
Cloud Service Recommendation Based on a Correlated
QoS Ranking Prediction

K. Jayapriya1 • N. Ani Brown Mary2 •

R. S. Rajesh3

Received: 13 February 2015 / Revised: 12 October 2015 / Accepted: 14 October 2015 /

Published online: 14 November 2015

� Springer Science+Business Media New York 2015

Abstract Quality-of-Service (QoS) is an important concept for service selection

and user satisfaction in cloud computing. So far, service recommendation in the

cloud is done by means of QoS, ranking and rating techniques. The ranking methods

perform much better, when compared with the rating methods. In view of the fact

that the ranking methods directly predict QoS rankings as accurately as possible, in

most of the ranking methods, an individual QoS value alone is employed to predict

the cloud rank. In this paper, we propose a correlated QoS ranking algorithm along

with a data smoothing technique and combined with QoS to predict a personalized

ranking for service selection by an active user. Experiments are conducted

employing a WSDream-QoS dataset, including 300 distributed users and 500 real

world web services all over the world. Six different techniques of correlated QoS

ranking schemes have been proposed and evaluated. The experimental results

showed that this approach improves the accuracy of ranking prediction when

compared to a ranking prediction framework using a single QoS parameter.

Keywords Correlation coefficient � Correlated QoS ranking prediction � Multiple

QoS � Data smoothing � Response time � Throughput

& K. Jayapriya

kjp.jayapriya@yahoo.com

N. Ani Brown Mary

anibrownvimal@gmail.com

R. S. Rajesh

rsrajesh_cse@msuniv.ac.in

1 Vin Solutions, 1st Floor, No 40, North Street, Rajarajeshwari Nagar, Tirunelveli 627007, India

2 Department of Computer Science, Regional Centre of Anna University, Tirunelveli 627007,

India

3 Department of Computer Science, M.S. University, Tirunelveli 627012, India

123

J Netw Syst Manage (2016) 24:916–943

DOI 10.1007/s10922-015-9357-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9357-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-015-9357-5&domain=pdf

1 Introduction

The outbreak of cloud computing has provoked a vital turn in the prospects of

research and business organizations in IT infrastructures. It is the next step in the

development of information technology services and products. Despite spending a

huge price on hardware and plenty of money on maintenance costs, IT organizations

can be preferred with little cost. The evidence of increases in the web services of

companies such as Amazon [1, 19, 35], Google [18] and Salesforce [44, 47]

dramatically shows how cloud computing is desirable in recent times. Amazon.com

is one of the most important and heavily trafficked web sites in the world. It

provides a vast selection of products using an infrastructure based on web services.

Google is the prototypical cloud computing services company, and it supports some

of the largest web sites and services in the world.Salesforce.com is a web appli-

cation suite that is ‘Software as a Service’ (SaaS) and Force.com is Salesforce.

com’s ‘Platform as a Service’ (PaaS) platform for building one’s own services.

Due to the growth of public cloud contributions, cloud consumers have become

progressively more difficult to decide which provider can fulfill their Quality of

Service (QoS) requirements. ‘‘QoS is the service providers’ capability to achieve the

service users’ requirements, such as response time, throughput, availability, security

and so forth’’. Each cloud provider offers similar services at various prices and

performance levels with different sets of features. Due to the multiplicity of cloud

service offerings, an important issue that the consumers are concerned with is how

to discover who are the ‘‘right’’ cloud providers that can satisfy their requirements.

Therefore, it is not sufficient to just discover multiple cloud services but it is also

significant to evaluate which is the most suitable cloud service.

In conventional component-based systems, software components are invoked in

the vicinity. The client-side web service manipulations need real-time web service

implementations and endeavours the following shortcomings: First, the reality of

web service implementations compels costs for the user and intake resources from

the service providers. Few of the initiations may be charged. Secondly, too many

service applicants must be manipulated and few may not even be recognized in the

lists. All users of web services may not be well-versed or highly trained in web

service manipulation. The trivial time-to-market constraints restrict a manipulation

of the aimed web services.

