
OPTIMA: On-Line Partitioning Skew Mitigation
for MapReduce with Resource Adjustment

Zhihong Liu1 • Qi Zhang2 • Raouf Boutaba2 •

Yaping Liu3 • Baosheng Wang1

Received: 2 May 2015 / Accepted: 18 December 2015 / Published online: 2 January 2016

� Springer Science+Business Media New York 2016

Abstract Partitioning skew has been shown to be a major issue that can sig-

nificantly prolong the execution time of MapReduce jobs. Most of the existing

off-line heuristics for partitioning skew mitigation are inefficient; they have to

wait for the completion of all the map tasks. Some solutions can tackle this

problem on-line, but will impose an additional overhead by repartitioning the

workload of overloaded tasks. In this paper, we present OPTIMA, an on-line

partitioning skew mitigation technique for MapReduce. OPTIMA predicts the

workload distribution of reduce tasks at run-time, leverages the deviation detec-

tion technique to identify the overloaded tasks and pro-actively adjusts resource

allocation for these tasks to reduce their execution time. We provide the upper

bound of OPTIMA in time complexity, while allowing OPTIMA to perform

totally on-line. Through experiments using both real and synthetic workloads

Currently, Zhihong Liu is with University of Waterloo as a visiting student.

& Raouf Boutaba

rboutaba@uwaterloo.ca

Zhihong Liu

zhliu@nudt.edu.cn

Qi Zhang

q8zhang@uwaterloo.ca

Yaping Liu

ypliu@nudt.edu.cn

Baosheng Wang

bswang@nudt.edu.cn

1 College of Computer, National University of Defense Technology, Changsha, Hunan, China

2 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

3 Science and Technology on Parallel and Distributed Processing Laboratory, National University

of Defense Technology, Changsha, Hunan, China

123

J Netw Syst Manage (2016) 24:859–883

DOI 10.1007/s10922-015-9362-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9362-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9362-8&domain=pdf

running on an 11-node Hadoop cluster, we have observed OPTIMA can effec-

tively mitigate the partitioning skew and improved the job completion time by up

to 36.73 % in our experiments.

Keywords MapReduce � Partitioning skew � Resource allocation � Scheduling

1 Introduction

With the emergence of the cloud computing paradigm and development in web

applications, scientific computing and sensor networks, huge amounts of data are

being generated continuously. Thus, efficiently and promptly analyzing these large

datasets so as to extract relevant information for decision making is becoming an

issue of vital importance. MapReduce [8], due to its remarkable advantages in

simplicity, robustness, and scalability, has gained significant popularity as a big data

analysis framework. Many large companies, such as Amazon, Facebook, and

Yahoo!, have been using MapReduce routinely to process large volumes of data on

a daily basis.

While highly successful, the current implementations of MapReduce still suffer

from an issue known as partitioning skew. In particular, Apache Hadoop

MapReduce [32], one of the most popular implementations of MapReduce, uses a

hash function to partition the intermediate data among the reduce tasks. While

the goal of using the hash function is to evenly distribute workload to each

reduce task, in reality this goal is rarely achieved. For example, Zacheilas and

Kalogeraki [37] have shown the existence of skewness in a MapReduce

application based on real-world social graph data; their experiments show that the

largest partition can be more than five times larger than the smallest partition in

the same job.

The skewed workload distribution among tasks can negatively impact both job

performance and resource utilization. First, the completion time of a MapReduce

job is determined by the execution time of its slowest task. The run-time variation of

parallel tasks, which is caused by the skewed workload distribution, may prolong

the execution of the entire job. Second, skewed workload distribution gives rise to

variation in resource requirements. As a result, machines that run tasks with heavy

workload may experience resource contention, while machines with less data to

process may incur resource idleness.

The partitioning skew problem in MapReduce has been extensively investigated

in recent years. One strategy is to rebalance the key distribution among reduce tasks

[11, 12, 16, 29]. However, this catalog of approaches will lead to a synchronization

barrier that can slow down job execution. This is because in order to obtain key

distribution statistics, they have to either wait for the completion of map tasks or

perform sampling before the execution of the job. Another strategy is to reassign

more work to more powerful nodes [21]. This strategy identifies straggling tasks,

often called stragglers, based on the task’s remaining time, and then repartition the

unprocessed workloads of stragglers to the nodes that exhibit better performance.

However, the overhead due to repartitioning (as reported in [21], approximately

860 J Netw Syst Manage (2016) 24:859–883

123

30 s overhead is incurred) can be quite large for small jobs. A final strategy is to run

additional speculative tasks on other machines [38]. This technique is prominently

used in production clusters such as Facebook and Microsoft Bing [1]. It monitors the

progress of every task, and spawns redundant copies for tasks at a slow progress

rate, hoping that the replica tasks will run faster than the originals. However, being

agnostic to the correlation between task workload and progress rate, replication-

based approaches may waste resources.

Motivated by the limitations of existing approaches, in our prior work [25], we

proposed DREAMS, a framework that provides run-time partitioning skew

mitigation. DREAMS leverages historical records to construct profiles for each

type of jobs. Based on the profile, DREAMS then allocates the right amount of

resources to reduce tasks in order to decrease the variation of their execution time.

The main drawback of DREAMS is that it requires job profiling. Even though job

profiling is reasonable for many jobs that are executed repeatedly in today’s

production clusters [33], building a job profile requires executing a large set of

benchmarks with various task resource allocations, which is both expensive and

time consuming. Moreover, DREAMS cannot handle the partitioning skew problem

of jobs that have not been encountered before. This places a significant constraint on

its applicability.

In this paper, we present OPTIMA, an On-line Partitioning skew miTIga-tion
technique for MapReduce with resource Adjustment. In contrast with DREAMS,

OPTIMA does not require job profiling and eliminates the dependency on the task

performance model. This not only eliminates the limitation of applicability to only

routine jobs in DREAMS, but also allows the solution to be carried out in an on-line

manner. In particular, we develop a low complexity on-line partition size prediction

model. Further, we propose a data skew detection algorithm that can identify the

overloaded tasks, which are the reduce tasks with extremely large workload, in

linearithmic time. Finally, we propose a scheduling algorithm that adjusts resource

allocation to the overloaded tasks with the goal of reducing the variation of task

running time and accelerating job completion. Through experiments using both real

and synthetic workloads running on an 11-node Hadoop cluster, we show that

OPTIMA can effectively mitigate negative impact of partition skew, thereby

improving job performance by up to 36.73 %.

The rest of this paper is organized as follows. Section 2 provides the background

and motivations of our work. We describe the system architecture of OPTIMA in

Sect. 3. Section 4 details the design of OPTIMA. Section 5 presents the results of

experimental evaluation. Finally, we summarize existing work related to OPTIMA

in Sect. 6, and draw our conclusion in Sect. 7.

2 Motivation

This section provides an overview of Hadoop MapReduce and elaborates the

partitioning skew issue therein motivating our study.

J Netw Syst Manage (2016) 24:859–883 861

123

2.1 Hadoop MapReduce

MapReduce [8] is a parallel computing model for large-scale data-intensive

computations. In MapReduce, the input data is split into uniform sized data chunks

(e.g. 64 or 128 MB), which are stored in a distributed file system across the cluster

nodes. Each of these data chunks is called an inputsplit. There are two types of tasks

in MapReduce, namely map and reduce tasks. A map task takes one inputsplit as

input, applies the user-defined map function on its input and generates a sequence of

key-value pairs called intermediate data. A hash function is then used to divide the

intermediate data into a number of partitions and distribute them across reduce

tasks. A reduce task takes one partition (i.e. the intermediate key-value pairs

corresponding to the same hash values) as input and performs the reduce function on

its partition to generate the final output.

