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Abstract The massive traffic volumes and heterogeneity of services in today’s

networks urge for flexible, yet simple measurement solutions to assist network

management tasks, without impairing network performance. To turn treatable tasks

requiring traffic analysis, sampling the traffic has become mandatory, triggering

substantial research in the area. Despite that, there is still a lack of an encompassing

solution able to support the flexible deployment of sampling techniques in pro-

duction networks, adequate to diverse traffic scenarios and measurement activities.

In this context, this article proposes a modular traffic sampling architecture able to

foster the flexible design and deployment of efficient measurement strategies. The

architecture is composed of three layers—management plane, control plane and data

plane—covering key components to achieve versatile and lightweight measure-

ments in diverse traffic scenarios and measurement activities. Each component of

the architecture is described considering the different strategies, technologies and

protocols that compose the several stages of a measurement process. Following the

proposed architecture, a sampling framework prototype has been developed, pro-

viding a fair environment to assess and compare sampling techniques under distinct

measurement scenarios, evaluating their performance in balancing computational

burden and accuracy. The results have demonstrated the relevance and applicability

of the proposed architecture, revealing that a modular and configurable approach to

sampling is a step forward for improving sampling scope and efficiency.
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1 Introduction

In today’s communication infrastructures, the massive volume of data, specially in

high-capacity network links, is a major problem to overcome. This raises the

necessity of reducing the volume of data involved in passive network measurements

and providing sufficiently detailed information for various monitoring activities,

with different accuracy requirements according to the service types or monitoring

objectives to fulfill. In this context, traffic sampling is seen as the main strategy to

keep network measurement data into manageable sizes, as it consists of selecting a

subset of packets that will allow to estimate parameters about all traffic, with

compatible degrees of accuracy, avoiding processing it completely.

Most of current measurement points (MPs), whether running in a dedicated

device or embedded in switches or routers, provide tools able to perform traffic

sampling following standard schemes defined by IETF (i.e., RFC5475 [1]).

However, many recent works have proposed sampling techniques and policies

(often not supported in current off-the-shelf network equipment) that achieve better

results regarding the accuracy in metrics estimation or the reduction of computa-

tional overhead for various measurement tasks. Even tools following IETF

recommendations, e.g., Cisco Sampled NetFlow and sFlow, usually do not

implement all the features stated in RFC 5475. For instance, they do not provide

crucial sampling strategies, such as time-based, relevant for activities related to

anomaly detection [2]. Similar limitations are also present in different measurement

tools and network vendors, for instance tcpdump, Alcatel cFlow, Juniper J-flow and

Endace NICs. In fact, the lack of an encompassing study regarding the suitability of

sampling techniques for multiple measurement tasks is limited by the specificities of

new techniques and the complexity of deploying them in current commercial

sampling tools, hampering thus a wide adoption of innovative and efficient sampling

features.

Aiming at fostering the design and deployment of efficient sampling strategies

for diverse measurement scenarios, this work is focused on understanding sampling

techniques and measurement processes through their constituent parts, rather than

closed units. This will empower the design of sampling systems with the ability to

optimize their performance by exploiting the most suitable features for a specific

measurement purpose or traffic type. In this context, this paper presents a three-layer

modular sampling architecture based on a novel taxonomy of sampling techniques

which allows the flexible deployment of different sampling techniques in a simple

and modular way. Each layer is composed by independent components, and

structured as a multilayer system in which a lower layer provides services to an

upper layer, hiding details about its operation. Furthermore, the design of the

architecture allows: (1) compatibility with currently deployed measurement

systems; (2) flexibility to accommodate new measurement goals and traffic
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characteristics; and (3) lightweight operation in order to minimize interference with

the normal network tasks. This clearly constitutes an innovative approach toward

efficient design and deployment of customized sampling.

This paper also discusses the strategies, technologies and protocols involved in

the devised layers—Management, Control and Data—and provides a proof-of-

concept exploring the flexibility of the proposed architecture in deploying and

evaluating the tradeoff between overhead and accuracy of representative sampling

techniques when facing different measurement requirements. For this purpose, real

traffic traces captured in high-capacity network links of major service providers are

used.

In summary, as main contribution, this article provides: (1) a clear identification

of sampling components articulating them into a multilayer and modular

architecture; and (2) a complete, flexible and easily configurable framework able

to support seamlessly both conventional and innovative sampling-based measure-

ments adequate to diverse network scenarios and monitoring activities.

This paper is organized as follows: the related work is reviewed and discussed in

Sect. 2, the proposed sampling architecture, corresponding layers and components

are described in Sect. 3; the proof-of-concept is provided in Sect. 4, the obtained

results are discussed in Sect. 5, and the conclusions and future work are presented in

Sect. 6.

2 Related Work

The usage of packet sampling aiming at fostering network measurements is not a

recent research subject. The initial efforts addressing sampling techniques for

statistical analysis of computer networks were mainly focused on QoS of

communication systems, traffic accounting and characterization [3–5]. These early

research works have produced methods to categorize sampling techniques [6],

which have evolved to a framework standardized as a Request for Comments (RFC)

[1] by the Packet SAMPling (PSAMP) Working Group of the Internet Engineering

Task Force (IETF) [7].

According to RFC5475 [1], sampling algorithms are classified in content-

independent techniques and content-dependent techniques. The main difference

between these classes is the necessity of accessing the packet content in order to

make selection and capture decisions. Following this classification, the document

also identifies the most deployed sampling schemes, namely: systematic techniques

[7], which rely on deterministic functions based on the packet position in time or in

space within incoming traffic; and random techniques [8], which resort to

probabilistic functions in order to decide which packets will be selected to compose

the sample. More complex techniques, such as adaptive [9] and multiadaptive [10],

are not covered in this standard.