The general idea is that the QoS values of all candidate services to target users

are known. On the other hand, it might not be true in realism. Owing to some

factors, e.g., location and network environment, the QoS of the same service to

different users may be different. For example, the response time for user

(IP:12.108.128.196, RUSSIA) to invoke Web service (WSDL:http://biomoby.org/

services/wsdl/mmb.pcb.ub.es/parseFeatureAASequenceFromFSOLVText, located

in USA) is 5916 ms; whereas that for user (IP:183.1.74.162, Kenya) to invoke the

same service is 690 ms. A user can barely invoke all services, meaning that the QoS

values of the services that the user has not invoked are unknown. Hence, an adapted

cloud service QoS ranking is required for different cloud applications.

J Netw Syst Manage (2016) 24:916–943 917

123

http://Amazon.com
http://world.Salesforce.com
http://Force.com
http://Salesforce.com
http://Salesforce.com
http://biomoby.org/services/wsdl/mmb.pcb.ub.es/parseFeatureAASequenceFromFSOLVText
http://biomoby.org/services/wsdl/mmb.pcb.ub.es/parseFeatureAASequenceFromFSOLVText

Nonetheless, most of these existing methods [22, 57, 59] focus on the method of

finding similarity between users and their services and then to find the missing value

prediction of the users. The most undemanding approach of an adapted cloud

service QoS ranking is to estimate all the applicant services at the user’s side and

rank the services based on the observed QoS values. However, this approach is

impossible in reality, since invocations of cloud services may be charged.

Additionally, when the quantity of applicant services is large, it is not easy for

the cloud application trend to evaluate all the cloud services professionally.

To overcome this critical challenge, Zheng [58] proposed the first step on a

personalized ranking prediction framework for a current user. This approach

predicts the QoS ranking of a set of cloud services, even though some services are

not invocated by the current user. The author proposed two ranking prediction

algorithms for computing the service ranking based on the cloud application

designer’s preferences. Those two ranking algorithms perform well compared to the

traditional greedy [31] and rating based [17] approaches. However, in this approach,

the author predicts the rank on the basis of a single QoS value. So in this case,

sometimes it may provide a different rank position for the same service based on

different QoS parameters. Hence, we need to provide a single personalized ranking

by using correlation properties of combined QoS values. This concept motivates us

to produce a correlated QoS ranking for cloud services to improve the ranking

accuracy.

Active User

Similarity
Computation

Finding QoS
Correlated

Similar users

QoS Data
SmoothingCorrelated QoS

Ranking

Normalised
QoS
Dataset

Fig. 1 System architecture of CorQoSCloudRank

918 J Netw Syst Manage (2016) 24:916–943

123

2 System Overview

QoS is an essential idea in ranking process for users in cloud computing. This paper

mainly focuses on a correlated ranking of user side properties, which are likely to

have different values for different users of the same cloud service. More accurate

correlated QoS ranking results can be accomplished by providing QoS values on

additional cloud services, because the feature of an active user can be extracted from

the given information. This paper focuses on examining the response time and

throughput of different web services and service users. Response time is defined as

the time taken between a service user sending a request and receiving the

corresponding response. Throughput is defined as the average rate of successful

service delivery.

Figure 1 depicts the system architecture of our CorQoSCloudRank framework,

which provides correlated QoS ranking for cloud services. Here, the service users

who require QoS services are named as active or current users. When an active

user’s obligation arrives, the process of finding correlated similar users is first

engaged. In the procedure of finding correlated similar users, we will compute

similarity computation with the help of the Pearson Correlation Coefficient (PCC),

Spearman Rank Correlation Coefficient (SRCC) and Kendall Rank Correlation

Coefficient (KRCC) using Normalized QoS values. Here, the datasets consist of

Normalized QoS values. After finding the QoS correlation of similar users, we

employ a data smoothing technique in normalized QoS datasets. This data

smoothing is an efficient technique that is used to improve the accuracy of QoS

ranking. For data smoothing, we employ a Fuzzy-C-Means (FCM) algorithm.

A FCM algorithm is generally characterized as either a grouping of similar data

values around a center or a prototype data instance nearest to the centered. Then, the

preference function is estimated. During this process, the unknown QoS values of

each and every user will be predicted with the help of the QoS correlated similar

users. On the basis of estimated preference function values with data smoothing,

correlated QoS ranking is employed.