In a nutshell, MapReduce adopts a ‘‘divide-and-conquer’’ approach for data-

intensive computations. In the map stage (a.k.a. the ‘‘divide’’ phase), the processing

of a job is divided to a number of independent sub-problems, and each sub-problem

is processed by a map task. Subsequently in the reduce stage (a.k.a. the ‘‘conquer’’

phase), the output of all the sub-problems is aggregated by a number of reduce tasks,

thereby generating the final output for the job. By breaking down a data-intensive

job into a large number of small tasks and executing them in parallel across multiple

machines, MapReduce can significantly reduce the job running time.

Currently, the de facto implementation of MapReduce is Apache Hadoop

MapReduce (MRv1) [13]. It consists of a JobTracker that is responsible for task

scheduling and a number of TaskTrackers that are responsible for launching and

allocating resources for tasks. To do so, the TaskTracker launches a Java Virtual

Machine (JVM) that executes the corresponding map or reduce task. MRv1 adopts a

slot-based resource allocation scheme where each machine is divided into identical

slots that can be used to execute tasks. The number of map slots and reduce slots

determines respectively the maximum number of map tasks and reduce tasks that

can be scheduled on the machine at a given time.

Due to many inadequacies experienced in MRv1, the next generation of the

Hadoop compute platform, YARN [32], has been developed. Compared to MRv1,

YARN introduces ResourceManager and ApplicationMaster, and divides the

function of scheduling to two parts: the ResourceManager is responsible for

allocating resources to applications subject to constraints of capacities, fairness,

etc.; the ApplicationMasters has the responsibility of negotiating resources from the

ResourceManager and assigning the obtained resources to its tasks. In particular,

YARN deprecates the slot-based resource management approach. Instead, a more

flexible resource unit called container is adopted, which provides specific resource

accounting and enforces the resource limit on the task running within it.

Nevertheless, in both MRv1 and YARN, the schedulers assume each reduce task

has uniform workload and resource consumption, and therefore allocate identical

resources to each reduce task. In the presence of partitioning skew, this scheduling

scheme can cause a variation in task running time and degradation in resource

utilization. More specifically, the reduce tasks with heavy workload run slowly

because the resources allocated to them are limited by the ‘‘slot’’ or container size,

862 J Netw Syst Manage (2016) 24:859–883

123

whereas reduce tasks with light workload tend to under-utilize the resources

allocated to them. In both cases, the resulting resource allocation is inefficient, thus

prolonging the job completion time.

2.2 Partitioning Skew

In the current implementations of MapReduce, the output of map tasks are

distributed among reduce tasks via a hash function Hash(HashCode(key) mod
number of reducers). Typically, this hash function can provide load balancing

if the key frequencies and the size of key-value pairs are uniformly distributed.

However, this may fail with skewed data. For example in the InvertedIndex

application, the hash function partitions the intermediate data based on the words

appeared in the inputsplit. Therefore, reduce tasks which take popular words as keys

will be assigned a larger workload. As shown in Fig. 1, after partitioning the

intermediate data by the hash function. P1 and P2 are distributed to R1 and R2

respectively. However, since P1 is larger than P2, workload imbalance between R1

and R2 is incurred. The partitioning skew is prevalent in MapReduce applications,

and it can be caused by following reasons [11]:

1. skewed key frequencies: Some keys occur more frequently in the intermediate

data, causing those reduce tasks that process these popular keys to become

overloaded.

2. skewed tuple sizes: In applications where the sizes of values in the key-value

pair vary significantly, uneven workload distribution may arise.

3. skewed execution times: Typical in scenarios where processing a single, large

key-value pair may require more time than processing multiple small pairs.

Even if the overall data size per reduce task is the same, the execution times of

reduce tasks may be different.

We focus on the skewed key frequencies and skewed tuple sizes, as they are

commonly seen in MapReduce jobs and have a significant impact on the job

completion time. It is shown by recent works [11, 12, 16, 29, 37] that solving the

partitioning skew problem is not trivial. Many solutions have been proposed.

However, most of the existing approaches tackle this problem using off-line

M1

M2

M3

P
ar

tit
io

ni
ng P1

P2

R1

R2

k1,v1

k2,v2

kn,vn

R1 R2

Hash(Key) mod R

...

P1'

P1'

P1'

P2'

P2'

P2'

Fig. 1 MapReduce
programming model

J Netw Syst Manage (2016) 24:859–883 863

123

heuristics, either by waiting for all the map tasks to finish or sampling in advance, so

as to estimate the reducer’s workload distribution and then balance the workload

among reduce tasks. The authors of [15] demonstrate that by starting the shuffle

phase after all map tasks are completed, the overall job completion time will be

prolonged. Admittedly, Skewtune [21] tries to solve this problem in an on-line

fashion by repartitioning the straggling tasks to fully utilize the nodes in the cluster.

However, achieving this goal incurs additional overhead due to both adaptive

partitioning and reconstructing the final output by concatenation. Our previous

work, DREAMS [25], provides run-time partitioning skew mitigation without using

load rebalancing and repartitioning. However, it relies on job profiles which limits

its applicability to routing jobs only. Therefore, in this work we propose an on-line

partitioning skew mitigation technique, which detects the overloaded tasks at run-

time and pro-actively adjusts resource allocation for these tasks to reduce their

execution times. This approach gets rid of job profiles and preforms totally on-line,

and at the same time effectively mitigates the negative impact of partitioning skew.

NodeManager

Map 1
Map 2

...P1 Pn...P2

P1 Pn...P2

ApplicationMaster

Partition Size Predictor

ResourceManager

Fine-grained Container
Scheduler

Partition Stats Report

Resource Request

Resource Response

Partition Size Monitor

NodeManager

Map 3
Map 4

...P1 Pn...P2

P1 Pn...P2

Partition Size Monitor

NodeManager

Map 5
Map 6

...P1 Pn...P2

P1 Pn...P2

Partition Size Monitor

Container Launch

Overloaded Task Detector

Resource Allocator

Fig. 2 Architecture of OPTIMA

864 J Netw Syst Manage (2016) 24:859–883

123

3 System Architecture

This section describes the design of our proposed resource allocation framework

called OPTIMA. The architecture of OPTIMA is shown in Fig. 2. There are five

main components: Partition Size Monitor, running at the NodeManager; Partition

Size Predictor, Overloaded Task Detector and Resource Allocator, running at the

ApplicationMaster; Fine-grained Container Scheduler, running at the

ResourceManager. Specifically, each Partition Size Monitor records the statistics

of intermediate data generated by each map task at run-time and sends them to the

ApplicationMaster through heartbeat messages. The Partition Size Predictor

collects the partition size reports from NodeManagers and predicts the partition

size of every reduce task for this job. Based on the estimated workload of reduce

tasks, the Overloaded Task Detector then detects the overloaded reduce tasks. The

Resource Allocator determines the amount of resources to be allocated to each

reduce task based on the outliers detection results. Lastly, the Fine-grained

Container Scheduler is responsible for scheduling resources among all the

ApplicationMasters in the cluster, which is based on scheduling policies such as

Fair scheduling [14] and Dominant Resource Fairness (DRF) [10]. Note that the

scheduler in original Hadoop allocates containers of identical size to all reduce tasks

(and similarly, all map tasks). We have modified the original scheduler to support

fine-grained container scheduling where tasks can request containers of different

sizes.

The workflow of resource allocation mechanism used by OPTIMA consists of 5

steps:

1. After the ApplicationMaster is launched, it schedules all the map tasks first and

then ramps up the reduce task requests slowly according to the slowstart setting.

During their execution, each Partition Size Monitor records the size of

intermediate data produced by map tasks. It then sends the statistics to the

ApplicationMaster through heartbeat messages which are used to monitor the

status of tasks in Hadoop.

2. Upon receiving the partition size reports from the Partition Size Monitors, the

Partition Size Predictor predicts the size of each partition using our proposed

prediction model.

