of the world energy consumption [1, 2], and the impact of the digital

economy is expected to increase even more over the next years [1, 3]. Even if ICT is

actually helping other sectors of the economy to reduce their environmental impact,

the energy consumption of the ICT sector itself cannot be neglected.

The main strategy of the research effort put so far in ICT energy issues is the

reduction of energy consumption, with the constraint of guaranteeing the same

quality of service. In addition, partially replacing polluting energy by installing

green energy plants close to big consumers is also part of the solution to the

problem.

In Cloud computing, data centers are well known for being particularly energy

hungry. Electricity consumed by global data centers is estimated to be between 1.1

and 1.5% of total electricity use [4]. Typically, data centers are rather inefficient and

consume more energy than required [5], leaving room for improvement achievable

through intelligent management techniques.

By breaking down the energy consumption of data centers into their components

as shown in Fig. 1 [6], we can observe that about 52% of energy is consumed by

computing equipments and the remaining 48% are for power equipments and

cooling systems.

One of the reasons for energy inefficiency is the underutilization of servers whose

consumption is not proportional to computing load. As the statistics show, average

server utilization in data centers is around 30% [7], due to capacity over provision

based on worst-case scenario in order to ensure high levels of reliability [8].
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To address this problem and improve Cloud systems power efficiency, VM

(virtual machine) migration has been proposed and has shown great potential.

Migrating a VM consists of changing its physical host without service interruption.

This can be done for different purposes, such fault resilience or for system

maintenance. It can be used in power management strategies to move services

running on a big set of underutilized servers to a smaller set of optimally loaded

servers, so that the others can be switched off for power saving.

Even if VM migration also consumes energy, it has been shown that it is more

effective than leaving underutilized servers switched on [9, 10].

Another important component that consumes energy in Cloud services is the

communication network. Networks are also typically provisioned for worst-case

scenarios such as traffic burst and busy-hours load. Actually, the network has

typically a pretty large capacity margin even with respect to peak load for service

quality and robustness reasons, and then it usually wastes a lot of energy [11]. In the

internal data center network, the main energy consumers are Ethernet switches that

are hierarchically interconnected. In the external network based on IP technology,

the core network routers dominate energy consumption [12]. The relative

contribution to energy consumption of core router components is shown in Fig. 2

[12]. IP networks typically operate at less than 50% utilization, while still

consuming almost 100% of maximum power due to an almost flat energy profile

(consumption versus load) [11]. For managing network devices in order to consume

less energy, two main approaches are used: turning off the nodes or scaling down

their performance [13, 14].

Fig. 1 Data center energy consumption breakdown
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Most of previous work on energy efficiency in Cloud systems focused on

managing computing and networking components separately. However, optimizing

energy consumption of data centers and their network independently may be

significantly inefficient, in particular when dynamic resource management schemes

like VM migration are considered. Considering energy consumption of data center

servers only may cause traffic congestion and degrade the quality of Cloud services

offered to end users, as well as decrease the energy efficiency of the network. On the

network side, energy saving techniques are based on estimations of the traffic

matrices over time, and if data centers are not considered, large traffic variations due

to decisions taken by dynamic resource managers can cause energy waste.

Integrating techniques for managing energy consumption of computing and

networking components in a new generation of Cloud systems can potentially

provide non negligible efficiency gains.

A key aspect that makes some level of integration in services offered by data

centers and networks particularly important is the geographic distribution of Cloud

systems. Distributing data centers over different locations brings Cloud services

closer to end users, and offers the opportunity to better exploit the variation of

energy prices in different locations and time zones, as well as the efficient use of the

green energy that is locally generated.

Even if there are only a few existing works in literature that have investigated the

impact of joint optimization solutions for energy saving in Cloud systems [15–17],

the effectiveness of such solutions from energy cost point of view, and their

contribution to reducing environmental impact through the use of green energy

remain open issues that have motivated our work (see Sect. 2 for more details).

In this paper, we present a holistic approach for jointly managing Cloud data

centers and their networks. In the considered scenario, the Cloud system provides

Platform as a Service (PaaS) to a variety of users, and data centers are distributed

geographically in different locations and interconnected by a network. We propose

an optimization model based on mixed integer linear programing (MILP), which has

the goal of minimizing the Cloud energy cost and exploit the availability of green

Fig. 2 Breakdown of power
consumed by a core router
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energy sources in different places where data centers are located. The proposed

approach covers many aspects of Cloud computing including live migration of

VMs, energy storage management, and green energy exploitation. In this model, we

consider both energy consumption of data-center servers and their interconnection

network, and optimize the use of energy coming from the electrical grid, as well as

the energy locally generated using renewable resources exploiting also energy

storage [18].1

The rest of the paper is organized as follows. Section 2 presents related work on

energy saving. Section 3 describes the proposed approach and introduces the model

formulation. Section 4 presents the tests performed and the obtained results. Finally,

concluding remarks are given in Sect. 5.

2 Related Work

As mentioned in the introduction, most of the existing works tackle the problem of

energy efficiency in Cloud systems separating the management of data center

servers and network nodes.

For the data centers, there is a large body of work on energy management of

computing resources. We can categorize existing approaches into two classes:

server consolidation with power state management and workload scheduling.

Server consolidation consists of efficiently using the available computing

resources with the view to reduce the total number of active servers and thus saving

energy by turning off unused ones. Entropy is a resource manager proposed in [19]

that is based on constraint programming, and it is able to consolidate applications

running on a number of underutilized servers to a smaller number of highly utilized

servers using live migration of VMs. The adopted scheme does not take into account

heterogeneity in application requirements and servers, which is rather common in

multiple cloud provider environments. A similar approach able to cope with

heterogeneous environments is named pMapper [20], an application placement

controller based on continuous optimization. For more complex environments, with

a combination of service level agreements (SLAs), different power models and

energy policies, a VM consolidation engine named Plug4Green has been proposed

in [21].

The workload placement in modern data centers with a large number of servers

significantly affects their operating temperature in addition to energy consumption.

