
A Lightweight Fairness-Driven AQM for Regulating
Bandwidth Utilization in Best-Effort Routers

Zawar Hussain1 • Ghulam Abbas1 • Zahid Halim1

Received: 6 February 2017 / Revised: 1 September 2017 /Accepted: 5 September 2017 /

Published online: 15 September 2017

� Springer Science+Business Media, LLC 2017

Abstract The end-to-end congestion control mechanism of transmission control

protocol (TCP) is critical to the robustness and fairness of the best-effort Internet.

Since it is no longer practical to rely on end-systems to cooperatively deploy

congestion control mechanisms, the network itself must now participate in regu-

lating its own resource utilization. To that end, fairness-driven active queue man-

agement (AQM) is promising in sharing the scarce bandwidth among competing

flows in a fair manner. However, most of the existing fairness-driven AQM schemes

cannot provide efficient and fair bandwidth allocation while being scalable. This

paper presents a novel fairness-driven AQM scheme, called CHORD (CHOKe with

recent drop history) that seeks to maximize fair bandwidth sharing among aggregate

flows while retaining the scalability in terms of the minimum possible state space

and per-packet processing costs. Fairness is enforced by identifying and restricting

high-bandwidth unresponsive flows at the time of congestion with a lightweight

control function. The identification mechanism consists of a fixed-size cache to

capture the history of recent drops with a state space equal to the size of the cache.

The restriction mechanism is stateless with two matching trial phases and an

adaptive drawing factor to take a strong punitive measure against the identified

high-bandwidth unresponsive flows in proportion to the average buffer occupancy.

Comprehensive performance evaluation indicates that among other well-known

& Zawar Hussain

zawar@giki.edu.pk;

http://www.giki.edu.pk/Telecon

Ghulam Abbas

abbasg@giki.edu.pk

Zahid Halim

zahid.halim@giki.edu.pk

1 Faculty of Computer Sciences and Engineering, GIK Institute of Engineering Sciences and

Technology, Topi 23640, Pakistan

123

J Netw Syst Manage (2018) 26:486–517

https://doi.org/10.1007/s10922-017-9427-y

http://orcid.org/0000-0002-0609-2271
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9427-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9427-y&domain=pdf
https://doi.org/10.1007/s10922-017-9427-y

AQM schemes of comparable complexities, CHORD provides enhanced TCP

goodput and intra-protocol fairness and is well-suited for fair bandwidth allocation

to aggregate traffic across a wide range of packet and buffer sizes at a bottleneck

router.

Keywords Active queue management � Congestion control � Fair bandwidth
allocation � Unresponsive flows

1 Introduction

Internet congestion control comprises two components: an end-to-end transport

layer mechanism of TCP, and a router-based AQM scheme. AQM decides how to

prevent an impending congestion by providing early warnings to TCP sources

before the buffer overflows, while TCP decides how to align its sending rate with

the congestion notifications from the AQM [1, 2]. A TCP source is congestion

responsive since it backs off on receiving a congestion notification and gradually

increases its sending rate otherwise. This cooperative behavior of TCP allows

similarly situated sources to attain a collective sending rate equal to the capacity of

the congestion point and thereby, share the bottleneck bandwidth fairly reasonably

[3, 4]. Fairness is of a greater concern in the context of the best-effort Internet

wherein sources need to compete for the scarce network resources [3–6]. AQM only

complements the end-to-end congestion control to increase network utilization and

to enable a reasonable degree of fairness among the well-behaved responsive flows.

To achieve these objectives though, the Internet depends on sources to supportively

deploy end-to-end congestion control mechanisms [7].

However, such a supportive deployment is not always granted by sources since

some end-user applications may prefer selfish behavior in order to be more

competitive. Such applications generally utilize User Datagram Protocol (UDP),

which offers no means of detecting or avoiding the network congestion. As such,

UDP-based applications are congestion unresponsive—that is, they cannot back off

when congestion occurs. Unresponsive flows can quickly capture the bandwidth

leftover by responsive flows that back off in response to a congestion. This inflicts

unfairness on the well-behaved responsive flows and may also cause congestion

collapse [8]. Since the cooperative deployment of congestion control mechanisms

universally by all end systems is not practical, the network needs to take control of

its own resource utilization. Although, AQM seeks to increase network utilization

for responsive flows, it cannot preclude the problem of unfairness without being

able to identify and restrict unresponsive flows [7].

To that end, there has been a growing realization that ‘‘fairness-driven’’ AQM

schemes are inevitable not only to enable a friendly coexistence of aggregate traffic,

but also to offer incentives to sources for using congestion control.1 In the wake of

1 UDP-based applications can also realize congestion control either through their own application layer

mechanism, or by using an alternative transport layer protocol, such as DCCP [9], which is similar to

UDP but provides a light-weight congestion control mechanism.

J Netw Syst Manage (2018) 26:486–517 487

123

the seminal work of Floyd and Fall [8], and the ensuing calls for more efforts by

IETF [3–6], numerous AQMs proposals exist for sharing the scarce network

resources among competing aggregate flows in a fair manner. In [7], we have

provided a systematic review and the taxonomy of the eminent fairness-driven

AQM schemes along with several open issues and design guidelines. Among the

important open issues is the fact that the existing fairness-driven AQM schemes are

unable to allocate bandwidth fairly and scalably reasonably. The key to the

scalability is the accurate identification and restriction of unresponsive traffic

without the need to keep too much state information. In addition, most of the

existing schemes consider fixed length packets in their designs and evaluations,

have large buffer requirements, or cannot cope with intra-protocol and inter-

protocol unfairness.

This paper presents an almost stateless fairness-driven AQM, termed CHORD,

for best-effort routers to regulate unresponsive flows in wired networks. CHORD is

aimed at providing reasonable fairness with the least complexity. For identifying

unresponsive flows, CHORD employs a fixed-size cache memory to store the

history of recent drops with a state space requirement equal to the size of the cache.

For restricting the identified unresponsive flows, CHORD employs the stateless

matched-drop framework with two matching trial phases and a drawing factor

adapted to take a punitive measure in proportion to the average buffer occupancy.

CHORD is light-weight due to its fixed and very small space requirements and is

amenable to high-speed implementations in core routers because of its low

processing cost. Performance evaluation against eminent AQMs indicates that

CHORD provides enhanced fairness for aggregate traffic, ensures intra-protocol and

inter-protocol fairness, and retains reasonable performance under packets and

buffers of different sizes.

The rest of the paper is organized as follows. Section 2 presents the related work.

The proposed CHORD scheme is presented in Sect. 3, along with the complexity

analysis of CHORD. Section 4 presents performance evaluation of CHORD, and

Sect. 5 concludes the paper.

2 Related Work in Fairness-Driven AQM

An AQM is termed fairness-driven if it establishes some form of differential control

of responsive and unresponsive traffic for allocating bandwidth fairly. Such a

scheme seeks to identify unresponsive traffic on detecting an incipient congestion

and applies certain restrictions to confine the bandwidth consumption of unrespon-

sive traffic (see [7] for an overview). Hence, the two crucial components of a

fairness-driven AQM scheme are the identification and restriction mechanisms,

which compose the control function of the scheme. A fairness-driven AQM with a

stateful control function (e.g., [10–13]) enforces an exact fairness at the expense of a

higher state space and per-packet processing costs. Other AQMs with partial-state

(e.g., [14–20]) or with stateless control functions (e.g., [21–29]) seek to achieve

reasonable efficiency with moderate or low complexities. The remainder of this

488 J Netw Syst Manage (2018) 26:486–517

123

section reviews only the eminent practical schemes that offer a good balance

between complexity, fairness, and efficiency.

CHOKe [21] is a stateless AQM with the same parameters as RED [30], i.e., a

minimum threshold, minth, a maximum threshold, maxth, and the average queue

size, avgq. An arrived packet is queued if avgq �minth, and is dropped if

avgq [maxth. However, when minth\avgq �maxth, the arrived packet is matched

with a randomly drawn (drop-candidate) packet from the buffer. Both the packets

are dropped if they have the same FlowIDs: This is called the ‘‘matched-drop’’

framework of CHOKe. Otherwise, the arrived packet is marked with probability,p,

of RED and the randomly drawn packet is restored in the buffer. This makes

CHOKe completely stateless. Nevertheless, CHOKe employs a fixed drawing

factor, which is inappropriate since the drawing factor should be adapted in

accordance with the congestion level in order to increase the penalty with the

growing congestion. The static drawing factor may also hamper the performance of

CHOKe in the presence of bursty traffic. The performance of CHOKe may also

degrade as the number of unresponsive flows increase [7], due to the reduced

likelihood of packets matching and dropping from these flows.

CHOKeR [25] extends CHOKe by incorporating multiple matched drops and

using the current instantaneous queue size, q, as the congestion measure. The buffer

space is divided into three thresholds, namely, bmin, bmid, and bmax. The drawing

factor, p0, is updated upon each packet arrival based on q, as follows:

p0 ¼
max 0; p0 � pr�ð Þ; if bmin\q� bmid
p0; if bmid\q� bmax
p0 þ prþ � dq� bmax=bmax � bmide; if bmax\q� blimit

8
<

:
; ð1Þ

where blimit is the buffer size and prþ, pr� are fixed increase and decrease

parameters, respectively. The drawing factor follows an additive decrease, when q is

between bmin and bmid, but adopts a multiplicative increase to take a more aggressive

action when q is larger than bmax. The limitation of CHOKeR is that the fixed

additive decrease in p0, and thus the penalty, decreases slowly even when the queue

size decreases quickly [7]. Another common limitation to both CHOKeR and

CHOKe is that they ignore the location of drop candidates in the queue. To address

these limitations, CHORD devises a location and drop history-based adaptive

drawing factor to be detailed in the next section.