3. After the estimated size of each reduce task is known, the Overloaded Task

Detector identifies overloaded reduce tasks. It then computes the resource

allocation for each overloaded task. Afterwards, the ApplicationMaster sends

resource requests to the ResourceManager.

4. The ResourceManager receives ApplicationMasters’ resource requests through

the heartbeat messages, and schedule free containers in the cluster to the

corresponding ApplicationMasters.

5. Once the ApplicationMaster obtains new containers from ResourceManager, it

assigns the matching container to its pending task, and finally launches the task.

J Netw Syst Manage (2016) 24:859–883 865

123

4 OPTIMA Design

There are three main challenges that need to be addressed in OPTIMA: (1)

predicting the reducer’s workload distribution on-line with no priori knowledge of

the map function and the input dataset; (2) detecting overloaded tasks in real-time

without human invention and finally, (3) adjusting the resource allocations

dynamically to accelerate the job completion. In the following sections, we shall

describe our technical solutions for these challenges.

4.1 Predicting Partition Size

In order to cull the partitioning skew, the workload distribution among reduce tasks

should be known in advance. Unfortunately, the sizes of partitions assigned to reduce

tasks depend on the input dataset, the map function and the number of reduce tasks of

the application. Even for MapReduce jobs that are routinely executed, different

reducer’s workload distributions can be produced if the input datasets are changed. As

a result, the straightforward solution is to wait for the completion of all the map tasks

or perform sampling before jobs start to gather the workload distribution statistics.

However, in order to improve job running time, currentMapReduce schedule overlaps

the execution of map and reduce tasks by allowing reduce tasks to execute before the

completion of all map tasks (e.g. the default slowstart setting is 5 %). In this case, if we

gather the actual partition size after the completion of all map tasks and then schedule

the reduce tasks, the job completion can be severely delayed. Therefore, it is necessary

to predict the partition size on-line.

Since the input datasets of MapReduce applications in production clusters tend to

be very large, monitoring the workload statistics in the level of key-value pairs is

expensive. And HDFS [5] splits the large amount of data into small data chunks,

which quite naturally creates a sampling space. We are motivated to use a small set

of random data chunks to reveal some characteristics of the whole dataset in terms

of workload distribution among reduce tasks. That is, we can analyse the pattern of

intermediate data after a fraction of map tasks have completed, and then predict the

reducer’s workload distribution for the whole dataset.

Therefore, we perform a set of k measurements (j ¼ 1; 2; . . .; k) over time during

the map phase, and collect the following two metrics F j; S j
i

� �
:

1. F j is the percentage of map tasks that have been processed, j 2 ½1; k� and k

refers to the number of collected tuples F j; S j
i

� �
. Note that each map task

processes one inputsplit which is divided by HDFS, and each inputsplit has

identical size of data (64, 128 MB, etc.). As a result, F j is approximately equal

to the fraction of the whole dataset that has been processed.

2. S
j
i is the size of the intermediate data generated by the completed map tasks for

reduce task i. In our implementation, we have modified the reporting

mechanism so that each map task reports this information to the Applica-

tionMaster upon map task completion.

866 J Netw Syst Manage (2016) 24:859–883

123

Every time the percentage of completed map tasks (F j) changes, a new

measurement of ðF j; S j
i Þ is made. Hence, for each reducer i, there will be k tuples of

ðF j; S j
i Þ collected over time, where j ¼ 1; 2; . . . k. With this data, we use Ordinary

Least Squares (OLS) [31] linear regression to determine the following equation for

each reduce task i 2 ½1;N�:

S
j
i ¼ a1 þ b1 � F j j ¼ 1; 2; . . . k ð1Þ

where a1 and b1 are the scaling factors which need to be obtained. We introduce

an outer factor, d, which is the threshold to control our prediction model to stop

the process of training and finalize the prediction. In practice, d can be the map

completion percentage at which reduce tasks can be scheduled (e.g. 5 %). Every

time a new map task has finished, a new training data is created. When the

fraction of map tasks reaches d, we calculate the scaling factors ða1; b1Þ and

predict the size of partition for each reduce task i, even though not all of the map

tasks are completed.

Theorem 1 The time complexity of the on-line partition size prediction model is

Oðk � NÞ.

Proof For each reduce task i 2 ½1;N�, the scaling factors can be provided by

following equation:

a1
b1

� �
¼ XTX

� ��1
XTY; ð2Þ

where

X ¼

1 F1

1 F2

..

. ..
.

1 Fk

0

BB@

1

CCA; Y ¼

S1i
S2i

..

.

Ski

0

BBB@

1

CCCA

It takes O(k) to multiply XT by X, O(1) to compute the inversion of XTX, O(k) to

multiply XTXð Þ�1
by XT and finally O(k) to multiply XTXð Þ�1

XT by Y. Hence, the

computational complexity for predicting one task is O(k). Assuming there are N

reduce tasks, we need to preform prediction N times. Therefore, the total compu-

tational complexity for N tasks MapReduce jobs is Oðk � NÞ. h

We noticed that the load model in [29] can also be used by OPTIMA for partition

size prediction. However, its sampling scheme is coupled with the partitioning plan,

which is generated during the execution of map tasks, and as a result, this sampling

scheme needs to be performed each time before the beginning of each job. In our

case, since we do not need to modify the implementation of partitioning, our

partition size prediction can be done entirely on-line.

J Netw Syst Manage (2016) 24:859–883 867

123

4.2 Detecting Overloaded Tasks

By using the partition size prediction scheme presented in the previous section, we

now can estimate the size of every reduce task at run-time. With the statistics of the

reducer’s workload distribution in hand, however, determining which reduce tasks

should be allocated more resources to is still a challenge. Here, we consider the

reduce tasks which have extremely large workload as overloaded tasks. And these

overloaded tasks are actually outliers in terms of the size of workload. Hence, we

use a deviation detection algorithm [3] to identify them. Deviation detection is an

outliers detection technique based on information theory, which neither makes

assumption on the underlying statistic distribution of the data (e.g. statistic based

outlier detection algorithm), nor requires human invention of specifying the metrical

distance function (e.g. nearest neighbor based outliers detection algorithm). It tries

to isolate the small minorities while maximizing the reduction in the deviation of the

dataset. In order to apply the deviation detection algorithm in [3], we define the

following concepts:

– the set of items I ¼ Pi j i 2 ½1;N�f g(and its power set PðIÞ);
– the dissimilar function D : PðIÞ ! Rþ

0 be the variance of elements of the set;

– the cardinality function C : PðIÞ ! Rþ
0 be the number of elements of the set,

where I1 � I2) CðI1Þ\CðI2Þ for all I1; I2 � I;

– the smoothing factor for each Ij � I:

SFðIjÞ ¼ CðI n IjÞ � ðDðIÞ � DðI n IjÞÞ

– We say that Ix � I is an exception set of I with respect to D and C if

SFðIxÞ� SFðIjÞ for all Ij � I

Since many real-world datasets, such as frequency of word usage in English,

ranking of world cities by population, ranking of number of ships built by all

countries, etc., follow the Zipf’s law [20], where the less represented occurrences

play a dominant role on the data distribution, we believe that the outliers in our

circumstance are a small number of tasks but incur workload imbalance distinctly.