Simultaneously with the development of high-speed network infrastructures and

the diversification of communication services, the usage of packet sampling has also

increased significantly, leading to the support of manifold tasks related to network

measurements. Examples of these tasks include: network management involving
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short, medium and long term planning and management of network operation,

maintenance and provisioning of network services [9, 11–13]; traffic engineering

involving performance optimization, traffic characterization, traffic modeling and

control [4, 7, 14–16]; performance evaluation of protocols and management tools,

network reliability and fault tolerance [17–19]; network security, including

detection of anomalies, intrusion, botnet and Distributed Denial of Service (DDoS)

attacks [20–25]; SLA compliance, where auditing tools may resort to network

sampling for measuring and report service levels [26, 27]; QoS control, aiming at

measuring parameters such as delay, jitter and packet loss [28–31]. Most of the

above cited techniques are conceived resorting to modifications and/or composition

of basic approaches that compose classical sampling techniques.

Beyond the vast number of new techniques, the diversification of communication

services and their underlying requirements have also fostered a large number of

research works focused on assessing the most suitable sampling technique for

different measurement tasks. Several of these studies are mainly devoted to analyze

and enhance the trade-off between sampling accuracy and overhead of the

traditional techniques defined in [1], which essentially intend to minimize

information loss while reducing the volume of collected data [32].

From these works, it is clear that the selection of a strategy for packet sampling

depends on the type of measurement task in which it will be applied. Although

PSAMP proposes a high-level architecture description allowing a modular definition

of sampling, it is mainly focused on packet selection and exporting, lacking of

comprehensiveness and objectivity regarding the components and solutions for

relating measurement tasks with sampling techniques. Furthermore, PSAMP-based

implementations (e.g., Sampled NetFlow, sFlow) are not modular and restrictive in

the techniques implemented. In this way, devising an encompassing sampling-based

measurement system able to accommodate different sampling strategies aiming at

providing high-accuracy measurements while maintaining the computational

overhead under control in distinct measurement scenarios is not only an open

issue, but also highly desirable.

3 A Sampling-Based Measurement Architecture

The design of an encompassing and flexible packet sampling architecture able to

foster the deployment of versatile and lightweight measurement strategies in diverse

traffic scenarios and measurement activities must satisfy the following design goals:

• compatibility with current protocols and measurement tools in order to support

its deployment in current measurement systems;

• specification and deployment sustained by open and standard protocols;

• flexibility to adopt new protocols and technologies related to traffic sampling;

• versatility and modularity to deploy current and new sampling techniques;

• capability to support mechanisms for balancing measurement accuracy and

computational weight in order to foster the design of efficient sampling

strategies.
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The main components involved in the proposed sampling-based measurement

architecture are arranged in three planes—management, control and data plane—as

illustrated in Fig. 1. These components are further detailed in the next sections,

considering the different strategies, technologies and protocols involved in the

several stages of a measurement process.

3.1 Management Plane

The main activities assigned to the management plane are: (1) mapping the

measurement needs related to a specific network task into the more suitable sampling

technique and its operational parameters; (2) selecting and communicate with the

MPs which will perform packet sampling in order to set them up; (3) processing the

measurement results and provide a visualization component, when applicable, based

on reports produced by the control plane. These functions may be deployed directly

Fig. 1 Architecture description
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into the MP, sharing the same device and resources, or in an external entity,

responsible for coordinating one or more MPs according to measurement needs and

constraints.

3.1.1 From Network Task to Measurement Needs

Measurement needs are closely related to the network task to fulfil. This relation

usually guides the sampling process, defining aspects such as: (1) which portion of

the packet should be captured and exported; (2) if the sampling should be performed

considering all incoming traffic or only specific flows; (3) the temporal and spatial

distribution of the packet collection; or (4) the expected accuracy on metrics

estimation.

Some network tasks, such as traffic accounting, only require few information

from the packet header, usually the key flow, the number of packets and number of

bytes traversing the MP during a certain time interval. These requirements tend to

be less impactful in terms of storage and bandwidth, as traffic may be aggregated

into flows efficiently before exporting. However, considering network tasks which

resort to Deep Packet Inspection (DPI), such as traffic classification and data

analysis for security issues, the MP must inspect and collect the packet payload in

addition to the header. This also involves exporting individual packets instead of

aggregated summaries, which may lead to a large volume of data related to

measurements transmission. The measurement needs may also vary depending on

the expected accuracy in metric estimations, for instance, the accuracy in estimating

the traffic workload is affected by the sampling frequency [33].

The relation between the network task and its measurement needs should drive

directly the decision of the sampling technique and the MPs to be used. Despite this

mapping being out of scope in this work, the next section and Sect. 5 present

important aspects to be considered and highlights possible strategies.

3.1.2 Sampling Technique and MP Selection

Currently, due to the small number of sampling techniques available in measure-

ment tools, the selection of the technique and its operational parameters are always a

decision of network managers. Although there is not an encompassing study

addressing which sampling technique yields better results for each network task, by

reviewing the related literature it is possible to identify that the results achieved by

different works are clearly heterogeneous and, sometimes, conflicting [24, 34–36].

Other possible conflicting aspect is related to sampling measurements from

different network tasks performed in the same MP during a time interval. This

aspect may be addressed resorting to a priority system, in which the decision from

the task with highest priority level prevails in the MP, or configuring the most

demanding technique (i.e., which captures the largest amount of data) in order to

accommodate the largest possible number of network tasks efficiently.

