
Throughput and Latency of Virtual Switching
with Open vSwitch: A Quantitative Analysis

Paul Emmerich1 • Daniel Raumer1 • Sebastian Gallenmüller1 •

Florian Wohlfart1 • Georg Carle1

Received: 18 June 2015 / Revised: 28 March 2017 / Accepted: 17 July 2017 /

Published online: 21 July 2017

� Springer Science+Business Media, LLC 2017

Abstract Virtual switches, like Open vSwitch, have emerged as an important part

of today’s data centers. They connect interfaces of virtual machines and provide an

uplink to the physical network via network interface cards. We discuss usage sce-

narios for virtual switches involving physical and virtual network interfaces. We

present extensive black-box tests to quantify the throughput and latency of software

switches with emphasis on the market leader, Open vSwitch. Finally, we explain the

observed effects using white-box measurements.

Keywords Network measurement � Cloud � Performance evaluation � Performance

characterization � MoonGen

& Sebastian Gallenmüller

gallenmu@net.in.tum.de

Paul Emmerich

emmericp@net.in.tum.de

Daniel Raumer

raumer@net.in.tum.de

Florian Wohlfart

wohlfart@net.in.tum.de

Georg Carle

carle@net.in.tum.de

1 Department of Informatics, Chair of Network Architectures and Services, Technical University

of Munich, Boltzmannstr. 3, 85748 Garching, Germany

123

J Netw Syst Manage (2018) 26:314–338

https://doi.org/10.1007/s10922-017-9417-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9417-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-017-9417-0&domain=pdf
https://doi.org/10.1007/s10922-017-9417-0

1 Introduction

Software switches form an integral part of any virtualized computing setup. They

provide network access for virtual machines (VMs) by linking virtual and also

physical network interfaces. The deployment of software switches in virtualized

environments has led to the extended term virtual switches and paved the way for

the mainstream adoption of software switches [31], which did not receive much

attention before. In order to meet the requirements in a virtualized environment,

new virtual switches have been developed that focus on performance and provide

advanced features in addition to the traditional benefits of software switches: high

flexibility, vendor independence, low costs, and conceptual benefits for switching

without Ethernet bandwidth limitations. The most popular virtual switch imple-

mentation—Open vSwitch (OvS [40])—is heavily used in cloud computing

frameworks like OpenStack [35] and OpenNebula [34]. OvS is an open source

project that is backed by an active community, and supports common standards such

as OpenFlow, SNMP, and IPFIX.

The performance of packet processing in software depends on multiple factors

including the underlying hardware and its configuration, the network stack of the

operating system, the virtualization hypervisor, and traffic characteristics (e.g.,

packet size, number of flows). Each factor can significantly hurt the performance,

which gives the motivation to perform systematic experiments to study the

performance of virtual switching. We carry out experiments to quantify perfor-

mance influencing factors and describe the overhead that is introduced by the

network stack of virtual machines, using Open vSwitch in representative scenarios.

Knowing the performance characteristics of the switch is important when

planning or optimizing the deployment of a virtualization infrastructure. We show

how one can drastically improve performance by using a different IO-backend for

Open vSwitch. Explicitly mapping virtual machines and interrupts to specific cores

is also an important configuration of a system as we show with a measurement.

The remainder of this paper is structured as follows: Sect. 2 provides an overview

of software switching. We explain recent developments in hardware and software

that enable sufficient performance in general purpose PC systems based on

commodity hardware, highlight challenges, and provide an overview of Open

vSwitch. Furthermore, we present related work on performance measurements in

Sect. 3. The following Sect. 4 explains the different test setups for the measurements

of this paper. Sections 5 and 6 describe our study on the performance of software

switches and their delay respectively. Ultimately, Sect. 7 sums up our results and

gives advice for the deployment of software switches.

2 Software Switches

A traditional hardware switch relies on special purpose hardware, e.g., content

addressable memory to store the forwarding or flow table, to process and forward

packets. In contrast, a software switch is the combination of commodity PC

J Netw Syst Manage (2018) 26:314–338 315

123

hardware and software for packet switching and manipulation. Packet switching in

software grew in importance with the increasing deployment of host virtualization.

Virtual machines (VMs) running on the same host system must be interconnected

and connected to the physical network. If the focus lies on switching between virtual

machines, software switches are often referred to as virtual switches. A virtual

switch is an addressable switching unit of potentially many software and hardware

switches spanning over one or more physical nodes (e.g., the ‘‘One Big Switch’’

abstraction [25]). Compared to the default VM bridging solutions, software switches

like OvS are more flexible and provide a whole range of additional features like

advanced filter rules to implement firewalls and per-flow statistics tracking.

Figure 1 illustrates a typical application for virtual switching with both software

and hardware switches. The software switch connects the virtual network interface

cards (NIC) vNIC with the physical NICs pNIC. Typical applications in

virtualization environments include traffic switching from pNIC to vNIC, vNIC

to pNIC, and vNIC to vNIC. For example, OpenStack recommends multiple

physical NICs to separate networks and forwards traffic between them on network

nodes that implement firewalling or routing functionality [36]. As components of

future network architectures packet flows traversing a chain of VMs are also

discussed [29].

The performance of virtual data plane forwarding capabilities is a key issue for

migrating existing services into VMs when moving from a traditional data center to

a cloud system like OpenStack. This is especially important for applications like

web services which make extensive use of the VM’s networking capabilities.

Although hardware switches are currently the dominant way to interconnect

physical machines, software switches like Open vSwitch come with a broad support

of OpenFlow features and were the first to support new versions. Therefore, pNIC to

pNIC switching allows software switches to be an attractive alternative to hardware

switches in certain scenarios. For software switches the number of entries in the

flow table is just a matter of configuration whereas it is limited to a few thousand in

hardware switches [46].

2.1 State of the Art

Multiple changes in the system and CPU architectures significantly increase the

packet processing performance of modern commodity hardware: integrated memory

Physical Switches & Crosslink Connections

. . .

Software Switch

VM

vNIC

VM

vNIC

VM

vNIC vNIC

VM

vNIC

pNIC pNIC pNIC

Fig. 1 Application scenario of a virtual switch

316 J Netw Syst Manage (2018) 26:314–338

123

controllers in CPUs, efficient handling of interrupts, and offloading mechanisms

implemented in the NICs. Important support mechanisms are built into the network

adapters: checksum calculations and distribution of packets directly to the addressed

VM [51]. NICs can transfer packets into memory (DMA) and even into the CPU

caches (DCA) [23] without involving the CPU. DCA improves the performance by

reducing the number of main memory accesses [17]. Further methods such as

interrupt coalescence aim at allowing batch style processing of packets. These

features mitigate the effects of interrupt storms and therefore reduce the number of

context switches. Network cards support modern hardware architecture principles

such as multi-core setups: Receive Side Scaling (RSS) distributes incoming packets

among queues that are attached to individual CPU cores to maintain cache locality

on each packet processing core.

These features are available in commodity hardware and the driver needs to

support them. These considerations apply for packet switching in virtual host

environments as well as between physical interfaces. As the CPU proves to be the

main bottleneck [4, 9, 30, 43] features like RSS and offloading are important to

reduce CPU load and help to distribute load among the available cores.

Packet forwarding applications such as Open vSwitch [33, 40], the Linux router,

or Click Modular Router [27] avoid copying packets when forwarding between

interfaces by performing the actual forwarding in a kernel module. However,

forwarding a packet to a user space application or a VM requires a copy operation

with the standard Linux network stack. There are several techniques based on

memory mapping that can avoid this by giving a user space application direct access

to the memory used by the DMA transfer. Prominent examples of frameworks that

implement this are PF_RING DNA [7], netmap [44], and DPDK [19, 22]. E.g., with

DPDK running on an Intel Xeon E5645 (6x 2.4 GHz cores) an L3 forwarding

performance of 35.2 Mpps can be achieved [19]. We showed in previous work that

these frameworks not only improve the throughput but also reduce the delay [12].