As a result, we define the dissimilar function as the variance of the workload and the

cardinality function as the count of tasks, which can cull the least number of tasks

that most contribute to the dissimilarity. To demonstrate this scheme, consider an

example that there are 4 reduce tasks and the size of each reduce task is predicted as

1, 2, 1 and 5 respectively. Thus the set I ¼ 1; 2; 1; 5f g. By computing the smoothing

factor SFðIjÞ for each candidate exception set Ij, we get:

Ij InIj CðInIjÞ DðInIjÞ SFðIjÞ

{ } 1; 2; 1; 5f g 4 3.59 0.00

1f g 1; 2; 5f g 3 4.33 -2.22

868 J Netw Syst Manage (2016) 24:859–883

123

Ij InIj CðInIjÞ DðInIjÞ SFðIjÞ

2f g 1; 1; 5f g 3 5.33 -5.22

5f g 1; 2; 1f g 3 0.33 9.78

1; 2f g 1; 5f g 2 8.00 -8.82

2; 5f g 1; 1f g 2 0.00 7.18

1; 5f g 1; 2f g 2 0.50 6.18

1; 1; 5f g 2f g 1 0.00 3.59

1; 2; 5f g 1f g 1 0.00 3.59

1; 1; 2f g 5f g 1 0.00 3.59

Therefore, the reduce task in the set Ij ¼ 5f g which has five units of workload

can be qualified as the laggard. A simple strategy to solve this deviation detection

problem is to iterate over all subsets of the universal set I, then compute the smooth

factor for every subset to identify the subset with the biggest smooth factor as the set

of the overloaded tasks. Since there are N! subsets of I when it contains N reduce

tasks, the complexity of this simple strategy is at least O(N!), even ignoring the

complexity of computing SFðIjÞ in each iteration step. Hence, it is inefficient for

detecting the overloaded tasks for large dataset in real-time. This motivates us to

innovate a fast method for overloaded outliers detection, which reveals linearithmic

time complexity.

Algorithm 1 Overloaded task detection algorithm
Input: I - set of the predicted sizes of all the reduce tasks, in particular, I = {Pi | i ∈ [1, N]}
Output: Ix - Set of overloaded tasks.
1: sort the elements in I in decreasing order of the distance from the mean, say I =

{E1, E2, · · · EN}
2: I0 = φ
3: Ix = φ
4: C0 = N
5: M0 = Mean(I)
6: D0 = V ariance(I)
7: SF (Ix) = 0
8: for j from 1 to N do
9: Ij = Ij−1 ∪ {Ej}
10: Cj = Cj−1 − 1

11: Mj =
(N−j+1)·Mj−1−Ej

N−j

12: Dj = (N−j+1)Dj−1−(Ej−Mj)·(Ej−Mj−1)
N−j

13: SFj = Cj · (D0 − Dj)
14: if SFj ≥ SF (Ix) then
15: Ix = Ij
16: SF (Ix) = SFj

17: end if
18: end for
19: return Ix

J Netw Syst Manage (2016) 24:859–883 869

123

Observe that the bigger the distance from the mean, the larger the contribution it

will induce on the variance. Thus, appending the elements one by one, in decreasing

order of the distance from the mean, to the candidate exception set, the cardinality

function of the residual set will continuously descend but the reduction in the

variance will gradually ascend. As a result, at some point during the execution, we

will observe the optimal subset where the smoothing factor is the greatest.

Algorithm 1 presents the overloaded task detection algorithm in detail. First, we sort

the elements in I in decreasing order of the distance from the mean. I0 represents the
sorted set, where I0 ¼ E1; E2; . . .ENf g. After that, we append the elements in I0 one
by one to the exception set Ix. Note that Mj is the mean of elements in the residual

set of I0j . More specially, according to Line 11 in Algorithm 1, when j ¼ 1,

M1 ¼ ðN�M0�E1Þ
N�1

, which is the mean of elements in the residual set of I0j , i.e.

MeanðI0 n E1f gÞ. Similarly, Dj is the variance of elements in the residual set of I0j .

Theorem 2 The time complexity of the overloaded tasks detecting algorithm is

O(Nlog(N)).

Proof In line 1 of the Algorithm 1, sorting the set of N numbers requires

O(Nlog(N)) computational complexity [26]. Subsequently, the operations from line

2–7 run in constant time O(1). In the loop from line 8–17, Mj and Dj can be

incrementally calculated by Mj�1 and Dj�1 respectively (see the derivation in [9]),

and there are N iterations, thus, the time complexity of this loop is O(N). The total

complexity, consequently, is O(Nlog(N)). h

4.3 Correlating Task Duration with Partition Size

Upon identifying the overloaded tasks, OPTIMA can now adjust the resource

allocation to mitigate the partitioning skew. However, how much resources should

be allocated to those tasks still needs to be decided. To achieve this, the impact of

the partition size and resource allocation on the task duration should be determined.

In this section, we present the relationship between task duration and partition size.

200 400 600 800
0

50

100

150

Size of Partition (MB)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value

(a)

10 20 30 40 50
0

50

100

150

Size of Partition (MB)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value

(b)

Fig. 3 The relationship between task duration and partition size for Sort running on 10G synthetically
skewed data, and InvertedIndex running on 10G Wikipedia data. a Sort. b InvertedIndex

870 J Netw Syst Manage (2016) 24:859–883

123

We run a set of experiments in our testbed cluster (see details in Sect. 5.) and

keep track of the task durations and partition sizes. More specifically, we fix the

CPU and memory allocation of each reduce task and measure the task duration of

each reduce task. The blue points in Figure 3 show the results of the partition size

and corresponding task duration for every reduce tasks in the 10G Sort and

InvertedIndex job. Then we use linear regression to determine this relationship with

Eq. 3 as follow:

Ti ¼ a2 þ b2 � Pi; i 2 ½1;N� ð3Þ

where Ti and Pi are the duration and partition size of reduce task i respectively. The

results confirm that there is a linear relationship between task duration and partition

size. Similar results have also been found by Lin et al. (see pp. 55–56 in [24]).

4.4 Correlating Task Duration with Resource Allocation

Similar to the previous section, we run a set of experiments by fixing the partition

size and vary resource allocation of each reduce task to study the relationship

between task duration and resource allocation. Figure 4 shows the task durations by

varying the CPU allocation from 1 to 8 vCores (memory allocation is fixed to 1 GB)

for 10G Sort and InvertedIndex job. We use non-linear regression [4] to model this

relationship with following inversely proportional model:

Ti ¼ a3 þ
b3
A
cpu
i

; i 2 ½1;N� ð4Þ

where A
cpu
i denotes the CPU allocation for reduce task i. The regression results is

depicted by the dotted lines in Fig. 4. While this model fits well when the number of

vCores is small, it is no longer accurate when a large amount of CPU resource is

allocated to a task. This can be remedied by a piece-wise inversely proportional

function. As shown in Fig. 4, the solid lines fit better than the dotted lines.

1 2 3 4 5 6 7 8
10

20

30

40

50

60

CPU allocation (vCores)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value
fitted value (piece-wise)

(a)

1 2 3 4 5 6 7 8
10

15

20

25

30

35

40

CPU allocation (vCores)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value
fitted value (piece-wise)

(b)

Fig. 4 The relationship between task duration and CPU allocation for Sort running on 10G synthetically
skewed data and Invertedindex running on 10G Wikipedia data. a Sort. b InvertedIndex

J Netw Syst Manage (2016) 24:859–883 871

123

From above observations, it is clear that as the CPU allocation increases, the task

duration reduces. However, after reaching a threshold (after 3 vCores in our

experiments), the task duration does not decrease even though CPU allocation is

continuously increasing. Similar observation is also made in Jalaparti et al. [18],

where show that increasing the network bandwidth beyond a threshold does not help

since the job completion time is dictated by disk performance. This is consistent

with the phenomenon we observed.