A smart placement using workload scheduling techniques may reduce cooling

requirements and save even more energy. A good example of schemes based on this

scenario is EnaCloud [22]. EnaCloud is an energy-aware heuristic-based approach

that chooses the most appropriate scheme for dynamic application placement based

on their arrivals, departures or resizing events. The approach in [23] proposes an

1 This paper is an extension to our work presented in [18]. The main difference is that now we consider

more complex scenario, we minimize the cost by solving VM migration problem instead of only

redirecting requests between data centers.
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integer linear programming (ILP) model that combines job allocation and VM

migration.

None of the above solutions considers network requirements or the geographic

distribution of data centers.

As for previous work on Cloud networks, available contributions are mainly

focused on designing and operating the communication infrastructure in order to

achieve fault tolerance, scalability, high utilization and cost efficiency [24, 25]. For

energy efficiency, beside the hardware improvements, many contributions related to

protocols and network architecture aim at achieving a better trade-off between

performance and energy consumption.

In [26], Green Route (G-Route), a service routing protocol for achieving energy-

efficiency and collaboration among cloud providers, is proposed. It is a routing

scheme that creates autonomous energy-efficient paths between different providers

before running a specific service. It has been implemented and tested on Amazon

EC2 cloud infrastructure, and shown quite significant energy and cost savings per

service request. A drawback of this approach is that it needs a trusted third party to

control the energy profiling process. Other energy-aware routing solutions can be

found in [27–34].

Switching off network nodes and rerouting traffic on other paths has a significant

impact on saving energy. In [35] the authors proposed an integer linear programing

model and some heuristic algorithms that minimize energy by finding the set of

routers and links that must remain powered on for a given traffic level while

switching off the others. This model is based on the knowledge of the traffic profile

exchanged between source/destination nodes, and the maximum link utilization.

Unlike most similar works where the objective is to minimize cost or to maximize

performance, the authors minimize the total power consumption of the network.

Other works that consider switching off network components and sleep mode for

saving energy can be found in [36–43].

PCube [44] is an elastic data center scheme that conserves energy by adjusting

the network topology and varying bandwidth availability based on traffic demand. It

is designed to be able to dynamically adjust network structure depending on

different traffic volumes, and to turn off a set of switches to save energy. Similar

solutions are Bcube [45] and ElasticTree [46].

The above solutions focus on network only and do not consider the energy

optimization of servers in data centers together with network nodes.

Relatively few papers consider joint management of data centers and network. In

[16], the authors proposed an optimization approach to jointly minimize the energy

consumption in data center hosts and network. The basic idea is to consider both

VM placement and traffic routing for energy saving. To avoid the complexity of the

problem, a unified representation method is proposed and the optimization model of

VM placement is made similar to a routing problem; then the placement and routing

problems are solved as a single one. A similar approach is PowerNetS [15], a power

optimization strategy based on workload and traffic correlation analysis. The

problem is formulated using constrained programming with the goal of consolidat-

ing VMs which are not positively correlated with the same physical machines. At

the same time, the model takes into account the network by consolidating VMs that
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are linked through traffic flows onto the same server or servers close to each other.

In [47] the authors proposed an energy saving scheme for VM placement

considering both physical servers and network resources. The problem is modeled

as a combination of bin packing and quadratic assignment problems with multi-

objective optimization and solved with a greedy algorithm that combines

hierarchical clustering with best fit scheme. The above approaches focus on the

network internal to the data center and do not consider geographically distributed

Cloud systems, as well as the availability of green resources and energy storage.

The approach in [48] jointly minimizes the cost in big data processing based on

three factors: task assignment, data placement, and data routing. The cost

minimization problem is formulated as a mixed-integer nonlinear programming

(MINLP) model, that is then linearized to make it tractable. This work considers

geographically distributed data centers but it does not explicitly model the external

network for energy consumption, it does not exploit the difference of energy prices

in various locations, and it does not take into account green energy usage.

In [49], the authors jointly optimize three problems: VM placement, the

distribution of requests, and data center resizing. The geo-distribution of data

centers is explored, by considering variation in energy prices within different

locations. The problem was formulated using MILP, and solved using a two phase

heuristic. However, the energy consumption of the network was not included neither

the exploitation of green energy resources.

In this paper, we study the energy cost minimization problem of Cloud systems

by managing data centers and Network as a whole. Differently from existing works,

where the focus is only on one aspect of Cloud computing like VM placement/

migration, in this paper we aggregate multiple Cloud computing aspects into one

approach, and propose a holistic energy aware solution for managing Cloud data

centers and their interconnection network.

3 Global Green Cloud Management Framework

3.1 Problem Description

We consider a PaaS (Platform as a Service) scenario, where the provider operates on

a virtualized infrastructure composed by multiple data centers distributed over

different geographical locations. Each data center is equipped with thousands of

physical servers. This scenario is rather common nowadays even if the number of

locations and and servers vary with the size of the provider. For example, Google

data centers are distributed among various locations in the world: 19 in the US, 12 in

Europe, one in Russia, one in South America, and three in Asia. [50] While Amazon

Web Services Cloud operates 42 Zones within 16 geographic Regions around the

world [51].

Let I be the set of available data centers. We assume they are fully connected by

a backbone network (mesh topology), where in each path between two data centers

i and j, the number of routers and the available bandwidth capacity are known.
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We assume that the Cloud Provider is able to host different user applications by

offering a set L of heterogeneous types of VMs. Each type of VMs executes a

specific service application that is capable to serve a set K of user request classes as

shown in the system model (Fig. 3).

We consider a 1-day horizon, divided into 24 time periods, in which the duration

of each time period is 1 h, and we solve the problem in advance for each day. We

consider predictions of the application workload based on historical traffic

information [52–54], thus, an estimation of the incoming traffic for each application

is provided. We denote by ktik the arrival rate of requests of class k 2 K to data

center i at time t 2 T .