Other recent extensions of CHOKe include CHOKeD [26], CHOKe-FS [27],

CHOKe-RH [28] and LRURC [29]. CHOKeD [26] is a stateless AQM that

dynamically divides the queue at each packet arrival into rear and front regions of

equal lengths. It then updates its drawing factor as

dr ¼ round q �
ffiffiffi
B

p
=ðmaxth � minthÞ � lnðBÞ

� �
, where B is the buffer size, and if

minth\avgq\maxth, it performs dr matching trials from the rear region. If the

matching trials from the rear region fail, CHOKeD further performs df ¼
round dr=2ð Þ matching trials from the front region. CHOKe-FS [27] divides the

queue into four regions. It works in a stateless mode when the congestion level is

low to moderate, and in a partial-state mode when the congestion level is severe. In

the stateless mode, CHOKe-FS performs matching trials using a drawing factor

J Netw Syst Manage (2018) 26:486–517 489

123

whose value increases as the region-wise queue occupancy (instantaneous queue

size) increases. The drawing factor is 1 for the queue occupancy in the first region, 2

for the second region, and 3 for the third region. Alternatively, if the queue

occupancy is in the fourth region, CHOKe-FS switches to a partial-state mode

wherein it estimates a fair-share rate as fshare ¼ B=Nact, and limits high-bandwidth

flows to this rate. Here Nact is the number of active flows estimated using the direct

bitmap technique. CHOKe-RH [28] is an almost stateless algorithm that maintains

the history of recently dropped packets in a fixed size cache and uses this history to

identify aggressive flows. The scheme consists of initial matching trials and

additional trials for the identified unresponsive flows. The drawing factor in the

initial trials is set to 3 and is applied on the rear queue if minth\avgq\maxth. If any

of the initial trials is successful, the dropped flow is searched in the cache. If the

flow is found, further d matching trials are performed from the rear queue region.

The value of d is initialized to 2 and is doubled if avgq exceeds half of the buffer

size. Different from all other CHOKe-based algorithms, CHOKe-FS offers a

location and drop history-based adaptive drawing factor and identification

mechanism. LRURC [29] offers a probabilistic control function having five

components, namely, Virtual queue, Real queue, Rate check, LRU cache, and

Queue manager. LRURC inserts the duplicate of the arrived packet into the Virtual

queue in a FIFO manner. According to the arrived packets and their duplicates in the

Virtual queue, LRURC uses the matched drop based Rate check and LRU strategy

to update the partial flows state in the LRU cache. The Queue manager then uses the

LRU cache to manage the Real queue. When minth\avgq � minth þ maxth=2ð Þ, the
packet is dropped with probability pd calculated as pd ¼ 0:02 � fi

.Pn
j¼1 fj þ 0:005,

where fi and fj are the frequencies of identification as a high-bandwidth flow for flow

i and j, respectively. This makes high-bandwidth flows have a high dropping

probability.

Among the recent non-CHOKe based almost stateless fairness driven AQMs are

AFCD [18], Prince [19] and ABC [20]. AFCD [18] employs a synergic approach by

forming an alliance between approximated fair queuing and controlled delay

queuing. At the enqueue operation, AFCD estimates the sending rate of flows by

using a small amount of state information of flows. At the dequeue operation, AFCD

calculates a target delay of an individual flow and makes drop decisions for different

flows based on the flow’s target delay. Heterogeneous flows are shown to be able to

acquire an approximated fair bandwidth share in AFCD. Prince [19] adopts a game

theoretic approach, where incentive is given to the majority flow by dropping its

packets at congestion. In order to find the majority flow, Prince detects the flow with

most packets in the queue. By enforcing fair buffer sharing, Prince is shown to

achieve fair bandwidth sharing. ABC [20] assigns reference rates to users and their

traffic is equipped at the network edge with activity information, which indicates by

what factor the transmission rate of a user exceeds its reference rate. ABC uses this

activity information to adapt the dropping probabilities inside the network to obtain

approximately fair bandwidth allocation.

This paper is a significant extension of our preliminary work [28] and offers an

improved identification mechanism, which ensures that only long-standing high

490 J Netw Syst Manage (2018) 26:486–517

123

bandwidth unresponsive flows are retained in the cache. This paper also presents a

complete description of the proposed algorithm and removes the ambiguities found

in [28]. Additionally, this paper presents detailed complexity analysis and extensive

performance evaluation of the proposed algorithm, all of which were missing in

[28].

3 Active Queue Management by CHORD

As discussed in the previous section, the simplest possible control function is

afforded by the matched drop framework of CHOKe that consists of matching for

identification and dropping the matched packets for restricting high bandwidth

unresponsive flows. However, performance is largely compromised in the matched

drop framework due to the overly simplified control function. The proposed

scheme seeks to maximize fair bandwidth sharing among competing responsive and

unresponsive flows by complementing both the identification and restriction

mechanisms of the matched drop framework, while retaining the simplicity in terms

of the minimum possible state space and processing costs. The following sections

detail the components of the proposed CHORD scheme and present its complexity

analysis.

3.1 Identification Mechanism

For identifying unfair flows more effectively, CHORD employs a small cache

memory of a fixed predetermined size d that seeks to capture the history of recent

drops by storing the FlowIDs (source–destination address pairs) of the dropped

packets. A new entry, i.e., the FlowID of the most recently dropped packet is placed

at the topmost position, while the oldest entry, i.e., the least recently dropped flow,

is placed at the bottom of the cache (hereinafter referred to as the drop list). Note

that maintaining a fixed-size drop list is not the same as maintaining a full per-flow

state that grows in proportion to the number of active flows being served by a router.

The basic purpose of the drop list is to support the restriction mechanism to be

detailed in the next subsection, which consists of two matching trial phases. These

include an initial phase at each packet’s arrival to identify and drop unresponsive

flows, and an additional phase to impose an extra penalty on the identified high

bandwidth unresponsive flows. The flows recorded in the drop list are the

candidates for the extra penalty when congestion occurs. The drop list is used to

effectively identify and establish the additional matching trials as follows.

If a successful matched drop occurs in the initial matching trials, the drop list is

looked up to determine if the FlowID of the dropped flow has already been

recorded. If the FlowID is present in the drop list, more packets are drawn

randomly from the buffer and are compared with the dropped flow to impose an

extra penalty. If the FlowID is not present, the FlowID is added to the drop list. If

the drop list is full and there is no space for the new entry, the oldest item is

removed to create space for the new entry. Thus, only long-standing high bandwidth

unresponsive flows are likely to retain their entries in the drop list. Another

J Netw Syst Manage (2018) 26:486–517 491

123

advantage of this identification mechanism is that misbehaving TCP flows, which do

not reduce their sending rates despite being dropped, can also be identified. To that

end, if a match occurs for a TCP flow in the initial matching trials and its FlowID is

also present in thedrop list, this indicates that the TCP flow is misbehaving and

should be restricted in the same way as a high bandwidth UDP flow. This is not

possible in other schemes, such as SAC [22] and PUNSI [23], which identify and

penalize only UDP flows allowing a misbehaving TCP flow to escape the restriction

mechanism.

3.2 Restriction Mechanism

Since unresponsive and misbehaving flows fail to (completely or appropriately)

reduce their sending rates, regardless of the congestion notifications from the

network, these flows are likely to have more packets in the queue during a

congestion epoch. Hence, there is a greater likelihood of matching and dropping of

high bandwidth flows under a matched drop framework. In such a framework, a

drawing factor is used to decide the level of penalty on unresponsive flows by

determining the number of drop candidates to be randomly drawn from the buffer to

accomplish matched drops. The drawing factor for the restriction mechanism in

CHORD consists of multiple matched drops, which involve drawing multiple

random drop candidate packets from the buffer for performing the matching trials.

The challenge, however, is deciding the appropriate number of drop candidates for

the multiple matched drops. With a static drawing factor, such as that of CHOKe,

fairness may be hampered in the presence of bursty traffic, and with a fixed-decrease

drawing factor, such as that of CHOKeR, the penalty decreases slowly even when

the queue size decreases quickly [7]. To overcome these limitations, CHORD uses

the drop list and the average buffer occupancy to update its drawing factor

dynamically as follows.

As mentioned previously, CHORD consists of two matching trial phases. The

drawing factor in the initial matching trial phase is denoted by di and its value is set

to 3 (the justification for this will be given in the next section). The drawing factor

for the additional matching trial phase is denoted by dx and its value is the function

of the average buffer occupancy. The additional matching trial phase comes into

play when a matched drop occurs in the initial phase and the dropped flow is also

present in the drop list. Thus, dx signifies an extra penalty on unresponsive flows

and its value is set to 4 if the average buffer occupancy exceeds half of the total

buffer size and is otherwise halved.