Virtual switches like VALE [45] achieve over 17 Mpps vNIC to vNIC bridging

performance by utilizing shared memory between VMs and the hypervisor.

Prototypes similar to VALE exist [29, 42]. Virtual switches in combination with

guest OSes like ClickOS [29] achieve notable performance of packet processing in

VMs. All these techniques rely on changes made to drivers, VM environments, and

network stacks. These modified drivers are only available for certain NICs.

Experiments which combine OvS with the described high-speed packet processing

frameworks [41, 43] demonstrate performance improvements.

2.2 Packet Reception in Linux

The packet reception mechanism implemented in Linux is called NAPI. Salim

et al. [48] describe NAPI in detail. A network device signals incoming traffic to the

OS by triggering interrupts. During phases of high network load, the interrupt

handling can overload the OS. To keep the system reactive for tasks other than

handling these interrupts, a NAPI enabled device allows reducing the interrupts

generated. Under high load one interrupt signals the reception of multiple packets.

J Netw Syst Manage (2018) 26:314–338 317

123

A second possibility to reduce the interrupts is offered by the Intel network

driver. There the Interrupt Throttling Rate (ITR) specifies the maximum number of

interrupts per second a network device is allowed to generate. The following

measurements use the ixgbe driver, which was investigated by Beifuß et al. [2].

This driver has an ITR of 100,000 interrupts/second in place for traffic below 10

MB/s (156.25 kpps), the ITR is decreased to 20,000 if the traffic hits up to 20 MB/s

(312.5 kpps), above that throughput value the ITR is reduced to 8,000.

2.3 Open vSwitch

Open vSwitch [33, 38–40] can be used both as a pure virtual switch in virtualized

environments and as a general purpose software switch that connects physically

separated nodes. It supports OpenFlow and provides advanced features for network

virtualization.

Figure 2 illustrates the different processing paths in OvS. The two most important

components are the switch daemon ovs-vswitchd that controls the kernel

module and implements the OpenFlow protocol, and the datapath, a kernel module

that implements the actual packet forwarding. The datapath kernel module

processes packets using a rule-based system: It keeps a flow table in memory,

which associates flows with actions. An example for such a rule is forwarding all

packets with a certain destination MAC address to a specific physical or virtual port.

Rules can also filter packets by dropping them depending on specific destination or

source IP addresses. The ruleset supported by OvS in its kernel module is simpler

than the rules defined by OpenFlow. These simplified rules can be executed faster

than the possibly more complex OpenFlow rules. So the design choice to explicitly

not support all features OpenFlow offers results in a higher performance for the

kernel module of OvS [39].

OpenFlow
Controller

U
se

r
sp

ac
e

K
er

ne
l
sp

ac
e

VMVMVM

vNIC

fast path OpenFlow

slow
path

ovs-vswitchd

dpif

ofproto

data-
path

pNIC pNIC pNIC

Fig. 2 Open vSwitch architecture representing the data processing flows

318 J Netw Syst Manage (2018) 26:314–338

123

A packet that can be processed by a datapath-rule takes the fast path and is

directly processed in the kernel module without invoking any other parts of OvS.

Figure 2 highlights this fast path with a solid orange line. Packets that do not match

a flow in the flow table are forced on the slow path (dotted blue line), which copies

the packet to the user space and forwards it to the OvS daemon in the user space.

This is similar to the encapsulate action in OpenFlow, which forwards a packet that

cannot be processed directly on a switch to an OpenFlow controller. The slow path

is implemented by the ovs-vswitchd daemon, which operates on OpenFlow

rules. Packets that take this path are matched against OpenFlow rules, which can be

added by an external OpenFlow controller or via a command line interface. The

daemon derives datapath rules for packets based on the OpenFlow rules and installs

them in the kernel module so that future packets of this flow can take the fast path.

All rules in the datapath are associated with an inactivity timeout. The flow table in

the datapath therefore only contains the required rules to handle the currently active

flows, so it acts as a cache for the bigger and more complicated OpenFlow flow

table in the slow path.

3 Related Work

Detailed performance analysis of PC-based packet processing systems have been

continuously addressed in the past. In 2005, Tedesco et al. [49] presented measured

latencies for packet processing in a PC and subdivided them to different internal

processing steps. In 2007, Bolla and Bruschi [4] performed pNIC to pNIC

measurements (according to RFC 2544 [5]) on a software router based on Linux

2.6.1 Furthermore, they used profiling to explain their measurement results.

Dobrescu et al. [9] revealed performance influences of multi-core PC systems under

different workloads [8]. Contributions to the state of the art of latency measure-

ments in software routers were also made by Angrisani et al. [1] and Larsen

et al. [28] who performed a detailed analysis of TCP/IP traffic latency. However,

they only analyzed the system under low load while we look at the behavior under

increasing load up to 10 Gbit/s. A close investigation of the of latency in packet

processing software like OvS is presented by BeifuSS et al. [2].

In the context of different modifications to the guest and host OS network stack

(cf. Sect. 2.1), virtual switching performance was measured [6, 18, 29, 41, 43, 45]

but the presented data provide only limited possibility for direct comparison. Other

studies addressed the performance of virtual switching within a performance

analysis of cloud datacenters [52], but provide less detailed information on virtual

switching performance.

Running network functions in VMs and connecting them via a virtual switch can

be used to implement network function virtualization (NFV) with service function

chaining (SFC) [14]. Martins et al. present ClickOS, a software platform for small

and resource-efficient virtual machines implementing network functions [29]. Niu

et al. discuss the performance of ClickOS [29] and SoftNIC [15] when used to

1 The ‘‘New API’’ network interface was introduced with this kernel version.

J Netw Syst Manage (2018) 26:314–338 319

123

implement SFC [32]. Panda et al. consider the overhead of virtualization too high to

implement SFC and present NetBricks [37], a NFV framework for writing fast

network functions in the memory-safe language Rust. Our work does not focus on

NFV: we provide benchmark results for Open vSwitch, a mature and stable software

switch that supports arbitrary virtual machines.

The first two papers from the OvS developers [38, 39] only provide coarse

measurements of throughput performance in bits per second in vNIC to vNIC

switching scenarios with Open vSwitch. Neither frame lengths nor measurement

results in packets per second (pps) nor delay measurements are provided. In 2015

they published design considerations for efficient packet processing and how they

reflect in the OvS architecture [40]. In this publication, they also presented a

performance evaluation with focus on the FIB lookup, as this is supported by

hierarchical caches in OvS. In [3] the authors measured a software OpenFlow

implementation in the Linux kernel that is similar to OvS. They compared the

performance of the data plane of the Linux bridge-utils software, the IP

forwarding of the Linux kernel and the software implementation of OpenFlow and

studied the influence of the size of the used lookup tables. A basic study on the

influence of QoS treatment and network separation on OvS can be found in [16].

The authors of [24] measured the sojourn time of different OpenFlow switches.

Although the main focus was on hardware switches, they measured a delay

between 35 and 100 microseconds for the OvS datapath. Whiteaker et al. [53]

observed a long tail distribution of latencies when packets are forwarded into a

VM but their measurements were restricted to a 100 Mbit/s network due to

hardware restrictions of their time stamping device. Rotsos et al. [46] presented

OFLOPS, a framework for OpenFlow switch evaluation. They applied it, amongst

others, to Open vSwitch. Deployed on systems with a NetFPGA the framework

measures accurate time delay of OpenFlow table updates but not the data plane

performance. Their study revealed actions that can be performed faster by

software switches than by hardware switches, e.g., requesting statistics. We

previously presented delay measurements of VM network packet processing in

selected setups on an application level [12].