Based on the traffic profile, our goal is to minimize the total energy cost in the

cloud system by allocating VMs to servers and if necessary, migrating them

between data centers, considering the fact that migration itself costs energy on both

source and destination. Depending on the location of a data center and its time zone

(day/night), the price of energy varies. We exploit different energy regions by

migrating VMs to data centers where the price of energy is cheaper. We also

consider the availability of energy from renewable resources for reducing

environmental impact of the cloud system. Therefore, migration of VMs to data

centers with more available green energy is an opportunity that can be exploited to

optimize costs. Basically, using VM migration we actually reduce the load of

expensive and polluting data centers, while we exploit cheap and green energy when

available.

We consider that VMs are live migrated between data centers (DCs) using post-

copy live migration scheme [55], in which the VM is suspended immediately upon

beginning of the migration process. First CPU state is transferred to the destination

DC, while the memory is still at the source DC. Then the destination DC requests

fault pages from the source DC, while the latter is transferring the memory state to

the destination DC. Post-copy live migration decreases the migration traffic

therefore reduces the total migration time, since the VM page is transfered only

once over the network unlike in pre-copy live migration [56]. Indeed, in this case

memory pages are copied from the source DC to the destination DC without

interrupting the execution of the virtual machine, which implies a succession of

iterations of memory transfer before stopping the VM execution on the source DC

and starting it again at the destination DC.

By migrating VMs from one data center to another, we consider migration energy

cost of the destination data center, the source data center, and the network. For the

network, its energy is assumed to be proportional to the amount of exchanged

traffic, which includes bandwidth consumed by migrated VMs including there

memory, disk images of VMs, and users traffic.

Moreover, we jointly manage the use of green and brown energy. We assume that

all the energy coming from the electrical grid is brown energy, while we consider

the energy generated in data centers as green and available for free if it is consumed

locally, to privilege the use of on-site generated green energy. However, it is

straightforward to modify the formulations to include also an amount of green

energy coming from the electrical grid (with a cost depending on location).

730 J Netw Syst Manage (2018) 26:723–754

123



We assume that data centers are able to generate on-site an amount of green

energy using renewable sources, such as solar energy, wind energy or geothermal

energy. The use of this smart electricity sourcing strategies on-site is increasing,

e.g., Facebook’s solar-powered data center [57], and Green House Data wind-

powered data center [58]. Since our work focuses only on system management, we

do not include capital expenditures for renewable sources. The costs of green energy

generation are significantly declining over the last few years. Depending on the

technology, installation prices vary, e.g., Parabolic trough plants used to generate

Concentrating Solar Power (CSP) have capital costs as low as 4600$/kW in USA

market, while wind power technologies tend to be more competitive, between 1800

and 2200$/kW [59].

Matching exactly the energy consumption with green energy generation is

difficult and can potentially generate inefficiencies when produced energy cannot be

consumed immediately. Therefore, we relax this problem by considering the use of

energy storage technologies. In our scenario, data centers are equipped with

rechargeable battery systems that are able to store the locally generated green

energy. Balancing the use of green energy produced, between immediate usage and

storage in batteries for later consumption allows for green energy to be available

when the price of brown energy is high, as well as to solve the problem of

discontinuous availability of renewable resources.

For each time period, the model defines how to allocate the load in each data

center. In other words, how many VMs are kept active or off. The same thing for the

network, where we define for each time period which links are to be turned on and

which should be off depending on the number of routers in each link and their

capacity. Note that, even if we associate energy consumption to links, the real

energy consumers in the network are line cards connected to the links in the routers

on both sides.

Fig. 3 Cloud system model
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3.2 Problem Formulation

In this section, we first introduce decision variables. We then formulate the cost

minimization objective function and the problem constraints.

3.2.1 Decision Variables

The goal of our optimization model is twofold: (1) finding how many VMs to be

migrated among DCs, and the source and destination of the migrations, (2)

managing the usage of the available green energy sources. These decisions allow to

move the load and the energy consumption among DCs during the day in order to

exploit the availability of green energy and the differences in brown energy prices

of various DC locations.

We formulate the problem using several sets of decision variables. The first pair

of main decision variables refer to VMs migration and requests forward. The integer

variable vtijl represents the number of VMs of type l to be migrated from DC i to data

center j during time period t. This variable depends on the number of received

requests by each data center. We use a continuous positive variable xtijkl to represent

the arrival rate of class k requests received by VM of type l in data center i and then

served in data center j after live migration.

The second pair of main decision variables are related to the green energy

management. In particular, variables sgeti and dgeti indicate the sources of the green

energy supplied to the DC i during the time period t. sgeti is the amount of energy

coming from DC batteries, while dgeti is the green energy produced at the DC

i directly supplied to the DC for its operations.

Together with these main decision variables, there are several other secondary

variables that, depending on the values of the main ones, are used to model the

behavior of the system. We can group them in the three domains, they refer to: VM

and Migration, Networking, Battery and Green Energy Management.

3.2.2 VM and Migration

Integer variable wt
il denotes the number of active VMs type l that are originally

running on data center i, while we use the integer variable wt
il to refer to the number

of VMs executing on a data center i after all live migrations took place. The

variables wontil and woff til depict the number of VMs to be turned on and off

respectively at time period t. The energy consumption associated to the migration of

type-l VMs, including both current VMs at DC i migrated to other DCs and new

VMs migrated to DC i from other DCs, is captured by the variable migtil. Figure 4

describes a small illustrative scenario of the migration process, in which a DC

i receive a number vt�1
ijl of migrated VMs from a DC j during the time slot t - 1,

then, during time t it migrates a number vtijl to a DC j, we mention the space between

time bands is just to show the number of turned off VMs woff til.