The framework introduced in this work improves the accuracy of the QoS

ranking with the help of a correlated QoS ranking technique. Correlated QoS

ranking is implemented using an algorithm called CorQoSCloudRank. With the

help of this algorithm, QoS ranking for all services has been ranked in an efficient

way.

3 Correlated Qos Ranking Methodology

This section presents our Correlated QoS personalized ranking prediction frame-

work for cloud services. Section 3.1 calculates the similarity of the active user with

the training users based on correlated QoS values of commonly invoked cloud

services. Section 3.2 describes the data smoothing concept that improves the

ranking accuracy of our approach. Section 3.3 presents the description of the

J Netw Syst Manage (2016) 24:916–943 919

123

proposed Correlated QoS ranking prediction algorithm, named CorQoSCloudRank,

respectively. Section 3.4 analyzes the ranking accuracy of the proposed approach.

3.1 Finding QoS Correlated Similar Users

This section commences the similarity estimation method of various service users.

Let R be the user-service realistic QoS matrix of the size M 9 N where M

symbolizes the number of users and N symbolizes number of services. At this

instant, I symbolizes a set of services that is I = {i1, i2, i3,…,iN} and U symbolizes a

set of users or (user set) that is U = {u1, u2, u3,…,uM} Each entry in this matrix Ra,i

represents a vector of QoS values that is observed by the service user a on the

service item i. If user a did not invoke the service item i in his previous transactions,

then Ra,i = null.

Similarity estimation is very useful to identify users utilizing the same resources.

It is applied to compute the similarity between the users who use the same type of

cloud resources and also to compute similarity among users who apply at least some

of the resources. The relationship among user similarity is denoted by an M 9 M

matrix, called the user–user similarity matrix. Similarity values generally ranges

from 0 to 1, where 1 signifies an absolute value and 0 signifies an null value.

Table 1 clearly depicts the similarity values and their variables. In this approach,

three types of similarity measures are well-known. They are the PCC, SRCC and

KRCC.

First, let us deal with the PCC [21, 22] that measures the similarity between two

users based on their normalized services as;

SIMða; bÞ ¼
P

i2Ia\Ib ðra;i � �raÞðrb;i � �rbÞ
P

i2Ia\Ib ðra;i � �raÞ2
P

i2Ia\Ib ðrb;i � �rbÞ2
h i1=2 ; ð1Þ

where a, b symbolize users, i, j symbolize services, Ia \ Ib is the subset of cloud

services commonly invoked by users a and b, ra,i is the resources of service ‘i’

observed by user a, ra,i is the resources of service ‘i’ observed by user b, �ra; �rb is the
average of resources worn by users a and b. From this description, the similarity of

two service users, SIM(a, b), is in the interval of [-1,1], where a larger Pearson

value indicates that service users a and b are more similar [59]. User-based

Table 1 Similarity values and

variables
Similarity value Similarity variable

1 Accurate

0.9–1 Very high

0.7–0.9 High

0.4–0.7 Medium

0.2–0.4 Low

0–0.2 Very low

0 None

920 J Netw Syst Manage (2016) 24:916–943

123

collaborative filtering by means of PCC was employed in quite a lot of recom-

mended [22, 43].

Second, the SRCC measures the strength of association between two ranked

variables. It measures the similarity between two users a and b such as;

SIMða; bÞ ¼
P

i ðai � �aÞðbi � �bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðai
p

� �aÞ2
P

i ðbi � �bÞ2
; ð2Þ

where ‘i’ symbolizes service, ai symbolizes the ith service taken by ath user and bi
represents the ith service taken by bth user, �a; �b represents the average users who

avail the service. When two service users have a null service intersection, the value

of SIM(a,b) cannot be computed (SIM(a,b) = null). If there are no repeated values,

a perfect Spearman correlation of ?1 or -1 occurs when each of the variables is a

perfect monotone function of the other.