Latency measurements are sparse in the literature as they are hard to perform in a

precise manner [11]. Publications often rely on either special-purpose hardware,

often only capable of low rates, (e.g., [4, 53]) or on crude software measurement

tools that are not precise enough to get insights into latency distributions on low-

latency devices such as virtual switches. We use our packet generator MoonGen that

supports hardware timestamping on Intel commodity NICs for the latency

evaluation here [11].

We addressed the throughput of virtual switches in a previous publication [13]

on which this paper is based. This extended version adds latency measurements

and new throughput measurements on updated software versions of the virtual

switches.

320 J Netw Syst Manage (2018) 26:314–338

123

4 Test Setup

The description of our test setup reflects the specific hardware and software used for

our measurements and includes the various VM setups investigated. Figure 3 shows

the server setup.

4.1 Hardware Setup for Throughput Tests

Our device under test (DuT) is equipped with an Intel X520-SR2 and an Intel X540-

T2 dual 10 GbE network interface card which are based on the Intel 82599 and Intel

X540 Ethernet controller. The processor is a 3.3 GHz Intel Xeon E3-1230 V2 CPU.

We disabled Hyper-Threading, Turbo Boost, and power saving features that scale

the frequency with the CPU load because we observed measurement artifacts caused

by these features.

In black-box tests we avoid any overhead on the DuT through measurements, so

we measure the offered load and the packet rate on the packet generator and sink.

The DuT runs the Linux tool perf for white-box tests; this overhead reduces the

maximum packet rate by *1%.

Figure 3 shows the setups for tests involving VMs on the DuT (Fig. 3a–c) and a

pure pNIC switching setup (Fig. 3d), which serves as baseline for comparison.

4.2 Software Setup

The DuT runs the Debian-based live Linux distribution Grml with a 3.7 kernel, the

ixgbe 3.14.5 NIC driver with interrupts statically assigned to CPU cores, OvS 2.0.0

VM

Switch

vNIC

pNIC

VM

Switch

vNIC

pNIC

vNIC

pNIC

VMVM

Switch

vNIC vNIC vNIC

pNIC
Switch

pNIC pNIC

(a) (b)

(c) (d)

Fig. 3 Investigated test setups. a pNIC to vNIC2. b pNIC to pNIC through VM. c vNIC to vNIC. d pNIC
forwarding

J Netw Syst Manage (2018) 26:314–338 321

123

and OvS 2.4.0 with DPDK using a static set of OpenFlow rules, and qemu-kvm

1.1.2 with VirtIO network adapters unless mentioned otherwise.

The throughput measurements use the packet generator pfsend from the

PF_RING DNA [7] framework. This tool is able to generate minimally sized UDP

packets at line rate on 10 Gbit interfaces (14.88 Mpps). The packet rate is measured

by utilizing statistics registers of the NICs on the packet sink.

As the PF_RING based packet generator does not support delay measurements,

we use our traffic generator MoonGen [11] for those. This tool also can generate full

line rate traffic with minimally sized UDP packets. MoonGen uses hardware

timestamping features of Intel commodity NICs to measure latencies with sub-

microsecond precision and accuracy. MoonGen also precisely controls the inter-

departure times of the generated packets. The characteristics of the inter-packet

spacings are of particular interest for latency measurements as it can have

significant effects on the processing batch size in the system under test [11].

4.3 Setup with Virtual Machines

Figure 3a–c show the setups for tests involving VMs on the DuT. Generating traffic

efficiently directly inside a VM proved to be a challenging problem because both of

our load generators are based on packet IO frameworks, which only work with

certain NICs. Porting them to a virtualization-aware packet IO framework (e.g.,

vPF_RING [6]), would circumvent the VM-hypervisor barrier, which we are trying

to measure.

The performance of other load generators was found to be insufficient, e.g., the

iperf utility only managed to generate 0.1 Mpps. Therefore, we generate traffic

externally and send it through a VM. A similar approach to load generation in VMs

can be found in [20]. Running profiling in the VM shows that about half of the time

is spent receiving traffic and half of it is spent sending traffic out. Therefore, we

assume that the maximum possible packet rate for a scenario in which a VM

internally generates traffic is twice the value we measured in the scenario where

traffic is sent through a VM.

4.4 Adoptions for Delay Measurements

Precise and accurate latency measurements require a synchronized clock on the

packet generator and sink. To avoid complex synchronization, we send the output

from the DuT back to the source host. The measurement server generates traffic on

one port, the DuT forwards traffic between the two ports of its NIC and sends it back

to second port on the measurement server. Therefore, the delay measurements are

not possible on all Setups (cf. Fig. 3). For the first delay measurements the DuT

forwards traffic between two pNICs as depicted in Fig. 3d. We use these results as

baseline to compare them with delays in the second setup, which uses a VM to

forward traffic between the two pNICs as shown in Fig. 3b.

Our latency measurements require the traffic to be sent back to the source. We

used a X540 NIC for the latency tests because this interface was the only available

dual port NIC in our testbed.

322 J Netw Syst Manage (2018) 26:314–338

123

5 Throughput Measurements

We ran tests to quantify the throughput of several software switches with a focus on

OvS in scenarios involving both physical and virtual network interfaces. Through-

put can be measured as packet rate in Mpps or bandwidth in Gbit/s. We report the

results of all experiments as packet rate at a given packet size.

5.1 Throughput Comparison

Table 1 compares the performance of several forwarding techniques with a single

CPU core per VM and switch. DPDK vSwitch started as a port of OvS to the user

space packet processing framework DPDK [21] and was later merged into OvS.

DPDK support is a compile-time option in recent versions of OvS. We use the name

DPDK vSwitch here to refer to OvS with DPDK support enabled.

DPDK vSwitch is the fastest forwarding technique, but it is still experimental and

not yet ready for real-world use: we found it cumbersome to use and it was prone to

crashes requiring a restart of all VMs to restore connectivity. Moreover, the

administrator needs to statically assign CPU cores to DPDK vSwitch. It then runs a

busy wait loop that fully utilizes these CPU cores at all times—there is 100% CPU

load, even when there is no network load. There is no support for any power-saving

mechanism or yielding the CPU between packets. This is a major concern for green

computing, efficiency, and resource allocation. Hence, our main focus is the widely

deployed kernel forwarding techniques, but we also include measurements for

DPDK vSwitch to show possible improvements for the next generation of virtual

switches.

Guideline 1 Use Open vSwitch instead of the Linux bridge or router.

Open vSwitch proves to be the second fastest virtual switch and the fastest one

that runs in the Linux kernel. The Linux bridge is slightly faster than IP forwarding

when it is used as a virtual switch with vNICs. IP forwarding is faster when used

between pNICs. This shows that OvS is a good general purpose software switch for

all scenarios. The rest of this section will present more detailed measurements of

OvS. All VMs were attached via VirtIO interfaces.

There are two different ways to include VMs in DPDK vSwitch: Intel ivshmem

and vhost user with VirtIO. Intel ivshmem requires a patched version of qemu and is

designed to target DPDK applications running inside the VM. The latter is a newer

Table 1 Single core data plane

performance comparison
Application Mpps from pNIC to

pNIC vNIC vNIC to pNIC vNIC to vNIC

Open vSwitch 1.88 0.85 0.3 0.27

IP forwarding 1.58 0.78 0.19 0.16

Linux bridge 1.11 0.74 0.2 0.19

DPDK vSwitch 13.51 2.45 1.1 1.0

J Netw Syst Manage (2018) 26:314–338 323

123

implementation of the VM interface and the default in DPDK vSwitch and works

with stock qemu and targets VMs that are not running DPDK.