Networking As for the network, we assume that the energy consumption of a link

is proportional to its load, expressed in terms of the ratio of used bandwidth over
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available bandwidth. We rely on variable btij to express the bandwidth used at the

link (i, j) connecting DC i with DC j during the time period t, which is determined

by the traffic volume exchanged by the two DCs due to all migration processes

among them. In addition, we let unused links to be switched off. We capture this

behavior using binary variables ztij, equal to 1 if the link (i, j) is active, and 0

otherwise. Similarly to data centers, zontij and zoff
t
ij indicate whether each link has to

be turned on or off at the beginning of time period t according to its status during the

previous time period (t - 1). Figure 5 illustrates a small example of networking

variables changes during a small scenario for transmissions in the link between a

DC i and a DC j. In this small example, the link is used for transmissions from time

band 5 until time band 8, after that, during time band 9 there are no transmissions,

therefore the link is turned off, and we indicate that by assigning 1 to the variable

zoff tij. The link has to be turned on again during time band 11, though, the variable

zontij takes the value 1.

Battery and Green Energy Management Concerning green energy and batteries,

the variable cti represents the amount of energy charged in a battery i at time t from

renewable energy sources installed at DC i. It is related to the main decision

variables sgeti and dgeti as described by the Fig. 6, where basically the generated

green energy not immediately provided in dgeti is used to recharge the batteries.

In addition to the above-mentioned variables, we have a set of variables to model

the energy charging and discharging phases at DC i. We suppose that the energy

charged at a time t cannot be used in the same time period. To define the energy

Fig. 4 VM variables

Fig. 5 Networking variables
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level of a battery we use two different variables, one refers to the level of energy at

the beginning of a time period t denoted by sti, and the other one sti refers to the level

of energy at the end of the time period t. Figure 7 shows how variable sgeti, which

indicates the amount of the batteries’ energy consumed during time period t to run

the DC, is connected to other energy-related variables. Finally, variables sgeti and

dgeti define the total amount of green energy provided to the DC during the time

period t, expressed by the variable gti.

All defined variables are summarized in Table 1.

3.2.3 Objective Function

The objective of our model is to minimize the energy cost, which consists of two

components: DC energy consumption and networking energy consumption.

Therefore, we design the following objective function:

min
X

t2T

X

i2I
Mt

i qi
X

l2L
ailw

t
il þ gilwon

t
il þ hilwoff

t
il þ migtil

� �
� gti

" #( )

þ
X

t2T

X

i;j2I
Et
ijRij ðcij � dijÞ

btij

Qij

þ dijz
t
ij þ sijzon

t
ij þ nijzoff

t
il

� � ð1Þ

The first term accounts for the cost of data centers consumption. It considers the

costs of all data centers over all time periods, where for each data center we

multiply the specific site cost of brown energy, Mt
i , and PUE (Power Usage

efficiency), qi, for the total energy consumed by the servers. The consumed energy

consists of:

• the total consumption of running VMs, where ail is energy needed for running a

type l VM in DC i (e.g., Wh)

• the energy needed for turning on and off the servers, where gil and hil are,
respectively the energy needed for turning on or off a type l VM in DC i (e.g.,

Wh)

Fig. 6 Energy generation, storage and consumption
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• the energy consumed by DCs to migrate VMs, captured by variable migtil

In addition, the consumed energy is discounted by the amount of green energy

provided by renewable energy sources installed at DCs represented by gti. As we

consider the green energy produced locally, the operating cost of green plants is set

to zero in the model.

Fig. 7 Batteries functioning

Table 1 Decision variables

Main decision variables

vtijl Number of migrated VM type l from DCi to DCj at time t

xtijkl Number of requests class k received by i and treated in j

sgeti Energy supplied to DCi from batteries at time t

dgeti Green energy directly supplied to DCi at time t

VMs related variables

wt
il Number of VMs type l at DCi before live migration

wt
il Number of VMs type l at DCi after live migration

migtil Migrations energy consumption of VMs class l in DC i during t

wontil Number of VMs type l to be turned on

woff til Number of VMs of type l to be turned off

Network variables

btij Bandwidth used in link (i, j) at time t

ztij Link (i, j) status at time t (binary)

zontij Whether the link (i, j) has to be turned on (binary)

zoff tij Whether the link (i, j) has to be turned off (binary)

Batteries and green energy variables

cti Energy charger in battery i at time t

sti Energy level in battery i at the beginning of time period t

sti Energy level in battery i at the end of time period t

gti All green energy used by DC i during t
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The second term of the objective function accounts for the network consumption.

It is computed as a sum of each path cost, which in turn consists of two components:

• the energy required to operate each router on link (i, j) during the time period t,

considering both active and idle state energy consumption, respectively

indicated by cij and dij
• the energy required to turn on and off a router at the beginning of the time

period, respectively, sij and nij

The model assumes that all the routers of the link (i, j) are identical, therefore, the

energy consumption of each router multiplied by the number of routers along the

link, Rij. This assumption can be easily modified by considering individualized

energy consumption values, which have been omitted here for sake of ease in

presentation. Finally, in order to compute the energy cost of this second term, the

total energy consumption is multiplied by the average energy price along the link

during time period t, Et
ij.

3.2.4 Constraints

In this section we present different groups of constraints used to model the Vm

migration, the operations of data centers, the network, and battery and green energy

management features.

VM Migration First, we must ensure that all the requests received from cloud

users are processed by the data centers. The requests of different classes have to be

processed by suitable type of VMs. For this purpose we use the following

constraints:
X

l2Lk

X

j2I
xtijkl ¼ ktik 8i 2 I ; 8k 2 K; 8t 2 T ð2Þ

In particular, constraint (2) ensures that all the incoming traffic is processed in the

Cloud, by any of the DCs with an appropriate VM. Note that we consider the set Lk,

which is the set of VM classes that can process class-k requests.

In addition, a migration plan requires to define the number of VMs to migrate, as

well as their source and destination DCs. For this purpose we use the following

constraints:

X

j2I
vtijl �

X

k2K

X

j2I
xtijkl

 !
� xtiikl

" #
=ll 8i 2 I ; 8l 2 L; 8t 2 T ð3Þ

X

j2I
vtjil �

X

k2K

X

j2I
xtjikl

 !
� xtiikl

" #
=ll 8i 2 I ; 8l 2 L; 8t 2 T ð4Þ

vtiil ¼ 0 8i 2 I ; 8l 2 L; 8t 2 T ð5Þ
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Equations (3) and (4) compute the number of VM that were sent and received,

respectively, by each DC. They are proportional to the rate of request, respectively,

redirected to and received from other DCs. Note that the term xtiikl represents the

requests arrived to DC i and locally served. The number of migrated VMs must be

sufficient to serve the rate of forwarded requests, this is captured by the parameter ll
expressing the maximum service rate for a type l VM. The last constraint (5)

guarantees that a DC does not migrate VMs to itself.