In terms of memory, there are two configurations in YARN: mapreduce.redu-

ce.memory.mb and mapreduce.reduce.java.opts (similar to map tasks), which are

container RAM size and JVM heap size respectively. The former setting specifies

the logical resource allocation of a task, which is used for headroom calculation in

the ResourceManager and RAM usage monitoring in the NodeManager; the latter is

the maximum heap size of the JVM process that executes the task, which specifies

the actual memory size that a task can used. Therefore, we vary the JVM heap size

setting from 200 (The default value) to 5600 MB while the CPU is fixed to 1 vCore,

and model the relationship between task duration and memory allocation by

following equation:

Ti ¼ a4 þ
b4

Amem
i

; i 2 ½1;N� ð5Þ

where Amem
i is the memory allocation for reduce task i. Figure 5 shows the

regression results for 30G Sort and 30G InvertedIndex respectively.1 We can see

that the inversely proportion model is also applicable to memory. More specifically,

there is a significant improvement at the early portion of the curve. That is because

the increase of memory can reduce disk I/O operations when memory requirements

exceeds allocation. However, after a critical point, no improvement can be obtained

even though memory allocation is increasing, which is consistent with the CPU

resource.

0 800 1600 2400 3200 4000 4800 5600
300

400

500

600

700

Container Heap Size (MB)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value

(a)

0 800 1600 2400 3200 4000 4800 5600
300

400

500

600

700

800

Container Heap Size (MB)

D
ur

at
io

n
(S

ec
on

ds
)

measured value
fitted value

(b)

Fig. 5 The relationship between task duration and memory allocation for Sort running on 30G
synthetically skewed data and Invertedindex running on 30G Wikipedia data. a Sort. b InvertedIndex

1 Since the memory requirement is related to the size of data, larger datasets are needed in order to

clearly demonstrate the impact of memory allocation.

872 J Netw Syst Manage (2016) 24:859–883

123

4.5 Resource Allocation Algorithm

We now present the resource allocation strategy in this section. The scheduler

allocates resources for each reduce task in a way of minimizing the variation in their

execution times, thus mitigating the impact of partitioning skew. From Sect. 4.3, we

know that the task duration increases monotonically with the partition size. Hence,

if each reduce task is allocated an identical amount of resource which is the solution

of native YARN, those overloaded tasks will incur the variation in execution times

among reduce tasks. On the other hand, we have demonstrated in Sect. 4.4 that the

relationship between task duration and resource allocation follows an inverse

proportional model. Therefore, we simply increase resource allocations for those

overloaded tasks, keeping resource allocations for the ordinary tasks unchanged,

thereby reducing the durations of overloaded tasks.

More specifically, in terms of memory, we allocate the amount that equals to

their partition sizes and normalizes it with the memory allocation unit setting in

YARN denoted as Unitmem; in terms of CPU, we scale up the allocation to

b Pi

Pmean
c � Acpu

ord , where Pmean is the mean of all the partitions and A
cpu
ord is the CPU

allocation to ordinary tasks. This strategy is simple but works well in practice. It

roughly estimates the resource requirements for overloaded tasks according to their

partition sizes, and privileges these tasks by guaranteeing their resource allocation.

Nevertheless, over-allocation will result in wasting resource as shown in Sect. 4.4.

Besides, due to the finite resource capacities of nodes, resource allocations should

be less than the capacities. We consider CPU and memory allocation should be less

than threshold ucpu and umem respectively, which are input parameters to our

algorithm.

Algorithm 2 Resource allocation algorithm
Input: δ - Threshold of stopping training the Partition Size Prediction Model;

ϕcpu - Maximum allocation of CPU;
ϕmem - Maximum allocation of memory;

Output: C - Set of resource allocations for each reduce task Acpu
i , Amem

i
1: Collect Si and F , when a success completion event of map tasks is received by Applica-

tionMaster;
2: When threshold δ is reached:
3: Stop training and finalize Partition Size Prediction Model;
4: Predict the set {Pi|i ∈ [i, N]} while F = 100%;
5: Detect the overloaded tasks according to Algorithm 1, obtain the set Ix;
6: Derive the set of task ID, IDskew, from the detected outliers;
7: for each reduce task i ∈ IDskew do
8: Amem

i = Min Pi
Unitmem Unitmem, ϕmem

9: if i ∈ IDskew then
10: Acpu

i = Min Pi
Pmean

Acpu
ord , ϕcpu

11: end if
12: C = C ∪ Acpu

i , Amem
i ;

13: end for
14: return C

J Netw Syst Manage (2016) 24:859–883 873

123

Algorithm 2 describes our resource allocation policy in detail. As shown in Line

1–4, after reaching the threshold d, the partition size of each reduce task can be

predicted with the prediction model. Afterwards, the scheduler can detect the

overloaded tasks and derive the corresponding task ID according to the estimated

partition size. Finally, in the iteration from Line 7 to 13, the CPU allocation of

overloaded tasks are adjusted according to their partition size. After the resource

allocations are finalized, ApplicationMaster sends resource request to Fine-grained

Container Scheduler in ResourceManager.

5 Evaluation

We have implemented OPTIMA on Hadoop YARN 2.4.0 as an additional feature.

Implementing this approach requires only minimal change to the existing Hadoop

architecture. And we perform our experiments on 11 virtual machines (VMs) in the

SAVI Testbed [19], which contains a large cluster with many server machines. Each

VM has four 2 GHz cores, 8 GB RAM and 80 GB hard disk. We deploy Hadoop

YARN 2.4.0 with one VM as ResourceManager and NameNode, and remaining

10 VMs as workers. Each worker is configured with 8 virtual cores and 7 GB RAM

(leaving 1 GB for other processes). The minimum CPU and memory allocations to a

container are 1 vCore and 1 GB respectively. The HDFS block size is set to 64 MB,

and the replication level is set to 3. The CgroupsLCEResourcesHandler configu-

ration is enabled, and we also activate the configuration of map output

compression.2

The applications used in our evaluation are as follows:

1 Sort (SRT) This application takes input data generated by RandomWriter as

input, and outputs the data sorted by the key. Each map task sorts one split of

the input dataset, and then each reduce task merges the output of the map tasks

for a given partition key. Similar to [15], we modify RandomWriter to produce

skewed data.

2 InvertedIndex (II) The inverted index is a popular data structure used for Web

search, and this application takes a list of documents as input and generates an

inverted index for these documents. Each map task emits \word; docId[
tuples and the reduce task combines all tuples on a assigned key and emits

\word; listðdocIdÞ[tuples.

3 WordCount (WC) WordCount computes the occurrence frequency of each word

in the large collection of documents. Each map task emits \word; count[
pairs. The reduce task sums up the counts for a given key, which maybe several

words, from all map tasks and outputs the final counts.

4 RelativeFrequency (RF) RelativeFrequency is introduced in [24]. Other than

AbsoluteFrequency, which measures the number of times word wi co-occurs

with word wj within a specific context, RF measures the proportion of time

2 Using compression in Hadoop to optimize MapReduce performance is prevalent in industry and

academia [6, 27, 34].

874 J Netw Syst Manage (2016) 24:859–883

123

word wj appears in the context of wi. It is also denoted as FðwjjwiÞ. To compute

FðwjjwiÞ. RF counts up the number of co-occurrences of the bigram ðwi;wjÞ,
and then divides it by the number of occurrences of all the bigrams ðwi; �Þ. We

use the implementation of this application provided by [23].

Table 1 gives an overview of these benchmarks together with the configurations

we have used in our experiments. The skewness of the reducer workload is

measured by the coefficient of variation (CV), which is used as a fairness metric in

the literature [17]. The larger the ratio, the more skewness is considered in the

distribution of the partitions. We will present results of running these applications

with both small and large datasets in the following sections.

5.1 Accuracy of Prediction of Partition Size

In this set of experiments, we wanted to validate the accuracy of the partition size

prediction model. To this end, we execute MapReduce jobs on different datasets,

and compute the mean absolute percentage error (MAPE) of all partitions in each

scenario. The MAPE is defined as follows.