Intel ivshmem is significantly faster with DPDK running inside the VM [20].

However, it was removed from DPDK in 2016 [10] due to its design issues and low

number of users [50]. The more generic, but slower, vhost user API connects VMs

via the stable and standardized VirtIO interface [47]. All our measurements

involving VMs in DPDK vSwitch were thus conducted with vhost user and VirtIO.

5.2 Open vSwitch Performance in pNIC to pNIC Forwarding

Figure 4 shows the basic performance characteristics of OvS in an unidirectional

forwarding scenario between two pNICs with various packet sizes and flows. Flow

refers to a combination of source and destination IP addresses and ports. The packet

size is irrelevant until the bandwidth is limited by the 10 Gbit/s line rate. We ran

further tests in which we incremented the packet size in steps of 1 Byte and found

no impact of packet sizes that are not multiples of the CPU’s word or cache line

size. The throughput scales sub-linearly with the number of flows as the NIC

distributes the flows to different CPU cores. Adding an additional flow increases the

performance by about 90% until all four cores of the CPU are utilized.

As we observed linear scaling with earlier versions of OvS we investigated

further. Figure 5 compares the throughput and scaling with flows of all recent

versions of OvS that are compatible with Linux kernel 3.7. Versions prior to 1.11.0

scale linearly whereas later versions only scale sub-linearly, i.e. adding an

additional core does not increase the throughput by 100% of the single flow

throughput. Profiling reveals that this is due to a contended spin lock that is used to

synchronize access to statistics counters for the flows. Later versions support wild

card flows in the kernel and match the whole synthetic test traffic to a single

wildcarded datapath rule in this scenario. So all packets of the different flows use

the same statistics counters, this leads to a lock contention. A realistic scenario with

64 256 512 768 1024 1280 1518
0

1

2

3

4

5

6

7

8

Packet Size [byte]

P
ac

ke
t

R
at

e
[M

pp
s]

1 Flow
2 Flows
3 Flows
4 Flows

Fig. 4 Packet rate with various packet sizes and flows

324 J Netw Syst Manage (2018) 26:314–338

123

multiple rules or more (virtual) network ports does not exhibit this behavior. Linear

scaling with the number of CPU cores can, therefore, be assumed in real-world

scenarios and further tests are restricted to a single CPU core. The throughput per

core is 1.88 Mpps.

5.3 Larger Number of Flows

We derive a test case from the OvS architecture described in Sect. 2.3: Testing more

than four flows exercises the flow table lookup and update mechanism in the kernel

module due to increased flow table size. The generated flows for this test use

different layer 2 addresses to avoid the generation of wild card rules in the OvS

datapath kernel module. This simulates a switch with multiple attached devices

Figure 6 shows that the total throughput is affected by the number of flows due to

increased cache misses during the flow table lookup. The total throughput drops

1 2 3 4
0
1
2
3
4
5
6
7
8

Flows

P
ac
ke
t
R
at
e
[M

pp
s]

1.9.3
1.10.2
1.11.0
2.0.0
2.4.0

1 2 3 4
0

1

2

3

4

5

Flows

N
or
m
al
iz
ed

P
ac
ke
t
R
at
e 1.9.3

1.10.2
1.11.0
2.0.0
2.4.0

(a) (b)

Fig. 5 Packet rate of different open vSwitch versions, 1–4 flows. a Packet rates. b Normalized to one
flow

0 500 1000 1500
0

0.5

1

1.5

2

Active Flows

P
ac

ke
t

R
at

e
[M

pp
s]

Packet Rate
L1 Misses
L2 Misses

0

0.5

1

C
ac

he
M

is
se

s
pe

r
Se

co
nd

[·1
07

]

Fig. 6 Flow table entries versus cache misses

J Netw Syst Manage (2018) 26:314–338 325

123

from about 1.87 Mpps2 with a single flow to 1.76 Mpps with 2000 flows. The

interrupts were restricted to a single CPU core.

Another relevant scenario for a cloud system is cloning a flow and sending it to

multiple output destinations, e.g., to forward traffic to an intrusion detection system

or to implement multicast. Figure 7 shows that performance drops by 30% when a

flow is sent out twice and another 25% when it is copied one more time. This

demonstrates that a large amount of the performance can be attributed to packet I/O

and not processing. About 30% of the CPU time is spent in the driver and network

stack sending packets. This needs to be considered when a monitoring system is to

be integrated into a system involving software switches. An intrusion detection

system often works via passive monitoring of mirrored traffic. Hardware switches

can do this without overhead in hardware, but this is a significant cost for a software

switch.

5.4 Open vSwitch Throughput with Virtual Network Interfaces

Virtual network interfaces exhibit different performance characteristics than

physical interfaces. For example, dropping packets in an overload condition is

done efficiently and concurrently in hardware on a pNIC whereas a vNIC needs to

drop packets in software. We, therefore, compare the performance of the pNIC to

pNIC forwarding with the pNIC to vNIC scenario shown in Fig. 3a.

Figure 8 compares the observed throughput under increasing offered load with

both physical and virtual interfaces. The graph for traffic sent into a VM shows an

inflection point at an offered load of 0.5 Mpps. The throughput then continues to

increase until it reaches 0.85 Mpps, but a constant ratio of the incoming packets is

dropped. This start of drops is accompanied by a sudden increase in CPU load in the

kernel. Profiling the kernel with perf shows that this is caused by increased

context switching and functions related to packet queues. Figure 9 plots the CPU

load caused by context switches (kernel function __switch_to) and functions

related to virtual NIC queues at the tested offered loads with a run time of five

minutes per run. This indicates that a congestion occurs at the vNICs and the system

tries to resolve this by forcing a context switch to the network task of the virtual

machine to retrieve the packets. This additional overhead leads to drops.

Packet sizes are also relevant in comparison to the pNIC to pNIC scenario

because the packet needs to be copied to the user space to forward it to a VM.

Figure 10 plots the throughput and the CPU load caused by the kernel function

copy_user_enhanced_fast_string, which copies a packet into the user

space, in the forwarding scenario shown in Fig. 3a. The throughput drops only

marginally from 0.85 Mpps to 0.8 Mpps until it becomes limited by the line rate

with packets larger than 656 Byte. Copying packets poses a measurable but small

overhead. The reason for this is the high memory bandwidth of modern servers: our

test server has a memory bandwidth of 200 Gbit per second. This means that VMs

are well-suited for running network services that rely on bulk throughput with large

packets, e.g., file servers. Virtualizing packet processing or forwarding systems that

2 Lower than the previously stated figure of 1.88 Mpps due to active profiling.

326 J Netw Syst Manage (2018) 26:314–338

123

need to be able to process a large number of small packets per second is, however,

problematic.

We derive another test case from the fact that the DuT runs multiple applications:

OvS and the VM receiving the packets. This is relevant on a virtualization server

where the running VMs generate substantial CPU load. The VM was pinned to a

1 2 3 4 5 6 7 8 9 10
0

1

2

Output Streams

P
ac

ke
t

R
at

e
pe

r
St

re
am

[M
pp

s]

Fig. 7 Effects of cloning a flow

0 1 2
0

1

2

Offered Load [Mpps]

P
ac

ke
t

R
at

e
[M

pp
s] pNIC to pNIC

pNIC to vNIC

Fig. 8 Offered load versus throughput with pNICs and vNICs

210
0

2

4

6

8

10

Offered Load [Mpps]

C
P

U
U

sa
ge

[%
]

context switching
vNIC queues

Fig. 9 CPU load of context switching and vNIC queuing

J Netw Syst Manage (2018) 26:314–338 327

123

different core than the NIC interrupt for the previous test. Figure 11 shows the

throughput in the same scenario under increasing offered load, but without pinning

the VM to a core. This behavior can be attributed to a scheduling conflict because

the Linux kernel does not measure the load caused by interrupts properly by default.