Regarding the selection of the MPs that will participate in the sampling process,

this may involve a single point, two points (e.g., end-to-end delay) or a distributed

multipoint strategy. This decision should take into account the position of the device
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in the network, the computational resources available and the sampling techniques

able to be deployed (for legacy tools). There are many studies addressing the

selection of the better network point to perform each type of measurements [37, 38],

as an appropriate strategy of MPs selection leads to more efficient use of resources

and may reduce the events of conflicting configuration. The example in Fig. 2

illustrates a possible relation between the network task and the MPs selection,

namely: (1) traffic accounting in this topology could involve only MP-A (sampling

the external link of the border router); (2) QoS multipoint metrics estimation, such

as one-way-delay and jitter, could involve the edge MPs, for instance MP-C and

MP-E; (3) security-oriented measurements would probably require data sampled by

all MPs.

3.1.3 Information Model

As described in RFC3444 [39], the main purpose of an information model is to

define managed objects at a conceptual level, independently of specific implemen-

tation or protocol used to transport data. In this way, the information model is

defined at management plane as a standardized way for encoding information

related to the sampling process (e.g., technique selected, sampling parameters and

packet fields to be collected), exporting and storage of sampled data.

As result of the efforts toward the definition of an open protocol for flow

exporting [40], the IETF IPFIX—Internet Protocol Flow Information Export

working group has also defined an information model (RFC7012 [41]) that was

further extended to satisfy PSAMP requirements through RFC5477 [42]. Proposing

an extended model was necessary due to existing properties required in packet

sampling reports that cannot be modeled using the basic IPFIX information model.

The information model is composed by unique identifiers related to each

information element, that consists in an encoding-independent description of an

Fig. 2 Measurement point selection
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attribute that may appear in a measurement record. The information elements also

have an associated type, that indicates constraints on what it may contain as well as

the valid encoding mechanisms [41]. The information element assignments are

controlled by IANA—Internet Assigned Numbers Authority and are exemplified in

Table 1. A full list of elements currently assigned can be consulted in [43].

3.1.4 Data Model

Data models define managed objects at a lower level of abstraction, including

implementation aspects and protocol specifications, such as the rules that explain

how to map managed objects onto lower-level protocol constructs [39]. The

definition of a common data model is required to allow managing the entities in the

sampling process.

In addition to the specific information model for packet sampling, the IETF

IPFIX working group has also proposed a standard that defines managed objects for

monitoring devices performing packet selection by sampling (RFC6727 [44]). The

document is in accordance with the Internet-Standard Management Framework

[45], in which managed objects are stored in a Management Information Base

(MIB) and generally accessed through SNMP. The syntax used to define objects in

the MIB is called the Structure of Management Information (SMI). Currently, the

working group is defining a standard with a method for exporting SNMP MIB

variables using IPFIX messages [46].

There are other management models currently standardized as data models, for

instance the Policy Information Base (PIB) [47] and the Common Information

Model (CIM) Schemas [48]. However, the use of open standard models designed to

support packet sampling leads to a straightforward integration with current tools

able to control MPs and process the resulting sampled data reports.

3.1.5 Processing and Metrics Evaluation

As discussed in Sect. 3.2, the packet sampling process yields different types of

reports that must be processed for further estimation of underlying metrics regarding

the network task. This is usually performed by a collector, that may be an

intermediate entity responsible for verifying and distributing the reports to

interested entities or an application able to provide summarized measurement

results.

Table 1 Example of IPFIX information elements

Element ID Name Data type Data type semantics

1 octetDeltaCount unsigned64 deltaCounter

2 packetDeltaCount unsigned64 deltaCounter

304 selectorAlgorithm unsigned16 identifier

309 samplingSize unsigned32 quantity
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Following IETF definitions [1], the collector receives a report stream by one or

more MPs. The report stream comprises two types of information: (1) packet

reports—a configurable subset of packet’s data regarding the measurement needs

(e.g., packet content); and (2) report interpretation—a subsidiary information used

for interpretation of the packet reports (e.g., templates describing their structure and

types). An example of both report types is presented in Sect. 3.2.5 (Fig. 4).

Supported by the definition of a consistent information model and data model, the

entities involved in sampling can process the reports and access the required traffic

information in order to estimate measurement metrics.

3.2 Control Plane

The control plane is the main component of the proposed architecture. It is

responsible for: (1) selecting and arranging the constituent parts of the sampling

technique to be deployed, defined by the management plane, and setting its

operational parameters; (2) receiving raw packets collected by the data plane and

extract required information regarding the measurement needs; (3) aggregating data

in order to reduce the storage and transmission impact; (4) composing the

appropriate reports to be sent to the management plane.

3.2.1 Constituent Parts of Sampling Techniques

Describing current sampling techniques through its constituent parts, rather than a

closed unit, is a key aspect to achieve flexible sampling-based measurements.

Although classic sampling techniques were previously classified through RFC5475

[1], this document does not cover recent advances in packet sampling (e.g., adaptive

techniques). In this way, after a detailed analysis of existing sampling proposals, the

present work presents an encompassing sampling taxonomy, identifying the

constituent parts of these proposals. Table 2 details the proposed taxonomy,

following the preliminary classification included in [49].

In the classification criterion, a set of features related to sampling granularity,

selection scheme and selection trigger are identified as the main components

distinguishing current proposals. Then, each component is further divided into a set

of approaches. Following the taxonomy structure it is possible to drive a modular

deployment of sampling techniques through the combination of proper approaches.

Beyond the comprehensiveness in classifying current sampling techniques, this

model allows the design of sampling strategies able to exploit specific features that

lead to better performance for each measurement purpose and traffic scenario.