Generally, in the matched drop frameworks, such as those of CHOKe and

CHOKeR, drop candidates are drawn randomly from any position in the queue.

Thus, there is an equal likelihood for each packet to get selected for a matching trial.

However, it is known that high bandwidth unresponsive and aggressive flows tend

to accumulate at the rear queue region when congestion occurs [7, 22, 23]. This is

because a flow with a higher transmission rate is likely to have its packets clustered

at the rear queue end during a congestion epoch. Therefore, as opposed to the whole

queue, CHORD preferentially draws drop candidates from the rear half of the

instantaneous queue, denoted as qrear. Figure 1 depicts one such instance of qrear,

492 J Netw Syst Manage (2018) 26:486–517

123

where q is the current instantaneous queue size. In this way, high bandwidth flows

can be restricted more effectively since there is a greater likelihood that packets

from these flows will get selected for matching trials and will get dropped.

3.3 Complete Algorithm Description

CHORD maintains a buffer at each output port of a router for queueing the packets

of the flows that share an outgoing link in a wired network, as shown in Fig. 2.

Packets get admitted from the input end when there is space available in the queue

and are transmitted on the outgoing link from the output end in a FIFO manner. The

only required observables for CHORD are the buffer occupancy and FlowIDs, while

other observables such as the number of active flows are not required by the

algorithm. CHORD employs average buffer occupancy, called the average queue

size, avgq, as a congestion measure. This is because if traffic arrives in bursts, avgq
does not enlarge abruptly as opposed to the current instantaneous queue size, q.

Therefore, matched drops are initiated only on the basis of avgq because the

instantaneous queue size is too abrupt to initiate the matched drops. The average

queue size is determined using an exponential moving average of q at each packet

arrival, as [30]:

avgq ¼ 1� wq

� �
� avgq þ wq � q; ð2Þ

where wq is the queue weight. CHORD marks three thresholds on the average queue

size to determine the level of congestion. These include a minimum threshold,

minth, a midpoint threshold, midth, and a maximum threshold, maxth, as depicted in

Fig. 1. If the total arrival rate at the queue is less than the outgoing link capacity,

avgq should not build-up to the minimum threshold, indicating that there is no

congestion in the network. Thus, for each packet arrival, if the average queue size is

less than minth, CHORD admits the arrived packet into the queue. However, if avgq

Fig. 1 An instance of the rear and front halves of the instantaneous queue under CHORD

Fig. 2 An output-queued CHORD router with a single buffer stage

J Netw Syst Manage (2018) 26:486–517 493

123

exceeds minth, this is an indication of growing congestion. To help reduce the

congestion by identifying and restricting unresponsive flows, CHORD draws di ¼ 3

drop-candidate packets randomly from qrear to perform the initial matching trials. If

none of the drop-candidates matches the arrived packet, CHORD handles this

packet in the same way as in RED. The arrived packet is marked with probability p

and the packets drawn from the buffer are restored at their actual positions. The

probability p is a piecewise linear function of the average queue size, computed as

in RED.

Alternatively, if the FlowID of the arrived packet matches any or all of the drop-

candidates, the arrived packet and all drop-candidates are dropped. The drop list is

updated, as detailed in Sect. 3.1, and the drawing factor is updated based on the

average queue size, as detailed in Sect. 3.2. The update procedure of the complete

drawing factor, d, at each packet arrival can be given as:

d ¼
di; if minth � avgq\maxth
di þ dx=2; if Hit AND avgq �midth
di þ dx; if Hit AND avgq [midth

8
<

:
; ð3Þ

where Hit denotes a successful initial matching trial(s) and an occurrence of a match

in the drop list. A Hit is an indication of a highly aggressive or high bandwidth

unresponsive flow since it is not reducing its transmission rate despite being

dropped previously. The identified flow then becomes a candidate for an extra

penalty, which is imposed by drawing d random drop candidates from qrear for

performing the additional matching trials. If any or all of the drop candidates have

the same FlowID as that of the arrived packet, all matched packets are dropped.

Otherwise, the packets drawn from the buffer are restored at their original positions

in the queue.

Though it is of much significance for fairness-driven AQMs to enforce fairness, it

is more important for these AQMs to prioritize efficiency over fairness [7]. Hence,

when the demand for bandwidth at the output queue is well within the link capacity,

no flow is considered unresponsive and CHORD suspends its identification and

restriction mechanisms. Alternatively, if avgq �maxth, every incoming packet is

dropped to allow the average queue size to reduce below maxth as early as possible.

The complete procedure of CHORD is described in Algorithm 1,2 and its state space

and per-packet processing costs are given in the next subsection.

2 The ns-2 implementation of CHORD is available at https://github.com/fairness-driven-AQM/CHORD.

494 J Netw Syst Manage (2018) 26:486–517

123

https://github.com/fairness-driven-AQM/CHORD

admit

3.4 Complexity Analysis

An AQM scheme works at the enqueue-end of a router’s buffer and is usually

actuated for each arrived packet to make a decision based on the level of congestion

to either admit or drop the arrived packet [1]. The implementation cost of an AQM

is decided by its complexity—that is, the amount of state space required and the

amount of processing performed on that state [7]. The complexity of an AQM

scheme determines its scalability, which must be taken into account carefully to

enable the scheme to retain performance for large-scale flows and be amenable to

J Netw Syst Manage (2018) 26:486–517 495

123

high-speed implementations [31]. An AQM with stateless control function does not

have any space requirements and has a O 1ð Þ cost indicating that, at each packet

arrival, it requires a fixed amount of processing irrespective of the number of flows

being served by the router. On the contrary, the space requirements of the per-active

flow (stateful) AQMs, such as [10–13], grow with the growing number of flows

being served. Consequently, the per-packet-processing costs of the stateful AQMs

are too high, which prevent scalability and limit the deployment of the stateful

AQMs in core networks containing a myriad of flows. Similarly, as partial-state

AQMs such as [14–20] maintain the state for only a subset of flows, the space

complexities of these AQMs grow with the increasing number of flows being

recorded, whereas the amounts of processing depends on the design of their control

functions. Such complexities may also make scaling difficult [7]. The key to the

scalability is to have accurate identification and restriction mechanisms without

maintaining too much state information. Table 1 compares the control functions and

complexities of RED, CHOKe, CHOKeR and CHORD. The complexity analysis of

CHORD are given below.

3.4.1 State Space Requirement

CHORD can be deployed in the conventional output queued RED routers by using a

small cache memory and a control function at the input end of the FIFO buffer. The

control function consists of three steps on a packet arrival when congestion occurs

(1) initial matching trials for identification, (2) looking up and updating the

drop list, and (3) updating the drawing factor and performing additional matching

trials for restricting unresponsive flows. The state keeping for the identification

requires a space of OðdÞ, where d is the size of the drop list. Although, this space

complexity is higher than a stateless scheme such as CHOKeR, CHORD remains

scalable since the size of drop list is limited and the space requirement does not

grow with the growing number of active flows. The next section will demonstrate

that configuring CHORD with d ¼ 10 provides reasonable performance. Thus, no

more than 10 FlowIDs need to be stored at any given time in CHORD. Using 32-bit

IP addressing and storing 10 source–destination address pairs impose a drop list

size requirement of only a constant 640 bits, which is a very small memory

overhead.

3.4.2 Per-Packet Processing Costs

CHORD can enqueue, drop or match drop an arrived packet, based on the level of

congestion. When avgq is less than minth, CHORD admits the arrived packet, and

when avgq is greater than maxth, it drops the arrived packet. The decision to enqueue

or drop the packet involves a simple operation of checking the average queue size.

The per-packet processing cost in both these cases is Oð1Þ, which is the best case

complexity implying that CHORD will perform the same amount of processing for

every incoming packet. When avgq is greater than minth, CHORD performs the

initial matching trials. The average per-packet processing cost in this case is O dið Þ,

496 J Netw Syst Manage (2018) 26:486–517

123

T
a
b
le

1
C
o
m
p
ar
is
o
n
o
f
co
m
p
le
x
it
ie
s

A
Q
M

sc
h
em

e

C
o
n
tr
o
l
fu
n
ct
io
n

S
ta
te

sp
ac
e

re
q
u
ir
em

en
t

P
ro
ce
ss
in
g

p
er
fo
rm

ed
at

P
er
-p
ac
k
et

p
ro
ce
ss
in
g
co
st

R
E
D

U
se
s
a
vg

q
as

a
co
n
g
es
ti
o
n
m
ea
su
re
.
A
d
m
it
s
an

ar
ri
v
ed

p
ac
k
et

if
a
vg

q
\
m
in

th
an
d
m
ar
k
s
(o
r
d
ro
p
s)

th
e

p
ac
k
et

if
a
vg

q
�
m
a
x t
h
.
C
o
m
p
u
te
s
p
ro
b
ab
il
it
y
,
p
a
;
as

fo
ll
o
w
s
an
d
m
ar
k
s/
d
ro
p
s
an

ar
ri
v
ed

p
ac
k
et

w
it
h

p
a
if
m
in

th
�
a
vg

q
\
m
a
x t
h
.