Figure 12 shows the average CPU load of a core running only OvS as seen by the

scheduler (read from the procfs pseudo filesystem with the mpstat utility) and

compares it to the actual average load measured by reading the CPU’s cycle counter

with the profiling utility perf.

Guideline 2 Virtual machine cores and NIC interrupts should be pinned to

disjoint sets of CPU cores.

The Linux scheduler does not measure the CPU load caused by hardware

interrupts properly and therefore schedules the VM on the same core, which impacts

the performance. The kernel option CONFIG_IRQ_TIME_ACCOUNTING can be

used to enable accurate reporting of CPU usage by interrupts, which resolves this

conflict. However, this option is not enabled by default in the Linux kernel because

it slows down interrupt handlers, which are designed to be executed as fast as

possible.

Guideline 3 CPU load of cores handling interrupts should be measured with

hardware counters using perf.

64 256 512 768 1024 1280 1518
0

0.5

1

Packet Size [Byte]

P
ac

ke
t

R
at

e
[M

pp
s]

Packet rate
CPU load caused by copying packets

0

2

4

6

8

C
P

U
U

sa
ge

[%
]

Fig. 10 Packet size versus throughput and memory copy overhead with vNICs

0 0.5 1 1.5 2 2.5
0

0.5

1

Offered Load [Mpps]

P
ac

ke
t

R
at

e
[M

p
p
s]

Fig. 11 Throughput without explicitly pinning all tasks to CPU cores

328 J Netw Syst Manage (2018) 26:314–338

123

We conducted further tests in which we sent external traffic through a VM and

into a different VM or to another pNIC as shown in Fig. 3b, c in Sect. 4. The graphs

for the results of more detailed tests in these scenarios provide no further insight

beyond the already discussed results from this section because sending and

receiving traffic from and to a vNIC show the same performance characteristics.

5.5 Conclusion

Virtual switching is limited by the number of packets, not the overall throughput.

Applications that require a large number of small packets, e.g., virtualized network

functions, are thus more difficult for a virtual switch than applications relying on

bulk data transfer, e.g., file servers. Overloading virtual ports on the switch can lead

to packet loss before the maximum throughput is achieved.

Using the DPDK backend in OvS can improve the throughput by a factor of 7

when no VMs are involved. With VMs, an improvement of a factor of 3–4 can be

achieved, cf. Table 1. However, DPDK requires statically assigned CPU cores that

are constantly being utilized by a busy-wait polling logic, causing 100% load on

these cores. Using the slower default Linux IO backend results in a linear

correlation between network load and CPU load, cf. Fig. 12.

6 Latency Measurements

In another set of measurements we address the packet delay introduced by software

switching in OvS. Therefore, we investigate two different scenarios. In the first

experiment, traffic is forwarded between two physical interfaces (cf. Fig. 3d). For

0 0.5 1 1.5 2 2.5
0

20

40

60

80

100

Offered Load [Mpps]

C
P

U
L
oa

d
[%

]

perf (cycle counter)
mpstat

Fig. 12 CPU load when forwarding packets with Open vSwitch

J Netw Syst Manage (2018) 26:314–338 329

123

the second scenario the packets are not forwarded between the physical interfaces

directly but through a VM as it is shown in Fig. 3b.

6.1 Forwarding Between Physical Interfaces

Figure 13 shows the measurement for a forwarding between two pNICs by Open

vSwitch. This graph features four different levels of delay. The first level has an

average latency of around 15 ls and a packet transfer rate of up to 179 kpps. Above

that transfer rate the second level has a delay value of around 28 ls and lasts up to

313 kpps. Beyond that rate the third level offers a latency of around 53 ls up to a

transfer rate of 1.78 Mpps. We selected three different points (P1–P3)—one as a

representative for each of the levels before the system becomes overloaded (cf.

Fig. 13). Table 2 also includes these points to give typical values for their

corresponding level.

The reason for the shape and length of the first three levels is the architecture of

the ixgbe driver as described by Beifußet al. [2]. This driver limits the interrupt

rate to 100k per second for packet rates lower than 156.2 kpps, which relates the

highest transfer rate measured for the first level in Fig. 13. The same observation

holds for the second and the third level. The interrupt rate is limited to 20 k per

second for transfer rates lower than 312.5 kpps, and to 8 k per second above that.

These packet rates equal to the step into the next plateau of the graph.

At the end of the third level the latency drops again right before the switch is

overloaded. Note that the drop in latency occurs at the point at which the Linux

scheduler begins to recognize the CPU load caused by interrupts (cf. Sect. 5.4,

Fig. 12). The Linux scheduler is now aware that the CPU core is almost fully loaded

with interrupt handlers and therefore stops scheduling other tasks on it. This causes

P
1

P
2

P
3

0 0.5 1 1.5 2100

101

102

103

104

Offered Load [Mpps]

L
at

en
cy

[µ
s]

99th Percentile
75th Percentile
50th Percentile
25th Percentile

Fig. 13 Latency of packet forwarding between pNICs

330 J Netw Syst Manage (2018) 26:314–338

123

a slight decrease in latency. Then the fourth level is reached and the latency

increases to about 1 ms as Open vSwitch can no longer cope with the load and all

queues fill up completely.

We visualized the distributions of latency at three measurement points P1–P3 (cf.

Fig. 13; Table 2). The distributions at these three measurements are plotted as

Table 2 Comparison of latency

Scenario Load

(kpps)

Loada

(%)

Average

(ls)

SD

(ls)

25th Perc.

(ls)

50th Perc.

(ls)

95th Perc.

(ls)

99th Perc.

(ls)

P1

(pNIC)

44.6 2.3 15.8 4.6 13.4 15.0 17.3 23.8

P2

(pNIC)

267.9 14.0 28.3 11.2 18.6 28.3 37.9 45.8

P3

(pNIC)

1161.7 60.5 52.2 27.0 28.5 53.0 77.0 89.6

V1

(vNIC)

39.0 11.4 33.0 3.3 31.2 32.7 35.1 37.3

V2

(vNIC)

283.3 82.9 106.7 16.6 93.8 105.5 118.5 130.8

V3

(vNIC)

322.3 94.3 221.1 49.1 186.7 212.0 241.9 319.8

a Normalized to the load at which more than 10% of the packets were dropped, i.e., a load C100% would

indicate an overload scenario

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

P1 (44.6 kpps)

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.2

0.4

0.6

0.8

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

P2 (267.9 kpps)

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

0.2

0.4

0.6

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

P3 (1161.7 kpps)

Fig. 14 Latency distribution for forwarding between pNICs

J Netw Syst Manage (2018) 26:314–338 331

123

histogram with bin width of 0.25 ls in Fig. 14. The three selected points show the

typical shapes of the probability density function of their respective levels.

At P1 the distribution shows the behavior before the interrupt throttle rate affects

processing, i.e. one interrupt per packet is used. The latencies are approximately

normally distributed as each packet is processed independently.

The distribution atP2 demonstrates the effect of the ITR used by the driver. A batch

of packets accumulates on the NIC and is then processed by a single interrupt. This

causes a uniform distribution as each packet is in a random position in the batch.