Third, the KRCC measures the similarity between two service rankings,

SIMða; bÞ ¼ 1�
4�

P
i;j2Ia\Ib

~Iððra;i � ra;jÞðrb;i � rb;jÞÞ
Ia \ Ibj j � Ia \ Ibj j � 1

ð3Þ

where Ia \ Ib is the subset of cloud services commonly used by users a and b, ra,i is

the normalized QoS value of service ‘i’ used by user a, and ~I(x) is an indicator

function given as;

~IðxÞ ¼ 1 if x\0

0 otherwise

�

: ð4Þ

From the above definition, the ranking similarity between two rankings is in the

interval [-1, 1], where -1 is obtained when the order of user a is the exact reverse

of user b. Given that KRCC compares service pairs, the intersection between two

users has to be at least 2 Ia \ Ibj j � 2ð Þ for making a similarity computation.

A set of similar users S(a) is identified for the active user a by

SðaÞ ¼ fb bj 2 Top KðaÞ; SIMða; bÞ[0; b 6¼ ag; ð5Þ

where Top_K(a) is a set of the Top_K similar users of active user a. Top_K Similar

users are acknowledged by arranging their similarity values in descending order.

SIM(a,b)[0 that excludes the dissimilar users with negative similarity values. In

this paper, we make use of the hybrid Top-K algorithm to select neighbors. First, for

the capable users, we set a similarity threshold value. Then the outcome of the

dissimilar users are removed by adding the threshold value.

In this correlation technique, two or more QoS parameters are combined to find

its correlated properties. Here throughput and response time are combined. When

the throughput QoS value is high, it is said to be maximum; but for a response time

when the value is less, it is said to be maximum. Since both QoS values are

contradictory, normalization has to be performed to put both values in a common

range (0–1). Here, the response time is manipulated as (1—response time).

J Netw Syst Manage (2016) 24:916–943 921

123

Let us consider Si(a) as a set of similar users for the active user a based on the ith

normalized QoS parameter. In our approach, a set of QoS correlated similar users

CS(a) is identified for the active user a by

CSðaÞ ¼ S1ðaÞ \ S2ðaÞ \ � � � \ SnðaÞ ð6Þ

where ‘n’ represents the number of QoS parameters.

3.2 QoS Data Smoothing

Data smoothing is an important technique that is used to remove noise from a

dataset, and allowing important patterns to stand out and improve the accuracy of

the QoS prediction. Assume that ut is one of the similar users of u, and we want to

predict the QoS of service ‘i’ to user u. Traditional methods replace the QoS of

service ‘i’ to ut with 0 if ut has not invoked service ‘i’. Therefore, this process

lowers the accuracy of the predicted QoS. This problem is handled in our paper with

the help of the data smoothing concept.

The most preferred two partition-based cluster algorithms, notably K-Means and

FCM are well-known. K-Means is one of the trouble-free unsubstantiated learning

algorithms to solve clustering problems [54]. Through the result of performance

based methods of Velmurugan [54], it is evident that the results are accurate, and

easily understandable in FCM compared with K-Means [54]. Hence, in this

approach, in order to improve the accuracy of the QoS value prediction, the data

smoothing, as described in [42, 51], is done with the help of FCM clustering instead

of a K-Means algorithm.

3.3 Correlated QoS Ranking

Given that the user-observed QoS values in a normalized form on two cloud

services, the user preference function between these two services can be easily

derived by comparing the normalized QoS values, where

£ i; jð Þ ¼ qi�qj: ð7Þ

£ i; jð Þ is the preference function obtained where i and j represent services and qi and

qj represents the normalized QoS value of the service ‘i’ and ‘j’. In our outlook of

reality, our goal is to produce ranking for users, spotlight modelling a user’s pref-

erence function of the form as on [39, 58], £: I 9 I ? IR, where £(i,j)[0.

Here ith service is compared with the jth service that is ith service is better than

jth service, that means that service i is more preferable to j for present dynamic user

a and vice versa. Suppose user a’s QoS throughput value on cloud service ‘i’ and ‘j’

are 5 and 3, respectively, This clearly indicates that the user prefers cloud service ‘i’

to the cloud service j as an indication for (i, j)[0.

The magnitude of this preference function |£(i,j)| indicates the strength of

preference and a value of zero means that there is no preference between the two

services. Assume that £(i, i) = 0 for all i € I and that £ is anti-symmetric, i.e., £(i,

j) = -£(j, i) for all i, j € I.