p
b
¼

m
a
x p

a
vg

�
m
in

th
ð

Þ =
m
a
x t
h
�
m
in

th
ð

Þ ;
p
a
¼

p
b
=
1
�
co
u
n
t
�p

b
ð

Þ ;
w
h
er
e
m
a
x p

is
th
e
m
ax
im

u
m

v
al
u
e
o
f
p
b
an
d
co
u
n
t
is
th
e
n
u
m
b
er

o
f
p
ac
k
et
s
si
n
ce

la
st
m
ar
k
ed
/d
ro
p
p
ed

p
ac
k
et

N
o
n
e

E
ac
h
p
ac
k
et

ar
ri
v
al

O
1ð
Þ

C
H
O
K
e

P
er
fo
rm

s
R
E
D

q
u
eu
e
m
an
ag
em

en
t
al
o
n
g
w
it
h
a
si
n
g
le

m
at
ch
ed

d
ro
p
if
m
in

th
\
a
vg

q
�
m
a
x t
h

N
o
n
e

E
ac
h
p
ac
k
et

ar
ri
v
al

O
1ð
Þ

C
H
O
K
eR

M
ea
su
re
s
co
n
g
es
ti
o
n
w
it
h
th
e
cu
rr
en
t
q
u
eu
e
si
ze
,
q
.
D
iv
id
es

th
e
b
u
ff
er

sp
ac
e
in
to

th
re
e
th
re
sh
o
ld
s,
b
m
in
,

b
m
id
an
d
b
m
a
x
.
U
p
d
at
es

p
0
an
d
p
er
fo
rm

s
m
at
ch
ed

d
ro
p
s
w
h
en

b
m
in
\

q
�
b
li
m
it

N
o
n
e

E
ac
h
p
ac
k
et

ar
ri
v
al

O
p
0

ð
Þ

C
H
O
R
D

P
er
fo
rm

s
R
E
D

q
u
eu
e
m
an
ag
em

en
t
al
o
n
g
w
it
h
in
it
ia
l
m
at
in
g
tr
ia
ls
w
h
en

a
vg

q
�
m
in

th
,
lo
o
k
s
u
p
an
d

u
p
d
at
es

th
ed
ro
p

li
st

an
d
u
p
d
at
es

d
fo
r
p
er
fo
rm

in
g
ad
d
it
io
n
al

m
at
ch
in
g
tr
ia
ls

O
ðd
Þ

E
ac
h
p
ac
k
et

ar
ri
v
al

O
dð
Þ

J Netw Syst Manage (2018) 26:486–517 497

123

where diis the drawing factor for the initial matching trials. If any of the initial

matching trials is successful, the drop list is looked up for the FlowID of the

dropped flow. The processing cost of the lookup operation is constant time since the

same amount of processing is performed for searching a fixed-size drop list.

Managing the drop list (addition and deletion of entries in the cache) also has a

constant time complexity, as the drop list size is fixed. The worst case complexity

of CHORD is O dð Þ, which represents the total number of matched drops carried out

on each packet arrival when an additional penalty is applied to an identified

unresponsive flow found in the drop list and when avgq exceeds midth.

Note that even the worst case complexity of CHORD is much less than the

complexities of the stateful and most partial-state and stateless AQMs (see [7] for an

overview of the complexities of well-known AQM schemes). For instance, as shown

in Table 1, the per-packet processing cost of CHOKeR is Oðp0Þ, which is higher

than that of CHORD’s OðdÞ. The value of d ranges between 3 and 7, as shown in

Eq. (3), and it never exceeds 7. However, the CHOKeR’s drawing factor, p0,

increases multiplicatively at each packet arrival if the congestion is high, as shown

in Eq. (1), and it can also exceed 7 in a long standing full queue scenario (e.g., after

800 back-to-back packets arrived at a queue that remains 85% occupied, p0 will be

8, taking bmid and bmax as originally defined in [25] and listed in Table 2 below).

On the one hand, the per-packet processing cost of CHOKeR is higher than that

of CHORD. On the other hand, although the space requirement of the proposed

CHORD is fixed and very small (640 bits), this requirement is still higher than that

of CHOKeR, which is stateless. With this slight tradeoff, CHORD can achieve a

performance gain over CHOKeR. The argument of CHORD is hence, that a

moderate to significant performance gain can be achieved over CHOKeR with a

Table 2 Simulation parameters
Parameter Configuration

Packet size 1 Kbyte

Buffer size, B 100 packets

minth B=3

maxth 2minth

wq (RED) 0.002

maxp (RED) 0.02

di (CHORD) 3

d (CHORD) 10

bmin (CHOKeR) 0.2B

bmid (CHOKeR) 0.25B

bmax (CHOKeR) 0.35B

prþ (CHOKeR) 0.002

pr� (CHOKeR) 0.001

Maximum window size 300 segments

Simulation time 500 s

498 J Netw Syst Manage (2018) 26:486–517

123

reduced per-packet processing cost and a very small state space overhead, as shall

be demonstrated in the next section.

4 Performance Evaluation

This section presents performance analysis of CHORD in comparison with RED,

CHOKe and CHOKeR, using ns–2 (version 2.35) simulations. Unless otherwise

stated, all simulations are based on the parameters listed in Table 2 and on the

topology depicted in Fig. 3. All end-systems are connected to the routers through

1000 Mbps links having a small propagation delay of 1 ms. All sources share a

bottleneck link that exists between the routers. The capacity of the bottleneck link is

100 Mbps with a 10 ms propagation delay. The queue thresholds for RED, CHOKe

and CHORD are set according to the recommendations in [21, 30]. The queue

thresholds of CHOKeR are the same as originally proposed in [25]. Unless

otherwise stated, all UDP flows employ CBR traffic with a transmission speed of

100 Mbps, and all TCP flows employ FTP. The performance evaluation metrics

include the drop rate of unresponsive flows, throughput, fairness, goodput, intra-

protocol and inter-protocol fairness, effects of different packet and buffer sizes, and

the effects of the drop list size and the drawing factor on the fairness of CHORD.

All results are based on 20 replicated simulation runs for each scenario to obtain a

95% confidence interval. The graphs plot the mean values and omit confidence

intervals for clarity.

Fig. 3 Dumbbell topology (Si transmits to Di, 8i ¼ 1; . . .; nÞ

J Netw Syst Manage (2018) 26:486–517 499

123

4.1 Drop Rate of Unresponsive Flows

In this subsection, we evaluate CHORD for its ability to restrict unresponsive

flows. To that end, we study the drop rate of the UDP packets in three different

scenarios by using three different combinations of responsive and unresponsive

flows, as shown in Fig. 4. The drop rate of UDP is the lowest under RED. This is

because RED does not attempt to implicitly or explicitly identify unresponsive

flows. CHOKe drops a comparatively larger number of UDP packets, but its

performance degrades with an increasing number of UDP flows. This is because,

as the number of UDP flows increases, the likelihood of packets matching and

dropping reduces under the single matched drop framework of CHOKe. The

performance of both CHOKeR and CHORD is superior to CHOKe. However, as

compared to CHORD, CHOKeR drops a large number of UDP packets under all

scenarios. This is due to the drawing factor of CHOKeR, which increases

multiplicatively causing a much larger number of UDP packet drops at each

packet arrival (see Sect. 3.4.2). Additionally, due to the constant decrease in

CHOKeR’s drawing factor, the penalty decreases slowly even when the queue size

reduces quickly. This causes a rather severe punishment of UDP flows under

CHOKeR, as shall be demonstrated in the next subsection. On the other hand, the

minimum number of matching trials in CHORD is 3 and the penalty increases to a

maximum of 7 trials if the average queue size exceeds midth and the flow is found

in the drop list. However, the drawing factor, and hence the penalty, diminishes

quickly if the flow was not recently dropped and has vanished from the drop list.

This prevents unresponsive flows from getting punished severely under CHORD.

The next subsection studies the impact of the UDP drop rate on throughput and

link utilization.

Fig. 4 Drop rate of UDP packets

500 J Netw Syst Manage (2018) 26:486–517

123

4.2 Throughput

Throughput is the amount of data successfully received at the destination per unit

time [16]. As unresponsive flows may starve well-behaved flows for bandwidth at a

bottleneck link, throughput (achieved by different flows) can be used to assess an

AQM for its ability to allocate bandwidth fairly. We first evaluate the performance

of CHORD for per-flow throughput in a network where 31 TCP flows compete for

bandwidth with a single unresponsive flow. In the considered scenario, the

unresponsive flow captures almost the entire bottleneck link capacity and starves all

other responsive flows for bandwidth. In such a case, a fairness-driven AQM should

identify the unresponsive flow and restrict it by dropping its packets (according to

certain criteria) in order to spare a good part of the bandwidth for responsive flows.

The drop rate, however, should be such that all unresponsive and responsive flows

are made to attain throughputs nearer to the fair share. The drop rate must not be too

high for an unresponsive flow that it is completely shutout or is made to suffer

unfairness.