The following constraint (6) determines the number of active VMs in a data

center i after making the necessary migrations. Starting from the number of VMs

that was created in a data center (wt
il), we subtract the number of VMs that migrated

and add the ones that arrived from other locations. In most cases, a data center

makes one of these operations: sending or receiving VMs but not both at the same

time, and that depends on its capacity and the energy constraints.

wt
il ¼ wt

il �
X

j2I
vtijl þ

X

j2I
vtjil 8i 2 I ; 8l 2 L; 8t 2 T ð6Þ

Finally, constraint (7) calculates the energy consumed by migration operations.

migtil ¼ EHl

X

j2I
vtjil þ ESl

X

j2I
vtijl 8i 2 I ; 8l 2 L; 8t 2 T ð7Þ

Parameters ESl and EHl represent the energy consumption for migrating a VM

type l consumed, respectively, at source and destination DC.

DC Behavior Together with the migration plan, we need to model the DC

behavior. We assume each DC has a maximum number of requests that can process

per time period. This number depends on the number of VMs that a data center is

able to handle simultaneously. Hence, we use the following constraints to ensure

that the capacity requirements of data centers are not exceeded:

wt
il �Pil 8i 2 I ; 8l 2 L; 8t 2 T ð8Þ

wt
il �

X

j2I

X

k2K

xtijkl

ll
8i 2 I ; 8l 2 L; 8t 2 T ð9Þ

wt
il �

X

j2I

X

k2K

xtjikl

ll
8i 2 I ; 8l 2 L; 8t 2 T ð10Þ

where, constraint (8) ensures that the number of running VMs after all migration

operations took place does not exceed the capacity of the system resources. In other

words, the overall utilization of resources dedicated to run class-l VMs is below a

planned threshold in each DC i, Pil. Constraint (9) defines the number of VMs of

type l originated in DC i, while constraint (10) defines the number of VMs of type

l running on DC i after making all the necessary live migrations. Both numbers

depend on outgoing and ingoing rates of migrated requests.

In order to ensure time continuity in the number of running VMs at each DC, we

need the following constraints.
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wontil �wt
il � wt�1

il 8i 2 I ; 8l 2 L; 8t 2 T ð11Þ

woff til �wt�1
il � wt

il 8i 2 I ; 8l 2 L; 8t 2 T ð12Þ

Constraints (11) and (12) determine the number of VMs to be turned on and off at

the beginning of time period t, according to their number at the end of time period

t - 1.

Networking For the network, the following constraints are defined to ensure that

we do not exceed bandwidth capacity and to guarantee the proper operation of

network links:

btij ¼
X

l2L
/t
ijl VMsizel þ DIlð Þ þ

X

k2K
Bk

X

l2L
xtijkl

 !
8i 2 I ; 8j 2 I ; 8t 2 T ð13Þ

btij þ btji �Qijzij 8i 2 I ; 8j 2 I ; 8t 2 T ð14Þ

ztij ¼ ztji 8i 2 I ; 8j 2 I ; 8t 2 T ð15Þ

Constraint (13) computes the portion of bandwidth used for transferring data

between different DCs. In our scenario, all the exchanged data is related to

migration operations. Basically, we consider the size of different types of migrated

VMs, in terms of memory state and the content of CPU registers, then, we associate

to each type of VMs an amount of users traffic in terms of requests. Parameters

VMsizel and DIl indicates the bandwidth consumed to migrate a type-l VM and the

size of disk images of type-l VMs, while Bk is the bandwidth required for a type-

k request. In order to consider the effect of large latency between data centers, a

scale factor can be added to Eq. (13) to take into account the increase of bandwidth

needed to manage memory consistency during VM migration. However, a detailed

investigation of the effects of the latency on VMs’ performance is out of the scope

of this paper, which mainly focuses on energy efficiency aspects. Therefore, in the

rest of the paper we assume this scale factor can be approximatively set to 1.

Constraint (14) guarantees that the VM exchanges do not exceed the link

capacity, Qij, which is forced to 0 when the link is switched off (zij ¼ 0). Finally,

Constraint (15) ensures that if a link is active in one direction, it is also active in the

other one.

Similarly to the case of the number of VMs at DCs, we need to ensure the time

continuity of the link status. Constraints (16) and (17) define which links have to be

turned on or off at each time period transition.

zontij � ztij � zt�1
ij 8i 2 I ; 8l 2 L; 8t 2 T ð16Þ

zoff tij � zt�1
ij � ztij 8i 2 I ; 8l 2 L; 8t 2 T ð17Þ

Green Energy and Batteries Management Green energy management and storage

play an important role in our model. The constraints below guarantee the appro-

priate behavior of the available renewable resources and batteries.
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gti � qi
X

l2L
ailw

t
il þ gilwon

t
il þ hilwoff

t
il þ migtil

� �
8i 2 I ; 8t 2 T ð18Þ

gti ¼ sgetibi þ dgeti 8i 2 I ; 8t 2 T ð19Þ

cti þ dgeti �Ct
i 8i 2 I ; 8t 2 T ð20Þ

X

t2T
gti �

X

t2T
Ct
i 8i 2 I ð21Þ

In particular, constraint (18) ensures that the consumed green energy during a

time period is less than the required amount to run the corresponding DC. Constraint

(19) states that the green energy at time period t can be provided directly from the

renewable source (dgeti) or from batteries (sgeti), taking into account the energy loss

rate during a time period due to its storage, denoted by bi. Constraint (20)

guarantees that the amount of energy charged in batteries and the one directly

supplied are less than the total amount generated in one time period, denoted by Ct
i,

while constraint (21) ensures that the total green energy consumed during a day in a

data center (
P

tT
gti) does not exceed the total amount generated (

P
tT
Ct
i). This

makes the daily repetition of the plan sustainable.