For measurement P3 the distribution depicts a high load at which both the

interrupt throttle rate and the poll mechanism of the NAPI affect the distribution. A

significant number of packets accumulates on the NIC before the processing is

finished. Linux then polls the NIC again after processing, without re-enabling

interrupts in between, and processes a second smaller batch. This causes an overlay

of the previously seen uniform distribution with additional peaks caused by the

NAPI processing.

Overloading the system leads to an unrealistic excessive latency of &1 ms and

its exact distribution is of little interest. Even the best-case 1st percentile shows a

latency of about 375 ls in all measurements during overload conditions, far higher

than even the worst-case of the other scenarios.

Guideline 4 Avoid overloading ports handling latency-critical traffic.

6.2 Forwarding Through Virtual Machines

For delay measurements of VMs we use our setup as depicted in Fig. 3b. There the

traffic originating from the measurement server is forwarded through the VM and

back to the measurement server.

V
1

V
2

V
3

0 50 100 150 200 250 300 350 400100

101

102

103

104

Offered Load [kpps]

L
at

en
cy

[µ
s]

vNIC 99th Percentile
vNIC 75th Percentile
vNIC 50th Percentile
vNIC 25th Percentile
pNIC 99th Percentile
pNIC 75th Percentile
pNIC 50th Percentile
pNIC 25th Percentile

Fig. 15 Latency of packet forwarding through VM

332 J Netw Syst Manage (2018) 26:314–338

123

Figure 15 compares the latency in this scenario with the pNIC forwarding from

Sect. 6.1. Note that the plot uses a logarithmic y-axis, so the gap between the

slowest and the fastest packets for the vNIC scenario is wider than in the pNIC

scenario even though it appears smaller.

The graph for the vNICs does not show plateaus of steady latency like the pNIC

graph but a rather smooth growth of latency. Analogous to P1–P3 in the pNIC

scenario, we selected three points V1–V3 as depicted in Fig. 15. Each point is

representative to the relating levels of latency. The three points are also available in

Table 2. The development of the latency under increasing load shows the same basic

characteristics as in the pNIC scenario due to the interrupt-based processing of the

incoming packets. However, the additional work-load and the emulated NICs

smooth the sharp inflection points and also increase the delay.

The histograms for the latency at the lowest investigated representatively

selected packet rate—P1 in Fig. 14 and V1 in Fig. 16—have a similar shape.

The shape of the histogram in V3 is a long-tail distribution, i.e., while the average

latency is low, there is a significant number of packets with a high delay. This

distribution was also observed by Whiteaker et al. [53] in virtualized environments.

However, we could only observe this type of traffic under an overload scenario like

V3. Note that the maximum packet rate for this scenario was previously given as

300 kpps in Table 1, so V3 is already an overload scenario. We could not observe

such a distribution under normal load. The worst-case latency is also significantly

higher than in the pNIC scenario due to the additional buffers in the vNICs.

Guideline 5 Avoid virtualizing services that are sensitive to a high 99th

percentile latency.

0 50 100 150 200 250 300 350
0

1

2

3

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

V1 (39.0 kpps)

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

V2 (283.3 kpps)

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

V3 (322.3 kpps)

Fig. 16 Latency distribution of packet forwarding through VM

J Netw Syst Manage (2018) 26:314–338 333

123

6.3 Improving Latency with DPDK

Porting OvS to DPDK also improves the latency. Figure 17 visualizes representative

histograms of latency probability distributions of forwarding between physical and

virtual interfaces.

DPDK uses a busy-wait loop polling all NICs instead of relying on interrupts,

resulting in the previously mentioned constant CPU load of 100% on all assigned

cores. The resulting latency is thus a normal distribution and there are no sudden

changes under increasing load as no interrupt moderation algorithms are used. We

measured a linearly increasing median latency from 7.8 ls (99th percentile: 8.2 ls)

at 0.3 Mpps to 13.9 ls (99th percentile: 23.0 ls) at 13.5 Mpps when forwarding

between two physical network interfaces.

Adding virtual machines leads again to a long-tail distribution as the traffic is

processed by multiple different processes on different queues. The virtual machine

still uses the VirtIO driver which also does not feature sophisticated interrupt

adaptation algorithms. Hence, the distribution stays stable regardless of the applied

load. The overall median latency stayed with the range of 13.5–14.1 ls between

0.03 and 1 Mpps. However, the 99th percentile increases from 15 ls Mpps to

150 ls over the same range, i.e., the long tail grows longer as the load increases.

6.4 Conclusion

Latency depends on the load of the switch. This effect is particularly large when

OvS is running in the Linux kernel due to interrupt moderation techniques leading to

changing latency distributions as the load increases. Overloading a port leads to

excessive worst-case latencies that are one to two orders of magnitude worse than

latencies before packet drops occur. Virtual machines exhibit a long-tail distribution

of the observed latencies under high load. These problems can be addressed by

running OvS with DPDK which exhibits a more consistent and lower latency

profile.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

DP1 (4.1 Mpps)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.2

0.4

Latency [µs]

P
ro

ba
bi

lit
y

[%
]

VP1 (0.8 Mpps)

Fig. 17 Latency distribution of forwarding with DPDK

334 J Netw Syst Manage (2018) 26:314–338

123

7 Conclusion

We analyzed the performance characteristics and limitations of the Open vSwitch

data plane, a key element in many cloud environments. Our study showed good

performance when compared to other Linux kernel forwarding techniques, cf. Sect.

5.1. A few guidelines for system operators can be derived from our results:

Guideline 1 To improve performance, OvS should be preferred over the default

Linux tools when using cloud frameworks. Consider DPDK als backend for OvS for

future deployments.

Guideline 2 Virtual machine cores and NIC interrupts should be pinned to

disjoint sets of CPU cores. Figure 11 shows performance drops when no pinning is

used. The load caused by processing packets on the hypervisor should also be

considered when allocating CPU resources to VMs. Even a VM with only one

virtual CPU core can load two CPU cores due to virtual switching. The total system

load of Open vSwitch can be limited by restricting the NIC’s interrupts to a set of

CPU cores instead of allowing them on all cores. If pinning all tasks is not feasible,

make sure to measure the CPU load caused by interrupts properly.

Guideline 3 CPU load of cores handling interrupts should be measured with

hardware counters using perf. Alternatively, the kernel option CONFIG_IRQ_-
TIME_ACCOUNTING can be enabled despite its impact on the performance of

interrupt handlers, to ensure accurate reporting of CPU utilization with standard

tools, cf. Fig. 12. Note that the performance of OvS is not impacted by this option as

the Linux kernel prefers polling over interrupts under high load.

Guideline 4 Avoid overloading ports handling latency-critical traffic. Over-

loading a port impacts latency by up to two orders of magnitude due to buffering in

software. Hence, bulk traffic should be kept separated from latency-critical traffic.

Guideline 5 Avoid virtualizing services that are sensitive to a high 99th

percentile latency. Latency doubles when using a virtualized application compared

to a natively deployed application, cf. Sect. 6. This is usually not a problem as the

main share of latency is caused by the network and not by the target server.

However, the worst-case latency (99th percentile) for packets increases by an order

of magnitude for packets processed by a VM, cf. Sect. 6.2. This can be problematic

for protocols with real-time requirements.

Virtualizing services that rely on bulk data transfer via large packets, e.g., file

servers, achieve a high throughput measured in Gbit/s, cf. Fig. 10. The per-packet

overhead dominates over the per-byte overhead. Services relying on smaller packets

are thus more difficult to handle. Not only the packet throughput suffers from

virtualization: latency also increases by a factor of 2 and the 99th percentile even by

an order of magnitude. However, moving packet processing systems or virtual

switches and routers into VMs is problematic because of the high overhead per

packet that needs to cross the VM/host barrier and because of their latency-sensitive

nature.