Figure 5 presents comparisons of the ideal and actual bandwidth shares received

by each flow under all AQM schemes. Flows 1–31 are TCP flows, while Flow 32 is

a UDP flow. The ideal fair share in the considered scenario is 3.125 Mbps. Let us

consider the scenario with 31 TCP flows and 1 UDP flow in Fig. 4. Since the drop

rate of UDP packets is the lowest in case of RED in Fig. 4, the single UDP flow is

Fig. 5 Per-flow throughputs under a RED, b CHOKe, c CHOKeR, and d CHORD

J Netw Syst Manage (2018) 26:486–517 501

123

able to capture almost the entire bottleneck bandwidth leaving the TCP flows with a

negligible share, as shown in Fig. 5a. For 31 TCP flows and 1 UDP flow in Fig. 4,

the drop rate under CHOKe is higher than that under RED. Thus, as compared to

RED, CHOKe is able to spare more bandwidth for TCP flows, which are able to

achieve throughput of more than 2 Mbps, as shown in Fig. 5b. However, the

unresponsive flow still manages to grab a throughput of 9.12 Mbps, which is almost

thrice the fair share. Similarly, for 31 TCP flows and 1 UDP flow in Fig. 4, the drop

rate under CHORD is higher than that under CHOKe. Due to this higher drop rate of

UDP packets, more bandwidth is available for TCP flows. This enables TCP flows

to achieve throughputs closer to their fair-share under CHORD, as shown in Fig. 5d.

Conversely, the UDP drop rate in case of CHOKeR in Fig. 4 is higher than that

under CHORD. This higher-than-required drop rate is undesirable as it results in

over-throttling of UDP traffic causing its throughput to fall below the fair share, as

shown in Fig. 5c. Throttling unresponsive flows beyond the fair share also causes

unfairness, as shall be demonstrated in Sect. 4.3. The drop rate of UDP traffic

should be such that all TCP and UDP traffic is closer to its fair share rate. The

ability to allocate bandwidth closer to fair share will be quantified and compared in

the later subsections, where it will be shown that the identification and restriction

mechanisms of CHORD are designed such that the drop rate of unresponsive flows

is appropriately configured to yield higher fairness.

4.2.1 Multiple Unresponsive Flows

To demonstrate the ability of CHORD to retain its performance in the presence of

multiple unresponsive flows, we consider a scenario with 62 TCP flows competing

for bandwidth at the bottleneck link with 2 UDP flows of 100 Mbps each. Figure 6

presents a comparison of the cumulative TCP and UDP throughputs as well as the

link utilization under all AQM schemes for the scenario considered. Link utilization

is the maximum under RED. UDP throughputs under both RED and CHOKe are

very high as compared to the ideal throughput. Both CHOKeR and CHORD provide

Fig. 6 Throughput under two unresponsive sources with similar sending rates

502 J Netw Syst Manage (2018) 26:486–517

123

TCP throughputs closer to the ideal throughput. However, UDP flows again receive

a rather severe punishment under CHOKeR. Conversely, the link utilization under

CHORD is higher than both CHOKe and CHOKeR.

We further evaluate the performance of CHORD in a network where 30 TCP

flows compete for the bottleneck bandwidth with 10 UDP flows of 100 Mbps each.

The bottleneck link capacity in this scenario is increased to 400 Mbps to

accommodate the larger number of high-bandwidth UDP flows. The results are

presented in Fig. 7. As compared to the results presented in Fig. 6, the performances

of all AQM schemes have degraded. This happens due to the reduced likelihood of

flows match dropping when the number of unresponsive flows is large. TCP flows

are deprived of their fair share and receive very low throughput under all AQM

schemes, and are almost shut out under RED. CHOKe is unable to deal with the

large number of UDP flows due to its static drawing factor. TCP throughputs under

both CHOKeR and CHORD are higher than those under RED and CHOKe.

However, link utilization under CHORD is higher than that under CHOKeR and

lower than those under RED and CHOKe. For the scenarios considered in Figs. 6

and 7, the drop rate of UDP packets is shown in Fig. 8.

To further evaluate the throughput performance of CHORD, we consider

scenarios with large numbers of flows. Table 3 presents the results of cumulative

TCP and UDP throughputs along with link utilization for 100, 300, and 500 flows.

In the scenarios given in Table 3, UDP flows transmit at 15 Mbps and constitute

12% of the overall traffic [16, 32]. The bottleneck link capacity in these scenarios is

increased to 1000 Mbps to accommodate the large number of flows. As shown in

Table 3, both the TCP throughput and link utilization degrade under all AQM

schemes with the increasing number of flows. As in Figs. 6 and 7, the TCP

throughputs under both CHOKeR and CHORD are higher than those under CHOKe

and RED, but the link utilization is the highest under RED in all scenarios.

However, the fairness under RED is the lowest, as shall be seen in Sect. 4.3.

Conversely, the link utilization is low under both CHOKeR and CHORD because of

Fig. 7 Throughput under multiple unresponsive sources with similar sending rates

J Netw Syst Manage (2018) 26:486–517 503

123

the higher drop rates, but fairness under both these algorithms is much higher than

RED, as shall be demonstrated in the later subsections. Under CHORD, the link

utilization is higher than that under CHOKeR. The UDP throughput under CHORD

is also higher than that under CHOKeR in most scenarios. However, the TCP

throughput under CHOKeR is higher than that under CHORD in most scenarios.

This happens due to the over-throttling of UDP flows under CHOKeR, which leads

to low fairness of CHOKeR as compared to CHORD, as shall be demonstrated in

Sect. 4.3.

Fig. 8 Drop rate of UDP packets

Table 3 Throughput and link utilization under a large number of flows

AQM No. of

flows

No. of TCP

flows

No. of UDP

flows

TCP

throughput

(Mbps)

UDP

throughput

(Mbps)

Link utilization

(Mbps)

RED 100 88 12 296.5 667.8 964.3

CHOKe 689.9 258.7 948.6

CHOKeR 827.0 92.40 919.4

CHORD 810.6 136.1 946.7

RED 300 264 36 132.4 810.1 942.5

CHOKe 488.2 402.5 890.7

CHOKeR 677.1 148.5 825.6

CHORD 653.2 227.1 880.3

RED 500 440 60 72.92 828.5 901.4

CHOKe 241.3 587.8 829.1

CHOKeR 492.1 271.1 763.2

CHORD 561.3 255.6 816.9

504 J Netw Syst Manage (2018) 26:486–517

123

4.2.2 Unresponsive Flows with Different Sending Rates

We next evaluate the performance of CHORD in a network with 30 TCP flows and

2 UDP sources transmitting at 100 and 50 Mbps, respectively. The results are

presented in Fig. 9. The performance trend of RED, CHOKe and CHORD is similar

to that shown in Fig. 6. In CHOKeR, however, the UDP flow with a higher

transmission rate receives more punishment than the one with the smaller

transmission rate. The link utilization of CHORD is higher than both CHOKe

and CHOKeR. Thus, CHORD can retain its performance in the presence of multiple

UDP sources with different sending rates.

4.3 Fairness

Achieving fair bandwidth allocation is the primary goal of fairness-driven queue

management that seeks to ensure that all responsive and unresponsive flows receive

a fair share of the bottleneck capacity when congestion occurs. In Fig. 5d, it is

shown that CHORD is able to share bottleneck bandwidth reasonably equitably

among TCP and UDP flows. In this subsection, we quantify this ability by means of

the Jain’s fairness index, JFI, and compare it with those of the other AQM schemes.

The JFI is given as [33]:

JFI ¼
Pn

i¼1 xi
� �2

n
Pn

i¼1 x
2
i

; ð4Þ

where xi is the throughput of flow i. The value of JFI ranges from 0 to 1, with 1

denoting a completely fair allocation and 0 indicating a completely unfair

allocation.

We first evaluate the fairness of all AQM schemes in a network with only TCP

traffic. To that end, a total of six scenarios are considered, each with a different

number of TCP flows ranging from 20 to 120. The results are shown in Fig. 10 that

Fig. 9 Throughput under unresponsive sources with different sending rates

J Netw Syst Manage (2018) 26:486–517 505

123

plots the JFI of all AQM schemes for the scenarios considered. As compared to

RED and CHOKe, the JFIs of CHOKeR and CHORD do not degrade much with the

increasing number of flows. However, due to the ability of CHORD to provide all

flows with throughputs closer to the fair share, its fairness is also superior to the

other AQMs.

To analyze fairness further, we consider a number of scenarios with a traffic mix

of TCP and UDP flows, as given in Table 4. The table presents cumulative TCP

throughputs as well as JFI for all the scenarios considered. As indicated by the

results shown in Table 4, the performance of RED has degraded, as compared to

that shown in Fig. 10, due to the presence of unresponsive flows. CHOKe is able to

provide higher throughput and fairness as compared to RED for a smaller number of

UDP flows. However, its performance degrades as the numbers of unresponsive

flows increase. Both CHOKeR and CHORD perform better than CHOKe and RED

and their performances remain relatively stable. In most scenarios, however,

CHORD demonstrates a superior performance than CHOKeR.

4.4 Goodput

Goodput is the amount of useful (non-duplicate) bits received at the destination per

unit time [16]. As throughput may contain duplicate bits, goodput becomes

convenient in evaluating the network performance for useful bandwidth utilization.