sti ¼ ct�1
i wi þ st�1

i fi 8i 2 I ; 8t 2 T n 1f g ð22Þ

sgeti ¼ sti � sti 8i 2 I ; 8t 2 T ð23Þ

sgeti � sti 8i 2 I ; 8t 2 T ð24Þ

Constraints (22), (23), and (24) are related to batteries. Constraint (22) states that

the energy level in a battery at the beginning of the period t is given by the energy

remaining at the end of time period t - 1 (considering the energy discharging

efficiency of the battery fi) and the energy charged during (t - 1) (considering the

energy charging efficiency of the battery wi). Constraint (23) forces the amount of

discharged energy, sgeti, to be equal to the difference between the level of energy at

the beginning and at the end of time period t. Constraint (24) makes sure that the

energy discharged from a battery is less than the available energy in that battery at

the beginning of the time period.

The following final constraints are related to physical limitations of the batteries.

Constraints (25), (26) and (27) ensure that the model does not exceed the energetic

capacity and charging and discharging rate limits of a battery.

sti � Smaxi 8i 2 I ; 8t 2 T ð25Þ

cti �Cmaxi 8i 2 I ; 8t 2 T ð26Þ

sgeti �Dmaxi 8i 2 I ; 8t 2 T ð27Þ
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Parameters Smaxi, Cmaxi, and Dmaxi refer, respectively, to the maximum energy

storage capacity, energy charging in 1 h, and energy discharging in 1 h of the

considered batteries (which is the duration of one time period). We also assume the

energy charged into a battery during time t can not be used until the next time

period, therefore, we add the constraints (28), (29) and (30) to initialize batteries’

status in t = 1.

sge1i ¼ 0 8i 2 I ð28Þ

s1i ¼ 0 8i 2 I ð29Þ

s1i ¼ 0 8i 2 I ð30Þ

Table 2 summarizes all model parameters.

4 Model Evaluation

Our model has been evaluated using a state-of-the-art MILP solver and considering

various instances and workload configurations. In this section, we present results

obtained on a set of scenarios with realistic values for parameters.

4.1 Parameter Setting

We considered 15 data centers distributed geographically all over the world. For

their locations, we have taken inspiration from Cloud computing infrastructure of

Google [60]. We used four geographical macro areas: West USA, East USA, Europe

and Asia. In each area, data centers have the same or close time zone. A detailed

view of used data centers location and number of servers is provided in Table 3. We

mention here that the number of servers used for each data center is not the real

number of Google DCs, but it is generated within a the range of [5000, 16,000].

For each data center, we associate a PUE value in order to include the power

facilities that support the IT equipment load, such as cooling systems. According to

[61] the global average PUE of the largest data centers is around 1.7, while the

average PUE for all Google data centers is 1.12. In our tests, we vary PUE values

between 1.1 and 2.

For data centers capacity, we generated a random number of physical servers for

each DC, within the range [5000:16,000], and we assume 1:1 ratio for the physical

to virtual resources assignment (i.e., 1 physical core is assigned to 1 virtual core of

equal capacity).

Regarding technical characteristics of servers in DCs, we consider an HP

ProLiant DL370 G6, with a Intel Xeon W5580 processor (8 cores at 3200 Mhz) and

96 GB of total memory. Even if we considered three different classes of VMs (see

below), we modeled only a single server type, in order to simplify energy

consumption analysis. For this reason, all VMs require the same amount of energy

to run at peak load or when idle, while they differ in the class of requests that can be
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processed and their total number per time period. However, the model is flexible to

include more than one type of physical servers, this is possible through assigning

each class of VMs to a specific configuration of physical servers, therefore, different

classes of VMs can take different values of energy consumption. The values of

energy consumed for migrating a VM are taken from an experiment that is designed

to estimate servers (host/destination) consumption due to live migration [9].

However, the model is tested on an example of homogeneous data centers, but the

Table 2 Model parameters

I Set of data centers

T Set of time bands

L Set of VMs types

K Set of request classes

Data centers and VMs parameters

ktik Incoming class k requests rate at DC i in time t (Req/h)

Bk Bandwidth required for a type k request

Pil The maximum number of VMs type l in DC i

VMsizel Bandwidth consumed to migrated a type-l VM type

DIl Size of disk images of VMs type l

ll Maximum service rate for a type l VM

EHl Destination DC energy consumption for migrating a VM type l

ESl Source DC energy consumption for migrating a VM type l

ail Energy needed for running a type l VM in DCi

gil Energy needed for turning on a type l VM in DCi

hil Energy needed for switching off a type l VM in DCi

qi PUE (Power Usage efficiency) for DC i

Mt
i Price of energy in DC i at time t

Network parameters

Rij Number of routers in link (i, j)

Qij Maximum bandwidth in link (i, j)

cij Energy needed for running a router in (i, j)

dij Energy needed for keeping idle a router in (i, j)

sij Energy needed for turning on a router in link (i, j)

nij Energy consumption for switching off a router in (i, j)

Et
ij Price of energy in link (i, j)

Batteries and Green Energy parameters

Ct
i Green Power that could be generated at DC i in time t (kWh)

wi Energy charging efficiency in DC i battery

bi Energy loss rate per time in DC i battery

fi Energy discharging efficiency in battery i

Smaxi Maximum energy storage capacity in battery i

Cmaxi Maximum energy charging in 1 h for battery i

Dmaxi Maximum energy discharging in 1 h for battery i
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formulations are flexible to include heterogeneity by giving different energy

consumption for different classes of VMs.

Another important parameter is the energy cost, which varies over time, with

peak hours not simultaneously occurring at different time-zones. In this paper, we

have used as input the average energy prices in the day-ahead market in different

markets in the world including GME (Gestore dei Mercati Energetici) in Italy, New

England Market and PJM in California USA, SEMO in Ireland and many others.