922 J Netw Syst Manage (2016) 24:916–943

123

With the help of the user preference function calculation, the most similarity

between services is gained as a £:(N 9 N) matrix. The result will be M number of

users that will have M number of user preference functions such as

½£1; £2; £3; £4; . . .; £M�; ð8Þ

To obtain the preference values regarding pairs of services that have not been

raised or used by the present user, the preference values of similar correlated users

CS(a) are engaged. Generally, stronger confirmation in priority is given by

£(i,j)[0 for the present user where frequently similar correlated users in

CS(a) view service ‘i’ is of higher quality than service ‘j’. This shows the way

for manipulating the value of preference function £(i, j), where service ‘i’ and

service ‘j’ are not explicitly viewed by the present user a,

£ði; jÞ ¼
X

b2CSðaÞ Wbðqb;i � qb;jÞ; ð9Þ

where b is a similar correlated user of the present user a, CS(a) is a subset of similar

users of a, qb,i and qb,j represent the QoS value of the service i and j accessed by the

user b. Wb is a weighting factor of the correlated similar user b, which can be

estimated by

Wb ¼
SIMða; bÞ

P
b2CSðaÞ SIMða; bÞ : ð10Þ

Wb confirms that a correlated similar user with a higher similarity value has a

better impact on the preference value prediction in Eq. (9). In the existing system,

only the user b who accessed the both the services ‘i’ and ‘j’ is taken as the similar

user of a. In our approach, if the correlated user didn’t access the service i or j, then

the FCM clustering based data smoothing process is done to estimate qb;i; qb;j as

described in [26]. Fuzzy C-Means clustering is used for clustering purposes on user

similarity function. We assume all users into k group clusters as U = {u1, u2,…,un},

clustering results are represented as {Cu
1, Cu

2,…,Cu
k}. Given b belongs to cluster Cu

i.e., Cu 2 {Cu
1, Cu

2,…,Cu
k}, QoS vector qb,i is given as;

qb;i ¼ ~qb þ DrCuðiÞ; ð11Þ

where DrCuðiÞ is the average QoS derivations of service ‘i’ to every users in cluster

Cu

DrCuðiÞ ¼
P

u02CuðiÞ
ðqu0;i � q0uÞ

Cu ið Þj j ð12Þ

where Cu(i) 2 Cu is the set of clusters Cu who have invoked service ‘i’ and |Cu(i)| is

the cardinality of Cu(i). After clustering based on user similarity average QoS for

particular service has been employed.

J Netw Syst Manage (2016) 24:916–943 923

123

924 J Netw Syst Manage (2016) 24:916–943

123

J Netw Syst Manage (2016) 24:916–943 925

123

3.4 CorQoSCloudRank

Qiu et al. [57] proposed a reputation-aware QoS value prediction approach that first

calculates the reputation of each user based on their contributed values, and then

takes advantage of its reputation-based ranking to exclude the values contributed by

untrustworthy users. Wu et al. [41] presented a ranking method called ServiceRank

that considers QoS aspects, such as response time and availability, as well as the

social perspectives of services.

In collaborative filtering, the ranking on services is estimated on the basis of

correlation, among the entire users’ service nature. Each user has his/her own

ranking level for their preferred services according to the past QoS ranking system.

For an ‘Employed’ service set, ranking is manipulated with the help of preference

function calculation. For an ‘Unemployed’ service set, ranking is manipulated by

picking the correlated neighbors who have chosen the service. For this algorithm,

the following values are taken as input: the full service set (FS), the accessed service

set for each user in M is (AS1, AS2,…,ASm), added normalized QoS values of each

user (SNQ1, SNQ2,…,SNQn) and summation of preference function on each QoS

values for all users in ‘m’.

CorQoSCloudRank algorithm explanation:

• Step 1(lines 1–8). Rank the accessed cloud services in W based on the

summation of normalised observed QoS values. stores the ranks of the

accessed service, where (m) returns the rank of the service m, where m is a

necessary cloud service that is accessed by the active user a.

From this procedure, rank is achieved for the accessed services. The Fig. 2

clearly depicts that an active user a provides rank for the accessed services s1 to sn,

but there is no rank for the service s2 because it is not accessed. The following

procedure has to be followed to find rank level for all the services, which are not

accessed by the active user a.