We evaluate CHORD in this subsection for goodput under a number of scenarios

given in Table 5. For TCP flows, the per-flow goodputs are determined from the

per-flow throughputs not including retransmissions. The average TCP goodput is

then determined from the aggregate per-flow goodputs divided by the number of the

TCP flows. As indicated by the results shown in Table 5, the cumulative TCP

goodput is low as compared to the cumulative TCP throughput given in Table 4

(comparing, e.g., the scenarios with 100 flows). The goodputs of all AQM schemes

improve as the bottleneck link capacity is increased and when some or all of the

UDP flows have sending rates lower than 100 Mbps. As evident from the results in

Fig. 10 Fairness for TCP traffic

506 J Netw Syst Manage (2018) 26:486–517

123

Table 5, TCP achieves the lowest cumulative goodput under RED and, in most

cases, the highest under CHORD.

4.5 Intra-protocol Fairness

Intra-protocol unfairness occurs among TCP traffic when flows having different

round-trip times (RTTs) share a bottleneck link. In such a case, TCP flows with a

shorter RTTs can receive a larger share of the bandwidth than those with longer

RTTs [7]. To evaluate the performance of CHORD in terms of fair bandwidth

allocation to TCP flows of diverse RTTs, we generate a range of RTTs using the

guidelines given in [34], as follows. We consider four different scenarios, each with

the total number of TCP flows ranging from 500 to 2000, respectively. For each

scenario, the sources are split into three classes. Each class is then configured with

an RTT of 4, 98 and 200 ms, respectively. Figure 11 presents the results of intra-

Table 4 TCP throughput and fairness for traffic mix of TCP and UDP flows

AQM No. of

flows

No. of TCP

flows

No. of UDP

flows

TCP throughput

(Mbps)

Jain’s Fairness

Index

RED 20 17 3 27.33 0.412

CHOKe 58.62 0.773

CHOKeR 77.27 0.925

CHORD 73.91 0.931

RED 40 35 5 21.82 0.374

CHOKe 55.03 0.601

CHOKeR 76.75 0.815

CHORD 78.83 0.857

RED 60 53 7 18.75 0.319

CHOKe 45.53 0.502

CHOKeR 71.82 0.644

CHORD 75.59 0.721

RED 80 70 10 10.40 0.207

CHOKe 37.39 0.372

CHOKeR 56.45 0.446

CHORD 61.19 0.533

RED 100 88 12 4.796 0.129

CHOKe 32.71 0.291

CHOKeR 48.89 0.392

CHORD 55.17 0.468

RED 120 105 15 2.690 0.071

CHOKe 21.66 0.163

CHOKeR 39.95 0.261

CHORD 43.03 0.373

J Netw Syst Manage (2018) 26:486–517 507

123

Table 5 Goodput under different UDP sending rates

AQM No. of

flows

TCP

flows

UDP

flows

UDP sending rates Bottleneck

capacity

Goodput

(Mbps)

RED 100 88 12 100 Mbps 100 Mbps 1.708

CHOKe 18.53

CHOKeR 42.92

CHORD 46.56

RED 300 264 36 25% at 50 Mbps, 75% at

100 Mbps

300 Mbps 32.59

CHOKe 88.44

CHOKeR 145.5

CHORD 138.6

RED 500 440 60 50% at 50 Mbps, 50% at

100 Mbps

300 Mbps 26.27

CHOKe 83.81

CHOKeR 132.3

CHORD 135.4

RED 700 616 84 75% at 50 Mbps, 25% at

100 Mbps

300 Mbps 18.01

CHOKe 67.43

CHOKeR 116.6

CHORD 123.8

RED 1000 880 120 50 Mbps 300 Mbps 4.240

CHOKe 30.05

CHOKeR 78.22

CHORD 87.56

Fig. 11 Intra-protocol fairness among TCP flows of diverse RTTs

508 J Netw Syst Manage (2018) 26:486–517

123

protocol fairness. The performances of all AQMs degrade as the number of flows

increases. However, as compared to all other AQMs, CHORD demonstrates a

higher intra-protocol fairness. The reason for this is because, as flows with shorter

RTTs consume larger portions of the buffer space, they are more likely to be

recorded in the drop list and are more likely to be dropped.

We now evaluate intra-protocol fairness exclusively among UDP flows having

different transmission rates. To that end, we consider four scenarios, each with the

total number of UDP flows ranging from 100 to 400, respectively. In each

simulation, half of the UDP flows have the sending rate of 100 Mbps, while the

remaining half have the sending rate of 50 Mbps. The bottleneck link capacity in

this simulation is increased to 1000 Mbps to accommodate the large numbers of

high-bandwidth flows. Figure 12 presents the fairness results. Similarly to the intra-

TCP fairness, the intra-protocol fairness among the UDP flows is also superior with

CHOKeR and CHORD and their performances do not degrade abruptly as the

number of flows increases. However, unlike all previous results, the performance of

CHOKeR remains superior to CHORD for the intra-UDP fairness for 100 and 400

UDP flows and remains almost similar to CHORD in the case of 200 UDP flows.

4.6 Inter-protocol Fairness

Inter-protocol unfairness occurs when different TCP variants having different

congestion control mechanisms coexist with each other [7]. For instance, TCP Reno

employs packet loss to determine the available bandwidth, whereas TCP Vegas

employs variance between the expected and actual throughputs. Hence, TCP Vegas

is more conservative as it enables sources to obtain a proper bandwidth, while TCP

Reno is more aggressive as each source grabs the bandwidth until multiple packets

are lost. Consequently, when traffic from both the TCP variants coexist, TCP Vegas

may suffer inter-protocol unfairness.

To evaluate the performance of CHORD for inter-protocol fairness, we consider

a number of scenarios with a traffic mix of TCP Reno and TCP Vegas using the

Fig. 12 Intra-protocol fairness among UDP flows with different sending rates

J Netw Syst Manage (2018) 26:486–517 509

123

parking lot topology shown in Fig. 13. There are three bottleneck links, namely R1–

R2, R2–R3, and R3–R4, each with a buffer size of 200 packets. The bandwidth and

delay of the bottleneck and access links are given in Fig. 13. All TCP traffic is from

Si to Di ð8i ¼ 1; 2; . . .; nÞ, and the packet sizes are 1 Kbytes. All TCP sources

employ FTP and have a similar round trip propagation delay of 98 ms. Additionally,

three UDP flows with a sending rates of 20 Mbps and packet sizes of 500 bytes are

established from Ci to Ciþ1 ði ¼ 1; 2; 3Þ, as shown in Fig. 13. In this subsection, the

performance of CHORD is also compared with AFCD [18]. All AQM schemes to be

compared are deployed in the bottleneck routers. The results are presented in

Table 6, which lists the cumulative throughputs achieved by each TCP variant

under all AQMs, the average UDP throughput and the average utilization of

bottleneck links. Table 6 also presents the Gini index, GI, given as Eq. (5) [35],

which is widely used in economics and statistics to determine inequality in a

society’s distribution of wealth to people. Here, we use this index to measure the

inequality in an AQM’s allocation of bandwidth to various sources.

GI ¼
Pn

i¼1

Pn
j¼1 jxi � xjj
2n2�x

; ð5Þ

where xi and xj denote all possible pairs of per-flow throughputs, �x is the mean

throughput, and n is the total number of flows. Like JFI, the value of GI also ranges

from 0 to 1. However, unlike JFI, GI ¼ 0 represents a complete equality and

GI ¼ 1 indicates a complete inequality.

Due to the existence of aggressive flows, queues are built up at bottleneck links

and matched drops are triggered. As shown in Table 6, with AFCD, and CHORD,

TCP Reno does not show a clear advantage over TCP Vegas. Conversely, with the

RED and CHOKe, the sources get the advantage of employing TCP Reno in terms

of better throughput than TCP Vegas. However, TCP Reno is rather severely

penalized in CHOKeR as the number of flows increases. Thus, unlike all other

AQMs, TCP Vegas receive a better throughput than TCP Reno under CHOKeR.

The link utilization under RED is the highest, however, the Gini index is also the

highest, which represents a high level of inequality under RED. The link utilization

under CHORD is the second highest in most scenarios, while the Gini index is the

lowest in all scenarios, which shows a high level of equality under CHORD. Thus,

Fig. 13 Parking lot topology (Si transmits to Di 8i ¼ 1; . . .; nð Þ and Ci to Ciþ1ði ¼ 1; 2; 3ÞÞ

510 J Netw Syst Manage (2018) 26:486–517

123

CHORD offers a more even distribution of bandwidth to TCP Vegas and TCP Reno

sources and, as such, offers a better inter-protocol fairness than all other AQMs.

4.7 Effect of Packet Sizes

One of the main reasons for the unfair bandwidth sharing in the Internet is the

coexistence of diverse packet sizes. For two flows with similar arrival rates, the one

with the larger packet size is likely to attain a higher throughput [7]. Thus, it also

becomes imperative for a fairness-driven AQM scheme to retain performance

irrespective of different packet sizes. However, most AQM schemes in the literature

consider fixed length packets for their evaluations [7]. We study the effect of packet

sizes on the performance of CHORD by using 31 TCP flows, 1 UDP flow, a buffer

of size 100 KB, and JFI as a metric to evaluate performance under packet sizes

ranging from 250 bytes to 2 Kbytes. The results are presented in Fig. 14. RED

shows a gradual decrease in fairness as the packet sizes increase. The performances

of the other AQM schemes improve, in general, as the UDP packet sizes are

reduced. This is because smaller UDP packets arrive more numerously increasing

the likelihood of matching and dropping in the matched drop frameworks. However,

CHORD outperforms CHOKe and CHOKeR in most scenarios and can retain its

superior performance irrespective of different packet sizes.