Energy prices were collected and averaged during October 2014. Table 4 reports the

list of market managers considered. The resulting costs of energy varies between 10

and 65 Euro/MWh. Figure 8 represents energy price trend for each different macro

area.

Table 3 Data centers location and number of servers

DC City Country Macro-area Time zone Servers

DC1 Mountain View—CA USA West America UTC-08 6000

DC2 Pleasanton—CA USA West America UTC-08 5250

DC3 San Jose—CA USA West America UTC-08 6000

DC4 Atlanta—Georgia USA East America UTC-05 10,500

DC5 Reston—Virginia USA East America UTC-05 6750

DC6 Berlin Germany Europe UTC?01 9750

DC7 Groningen Netherlands Europe UTC?01 12,000

DC8 Mons Belgium Europe UTC?01 13,000

DC9 Paris France Europe UTC?01 15,750

DC10 Dublin Ireland Europe UTC?00 13,500

DC11 Milan Italy Europe UTC?01 9000

DC12 Moscow Russia Asia UTC?03 14,250

DC13 Tokyo Japan Asia UTC?09 11,250

DC14 Hong Kong China Asia UTC?08 8250

DC15 Beijing China Asia UTC?08 11,250

Table 4 Energy market managers considered in the paper

Country Market manager

USA New England Market (ISO-NE) [62], California ISO [63], PJM [64]

Canada Independent Electricity System Operator (IESO) [65]

Italy Gestore dei Mercati Energetici (GME) [66]

France Powernext [67]

Netherlands, UK, and Belgium APX-ENDEX [68]

Germany European Energy Exchange (EEX) [69]

Ireland SEMO [70]

Japan Japan Electric Power Exchange (JEPX) [71]

Russia Trade System Administrator (ATS) [72]
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We assume that data centers are fully connected, thus, we consider that capacity

of different links varies between 0.5 and 1 Gbps. Moreover, a typical link

connecting data centers is built up both by physical lines (such as optical fiber) and

network components (such as routers and switches). Therefore, we estimate the

energy cost of each link as the cost of energy consumed by its routers,

proportionally to the bandwidth in use. For the number of routers in each link, a

traceroute application was used to determine the number of hopes between two

nodes. We have also considered a single reference router which is a Juniper E320,

with a maximum power consumption of 3.84 kW [73]. The other values of

parameters related to routers are listed in Table 6.

We built workloads based on a trace of requests registered at a website of a big

University. This trace was collected hourly during 1 year, from sessions registered

on 100 servers. To generate the workload, we consider the total number of Internet

users for each country where a data center is located [74], then, based on the number

of Google search done all over the world and percentages of Internet users of the

same country, we estimate the requests rate for each data center.

For VMs types, we consider 3 classes of VMs, where each class is able to serve 5

types of requests. The differences between this three classes is mainly the size of the

VM and the size of its disk images. While each type of request have different

requirements in terms of bandwidth. For VMs size and related parameters, we took

inspiration from Amazon EC2 Instance Types [75]. Disk images size varies

depending on the type of VMs. In the considered scenario, we assume that the type

of VM are not storage intensive therefore we consider that the size of disk images is

between 0.5 and 20 Gb. However, latency factor is considered to be 1 in the

following tests. The considered values of each class are summarized in Table 5.

In order to estimate the total amount of green energy produced by each data

center during a single day, we multiply the average energy produced by a green

plant per square meter with the average data center size that we vary between 450

and 10,000 m2 [76]. Moreover, we consider that data centers are equipped with Li-

ion (lithium-ion) batteries with overall capacity of 1486 Ah. This kind of batteries

Fig. 8 Average energy prices for different macro areas during 1 day
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have a C-rate around 73 Ah per module, so with a voltage of 14.8 V, a module can

charge 1.08 kWh during 1 h, which is almost the full capacity of a module. Energy

charging and discharging efficiency are considered equal to 88% [77]. Table 6

summarizes parameter settings used to test the model.

4.2 Numerical Results

We used the commercial solver IBM ILOG CPLEX 12.1 as a MILP optimization

solver [78]. The model has run on an 8-core 2.4 GHz Intel Xeon server with 96 Gb

RAM. To evaluate the energy saving of joint optimization and compare it to

traditional strategies that separate data centers and network energy management, we

considered the proposed model denoted by Global Green and two different

scenarios.

The Servers Only scenario, where we optimize only servers side without

considering an optimization for the network. In other words, network equipments

are considered to be turned on all the time without any energy management strategy.

A second scenario, called Separated, consists of two separated energy management

strategies for both data centers and the network. In this case, data centers collaborate

to minimize their energy consumption without considering that their interchange-

able traffic can have an impact on the network energy consumption, while the

network side turn on and off the routers based on the amount of traffic imposed due

to DCs load balancing. A third scenario called Global Green represents our

proposed approach.

Considering that our model is solved based on 1 day horizon, all of the following

results represent the behavior of the system in 1 day, energy expenditures included.

Figure 9 shows the energy costs for the different scenarios for different values of

traffic (number of requests per day). We also report the energy savings (in

Table 5 VMs settings
VM class VM size (GB) Disk images size (GB)

Class 1 0.5 0.5

Class 2 1 7

Class 3 2 20

Table 6 Parameters settings

Bk [200, 450] kb ail [60, 90] Wh gil [2, 3] Wh

hil [0.28, 14] Wh qi [1.1,2] cij 3.84 kWh

dij 0.768 kWh sij 0.128 kWh nij 0.128 kWh

EHl [203, 908] Ws ESl [203, 908] Ws PUE [1.1,2]

Smaxi 1486 Ah Cmaxti 1.08 kWh/module wi and bi ¼ 88%

Mt
i [10, 65] Euro/MWh DIl [0.5, 20] Gb Qij [0.5,1] Gbps

Rij [1,36] Routers Nb. of servers [5250, 157,500]
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percentage) of the Global Green scenario with respect the other two. These costs are

the objective function values resulting from the optimization described in Sect. 3.2.