Active
User a

S1

S2

S3

Sm

Rank 3

Rank nil

Rank 9

Rank 1

Fig. 2 Active user a ranking
services

926 J Netw Syst Manage (2016) 24:916–943

123

• Step 2(lines 9–11). For each service in the full service set FS, the sum of the

summation of preference values with all other services was calculated by

PaðiÞ ¼
P

j2FS S£aði; jÞ, where a is an active user. The larger Pa(i) value

indicates active user a prefers ith service more than the other services.

• Step 3(lines 12–70). Here, the Correlated ranking scheme is applied to find the

rank level for each service in FS. The line no 14 is executed to find the service

m that has the maximum Pa(m) value. When the mth service is accessed by

active user a then it will call the updaternk1 procedure i.e., (lines 71–82). In that

procedure, the accessed service m is assigned with rank rnk, following the lines

(65–70).

After that, as per the procedure from lines (78–81) the selected accessed service

m is then removed from the full service set FS. The preference function values

Pa(i) of the remaining services are updated to remove the effects of the selected

accessed service m.

If mth service is not accessed by active user a, then (lines 20–28) will be

executed. Here we check whether the correlated neighbors have chosen the mth

service, if they are chosen, their ranks(nrnk) for mth service are retrieved with the

help of their preference function. Three possibilities are available for choosing the

rank on the basis of correlated ranks(nrnk) provided by correlated neighbors

(Fig. 3).

In this figure, the 2nd service is allotted with rank 3, because the correlated

neighbors have not chosen the service and active user a has afforded rank 3.

• Step 4 (lines 29–31). First possibility is that the nrnk set is empty i.e., no one in

the correlated neighbors chose the service m. In this case, the corresponding

updaternk1 procedure is called to assign the rank with rnk.

• Step 5 (lines 32–38). In the second possibility, only one correlated neighbor

provides rank nrnk(1) for the service m. Then line 33 checks if the rank value

rnk (estimated by the active user on the basis of the preference function) differs

2nd

Service
with

rank 3

u1

u4

u3

nil

nil

nil

nil

u2

a

3

Fig. 3 First possibility

J Netw Syst Manage (2016) 24:916–943 927

123

more than one position level compared to the nrnk(1) means, if so it will call the

updaternk1 procedure from lines (71–82); otherwise, it will call the updaternk2

procedure from lines (83–95) (Fig. 4).

In this figure, the 2nd service is allotted with rank 5, because the rank provided

by user 2 is the 5th rank and the rank estimated by active user a is the 4th rank. Both

ranks differ only in one position level, but this is just opposite in the example shown

in Fig. 5.

In this figure, the 2nd service is allotted with rank 7, because the rank provided

by the user 2 is the 3rd rank and the rank estimated by active user a is the 7th rank,

so both ranks do not satisfy the condition. So the 7th rank is assigned for the 3rd

service.

In the updaternk2 procedure, the service m is assigned with rank nrnk(1), before

it processes the services that are already allotted with the rank as nrnk(1) and the

above will be incremented by one level.

After that, as per the procedure from (lines 84–87) the selected service m is then

removed from the full service set FS. The preference function values Pa(i) of the

remaining services are updated to remove the effects of the selected service m.

• Step 6(lines 39–63). In the third possibility, as shown in Figs. 6 and 7, more than

one correlated neighbor provides rank for the service that is not accessed by the

active user a. In this case, as per the lines (40–47), it will find the most frequent

rank (mfrnk) from the correlated ranks (nrnk). Then, as per line number 48, it

checks the availability of the most frequent rank, and if it so available, the most

frequent rank(mfrnk) will update the rank; otherwise, it will choose the average

of the correlated neighbors ranks(avgrnk).

• In this figure, correlated users u2 and u4 have allotted the rank as 2, and since

rank 2 has occurred frequently, we have considered the frequent rank as 2.