Table 6 Comparison of inter-protocol fairness

AQM No. of

TCP

Vegas

flows

No. of

TCP

Reno

flows

TCP Vegas

throughput

(Mbps)

TCP Reno

throughput

(Mbps)

UDP

throughput

(Mbps)

Link

utilization

(Mbps)

Gini

index

(Mbps)

RED 10 10 38.95 46.18 14.75 99.88 0.317

CHOKe 41.37 47.25 9.94 98.56 0.231

CHOKeR 47.31 45.24 3.43 95.98 0.118

AFCD 44.91 46.89 5.53 97.33 0.115

CHORD 45.93 47.19 5.26 98.38 0.069

RED 20 20 40.32 48.12 11.23 99.67 0.352

CHOKe 41.87 48.55 7.61 98.03 0.266

CHOKeR 48.19 45.61 1.93 95.73 0.161

AFCD 44.82 47.33 4.94 97.09 0.155

CHORD 46.19 47.68 4.24 98.11 0.083

RED 30 30 40.41 48.74 10.37 99.52 0.405

CHOKe 42.88 50.45 4.53 97.86 0.337

CHOKeR 48.78 45.82 0.92 95.52 0.188

AFCD 44.65 47.73 4.61 96.99 0.179

CHORD 46.99 48.78 2.25 98.02 0.106

J Netw Syst Manage (2018) 26:486–517 511

123

4.8 Effect of Buffer Sizes

Routers require careful sizing of buffers as under-sizing may induce low link

utilization, while oversizing may increase queuing delay [7]. A widely used rule-of-

thumb for buffer sizing for TCP traffic is the bandwidth-delay product (BDP) [36].

Recent studies, however, reveal that buffers can be made smaller than BDP in core

routers without sacrificing too much link utilization in order to accommodate

heterogeneous traffic and to facilitate the development of all-optical routers offering

much smaller buffers [37–39]. Therefore, the performance of CHORD has thus far

been evaluated using a smaller buffer of 100–200 packets. This also demonstrates

that CHORD does not have large buffer requirements to enforce fairness. However,

oversized buffers (e.g., BDP or higher) have become commonplace due to the

misguided efforts to evade packet loss entirely [40]. Therefore, it is very important

for a fairness-driven AQM scheme to retain performance irrespective of the buffer

size. In this subsection, we evaluate the compatibility of CHORD with larger

buffers. To that end, we consider 1 UDP flow, 31 TCP flows, packet sizes of 500

bytes and JFI as a metric to evaluate performance under buffer sizes ranging from

25 to 600 packets. The results are shown in Fig. 15. The performance of RED

deteriorates with the increasing buffer sizes. This is because, as the buffer size

increases, there is more space available for unresponsive flows to manipulate.

Conversely, the performances of the other AQM schemes improve with the

increasing buffer sizes. This is because larger buffers increase the likelihood of

packets matching and dropping in the matched drop frameworks of CHOKe,

CHOKeR and CHORD. As shown in Fig. 15, for the considered scenario, the

performance of CHORD remains mostly equal to or slightly below CHOKeR for

buffer sizes of less than 200 packets and tends to increase gradually as the buffer

sizes increase.

Fig. 14 Fairness under different packet sizes

512 J Netw Syst Manage (2018) 26:486–517

123

4.9 Drawing Factor

In CHORD, the drawing factor, di, in the initial matching trials is set to 3. In this

subsection, we use a range of values for di and demonstrate their effect on the

performance of CHORD. For 31 TCP flows and 1 UDP flow, Table 7 presents the

JFI and UDP throughputs achieved under different drawing factors. As the value of

di increases from 1 to 3, unresponsive flows are effectively throttled and the fairness

improves. Increasing di any further unnecessarily causes severe punishment of

unresponsive flows, reduces the fairness, and may also reduce link utilization.

Similar performance is also observed for the scenario with 88 TCP and 12 UDP

flows, as shown in Table 8. In this scenario, however, there is some improvement in

the fairness when di ¼ 4. Nevertheless, the improvement is negligible as compared

to the increased processing cost that will be incurred by performing an additional

matching trial at the per-packet arrival.

4.10 Size of drop list

The drop list size, d, plays a significant role in attaining fairness by the proposed

scheme. CHORD is configured with d size of 10. In this subsection, we employ a

range of sizes for d and demonstrate their effect on the achievable throughputs. For

10 UDP and 30 TCP flows and a bottleneck link capacity of 400 Mbps, different d

Fig. 15 Fairness under different buffer sizes

Table 7 Effect of the value of di on throughput and JFI for 1 UDP and 31 TCP flows

di 1 2 3 4 6 8 10

UDP throughput (Mbps) 9.23 7.06 3.71 2.62 1.41 1.06 0.34

JFI 0.873 0.959 0.991 0.982 0.945 0.860 0.747

J Netw Syst Manage (2018) 26:486–517 513

123

sizes yield different throughputs, as shown in Fig. 16. As d is increased from 3 to

10, the UDP throughput is throttled and the TCP throughput is enhanced. Increasing

d beyond 10 does not, however, provide a significant performance improvement but

will increase the state space and per-packet processing costs due to the complexity

associated with the cache memory management. The d size of 10, therefore, offers a

good trade-off between a reasonable performance and manageable computational

complexity. A similar effect can also be observed for the scenario with 105 TCP and

15 UDP flows, as shown in Fig. 17.

5 Conclusion

Fair bandwidth allocation is critical to Internet architecture to be more accommo-

dating of the heterogeneity. This paper presents CHORD, a novel fairness-driven

AQM scheme for regulating bandwidth utilization in best-effort routers. The

identification of unresponsive flows in CHORD consists of a fixed-size cache to

store the history of recent drops with state space requirement equal to the size of the

cache. For restricting the identified unresponsive flows, CHORD employs a stateless

matched drop framework with two matching trial phases, namely, the initial phase

at each packet arrival to identify and drop unresponsive flows, and an additional

phase to impose an extra penalty on the identified high-bandwidth unresponsive

Table 8 Effect of the value of di on throughput and JFI for 88 TCP and 12 UDP flows

di 1 2 3 4 6 8 10

UDP throughput (Mbps) 58.67 43.33 32.40 27.05 19.89 7.56 2.77

JFI 0.276 0.402 0.467 0.473 0.428 0.351 0.216

Fig. 16 Effect of drop list size on throughput of 30 TCP and 10 UDP flows

514 J Netw Syst Manage (2018) 26:486–517

123

flows. The level of extra penalty is the function of the average buffer occupancy.

The per-packet processing cost is proportional to the drawing factor when

congestion occurs. The performance of CHORD is evaluated through extensive

simulations in comparison with well-known AQMs. The results demonstrate

reasonable enhancement in fairness to aggregate traffic. CHORD is also able to

improve intra-protocol and inter-protocol fairness and the goodput of responsive

flows, and it demonstrates its compatibility with buffers and packets of different

sizes without a significant loss in performance. With its low state space and per-

packet processing costs, CHORD is lightweight and is well-suited for core routers to

regulate bandwidth utilization, and be deployed as an effective tool to promote the

use of congestion control mechanisms. Avenues for our future work include

modelling and analysis of CHORD for other router architectures, such as the

combined-input–output-queued architecture.

References

1. Adams, R.: Active queue management: a survey. IEEE Commun. Surv. Tutor. 15(3), 1425–1476
(2013)

2. Kushwaha, V., Gupta, R.: Congestion control for high-speed wired network: a systematic literature

review. J. Netw. Comput. Appl. 45, 62–78 (2014)

3. Baker, F., Fairhurst, G.: IETF recommendations regarding active queue management. IETF RFC

7567, BCP 197. https://www.rfc-editor.org/rfc/rfc7567.txt (2015). Accessed 21 Aug 2017

4. Floyd, S.: Congestion control principles. IETF RFC 2914, BCP 41. https://tools.ietf.org/html/rfc2914.

html (2000). Accessed 21 Aug 2017

5. Papadimitriou, D. Welzl, M., Scharf, M., Briscoe B.: Open research issues in Internet congestion

control. IETF RFC 6077. https://www.rfc-editor.org/rfc/rfc6077.txt (2011). Accessed 21 Aug 2017

6. Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S., Estrin, D., Floyd, S., Jacobson, V.,

Minshall, G., Partridge, C., Peterson, L., Ramakrishnan, K., Shenker, S., Wroclawski, J., Zhang, L.:

Recommendations on queue management and congestion avoidance in the Internet. IETF RFC 2309.

https://www.rfc-editor.org/rfc/rfc2309.txt (1998). Accessed 21 Aug 2017

Fig. 17 Effect of drop list size on throughput of 105 TCP and 15 UDP flows

J Netw Syst Manage (2018) 26:486–517 515

123

https://www.rfc-editor.org/rfc/rfc7567.txt
https://tools.ietf.org/html/rfc2914.html
https://tools.ietf.org/html/rfc2914.html
https://www.rfc-editor.org/rfc/rfc6077.txt
https://www.rfc-editor.org/rfc/rfc2309.txt

7. Abbas, G., Halim, Z., Abbas, Z.H.: Fairness-driven queue management: a survey and taxonomy.

IEEE Commun. Surv. Tutor. 18(1), 324–367 (2016)

8. Floyd, S., Fall, K.: Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM

Trans. Netw. 7(4), 458–472 (1999)

9. Kohler, E., Handley, M., Floyd S.: Datagram congestion control protocol (DCCP). IETF RFC 4340.

https://www.rfc-editor.org/rfc/rfc4340.txt (2006). Accessed 21 Aug 2017

10. Anjum, F. M., Tassiulas, L.: Fair bandwidth sharing among adaptive and non-adaptive flows in the

Internet. In: Eighteenth Annual Joint Conference of the IEEE Computer and Communications

Societies, 21–25 March, New York, USA, pp. 1412–1420 (1999)

11. Nossenson, R., Maryuma, H.: Active queue management in blind access networks. In: Third Inter-

national Conference on Access Networks, 24–29 June, Venice, Italy, pp. 27–30 (2012)

12. Latré, S., Meerssche, W., Deschrijver, D., Papadimitriou, D., Dhaene, T., Turck, F.: A cognitive

accountability mechanism for penalizing misbehaving ECN-based TCP stacks. Int. J. Netw. Manag.