The shift to user space packet-processing frameworks like DPDK promises

substantial improvements for both throughput (cf. Sect. 5.1) and latency (cf. Sect.

6). DPDK is integrated, but disabled by default, in Open vSwitch. However, the

J Netw Syst Manage (2018) 26:314–338 335

123

current version we evaluated still had stability issues and is not yet fit for

production. Further issues with the DPDK port are usability as complex

configuration is required and the lack of debugging facilities as standard tools

like tcpdump are currently not supported. Intel is currently working on improving

these points to get DPDK vSwitch into production [26].

Acknowledgements This research has been supported by the DFG (German Research Foundation) as

part of the MEMPHIS Project (CA 595/5-2) and in the framework of the CELTIC EUREKA Project

SENDATE-PLANETS (Project ID C2015/3-1), partly funded by the German BMBF (Project ID

16KIS0460K). The authors alone are responsible for the content of the paper.

References

1. Angrisani, L., Ventre, G., Peluso, L., Tedesco, A.: Measurement of processing and queuing delays

introduced by an open-source router in a single-hop network. IEEE Trans. Instrum. Meas. 55(4),

1065–1076 (2006)

2. Beifuß, A., Raumer, D., Emmerich, P., Runge, T.M., Wohlfart, F., Wolfinger, B.E., Carle, G.: A

study of networking software induced latency. In: 2nd International Conference on Networked

Systems 2015. Cottbus, Germany (2015)

3. Bianco, A., Birke, R., Giraudo, L., Palacin, M.: Openflow switching: data plane performance. In:

International Conference on Communications (ICC). IEEE (2010)

4. Bolla, R., Bruschi, R.: Linux software router: data plane optimization and performance evaluation.

J. Netw. 2(3), 6–17 (2007)

5. Bradner, S., McQuaid, J.: Benchmarking methodology for network interconnect devices. RFC 2544

(Informational) (1999)

6. Cardigliano, A., Deri, L., Gasparakis, J., Fusco, F.: vPFRING: towards wirespeed network moni-

toring using virtual machines. In: ACM Internet Measurement Conference (2011)

7. Deri, L.: nCap: Wire-speed packet capture and transmission. In: IEEE Workshop on End-to-End

Monitoring Techniques and Services, pp. 47–55 (2005)

8. Dobrescu, M., Argyraki, K., Ratnasamy, S.: Toward predictable performance in software packet-

processing platforms. In: USENIX Conference on Networked Systems Design and Implementation

(NSDI) (2012)

9. Dobrescu, M., Egi, N., Argyraki, K., Chun, B., Fall, K., Iannaccone, G., Knies, A., Manesh, M.,

Ratnasamy, S.: RouteBricks: exploiting parallelism to scale software routers. In: 22nd ACM Sym-

posium on Operating Systems Principles (SOSP) (2009)

10. DPDK Project: DPDK 16.11 Release Notes. http://dpdk.org/doc/guides/rel_notes/release_16_11.html

(2016). Last visited 2016-03-27

11. Emmerich, P., Gallenmüller, S., Raumer, D., Wohlfart, F., Carle, G.: MoonGen: A scriptable high-

speed packet generator. In: 15th ACM SIGCOMM Conference on Internet Measurement (IMC’15)

(2015)

12. Emmerich, P., Raumer, D., Wohlfart, F., Carle, G.: A study of network stack latency for game

servers. In: 13th Annual Workshop on Network and Systems Support for Games (NetGames’14).

Nagoya, Japan (2014)

13. Emmerich, P., Raumer, D., Wohlfart, F., Carle, G.: Performance characteristics of virtual switching.

In: 2014 IEEE 3rd International Conference on Cloud Networking (CloudNet’14). Luxembourg

(2014)

14. ETSI: Network Functions Virtualisation (NFV); Architectural Framework, V1.1.1 (2013)

15. Han, S., Jang, K., Panda, A., Palkar, S., Han, D., Ratnasamy, S.: Softnic: A software NIC to augment

hardware. Technical Report UCB/EECS-2015-155, EECS Department, University of California,

Berkeley (2015)

16. He, Z., Liang, G.: Research and evaluation of network virtualization in cloud computing environ-

ment. In: Networking and Distributed Computing (ICNDC), pp. 40–44. IEEE (2012)

17. Huggahalli, R., Iyer, R., Tetrick, S.: Direct cache access for high bandwidth network I/O. In: Pro-

ceedings of the 32nd Annual International Symposium on Computer Architecture, pp. 50–59 (2005)

336 J Netw Syst Manage (2018) 26:314–338

123

http://dpdk.org/doc/guides/rel%5fnotes/release%5f16%5f11.html

18. Hwang, J., Ramakrishnan, K.K., Wood, T.: Netvm: High performance and flexible networking using

virtualization on commodity platforms. In: 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14), pp. 445–458. USENIX Association, Seattle (2014)

19. Impressive Packet Processing Performance Enables Greater Workload Consolidation (2013)

20. Intel DPDK vSwitch. https://01.org/sites/default/files/page/intel_dpdk_vswitch_performance_

figures_0.10.0_0.pdf. Last visited 2016-03-27

21. Intel DPDK vSwitch. https://github.com/01org/dpdk-ovs. Last visited 2016-03-27

22. Intel DPDK: Data Plane Development Kit. http://dpdk.org. Last visited 2016-03-27

23. Intel I/O Acceleration Technology. http://www.intel.com/content/www/us/en/wireless-network/

accel-technology.html. Last visited 2016-03-27

24. Jarschel, M., Oechsner, S., Schlosser, D., Pries, R., Goll, S., Tran-Gia, P.: Modeling and performance

evaluation of an OpenFlow architecture. In: Proceedings of the 23rd International Teletraffic Con-

gress. ITCP (2011)

25. Kang, N., Liu, Z., Rexford, J., Walker, D.: Optimizing the ‘‘one big switch’’ abstraction in software-

defined networks. In: Proceedings of the Ninth ACM Conference on Emerging Networking Exper-

iments and Technologies, CoNEXT ’13, pp. 13–24. ACM, New York (2013). doi:10.1145/2535372.

2535373

26. Kevin, Traynor: OVS, DPDK and Software Dataplane Acceleration. https://fosdem.org/2016/

schedule/event/ovs_dpdk/attachments/slides/1104/export/events/attachments/ovs_dpdk/slides/1104/

ovs_dpdk_fosdem_16.pdf (2016). Last visited 2016-03-27

27. Kohler, E., Morris, R., Chen, B., Jannotti, J., Kaashoek, M.F.: The click modular router. ACM Trans.

Comput. Syst. (TOCS) 18(3), 263–297 (2000). doi:10.1145/354871.354874

28. Larsen, S., Sarangam, P., Huggahalli, R., Kulkarni, S.: Architectural breakdown of end-to-end

latency in a TCP/IP network. Int. J. Parallel Program. 37(6), 556–571 (2009)

29. Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., Huici, F.: ClickOS and the

art of network function virtualization. In: 11th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 14), pp. 459–473. USENIX Association, Seattle (2014)

30. Meyer, T., Wohlfart, F., Raumer, D., Wolfinger, B., Carle, G.: Validated model-based prediction of

multi-core software router performance. Praxis der Informationsverarbeitung und Kommunikation

(PIK) (2014)