MAPE ¼ 1

N

PN
i¼1

P
pred
i � Pmeasrd

i

���
���

Pmeasrd
i

ð6Þ

where N is the number of reduce tasks in this job, P
pred
i and Pmeasrd

i are the predicted

and measured value of partition size of reduce task i respectively. Table 2 sum-

marizes the MAPE for the testing applications with threshold d from 0.05 to 0.15 on

the small and large datasets. We run 10 experiments for each scenario and adopt the

average. It can be seen that the error rates of most of the applications are \5 %. In

particular, RelativeFrequency reaches the highest error at 7.84 %. Furthermore, as

the threshold d increased, the error rate of the prediction model decreases. This is

not hard to understand, since more training data can be obtained as d increased,

thereby improving the accuracy of the prediction model.

Table 1 Benchmarks characteristics

Application Dataset type Input size (GB) Skewness (%) #map, reduce tasks

Sort RandomWriter Small 5.086 31.52 85, 16

Large 30.510 61.6 510, 64

InvertedIndex Wikipedia Small 5.759 16.94 92, 16

Large 29.049 25.85 467, 64

WordCount Wikipedia Small 5.759 14.75 92, 16

Large 29.049 23.47 467, 64

RelativeFrequency Wikipedia Small 5.759 62.62 92, 16

Large 29.049 76.72 467, 64

J Netw Syst Manage (2016) 24:859–883 875

123

5.2 Overloaded Task Detection Evaluation

We present next the results of applying the proposed overloaded task detection

algorithm on real MapReduce workloads so as to evaluate its effectiveness.

Figures 6 and 7 show the detection results by running our testing applications

with Small dataset and Large dataset, respectively. We can see from these two

figures that most of tasks have sizes hovering around the mean, and only several

tasks have obviously larger sizes. The red circles identify the overloaded tasks

detected by our detection algorithm. As the figures show, our algorithm accurately

detect the overloaded tasks. In particular, those detected outliers of data skew are far

from the mean than others in all cases except InvertedIndex on Large dataset, where

some tasks that are slightly smaller than the most mildly outliers have escaped from

the detection algorithm. That is because the algorithm tends to find the optimal

subset that has the minimum number of the data skewed tasks but incurs greatest

reduction on variance of the residual set. Even though those tasks are slightly

smaller than the most mildly outliers, categorizing them to exception set can not

reduce the variance significantly.

5.3 Performance Evaluation

In this section, we compare the performance of OPTIMA, DREAMS and native

Hadoop YARN 2.4.0 (called Native in this paper). Note that tuning the number of

reduce tasks of a MapReduce job can improve job completion time [39]. To isolate

this effect, we use the same number of reduce tasks in the corresponding

experiments when comparing the performance. Figure 8 shows the comparison

among Native, DREAMS and OPTIMA with regard to the job completion time. We

can see from the figure that OPTIMA outperforms Native for all cases. In particular,

OPTIMA improves job completion time by 36.73 % for Sort on the 30GB dataset.

Comparing to DREAMS, OPTIMA perform slightly inferior in some cases (e.g.

WC), but overall, OPTIMA have equivalent gains.

Table 2 Mean absolute percentage error of partition size prediction model on the small and large

datasets

Application Dataset MAPE (%)

d ¼ 0:05
MAPE (%)

d ¼ 0:08
MAPE (%)

d ¼ 0:12
MAPE (%)

d ¼ 0:15

Sort Small 6.32 5.38 4.37 3.82

Large 5.34 3.98 3.48 3.27

InvertedIndex Small 3.69 2.86 2.49 2.37

Large 3.40 2.46 1.81 1.57

WordCount Small 5.34 3.98 3.48 3.27

Large 3.94 2.8 2.07 1.85

RelativeFrequency Small 7.84 6.04 4.63 4.12

Large 6.99 5.29 4.31 4.08

876 J Netw Syst Manage (2016) 24:859–883

123

We also compare the makespan variance of reduce tasks in Native, DREAMS

and OPTIMA. As we stated earlier, we try to eliminate the runtime difference

among reduce tasks with different loads, thereby shortening the job completion

time. Figure 9 shows the comparison results with respect to the CV of task

durations for our benchmarks. The graphs illustrate that OPTIMA can effectively

reduce the makespan variance of reduce tasks. More specially, the highest

reduction (1.38 	 faster) is achieved when running RF on the 5 GB Wikipedia

dataset. Since the shuffle phase in reduce stage is overlapping the entire map

stage, it is not necessary to count the makespan when the reduce task is waiting

for the output of map tasks. ARIA [33] takes only the non-overlapping portions of

shuffle phase into account. Chowdhury et al. [7] also define the start of the shuffle

phase as when either the last map task finishes or the last reduce task starts.

Similarly, we compare the durations of reduce tasks starting from the last map

task finishes.

We do not compare OPTIMA with any other existing data skew mitigating

solutions because we cannot find an implementation of these solutions in YARN

that support resource isolation. To the best of our knowledge, the existing solutions

0 5 10 15
0

100

200

300

400

500

600

700

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

Partition Size
Overloaded Task

(a)

0 5 10 15
0

10

20

30

40

50

60

70

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

0 5 10 15
0

10

20

30

40

50

60

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

0 5 10 15
0

50

100

150

200

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

(b)

(c) (d)

Fig. 6 The results of the overloaded task detection on the small dataset. a Sort. b InvertedIndex.
c WordCount. d RelativeFrequency

J Netw Syst Manage (2016) 24:859–883 877

123

such as [16, 21, 29] are implemented on MRv1, which is slot-based and there is no

isolation between slots. Therefore, in the evaluation, we only compare the OPTIMA

with YARN 2.4.0 and our previous solution DREAMS.

0 20 40 60
0

500

1000

1500

2000

2500

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

Partition Size
Overloaded Task

0 20 40 60
0

20

40

60

80

100

120

140

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

0 20 40 60
0

20

40

60

80

100

120

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

0 20 40 60
0

100

200

300

400

Task ID

S
iz

e
of

 P
ar

tit
io

n
(M

B
)

(a) (b)

(c) (d)

Fig. 7 The results of the overloaded task detection on the large dataset. a Sort. b InvertedIndex.
c WordCount. d RelativeFrequency

SRT II WC RF
0

50

100

150

200

250

300

Jo
b

C
om

pl
et

io
n

Ti
m

e
(S

ec
on

ds
)

Native
OPTIMA
DREAMS

SRT II WC RF
0

200

400

600

800

1000

1200

Jo
b

C
om

pl
et

io
n

Ti
m

e
(S

ec
on

ds
)

(a) (b)

Fig. 8 The comparison of job completion time between Native and OPTIMA. a Small dataset. b Large
dataset

878 J Netw Syst Manage (2016) 24:859–883

123

6 Related Work

6.1 Handling Data Skew in MapReduce

The data skew problem in MapReduce has been extensively investigated recently.

The authors, in [11] and [16], define a cost model for assigning reduce keys to

reduce tasks so as to balance the load among reduce tasks. However, both

approaches have to wait until all the map tasks have completed. As shown in [15],

this would increase the job completion time. In order to equally distribute the load to

worker machines while overlapping the map and reduce phase, the proposal in [22]

applies a greedy balancing approach of assigning keys to the machine with the least

load. This solution is based on the assumption that the size of each key-value pair is

identical, which is not true in real workloads. Ramakrishnan et al. [29] propose a

progressive sampler to estimate the intermediate data distribution and then partition

the data to balance the load across all reduce tasks. However, this solution needs an

additional sampling phase before jobs start, which can be time-consuming. Instead

of chopping the large partitions to balance the load, SkewTune [21] repartitions

heavily skewed partitions. However, it imposes an overhead while repartitioning

data and concatenating original output. Finally, Zacheilas and Kalogeraki [37]

propose DynamicShare, which aims at scheduling MapReduce jobs in heteroge-

neous systems to meet their real-time response requirements, and achieving an even

distribution of the partitions by assigning the partitions in such a way that puts more

work on powerful nodes. Similar to SkewTune, it imposes an overhead for the

partition assignment procedure. Besides, DynamicShare cannot start partition

assignment until all map tasks have completed. In an earlier work, we proposed

DREAMS [25]. DREAMS dynamically allocates the right amount of resources to

tasks to equalize the task completion time, which is simpler and incurs no overhead.