• In both cases, it will check line numbers 49 and 56, to see whether the chosen

rank (avgrnk/mfrnk) differs more than one position level compared to rank rnk

2nd

Service
with

rank 5

u1

u4

u3

nil

nil

5

nil

u2

4

a

Fig. 4 Second possibility with
single rank

928 J Netw Syst Manage (2016) 24:916–943

123

2nd Service
with rank7

u1

u4 u3

nill

nill

3

nill

u2

a

7

Fig. 5 Second possibility with
update rank

Service
with

rank 2

u1

u4

u3

1

2

2

3

u2

a

3

2nd

Fig. 6 Third possibility with
frequent rank

2nd

Service
with

rank 2

u1

u4

u3

1

2

3

nill

u2

3

a

Fig. 7 Third possibility with
average rank

J Netw Syst Manage (2016) 24:916–943 929

123

which was estimated by the active user a. If the condition is satisfied call

updaternk1 procedure or it will call updaternk2 procedure.

This figure clearly shows that there is no frequent rank available, so with the help

of the correlated neighbors rank, we can find the average rank.

• Step 7 (lines 65–70). In this part, the ranks of the accessed services in is

corrected with the help of .

4 Experiments

4.1 Dataset Description

To evaluate the correlated QoS ranking accuracy, we used the detailed WSDream-

QoS dataset values that were publicly released online by Zheng et al. [60]. This

dataset consists of QoS values of the 500 real-world web services viewed by the 300

service users. It is represented as a 300 9 500 user-item matrix, where each item in

the matrix is the QoS value of a web service observed by a user. Totally 150,000

web service invocations are provided. The response time and throughput values of

each invocation are given. Our experiment has been carried out with MATLAB 13.

In our experiment, the QoS values are employed to rank the services that are to be

correlated.

4.2 Evaluation Metric

The QoS ranking prediction is to predict QoS values as accurate as possible. If the

QoS numerical values are given as class or labels our algorithm provides good

results for qualitative variables also. In order to evaluate the ranking prediction

accuracy, we employ the Normalized Discounted Cumulative Gain (NDCG) [58,

61] metric, which is a popular metric for evaluating ranking results. The NDCG

measures the performance of a recommendation system based on the condition

significance of the recommended entities. It varies from 0.0 to 1.0, with 1.0

representing the ideal ranking of the entities. Given an ideal service QoS ranking

(used as ground truth) and a correlated QoS ranking, the NDCG value of the Top-K

ranked services can be estimated by

NDCGk ¼
DCGk

IDCGk

; ð13Þ

where DCGk and IDCGk are the Discounted Cumulative Gain (DCG) values of the

Top-K services of the correlated ranking and ideal ranking. The value of DCGk can

be estimated by

930 J Netw Syst Manage (2016) 24:916–943

123

DCGk ¼ rel1 þ
Xk

i¼2

reli

log2 i
: ð14Þ

where reli is the graded relevance QoS value of the service at position i of the

ranking.

The premise of DCG is that a high-quality web service appearing lower in the

ranking list should be punished as the graded relevance value that is reduced as

logarithmically proportional to the position of the result. The DCG value is gathered

cumulatively from the top of the result list to the bottom with the gain of each result

discounted at lower ranks. The ideal rank achieves the highest gain among all

different rankings. The NDCGk value is on the interval of 0–1, where a larger value

stands for a better ranking accuracy, indicating that the correlated ranking is closer

to the ideal ranking. The value of ‘k’ is in the interval of 1 to m, where m is the total

number of cloud services.

4.3 Performance Comparison

The analysis on ranking prediction is done through six different techniques of

correlated QoS ranking scheme. In the former three models of correlated QoS

ranking, the correlation properties of multiple QoS parameters are used in the user

similarity estimation process. The later three methods utilize the correlation

property for user similarity as well as ranking prediction. The six proposed

correlated QoS ranking algorithms are as follows,

1. QoS Correlated User based CloudRank without Data Smoothing (QCUCR).

• This method employs correlation property among multiple QoS values only

for user similarity estimation. The preference function value of each QoS

parameter is added together to predict the rank on the basis of ideal ranking

in descending order.

2. QoS Correlated User based CloudRank with (Data Smoothing) K-Means

(QCUCRK).

• This method is similar to QCUCR. In this approach, a pre-processing

technique, such as data smoothing is employed with the help of the

K-Means algorithm.