31. Munch, B.: Hype Cycle for Networking and Communications. Report, Gartner (2013)

32. Niu, Z., Xu, H., Tian, Y., Liu, L., Wang, P., Li, Z.: Benchmarking NFV software dataplanes. (2016).

arXiv:1605.05843

33. Open vSwitch. http://openvswitch.org. Last visited 2016-03-27

34. OpenNebula. https://opennebula.org. Last visited 2016-03-27

35. OpenStack. https://openstack.org. Last visited 2016-03-27

36. OpenStack: Networking Guide: Deployment Scenarios. http://docs.openstack.org/liberty/networking-

guide/deploy.html (2015). Last visited 2016-03-27

37. Panda, A., Han, S., Jang, K., Walls, M., Ratnasamy, S., Shenker, S.: Netbricks: Taking the V out of

NFV. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),

pp. 203–216. USENIX Association, GA (2016)

38. Pettit, J., Gross, J., Pfaff, B., Casado, M., Crosby, S.: Virtual switching in an era of advanced edges.

In: 2nd Workshop on Data Center Converged and Virtual Ethernet Switching (DC-CAVES) (2011)

39. Pfaff, B., Pettit, J., Koponen, T., Amidon, K., Casado, M., Shenker, S.: Extending networking into the

virtualization layer. In: Proceedings of workshop on Hot Topics in Networks (HotNets-VIII) (2009)

40. Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer,

J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of open vswitch. In: 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 15). USENIX

Association (2015)

41. Pongracz, G., Molnar, L., Kis, Z.L.: Removing roadblocks from SDN: OpenFlow software switch

performance on Intel DPDK. In: Second European Workshop on Software Defined Networks

(EWSDN’13) pp. 62–67 (2013)

42. Ram, K.K., Cox, A.L., Chadha, M., Rixner, S.: Hyper-Switch: A scalable software virtual switching

architecture. In: presented as part of the 2013 USENIX annual technical conference (USENIX ATC

13), pp. 13–24. USENIX, San Jose (2013)

43. Rizzo, L., Carbone, M., Catalli, G.: Transparent acceleration of software packet forwarding using

Netmap. In: INFOCOM, pp. 2471–2479. IEEE (2012)

J Netw Syst Manage (2018) 26:314–338 337

123

https://01.org/sites/default/files/page/intel%5fdpdk%5fvswitch%5fperformance%5ffigures%5f0.10.0%5f0.pdf
https://01.org/sites/default/files/page/intel%5fdpdk%5fvswitch%5fperformance%5ffigures%5f0.10.0%5f0.pdf
https://github.com/01org/dpdk-ovs
http://dpdk.org
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://dx.doi.org/10.1145/2535372.2535373
http://dx.doi.org/10.1145/2535372.2535373
https://fosdem.org/2016/schedule/event/ovs%5fdpdk/attachments/slides/1104/export/events/attachments/ovs%5fdpdk/slides/1104/ovs%5fdpdk%5ffosdem%5f16.pdf
https://fosdem.org/2016/schedule/event/ovs%5fdpdk/attachments/slides/1104/export/events/attachments/ovs%5fdpdk/slides/1104/ovs%5fdpdk%5ffosdem%5f16.pdf
https://fosdem.org/2016/schedule/event/ovs%5fdpdk/attachments/slides/1104/export/events/attachments/ovs%5fdpdk/slides/1104/ovs%5fdpdk%5ffosdem%5f16.pdf
http://dx.doi.org/10.1145/354871.354874
http://arxiv.org/abs/1605.05843
http://openvswitch.org
https://opennebula.org
https://openstack.org
http://docs.openstack.org/liberty/networking-guide/deploy.html
http://docs.openstack.org/liberty/networking-guide/deploy.html

44. Rizzo, L.: Netmap: a novel framework for fast packet I/O. In: USENIX Annual Technical Conference

(2012)

45. Rizzo, L., Lettieri, G.: VALE, a switched ethernet for virtual machines. In: Proceedings of the 8th

International Conference on Emerging Networking Experiments and Technologies (CoNEXT ’12),

pp. 61–72. ACM, New York (2012)

46. Rotsos, C., Sarrar, N., Uhlig, S., Sherwood, R., Moore, A.W.: Oflops: an open framework for

OpenFlow switch evaluation. In: Passive and Active Measurement, pp. 85–95. Springer (2012)

47. Russell, R., Tsirkin, M.S., Huck, C., Moll, P. (eds.): Virtual I/O Device (VIRTIO) Version 1.0.

OASIS Committee Specification 04 (2016)

48. Salim, J.H., Olsson, R., Kuznetsov, A.: Beyond softnet. In: Proceedings of the 5th annual Linux

Showcase & Conference, vol. 5, pp. 18–18 (2001)

49. Tedesco, A., Ventre, G., Angrisani, L., Peluso, L.: Measurement of processing and queuing delays

introduced by a software router in a single-hop network. In: IEEE Instrumentation and Measurement

Technology Conference, pp. 1797–1802 (2005)

50. Thomas, Monjalon: dropping librte_ivshmem. http://dpdk.org/ml/archives/dev/2016-June/040844.

html (2016). Mailing list discussion

51. Virtual Machine Device Queues: Technical White Paper (2008)

52. Wang, G., Ng, T.E.: The impact of virtualization on network performance of amazon ec2 data center.

In: INFOCOM, pp. 1–9. IEEE (2010)

53. Whiteaker, J., Schneider, F., Teixeira, R.: Explaining packet delays under virtualization. ACM

SIGCOMM Comput. Commun. Rev. 41(1), 38–44 (2011)

Paul Emmerich is a Ph.D. student at the Chair for Network Architectures and Services at Technical

University of Munich. He received his M.Sc. in Informatics at the Technical University of Munich in

2014. His research interests include packet generation as well as software switches and routers.

Daniel Raumer is a Ph.D. student at the Chair of Network Architectures and Services at Technical

University of Munich, where he received his B.Sc. and M.Sc. in Informatics, in 2010 and 2012. He is

concerned with device performance measurements with relevance to Network Function Virtualization as

part of Software-defined Networking architectures.

Sebastian Gallenmüller is a Ph.D. student at the Chair of Network Architectures and Services at

Technical University of Munich. There he received his M.Sc. in Informatics in 2014. He focuses on the

topic of assessment and evaluation of software systems for packet processing.

Florian Wohlfart is a Ph.D. student working at the Chair of Network Architectures and Services at

Technical University of Munich. He received his M.Sc. in Informatics at Technical University of Munich

in 2012. His research interests include software packet processing, middlebox analysis, and network

performance measurements.

Georg Carle is Professor at the Department of Informatics at Technical University of Munich, holding

the Chair of Network Architectures and Services. He studied at University of Stuttgart, Brunel University,

London, and Ecole Nationale Superieure des Telecommunications, Paris. He did his Ph.D. in Computer

Science at University of Karlsruhe, and worked as postdoctoral scientist at Institut Eurecom, Sophia

Antipolis, France, at the Fraunhofer Institute for Open Communication Systems, Berlin, and as professor

at the University of Tübingen.

338 J Netw Syst Manage (2018) 26:314–338

123

http://dpdk.org/ml/archives/dev/2016-June/040844.html
http://dpdk.org/ml/archives/dev/2016-June/040844.html

	Throughput and Latency of Virtual Switching with Open vSwitch: A Quantitative Analysis
	Abstract
	Introduction
	Software Switches
	State of the Art
	Packet Reception in Linux
	Open vSwitch

	Related Work
	Test Setup
	Hardware Setup for Throughput Tests
	Software Setup
	Setup with Virtual Machines
	Adoptions for Delay Measurements

	Throughput Measurements
	Throughput Comparison
	Open vSwitch Performance in pNIC to pNIC Forwarding
	Larger Number of Flows
	Open vSwitch Throughput with Virtual Network Interfaces
	Conclusion

	Latency Measurements
	Forwarding Between Physical Interfaces
	Forwarding Through Virtual Machines
	Improving Latency with DPDK
	Conclusion

	Acknowledgements
	References