However, DREAMS requires a job profiling stage, which limits its generality and

applicability.

SRT II WC RF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

Native
OPTIMA
DREAMS

SRT II WC RF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

(a) (b)

Fig. 9 The comparison of makespan variance of reduce tasks between Native and OPTIMA. a Small
dataset. b Large dataset

J Netw Syst Manage (2016) 24:859–883 879

123

6.2 MapReduce Stragglers

Straggler problem has first been identified in [8], which backs up the execution of

remaining in-progress tasks when the job is close to completion. LATE [38] extends

this work by speculatively executing a replica task based on a simple heuristic of

duplicating only those tasks at a slow progress rate. Because the replica task still has

the same amount of the data to process, executing this speculative task may have

counter-productive impact on resource utilization. Unlike [8, 38], Mantri [2]

analyzes the causes of stragglers in MapReduce clusters and culls stragglers based

on their causes. With respect to data skew, Mantri schedules tasks in descending

order of their input size to mitigate skew. However, Mantri assumes the sizes of

input data are known before a stage starts, which is not the case in MapReduce

framework. And scheduling tasks in descending order of input sizes are

complementary to our work. Wrangler [36] predicts whether the worker nodes

will create a straggler based on their runtime resource usage statistics. If a node is

predicted to create a straggler, Wrangler will not assign tasks to it. As a result, it can

proactively avoid overloading of nodes. However, Wrangler neglects that the

straggling situation can also be incurred by the task itself; partitioning skew is one

such example. The tasks with extremely large partitions may still lead to the

straggling situation. Wrangler considers each task has unique resource requirement,

but it is not true when partitioning skew exists. For reducers with large partitions,

even though Wrangler will assign them to nodes that behaved normally, these

reducers still need more time to process than reducers with smaller partitions. And

therefore, it will not change much in this case. By contrast, OPTIMA proactively

adjusts resource allocation to the reducers with large partition, which guarantees the

resource for these tasks with the goal of reducing the variation of task durations, and

hence accelerating the job completion.

6.3 Resource-Aware Scheduling

Resource-aware scheduling has received considerable attention in recent years. The

original Hadoop MapReduce (i.e. MRv1) implements a slot-based resource

allocation scheme, which does not take run-time task resource consumption into

consideration. To address this limitation, Hadoop YARN [32] represents a major

endeavor towards resource-aware scheduling in MapReduce clusters. It offers the

ability to specify the size of container in terms of requirements for each type of

resources. However, YARN assumes the resource consumption for each Map (or

Reduce) task in a job is identical, which is not true for data skewed MapReduce

jobs. Sharma et al. [30] propose MROrchestrator, a MapReduce resource framework

that can identify the resource deficit based on resource profiling, and dynamically

adjusts resource allocation. Compared to our solution, MROrchestrator cannot pro-

actively identify stragglers due to workload imbalance before task launch. In other

words, if all overloaded tasks are launched in a machine, no matter how the

MROrchestrator adjusts the allocation, resource deficit cannot be mitigated. There

are several other proposals that fall in another category of resource scheduling

policies such as [10, 28, 33, 35]. The main focus of these approaches is on adjusting

880 J Netw Syst Manage (2016) 24:859–883

123

the resource allocation in terms of the number of map and reduce slots for the jobs

in order to achieve fairness, maximize resource utilization or meet job deadline.

These however do not address the data skew problem.

7 Conclusion

In this paper, we present OPTIMA, an on-line partitioning skew mitigation

technique for MapReduce with resource adjustment. Rather than gathering the

workload statistics until all the map tasks have completed, or sampling them before

jobs run, OPTIMA predicts the workload distribution of reduce tasks on-line,

which does not incur synchronization barriers. Further, based on the predicted

workload distribution, OPTIMA detects the overloaded tasks using a deviation

detection technique in linearithmic time. And finally, OPTIMA pro-actively adjusts

resource allocation to the overloaded tasks. This can eliminate the makespan

difference among reduce tasks, thereby accelerating the job completion. Compared

with our previous work DREAMS, OPTIMA abandons the profiles and eliminates

the dependency on the task performance model. This not only eliminates the

limitation in terms of applicability of DREAMS, but also allows the solution to be

carried out in an on-line manner. In our experiments using an 11-node cluster

running both real and synthetic workloads, we show that our on-line partition size

prediction algorithm achieve high accuracy with 7.84 % relative error in the worst

case. We then demonstrate that OPTIMA can effectively mitigate the negative

impact of partitioning skew, thereby improving the job running time by up to

36.73 % compared to the native Hadoop in our experiments. While compared to

DREAMS, OPTIMA can deliver the same gain as DREAMS in a much more

efficient manner.

Acknowledgments This work is supported in part by the National Natural Science Foundation of China

(No. 61472438), and in part by the Smart Applications on Virtual Infrastructure (SAVI) project funded

under the National Sciences and Engineering Research Council of Canada (NSERC) Strategic Networks

Grant Number NETGP394424-10.

References

1. Ananthanarayanan, G., Hung, M.C.C., Ren, X., Stoica, I., Wierman, A., Yu, M.: Grass: trimming

stragglers in approximation analytics. In: Proceedings of the 11th USENIX NSDI (2014)

2. Ananthanarayanan, G., Kandula, S., Greenberg, A.G., Stoica, I., Lu, Y., Saha, B., Harris, E.: Reining

in the outliers in map-reduce clusters using mantri. In: OSDI, vol. 10, p. 24. (2010)

3. Arning, A., Agrawal, R., Raghavan, P.: A linear method for deviation detection in large databases. In:

KDD, pp. 164–169. (1996)

4. Bates, D.M., Watts, D.G.: Nonlinear Regression: Iterative Estimation and Linear Approximations.

Wiley, New Jersey (1988)

5. Borthakur, D.: The hadoop distributed file system: architecture and design. Hadoop Proj. Website 11,
21 (2007)

6. Chen, Y., Ganapathi, A., Katz, R.H.: To compress or not to compress-compute vs. io tradeoffs for

mapreduce energy efficiency. In: Proceedings of the First ACM SIGCOMM Workshop on Green

Networking, pp. 23–28. ACM (2010)

J Netw Syst Manage (2016) 24:859–883 881

123

7. Chowdhury, M., Zaharia, M., Ma, J., Jordan, M.I., Stoica, I.: Managing data transfers in computer

clusters with orchestra. In: ACM SIGCOMM Computer Communication Review, vol. 41,

pp. 98–109. ACM (2011)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM

51(1), 107–113 (2008)

9. Finch, T.: Incremental calculation of weighted mean and variance. University of Cambridge,

Cambridge (2009)

10. Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S., Stoica, I.: Dominant resource

fairness: fair allocation of multiple resource types. In: NSDI, vol. 11, pp. 24–24 (2011)

11. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Handing data skew in mapreduce. In: Proceedings of

the 1st International Conference on Cloud Computing and Services Science, vol. 146, pp. 574–583

(2011)

12. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in mapreduce based on scalable

cardinality estimates. In: Data Engineering (ICDE), 2012 IEEE 28th International Conference on,

pp. 522–533. IEEE (2012)