3.2.2 Sampling Technique Configuration

Following the guidelines presented in Sect. 3.1.3, a MP receives the necessary

information in order to select and configure the sampling technique that will supply

the management plane according to the network task requirements. Table 3 presents

examples of sampling techniques, their underlying operational parameters and the

respective element identification according to IANA scope assignments. As
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illustrated, the sampling technique selected is identified by the information element

selectorAlgorithm, identified in the information model with the value 304. Each

sampling technique has a set of well-know parameters (also defined in the

information model), that must be passed along with the technique identifier.

Handling this information, the control plane starts an instance of the technique with

the respective operational parameters.

The internal process for deploying a sampling technique follows the structure of

the proposed taxonomy. By selecting the appropriate approach from each sampling

component, the control plane arranges the respective blocks, configuring thus the

selected technique. This process requires well defined communication interfaces

among the sampling approaches. This is achieved designing the sampling

framework as a multilayer system in which a lower layer provides services to an

upper layer, hiding details about its operation. Figure 3 illustrates the conceptual

Table 2 Taxonomy of sampling techniques

Granularity
This component identifies the atomicity of the element under analysis by defining which segment of traffic is
considered in the sampling process and in the data reporting format.

Flow-level Packet-level

The traffic capture policy is applied to packets belong-
ing to a flow or a set of flows of interest. This in-
volves classifying packets into flows before or during
the sampling process through the identification of a
flow key, usually based on five fields (5-tuple) of the
packet header.

In a first instance, packets are collected indistinctly for
subsequent filtering or aggregation. This turns packet-
level sampling into a flexible and appropriate solution
to be used in general purpose measurement tasks and
aggregated estimations, in presence of diverse traffic
types.

Selection trigger
This component is used to decide the spacial and temporal sample boundaries by defining the start and the end
of a sample, and consequently the interval between samples.

Count-based Time-based Event-based

The beginning and the end of
a sample are driven by the spa-
tial position of the packet within
the traffic stream, using coun-
ters which are independent of the
packet arrival time. This strategy
is used in Sample NetFlow and
sFlow.

The beginning and the end of a
sample is determined based on
packet arrival time. When a new
sample is triggered, the MP waits
for the first bit of the incom-
ing packet to start the collection.
When sampling end is triggered,
the MP waits for the last bit of the
current packet and then stops the
selection process.

The decision on when a sample
starts and ends takes into account
some particular event observed in
the traffic being monitored. This
event might be some value in the
packet contents e.g. packet header
and payload, the treatment of the
packet at the measurement point or
a more complex observation.

Selection scheme
This component identifies the selection function that determines which packets will be selected and collected.

Systematic Random Adaptive

The process of packet selection
is ruled by a deterministic func-
tion which imposes a fixed sam-
pling frequency, independently of
the packet content or treatment. In
this scheme only equally spaced
traffic is collected, i.e., the sam-
pling trigger is periodic.

The sampling frequency is ruled
by a random process using for in-
stance n-out-of-N and probabilis-
tic sampling [1]. The probabilistic
function can be uniform or non-
uniform.

The selection process is able to
change the packet selection crite-
rion during the course of measure-
ments. Adaptive techniques usu-
ally resort to linear prediction,
fuzzy logic or other strategies that
consider traffic behavior, packet
content or network status to rule
sampling patterns.
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design of this framework. Packet capturing is performed resorting to an interface

with the data plane, being its operational details covered in Sect. 3.3.

3.2.3 Packet Processing

As discussed in Sect. 3.3, to reduce the computational burden in the data plane, the

sampled packets are received by the control plane in raw format, for verification and

processing. The verification process allows to identify errors in the packet that may

have occurred during the handover from the capture interface to the upper plane of

the network stack. Error detection can be performed resorting to any available

method, such as checksum or cyclic redundancy checking. As error correction is a

computationally onerous process, if an error is found then the packet is discarded.

Considering that packets are received in raw format, it is also necessary for

mapping the packet fields to the suitable data model in use by the measurement

system. The mapping process is supported by the information model in order to

unify the elements representation, allowing the correct interpretation and manip-

ulation of the packet fields.

At the processing stage, all irrelevant fields to measurements are discarded,

reducing the amount of data received and processed by the upper modules, and

consequently the number of computation cycles, bandwidth and memory to process

the sampled traffic.

3.2.4 Aggregation

Even with the reduction in the volume of data promoted by sampling, some

scenarios can still produce massive data amounts, requiring significant storage

resources and bandwidth to be distributed. A solution to this issue is to summarize

the collected data employing a combination of sampling and aggregation. The

strategy mostly used to summarize measurement data is to aggregate sampled

packets into flows according to some explicit or derived property, and computing

Table 3 Sampling technique identification example

ID Sampling technique

[selectorAlgorithm (304)]

Parameters (ID)

1 Systematic count-based [1] samplingPacketInterval (305) samplingPacketSpace

(306)

2 Systematic time-based [1] samplingTimeInterval (307) samplingTimeSpace (308)

3 Random n-out-of-N [1] sampleSize (309) samplePopulation (310)

10a Multiadaptive [10] samplingTimeInterval (307) samplingTimeSpace (308)

11a Flow-level adaptive linear prediction

[9]

flowId (148) samplingTimeInterval (307)

samplingTimeSpace (308)

aAs these techniques are not yet assigned by IANA, the examples use currently unassigned values,

avoiding conflicts with deployed tools
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aggregate byte and/or packet counts within each flow over successive time windows

[8]. This method usually provides high accuracy when estimating metrics that only

require information from the packet header, such as for traffic accounting, flows

distribution and anomaly detection. However, there is an increasing need for

analyzing packet payloads (DPI) in network tasks such as traffic classification and

security analysis. In fact, IANA has been registering information elements

describing objects related to the application layer. In these scenarios, as packets

are typically stored as individual entities, and thus hampering data summarization,

the aggregation module does not act on packets, maintaining them in memory for

future exporting.