23(1), 16–40 (2013)

13. Hwang, J., Byun, S.-S.: A resilient buffer allocation scheme in active queue management: a

stochastic cooperative game theoretic approach. Int. J. Commun Syst. 28(6), 1080–1099 (2015)

14. Yi, S., Deng, X., Kesidis, G., Das, C.R.: A dynamic quarantine scheme for controlling unresponsive

TCP sessions. Telecommun. Syst. 37, 169–189 (2008)

15. Hanlin, S., Yuehui, J., Yidong, C., Hongbo, W., Shiduan C.: Improving fairness of RED aided by

lightweight flow information. In: 2nd IEEE International Conference on Broadband Network &

Multimedia Technology, 18–20 October, Beijing, China, pp. 335–339 (2009)

16. Abbas, G., Nagar, A. K., Tawfik, H., Goulermas J. Y.: Pricing and unresponsive flows purging for

global rate enhancement. J. Electr. Comput. Eng. Article ID 379652, 1–10 (2010)

17. Alvarez-Flores, E.P., Ramos-Munoz, J.J., Ameigeiras, P., Lopez-Soler, J.M.: Selective packet

dropping for VoIP and TCP flows. Telecommun. Syst. 46(1), 1–16 (2011)

18. Xue, L., Kumar, S., Cui, C., Kondikoppa, P., Chiu, C.-H., Park, S.-J.: Towards fair and low latency

next generation high speed networks: AFCD queuing. J. Netw. Comput. Appl. 70, 183–193 (2016)

19. Tsavlidis, L., Efraimidis, P.S., Koutsiamanis, R.-A.: Prince: an effective router mechanism for net-

works with selfish flows. J. Internet Eng. 6(1), 355–362 (2016)

20. Menth, M., Zeitler, N.: Activity-based congestion management for fair bandwidth sharing in trusted

packet networks. In: 2016 IEEE/IFIP Network Operations and Management Symposium, 25–26

April, Istanbul, Turkey, pp. 231–239 (2016)

21. Pan, R., Prabhakar, B., Psounis, K.: CHOKe—a stateless active queue management scheme for

approximating fair bandwidth allocation. In: Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies, 26–30 March, Tel Aviv, Israel, pp. 942–951 (2000)

22. Jiang, Y., Hamdi, M., Liu, J.: Self adjustable CHOKe: an active queue management algorithm for

congestion control and fair bandwidth allocation. In: Eight IEEE International Symposium on

Computers and Communication, 30 June–3 July, Kemer–Antalya, Turkey, pp. 1018–1025 (2003)

23. Yamaguchi, Y., Takahashi, Y.: A queue management algorithm for fair bandwidth allocation.

Comput. Commun. 30(9), 2048–2059 (2007)

24. Kesselman, A., Leonardi, S.: Game-theoretic analysis of Internet switching with selfish users. Theor.

Comput. Sci. 452, 107–116 (2012)

25. Lu, L., Du, H., Liu, R.P.: CHOKeR: a novel AQM algorithm with proportional bandwidth allocation

and TCP protection. IEEE Trans. Ind. Inform. 10(1), 637–644 (2014)

26. Manzoor, S., Abbas, G., Hussain, M.: CHOKeD: fair active queue management. In: 15th IEEE

International Conference on Computer and Information Technology, 26–28 October, Liverpool, UK,

pp. 512–516 (2015)

27. Raza, U., Abbas, G., Hussain, Z.: CHOKe-FS: CHOKe with fair bandwidth share. In: 2015 Inter-

national Conference on Information and Communication Technologies, 12–13 December, Karachi,

Pakistan, pp. 1–5 (2015)

28. Hussain, Z., Abbas, G., Raza, U.: CHOKe with recent drop history. In: Proceedings of 13th IEEE

International Conference on Frontiers of Information Technology, 14–16 December, Islamabad,

Pakistan, pp. 160–165 (2015)

29. Jiang, X., Jin, G., Yang, J.: LRURC: A low complexity and approximate fair active queue man-

agement algorithm for choking non-adaptive flows. IEEE Commun. Lett. 19(4), 545–548 (2015)

30. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM

Trans. Netw. 1(4), 397–413 (1993)

516 J Netw Syst Manage (2018) 26:486–517

123

https://www.rfc-editor.org/rfc/rfc4340.txt

31. Abbas, G., Nagar, A.K., Tawfik, H.: On unified quality of service resource allocation scheme with

fair and scalable traffic management for multiclass Internet services. IET Commun. 5(16),
2371–2385 (2011)

32. Feknous, M., Houdoin, T., Le Guyader, B., De Biasio, J., Gravey, A., Gijón, J.A.T.: Internet traffic

analysis: a case study from two major European operators. In: 2014 IEEE Symposium on Computers

and Communications, 23–26 June, Portugal, pp. 1–7 (2014)

33. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, Hoboken (1991)

34. Andrew, L., Marcondes, C., Floyd, S., Dunn, L., Guillier, R., Gang, W., Eggert, L., Ha, S., Rhee, I.:

Towards a common TCP evaluation suite. In: Sixth International Workshop on Protocols for FAST

Long-Distance Networks, 5–7 March, Manchester, UK, pp. 1–5 (2008)

35. Gastwirth, J.L.: The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat. 54(3), 306–316
(1972)

36. Villamizar, C., Song, C.: High performance TCP in ANSNET. ACM SIGCOMM Comput. Commun.

Rev. 24(5), 45–60 (1994)

37. Vishwanath, A., Sivaraman, V., Rouskas G. N.: Considerations for sizing buffers in optical packet

switched networks. In: 28th IEEE Conference on Computer Communications, 19–25 April, Rio de

Janeiro, Brazil, pp. 1323–1331 (2009)

38. Beheshti, N., Burmeister, E., Ganjali, Y., Bowers, J.E., Blumenthal, D.J., McKeown, N.: Optical

packet buffers for backbone Internet routers. IEEE/ACM Trans. Netw. 18(5), 1599–1609 (2010)

39. Gharakheili, H.H., Vishwanath, A., Sivaraman, V.: Comparing edge and host traffic pacing in small

buffer networks. Comput. Netw. 77, 103–116 (2015)

40. Gettys, J.: Bufferbloat: dark buffers in the Internet. IEEE Internet Comput. 15(3), 95–96 (2011).

doi:10.1109/MIC.2011.56

Zawar Hussain received his M.S. degree in computer system engineering from the GIK Institute of

Engineering Sciences and Technology, Pakistan, in 2015. He is currently working as a Research

Associate in the Faculty of Computer Sciences & Engineering, GIK Institute, Pakistan. His research

interests include active queue management, routing, software defined networks, and Internet of Things.

Ghulam Abbas received his Ph.D. degree in computer networks from the University of Liverpool, U.K.,

in 2010. Currently, he is serving as Associate Professor at GIK Institute, Pakistan. He is a Fellow of the

British Computer Society and a Senior Member of IEEE. His research interests include Internet

architecture, congestion control and active queue management.

Zahid Halim received his Ph.D. degree in computer science from the National University of Computer

and Emerging Sciences, Pakistan, in 2010. Currently, he is an Associate Professor with the Faculty of

Computer Sciences & Engineering, GIK Institute of Engineering Sciences and Technology, Pakistan. His

research interests include intelligent and distributed systems.

J Netw Syst Manage (2018) 26:486–517 517

123

http://dx.doi.org/10.1109/MIC.2011.56

	A Lightweight Fairness-Driven AQM for Regulating Bandwidth Utilization in Best-Effort Routers
	Abstract
	Introduction
	Related Work in Fairness-Driven AQM
	Active Queue Management by CHORD
	Identification Mechanism
	Restriction Mechanism
	Complete Algorithm Description
	Complexity Analysis
	State Space Requirement
	Per-Packet Processing Costs

	Performance Evaluation
	Drop Rate of Unresponsive Flows
	Throughput
	Multiple Unresponsive Flows
	Unresponsive Flows with Different Sending Rates

	Fairness
	Goodput
	Intra-protocol Fairness
	Inter-protocol Fairness
	Effect of Packet Sizes
	Effect of Buffer Sizes
	Drawing Factor
	Size of drop\underscore list

	References