The joint optimization approach (Global Green) can save large amount of energy

cost up to 70% compared to the cost without network power management. The

reason behind this is the non-negligible energy saved in the network turning on and

off routers according to traffic dynamics. The savings can be up to 34% compared to

the separate case, and this is due obviously to the separate solution of the two

problems that leads to suboptimal solutions, and to the use of fixed traffic values for

the optimization of the network. As expected, the savings tend to decrease as traffic

increases since we are forced to keep more system nodes (servers and routers) active

to accommodate a larger number of requests and we have less room (smaller space

of admission solutions) for optimizing energy consumption.

In Fig. 10 we plot the energy consumption of the same three scenarios.

Obviously, we observe a significant saving of about 43% of the joint model

compared to the Servers Only case, because of the network energy consumption. On

the other side, the energy consumption of the separate and joint models is

comparable. The reason is that in the objective function we considered the energy

costs rather than the energy consumption. Since the local generated green energy is

available for free, the system tends to exploit it at best using also storage to better

match production periods with consumption.

In order to better investigate the behavior of the proposed joint optimization

model, we performed a series of other tests aimed at understanding the contribution

of different system features like the geographical distribution of data centers with

different energy prices and green energy availability. To this purpose we have

considered with three additional scenarios: the Brown Base scenario, where we do

not consider any load balancing between data centers nor the use of green resources.

In the scenario called Green Base, we introduce the use of green resources locally

but without transferring load between data centers. Conversely, in Global Brown

Fig. 9 Comparison of the optimal daily cost of energy for the different optimization approaches
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scenario, we exploit traffic distribution among data centers but without using green

energy generation. Note that in scenarios where green energy production is

considered, we also use storage to optimize its use over time.

Before analyzing the results of the model, it is worth considering their

computational complexity. Figure 11 shows the average execution time required by

CPLEX to solve the models using different workload configurations. We observe

that in all cases it is possible to solve the problem within a few minutes even for a

very large number of user requests. For small instances, i.e., 2 Billion requests, the

solver takes around 1 min for the Global Green scenario, and half a minute for the

Global brown scenario. While for the two base cases (Brown and Green), solution

time is always less than half a second, even if the problems become unfeasible for

instances with more than 16 billion requests, due to capacity limits of data centers

servers. In the worst case, with a very high traffic compared to capacity (40 Billion

Fig. 10 Comparison of the optimal daily energy consumption for the different optimization approaches

Fig. 11 Solving time
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requests per day), the solution of the joint optimization problem took 4.52 min,

which is very good for a 24 h time horizon of traffic planning.

Figure 12 shows the results obtained for energy costs using the scenarios

mentioned above for different traffic levels. On top of each bar, we indicate the

percentages of savings of the Global Green model compared the one indicated by

the bar. It can be easily noted how significant cost reduction is achieved through

collaboration between data centers using VMs migration. Moreover, with the

cooperative and jointly optimized schemes the available capacity of the Cloud

system is higher than with the non-cooperative schemes, as for high load levels the

Base Brown and Green models are not feasible. We notice also that using the

cooperative model without green energy (Global Brown) still provides non-

negligible savings compared with the non cooperative approach (Base Brown).

To better understand how the Global Green model uses energy in the system, we

can analyze the split of energy use in Figs. 13 and 14. The amount of green energy

is limited by the capacity of generators considered in our instances, and it is a

significant portion of the energy used only at low traffic levels, while it becomes

rather small at high load. Taking a closer look to optimal solutions we notice that

the system in different time periods tends to saturate the capacity of sites where

energy is cheaper and green energy available for migrating VMs, and uses the other

sites for the load exceeding capacity until the savings are significant compared to

migration costs. As load increases, the capacity of cheap and green sites tends to be

saturated by local demand and the cost savings decrease since migration is used

mainly for load balancing.

Figure 15, shows the number of migrated VMs in both Global Green and Global

Brown scenarios. As it is expected, it is proportional to the number of received

requests. Even though VM migration process itself costs energy, the overall cost

saved is more significant. We can notice also that with the presence of green sources

Fig. 12 Overall cost comparison
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Fig. 13 Energy consumption split

Fig. 14 Energy split percentage

Fig. 15 Number of virtual machines migrated
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of energy more VMs are migrated to exploit it, unlike the brown case where we only

benefits from the difference of prices between various locations.

While our model can achieve significant savings of the total power cost, it may

cause consumption of larger amounts of energy as shows Fig. 16. The reason is that

we use beside data center servers, network devices for VMs load balancing and this

consume more power. On the other hand, our model performs better in exploiting

green energy by migrating VMs as reported in Fig. 17. Therefore, even with the

additional amount of energy that we consume, the proposed model is greener

because it uses less brown sources of power by replacing them with green resources.

Fig. 16 Total energy consumption

Fig. 17 Green energy usage
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5 Conclusion

Most of existing work on energy optimization in Cloud systems manages separately

data center servers and their interconnection network. In this paper we presented a

new optimization framework based on MILP for jointly management of Cloud data

centers and their network.

The proposed model considers a set of data centers geographically distributed

over different locations around the world. Data centers collaborate by migrating

VMs between them when necessary to exploit different energy prices in various

time zones. Another factor that we consider is the availability of green energy

resources in some data centers and the possibility to store this energy using

batteries.

In Cloud scenarios, migrating VMs between different sites needs additional

network resources due to the size of VMs themselves and their data. Beside

managing both data centers and their network, we also manage both the use of

brown and green energies. Our strategy consists on redirecting the load to sites with

more available green energy. We suppose also that some data centers are able to

store the generated energy for later use, therefore we can save the clean power to use

it when its generation is not possible or during peak energy price periods, thus we

solve the problem of the possibility to be discontinued.

We show that the proposed optimization model can be solved using a state of the

art MILP solver (CPLEX) in a reasonable time even for big size instances. The

obtained results are very promising and shows that our approach allows significant

cost saving compared to the base scenarios used nowadays. Moreover, from an

environmental point of view, our model reduces greenhouse gas emission by

pushing the Cloud to use more green power resources, alongside with optimizing its

use in each data center using local energy storage.
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