3.2.5 Exporting

The exporting process consists of three main elements: (1) the trigger for

dispatching data currently stored in the MP memory; (2) the message structure and

types used to transmit the data; (3) the transport protocol used in the data report

transmission.

Exporting trigger Sampled traffic aggregated into flows is frequently maintained

in memory until a specific flow is considered to have terminated, after which, the

information regarding this specific flow is exported. The flow expiration may follow

different methods: a natural termination of a TCP flow when a packet with a FIN or

Fig. 3 Sampling framework—conceptual design
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RST flag set is captured; the flow has been active for a specific period of time

(usually within the range between 120 seconds to 30 min); or no packet belonging

to a flow is captured during a specified period of time (usually between 15 s and

5 min) [50]. In addition to predefined timeouts, resource constraints may require

strategies in which the timeout is dynamically adjusted in run-time.

Considering measurements involving the exporting of the packet payload, a MP

may also use predefined timeouts or a dynamic strategy based on the volume of

packets stored in memory. Moreover, this strategy is also suitable to trigger the

exporting of both aggregate and single packet entries in scenarios of full memory or

in response to unexpected situations.

Message format The distribution of sampled data must be supported by well

defined message formats in order to ensure that the applications involved in

measurements can interpret correctly the information. There are well defined

protocols and tools able to handle with this aspect, such as NetFlow, SiLK and

IPFIX. Reports using XML specifications are also frequently used. In particular, the

IPFIX specification has a specific version [51] designed to address the architectural

differences between the original version [40], focused on gathering and exporting IP

traffic flow information, and the PSAMP extension, focused on exporting

information of individual packets. Sampling-based reports are therefore a special

IPFIX record containing only a single packet.

The IPFIX message can be of two types: (1) template record, that contains the

layout description for data report interpretation; and (2) data report, used for

carrying exported data records [50]. For each collected packet, a data report must be

created containing a header with a set of fields with fixed size (16 bytes), identifying

the protocol version number, message length, export timestamp and the observation

domain ID. After the header, one or more sets ( i.e., one or more records), are

defined having an ID and variable fields.

Figure 4 presents a simplified example of a template record message and its

correspondent data report, identifying that the packet, with 64 bytes, was collected

Fig. 4 IPFIX messages—template and data, a template record, b data report
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through systematic count-based sampling technique capturing 1 packet fromevery 100.

All elements in a report are specified by the information model (see Sect. 3.1.3) and

each template has an unique ID, allowing that all entities involved in themeasurements

can interpret the data reports following this template. Usually the number of records in

an IPFIX message is limited in order to avoid IP fragmentation [50].

Transport protocol The selection of a transport protocol to transmit the

measurement reports should consider the collector/application or MP restrictions.

The usual candidates are User Datagram Protocol (UDP), Transmission Control

Protocol (TCP) and Stream Control Transmission Protocol (SCTP). Due to the easy

implementation (even in hardware) and minimal overhead, UDP is the most

implemented transport protocol for measurement data transmission. A discussion on

advantages and drawbacks of each solution can be found in [50].

3.3 Data Plane

At data plane, following the sampling rules defined in the control plane, packets are

collected from the network link for subsequent use.

In wired networks, where most traffic measurements are performed, the MP

implements an interface (also called capture device) in which it is possible reading

and collecting packets from the link being monitored. The capture interface can be

positioned in-line and in mirroring mode. While in in-line mode, the MP is directly

connected to the monitored link between two hosts, usually resorting to a network

tap that duplicates all observed traffic through passive splitting (on optical fiber

links) or regeneration (in electrical copper networks), in mirroring mode, the

network device forwarding packets can mirror packets from one or more ports to

another port, in which the MP device is attached.

In wireless networks, the MP may use any device with a compatible interface

(usually these devices can only capture packets at a single frequency at a given time

[50]), however some of them can switch rapidly through all radio channels (channel

hopping) trying to improve traffic capturing, although there is no guarantee that all

packets are considered [52]. In virtual networks, the nature of the devices is similar

to wired networks, although in this case the capture interfaces are usually entirely

deployed in software.

In addition to the device nature and location, the data plane also defines how the

control plane interacts with the network interface in which the packet capture is

performed. For this, MPs resort to libraries and Application Programming Interfaces

(APIs) in order to implement the packet collection. The main solutions currently

available are using libpcap [53] or libtrace [54] for Linux and BSD-based operating

systems, and WinPcap for Windows.

4 Proof-of-Concept

Aiming at providing a proof-of-concept regarding the flexibility introduced by the

sampling architecture, a functional framework able to deploy different sampling

techniques following the taxonomy structure presented in Table 2 has been
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implemented. This framework provides a fair environment in which different

sampling techniques can be comparatively assessed in order to identify the most

suitable for each measurement goal and traffic scenario. This is a fundamental

aspect in order to support the design of efficient measurement strategies based on

packet sampling.

The developed sampling framework1 is currently supporting research work

related to the suitability of the different sampling techniques when applied to

various network measurement activities, taking into account the measurement

accuracy, volume of data involved and computational weight [55]. In particular, the

experimental tests reported in this work evaluate the impact of different sampling

strategies regarding the volume of collected data and accuracy in estimating traffic

workload and performing flow analysis in high-speed networks.

4.1 Traffic Scenarios and Sampling Techniques

The performance analysis carried out resorts to real and public traffic traces

captured in high-speed network links, namely OC-48 [56] and OC-192 [57]. The

sampling techniques under analysis comprehend classical approaches widely

deployed in current tools, which are in compliance with [1], and recently proposed

approaches. In more detail, the analysis include: SystC—Systematic count-based

[1]; SystT—Systematic time-based [1]; RandC—Random count-based (uniform

probability) [1]; LP—Adaptive linear prediction (time-based) [9]; and MuST—

Multiadaptive (time-based) sampling [10]. The following comparative evaluation

uses the frequency 1/100 for SystC and RandC techniques, as suggested in [33]. For

SystT technique, the sampling frequency in use is 100/1000.