13. Hadoop mapreduce distribution http://hadoop.apache.org/docs/r1.2.1/

14. Hadoop: Fair scheduler http://hadoop.apache.org/docs/r2.4.0/hadoop-yarn/hadoop-yarn-site/

FairScheduler.html

15. Hammoud, M., Rehman, M.S., Sakr, M.F.: Center-of-gravity reduce task scheduling to lower

mapreduce network traffic. In: Cloud Computing (CLOUD), 2012 IEEE 5th International Conference

on, pp. 49–58. IEEE (2012)

16. Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., Wu, S.: Handling partitioning skew in mapreduce

using leen. Peer Peer Netw. Appl. 6(4), 409–424 (2013)

17. Jain, R., Chiu, D.M., Hawe, W.R.: A quantitative measure of fairness and discrimination for resource

allocation in shared computer system (1984)

18. Jalaparti, V., Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.: Bridging the tenant-provider gap

in cloud services. In: Proceedings of the Third ACM Symposium on Cloud Computing, p. 10. ACM

(2012)

19. Kang, J.M., Bannazadeh, H., Leon-Garcia, A.: Savi testbed: Control and management of converged

virtual ict resources. In: IFIP/IEEE International Symposium on Integrated Network Management

(IM 2013), 2013 pp. 664–667. IEEE (2013)

20. Kirby, G.: Zipf’s law. UK J. Nav. Sci. 10(3), 180–185 (1985)

21. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: mitigating skew in mapreduce applica-

tions. In: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data,

pp. 25–36. ACM (2012)

22. Le, Y., Liu, J., Ergun, F., Wang, D.: Online load balancing for mapreduce with skewed data input. In:

INFOCOM, 2014 Proceedings IEEE, pp. 2004–2012. IEEE (2014)

23. Lin, J.: Cloud 9: A mapreduce library for hadoop (2010a). https://github.com/lintool/Cloud9

24. Lin, J., Dyer, C.: Data-intensive text processing with mapreduce. Synth. Lect. Hum. Lang. Technol.

3(1), 1–177 (2010b)

25. Liu, Z., Zhang, Q., Zhani, M.F., Boutaba, R., Liu, Y., Gong, Z.: Dreams: Dynamic resource allo-

cation for mapreduce with data skew. In: IFIP/IEEE International Symposium on Integrated Network

Management (IM 2015), 2015. Ottawa (2015)

26. Papadimitriou, C.H.: Computational Complexity. Wiley, New Jersey (2003)

27. Papers, M.I.W.: Compression in hadoop. http://technet.microsoft.com/en-us/library/dn247618.aspx

28. Polo, J., Carrera, D., Becerra, Y., Torres, J., Ayguadé, E., Steinder, M., Whalley, I.: Performance-

driven task co-scheduling for mapreduce environments. In: Network Operations and Management

Symposium (NOMS), 2010 IEEE, pp. 373–380. IEEE (2010)

29. Ramakrishnan, S.R., Swart, G., Urmanov, A.: Balancing reducer skew in mapreduce workloads using

progressive sampling. In: Proceedings of the Third ACM Symposium on Cloud Computing, p. 16.

ACM (2012)

30. Sharma, B., Prabhakar, R., Lim, S., Kandemir, M.T., Das, C.R.: Mrorchestrator: A fine-grained

resource orchestration framework for mapreduce clusters. In: IEEE 5th International Conference on

Cloud Computing (CLOUD), 2012, pp. 1–8. IEEE (2012)

31. Tan, P.N., Steinbach, M., Kumar, V., et al.: Introduction to Data Mining, vol. 1. Pearson Addison

Wesley, Boston (2006)

882 J Netw Syst Manage (2016) 24:859–883

123

http://hadoop.apache.org/docs/r1.2.1/
http://hadoop.apache.org/docs/r2.4.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://hadoop.apache.org/docs/r2.4.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://github.com/lintool/Cloud9
http://technet.microsoft.com/en-us/library/dn247618.aspx

32. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe,

J., Shah, H., Seth, S., et al.: Apache hadoop yarn: Yet another resource negotiator. In: Proceedings of

the 4th annual Symposium on Cloud Computing, p. 5. ACM (2013)

33. Verma, A., Cherkasova, L., Campbell, R.H.: Aria: automatic resource inference and allocation for

mapreduce environments. In: Proceedings of the 8th ACM International Conference on Autonomic

Computing, pp. 235–244. ACM (2011)

34. White, T.: Hadoop: The definitive guide. O’Reilly Media Inc, California (2012)

35. Wolf, J., Rajan, D., Hildrum, K., Khandekar, R., Kumar, V., Parekh, S., Wu, K.L., Balmin, A.: Flex:

A slot allocation scheduling optimizer for mapreduce workloads. In: Middleware 2010, pp. 1–20.

Springer (2010)

36. Yadwadkar, N.J., Ananthanarayanan, G., Katz, R.: Wrangler: Predictable and faster jobs using fewer

resources. In: Proceedings of the ACM Symposium on Cloud Computing, pp. 1–14. ACM (2014)

37. Zacheilas, N., Kalogeraki, V.: Real-time scheduling of skewed mapreduce jobs in heterogeneous

environments. In: Proceedings of 11th International Conference on Autonomic Computing,

pp. 189–200. USENIX (2014)

38. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R.H., Stoica, I.: Improving mapreduce performance

in heterogeneous environments. In: OSDI, vol. 8, p. 7 (2008)

39. Zhang, Z., Cherkasova, L., Loo, B.T.: Autotune: Optimizing execution concurrency and resource

usage in mapreduce workflows. In: ICAC, pp. 175–181 (2013)

Zhihong Liu received the B.A.Sc. and M.Sc. degrees in computer science from South China University

of Technology and National University of Defense Technology, respectively. He is a Ph.D. candidate in

National University of Defense Technology with research interests in big-data analytics and resource

management in cloud computing. Currently, he is a visiting student in University of Waterloo, Canada.

Qi Zhang received the B.A.Sc., M.Sc. and Ph.D. from University of Ottawa (Canada), Queen’s

University (Canada) and University of Waterloo (Canada), respectively. His current research focuses on

resource management for cloud computing systems. He is currently pursuing a Post-doctoral fellowship at

University of Toronto (Canada) He is also interested in related areas including big-data analytics,

software-defined networking, network virtualization and management.

Raouf Boutaba received the M.Sc. and Ph.D. degrees in computer science from the University Pierre and

Marie Curie, Paris, France, in 1990 and 1994, respectively. He is currently a Professor of computer

science with the University of Waterloo, Waterloo, ON, Canada. His research interests include control

and management of networks and distributed systems. He is a fellow of the IEEE and the Engineering

Institute of Canada.

Yaping Liu received the Ph.D. degree in computer science from National University of Defense

Technology, China, in 2006. She is currently a Professor in College of Computer with National

University of Defense Technology. Her current research interests include network architecture, inter-

domain routing, network virtualization and network security.

Baosheng Wang received the B.A.Sc., M.Sc., and Ph.D. degrees in computer science from National

University of Defense Technology, China, in 1992, 1995 and 2005, respectively. He is a Professor in

College of Computer with National University of Defense Technology. His research interests are network

management, distributed systems and network virtualization.

J Netw Syst Manage (2016) 24:859–883 883

123

	OPTIMA: On-Line Partitioning Skew Mitigation for MapReduce with Resource Adjustment
	Abstract
	Introduction
	Motivation
	Hadoop MapReduce
	Partitioning Skew

	System Architecture
	OPTIMA Design
	Predicting Partition Size
	Detecting Overloaded Tasks
	Correlating Task Duration with Partition Size
	Correlating Task Duration with Resource Allocation
	Resource Allocation Algorithm

	Evaluation
	Accuracy of Prediction of Partition Size
	Overloaded Task Detection Evaluation
	Performance Evaluation

	Related Work
	Handling Data Skew in MapReduce
	MapReduce Stragglers
	Resource-Aware Scheduling

	Conclusion
	Acknowledgments
	References