4.2 Comparative Parameters

4.2.1 Volume of Data

The main goal of using traffic sampling consists in to reduce the overhead

associated with the amount of packets processed, which may impact on the overall

performance of the MP, the bandwidth required to export measurement data as well

as the storage and processing overhead [33]. In this way, the sampling techniques

are compared regarding: (1) Number of packets—total number of packets captured

during the sampling process for each sampling technique; (2) Volume of data—sum

of all packets collected with each sampling technique. For this metric, it is used the

total length field within IP header.

1 The framework is available for download at http://1drv.ms/1IggkCa as a Raspbian image ready to be

deployed.
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4.2.2 Traffic Workload

The accuracy in estimating traffic workload is analyzed through the mean

throughput, i.e., the total estimated load during the full sampling process, quantified

by the Relative Mean Error (RME). Furthermore, the mean packet size and

complementary descriptive statistics to measure the variability of packet time series

are also analyzed.

Considering that in traffic sampling only a subset of total network packets is

captured and considered for measurement purposes, estimating the traffic through-

put must consider the unselected packets. The most common method to estimate the

mean throughput from sampled data resorts to the statistical extrapolation based on

the proportional number of unsampled packets, as detailed in [33], i.e.,

�X ¼ ð
Pn

i¼1
XiÞ�Sp

DT . In this equation, �X is the estimated mean throughput; Xi is the

size of the ith sampled packet; Sp is the statistical sampling proportion defined by

Sp ¼ m
n
, with m as the total number of arriving packets and n the total number of

sampled packets; and DT is the period of observation in seconds. In this work, the

mean throughput is estimated taking DT equal to the total period of the sampling

process.

4.2.3 Flow Analysis

For comparing the ability of distinct sampling techniques in assisting network flow

analysis correctly, several flow parameters are considered, namely: (1) the amount

of flows identified; (2) the percentage of heavy-hitter (HH) flows identified, where

the notion of heavy hitter refers to 20% of the largest flows (in number of packets)

[58]; (3) the utilization share at transport level; (4) the utilization share at

application level; and, (5) the accuracy of load estimations for the identified flows.

Considering that when flow characterization is based on sampling only a subset

of the packets is available, estimating the underlying metrics involves the usage of

statistical estimators to overcome missing data. In particular, the load estimation of

each flow is an additional challenge as it needs to be often inferred from a small

number of collected packets. Following the discussion in [33], the specific

estimators used for comparative purposes are the following:

• Flow Mean Packet Size ( �Xf ): �Xf ¼
Pnf

i¼1
Xi

nf

• Estimated Flow Size (Sf ): Sf ¼ N � nf
ns

• Estimated Flow Load (Lf ): Lf ¼ Sf � �Xf

where Xi is the size of the ith sampled packet of flow f; nf is the number of sampled

packets of flow f; ns is the total number of sampled packets; and N is the estimated

total number of packets (ns=sampling frequency).

Regarding the estimated flow load, this work applies an innovative way to assess

accuracy by resorting to a nonparametric method to estimate the density distribution

of load estimation (i.e., KDE— Kernel Density Estimation method) and thereby
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fostering the discussion on the estimation bias when applying each sampling

technique. Each distribution corresponds to a nonparametric probability density

function estimated using the Kernel method and a Gaussian smoothing scale. This

method consists in drawing a continuous and smooth density distribution, weighted

by the distance from a central value (the Kernel), where the population is inferred

from a finite number of observations. In this context, as defined in [59], let

ðLf1; :::; LfnÞ be the estimated load of all identified flows (n) for which the density p

is under evaluation. The shape of this function using the kernel estimator is given

by:

p̂bwðLf Þ ¼
1

n

Xn

i¼1

KðLf � Lfi

bw
Þ; ð1Þ

where K() is the kernel scaled by a Gaussian function, and bw is a smoothing

parameter called bandwidth which defines the variance of the kernel in order to

concentrate the density distribution within a specific interval. This interval is

defined using the standard deviation of the smooth kernel when considering both

unsampled traffic and traffic resulting from all sampling techniques.

When useful, the present study includes the mean absolute error (MAE) and the

mean square error (MSE) of the estimated values, which are commonly used to

evaluate the accuracy of estimators [33].

5 Evaluation Results

The results reported in this section evaluate comparatively the different sampling

strategies regarding: (1) the volume of sampled data; (2) the traffic workload

estimation accuracy; and (3) the ability to identify and classify network flows. The

section ends highlighting the major findings.

5.1 Volume of Data

Regarding the volume of data collected and stored along the sampling process,

Fig. 5 presents the percentage (relative to the unsampled trace) of the number of

packets and volume of data for OC48 (Fig. 5a) and OC192 (Fig. 5b) traces. As

shown, the count-based techniques use less resources when comparing to all time-

based techniques under analysis. It is important to observe that count-based

techniques allow a previous definition of the proportion of the total traffic that will

be collected (in number of packets). This makes these techniques more suitable for

MPs with storage limitations or for reducing the impact of measurement data

traversing the network during the sampling exporting process.

Taking into account the sampled data unpredictability in time-based approaches,

MuST technique has demonstrated to be more efficient in this selection trigger

group. The results also show a close relation between the two parameters (i.e.,

number of packets and volume of data) for all traffic scenarios and sampling
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techniques. For instance, in trace OC48, SystC has captured 1% of the original

packets corresponding to 1.2% of the total data amount.

5.2 Traffic Workload

Considering the comparative analysis of traffic workload, Table 4 presents the mean

throughput estimated after each sampling process. The mean throughput analysis of

different sampling techniques is particularly useful to guide measurement strategies

for activities such as traffic engineering, accounting and SLA compliance, as

measurements over large time intervals are considered. In general, for all traffic

scenarios, the RME is low (less than 5%). The exception is the LP technique, with a

relative error above 10% for both scenarios. In this regard, the comparison between

the remaining time-based and count-based techniques also does not show significant

variation, indicating that the lower performance of LP is related to its adaptive

selection scheme.

Analyzing the packet size distribution, Table 4 shows that all techniques achieve

accurate estimations of mean packet size. The ratio between peak and average

packet size, a descriptive statistic to measure the variability of packet time series,

(a) (b)

Fig. 5 Comparative data volume—traces from CAIDA, a OC-48, b OC-192

Table 4 Overall traffic behavior—all sampling techniques

Parameter/scenario Total SystC SystT RandC LP MuST

OC48

Mean throughput (Mbps) 975.97 979.38 978.43 979.92 1085.12 985.29

RME – 0.0035 0.0025 0.004 0.1118 0.0095

Mean packet size (Bytes) 565.44 567.31 566.84 567.94 561.71 566.18

Peak-to-average 3.67 3.58 3.66 3.65 3.69 3.66

OC192

Mean throughput (Mbps) 1534.78 1535.57 1534.52 1537.07 1308.13 1515.29

RME – 0.0005 0.0001 0.0014 0.1476 0.0126

Mean packet size (Bytes) 626.50 627.14 626.91 627.42 623.98 617.54

Peak-to-average 1.89 1.89 1.89 1.90 1.85 1.90
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for identifying burstiness, also ratifies the estimation accuracy of all techniques.

OC192 traffic exhibits the lower variability along the measurement process, a

feature correctly identified by the sampling techniques.

5.3 Flow Analysis

In order to compare the ability of sampling in capturing the real traffic behavior,

Fig. 6 presents the accuracy results regarding the identification of the total number

of unidirectional flows. As expected, the techniques that sample larger volumes of

data, identify a larger percentage of flows. However, when comparing count-based

and time-based sampling techniques involving similar data volumes, i.e., SystC 1/32

with MuST and SystC 1/16 with SystT, time-based approaches reveal to be more

effective. As an example, SystC 1/32 detects less 9% of flows when compared to

MuST, and SysC 1/16 leads to a decrease of 4% in flows identification when

compared to SystT.

Detailing these results, Table 5 illustrates the accuracy of the sampling

techniques in identifying the most representative flows (heavy hitters). As shown,

time-based techniques achieve better results in identifying the most representative

flows, regarding volume of data. This is explained by the intrinsic nature of time-

based techniques in capturing successive packets during a sampling interval. As

heavy hitters flows tend to comprise a larger number of packets in that interval, the

probability of being identified increases. This behavior is even more evident when

considering the top 5% heavy flows.

Attending to the formulation in Sect. 4.2.3, the results in Fig. 7 show the

distribution of the estimated flow load Lf (in logarithmic scale) when applying the

different sampling techniques. The resulting graphics demonstrate the ability to

represent the load distribution of all flows identified in the traffic trace, instead of

only the more significant ones. This analysis plays a key role for traffic

characterization and resource management activities.

The results show that time-based techniques achieve a distribution closer to the

real flow behavior (unsampled case in Fig. 7a) when compared with the count-based

Fig. 6 OC-192: flow identification per volume of data
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approaches (Fig. 7b, d), due to their more accurate load estimations of individual

flows. This is observed through the better adjustment on the x-axis, meaning that the

load estimations are closer to the real values. This suggests that a positive aspect

(sparse packet selection) in flow identification becomes a drawback of the count-

based techniques in flow dimensioning, since the current heuristics for flow load

estimation is linear extrapolation proportional to the sampling frequency. This may

Table 5 Accuracy in identifying representative flows

SystC (%) SystT (%) RandC (%) LP (%) MuST (%)

OC-48 8.34 27.09 8.39 31.39 28.19

OC-192 8.95 29.12 8.99 18.98 27.45

(a) (b)

(c) (d)

(e) (f)

Fig. 7 OC-48: density of flow load estimation, a unsampled , b SystC , c SystT , d RandC , e LP ,
f MuST
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interfere with network tasks in which the classification of small flows are of

particular interest, such as intrusion detection and DDoS attacks.

Conversely, once time-based techniques select successive packets, the bursty

behavior of flows tends to be better identified and dimensioned (when occurs within

the sample size interval), resulting in more accurate flow load distributions, as

presented in Fig. 7c, e, f.

To complement this analysis, the sampling accuracy analysis was extended to the

context of traffic classification (both at transport and application level). As

presented in Fig. 8a, all techniques provide fairly accurate estimations of the most

significant transport protocols in use (TCP, UDP), with LP exhibiting lower Mean

Squared Error (MSE), as shown in Table 6. The classification at application level2

(a)

(b)

Fig. 8 OC-192: accuracy in flow classification, a analysis at transport level , b analysis at application
level

2 Note that the evaluation of flow classification methodologies and tools is beyond the scope of this work,

which resorts to a port-based classification technique for distinguishing flows.
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presents more variability in the results. As shown in Fig. 8b and quantified in

Table 6, time-based techniques lead to a more realistic distribution of the

application share, with LP and MuST providing a slightly more accurate result.

Globally, the results evince that an adequate yet small fraction of network traffic is

able to provide a useful panoramic view of the protocolar mix of network flows.

5.4 Evaluation Remarks

Although the present evaluation study considers a limited set of possible measurement

activities, the obtained results bring a valuable comparative insight among existing

sampling techniques, providing a better understanding of their suitability and

overhead in real scenarios. The results showed that despite the extensive deployment

of systematic and random count-based techniques in current measurement tools, the

adaptive and systematic time-based techniques can outperform them in important

aspects, such as the accurate flow identification and dimensioning.

The lack of a conclusive best sampling technique (in terms of overall performance),

even considering a small set of measurement goals, ratifies the central purpose of this

work. The performed analysis also demonstrated that, for some measurement goals, it

is possible to reduce the amount of data involved in the networkmeasurementswithout

compromising the estimation accuracy. This confirms the architecture versatility and

potential in fostering the tuning and deployment of network measurement systems,

revealing that a modular and configurable approach to sampling is a step forward for

improving sampling scope and efficiency.

6 Conclusions

The present research work was focused on fostering the efficiency of network

measurement systems through the development of a modular architecture for

flexible deployment of packet sampling strategies. Supported by a consistent

sampling taxonomy, the sampling-based measurement architecture was structured in

three layers—management plane, control plane and data plane—covering the main

elements involved in traffic measurements. Each layer was designed aiming at

supporting the required compatibility with several measurement protocols and tools.

The modular structure of the layers also provides the flexibility to accommodate

mechanisms able to enhance the overall performance of current and forthcoming

measurement needs. The architectural components were presented along with the

different strategies and technologies that compose the several stages of a

measurement process. A proof-of-concept was also provided, exploring the

Table 6 MSE OC-192: traffic classification

SystC SystT RandC LP MuST

Transport level 0.68 0.23 0.68 0.18 0.29

Application level 0.32 0.15 0.31 0.10 0.07
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flexibility of the proposed architecture when comparing the tradeoff between

overhead and accuracy of representative sampling techniques in distinct measure-

ment scenarios.

Although there is the lack of a study identifying the best sampling approach for

each measurement goal and traffic scenario, the coverage of the literature and the

outcomes from the present evaluation work have clearly demonstrated the need for a

manifold solution. In this way, the resulting architecture, sustained by a modular

taxonomy of sampling techniques, provides a valuable contribution to this research

field. Having demonstrated the ability to implement several sampling techniques,

we expect that the proposed architecture and framework will foster new

comparative studies identifying the most suitable sampling techniques for the

multitude of measurement scenarios where sampling has become mandatory.

In this way, future work intends to address an extensive and systematic

comparative analysis toward various measurement tasks supported by packet

sampling. In addition, we plan to take advantage of Software Defined Networking

devices programability to implement the modular configuration of sampling

techniques proposed along this work. This will endow commercial network devices

with the ability to deploy a wide range of sampling techniques for efficient

measuring of distinct network measurement tasks.
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7. Tammaro, D., Valenti, S., Rossi, D., Pescapé, A.: Exploiting packet-sampling measurements for

traffic characterization and classification. Int. J. Netw. Manag. 22(6), 451–476 (2012). doi:10.1002/

nem.1802

8. Duffield, N.: Fair sampling across network flow measurements. ACM SIGMETRICS Perform. Eval.

Rev. 40(1), 367 (2012). doi:http://dl.acm.org/citation.cfm?id=2318857.2254800

9. Hernandez, E.A., Chidester, M.C., George, A.D.: Adaptive sampling for network management.

J. Netw. Syst. Manag. 9(4), 409–434 (2001). doi:10.1023/A:1012980307500

10. Silva, J.M.C., Carvalho, P., Rito Lima, S.: A multiadaptive sampling techniquefor cost-effective

network measurements. Comput. Netw. 57(17), 3357–3369 (2013). doi:10.1016/j.comnet.2013.07.

023

J Netw Syst Manage (2017) 25:643–668 665

123

http://datatracker.ietf.org/doc/rfc5475/
http://dx.doi.org/10.1145/167954.166256
http://dx.doi.org/10.1145/167954.166256
http://www.sciencedirect.com/science/article/pii/S0169755298001986
http://www.sciencedirect.com/science/article/pii/S0169755298001986
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=65244
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=65244
http://dx.doi.org/10.1002/nem.1802
http://dx.doi.org/10.1002/nem.1802
http://dl.acm.org/citation.cfm?id=2318857.2254800
http://dx.doi.org/10.1023/A:1012980307500
http://dx.doi.org/10.1016/j.comnet.2013.07.023
http://dx.doi.org/10.1016/j.comnet.2013.07.023


11. Duffield, N.G., Grossglauser, M.: Trajectory sampling for direct traffic observation. ACM SIG-

COMM Comput. Commun. Rev. 30(4), 271–282 (2000). doi:10.1145/347057.347555

12. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. SIGCOMM Comput.

Commun. Rev. 32(4), 323–336 (2002). doi:10.1145/964725.633056

13. Singh, R., Kumar, H., Singla, R.K.: Analyzing statistical effect of sampling on networktraffic dataset.

In: Satapathy, S.C., Avadhani, P.S., Udgata, S.K., Lakshminarayana, S. (eds.). ICT and Critical

Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India. Springer

International Publishing, pp. 401–408. http://link.springer.com/chapter/10.1007/978-3-319-03107-1_

43 (2014)

14. Yang, L., Michailidis, G.: Sampled based estimation of network traffic flowcharacteristics. In: IEEE

INFOCOM 2007—26th IEEE International Conference on Computer Communications, (IEEE)

pp. 1775–1783. doi:10.1109/INFCOM.2007.207. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4215789 (2007)

15. Carela-Español, V., Barlet-Ros, P., Cabellos-Aparicio, A., Solé-Pareta, J.: Analysis of the impact of
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