3. QoS Correlated User based CloudRank with (Data Smoothing) FCM

(QCUCRFC).

• This method is similar to QCUCR. In this approach, a pre-processing

technique, such as data smoothing is employed with the help of the FCM

algorithm.

J Netw Syst Manage (2016) 24:916–943 931

123

T
a
b
le

2
A
n
al
y
si
s
o
n
N
D
C
G

v
er
su
s
m
an
if
es
t
u
si
n
g
P
C
C

M
et
h
o
d
s

M
at
ri
x
d
en
si
ty

=
1
0
%

M
at
ri
x
d
en
si
ty

=
3
0
%

M
at
ri
x
d
en
si
ty

=
5
0
%

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

Q
C
U
C
R

0
.5
4
4
7

0
.6
6
0
7

0
.6
7
0
8

0
.6
0
3
2

0
.6
7
6
4

0
.7
3
0
5

0
.7
2
7
1

0
.7
1
0
3

0
.7
0
1
6

Q
C
U
C
R
K

0
.5
5
2
2

0
.6
8
0
2

0
.6
7
4
2

0
.6
2
4
4

0
.6
8
6
3

0
.7
3
5
6

0
.7
3
2
4

0
.7
1
2
3

0
.7
0
6
3

Q
C
U
C
R
F
C

0
.5
6
4
1

0
.6
9
3
2

0
.6
8
4
3

0
.6
4
1
4

0
.6
8
9
3

0
.7
3
7
7

0
.7
3
6
9

0
.7
1
7
7

0
.7
1
0
3

C
Q
C
R

0
.5
7
0
2

0
.7
0
4
7

0
.7
0
8
3

0
.6
7
6
6

0
.7
0
7
3

0
.7
5
0
2

0
.7
4
8
9

0
.7
3
6
3

0
.7
2
8
6

C
Q
C
R
K

0
.5
7
9
4

0
.7
1
0
5

0
.7
1
4
3

0
.6
8
0
4

0
.7
2

0
.7
5
8
9

0
.7
6
1
2

0
.7
5
1
6

0
.7
3
5
4

C
Q
C
R
F
C

0
.5
8
4
5

0
.7
1
7
7

0
.7
1
8
6

0
.6
9
3
7

0
.7
2
5
3

0
.7
7
5
6

0
.7
6
5
5

0
.7
5
8
5

0
.7
5
8
4

932 J Netw Syst Manage (2016) 24:916–943

123

T
a
b
le

3
A
n
al
y
si
s
o
n
N
D
C
G

v
er
su
s
M
an
if
es
t
u
si
n
g
S
R
C
C

M
et
h
o
d
s

M
at
ri
x
d
en
si
ty

=
1
0
%

M
at
ri
x
d
en
si
ty

=
3
0
%

M
at
ri
x
d
en
si
ty

=
5
0
%

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

Q
C
U
C
R

0
.5
6
4
2

0
.6
9
3
7

0
.7
3
0
8

0
.7
1
7
5

0
.7
3
1
6

0
.8
0
2
3

0
.7
9
1
7

0
.7
9
2
2

0
.8
4
1
7

Q
C
U
C
R
K

0
.5
6
8
3

0
.7
0
6
9

0
.7
3
7
3

0
.7
2
1
7

0
.7
3
8
2

0
.8
0
9
9

0
.8
0
0
2

0
.8
0
6
2

0
.8
4
5
2

Q
C
U
C
R
F
C

0
.5
7
1
4

0
.7
1
3
8

0
.7
4
0
3

0
.7
2
6
4

0
.7
4
2
3

0
.8
1
2
2

0
.8
0
7
5

0
.8
2
1
2

0
.8
4
6
9

C
Q
C
R

0
.5
7
8
4

0
.7
1
8
6

0
.7
4
6
4

0
.7
3
1
8

0
.7
5
3
7

0
.8
2
0
2

0
.8
1
5
8

0
.8
2
5
6

0
.8
5
5
8

C
Q
C
R
K

0
.5
8
0
3

0
.7
2
0
5

0
.7
4
8
1

0
.7
3
6
2

0
.7
6
3
1

0
.8
2
3
8

0
.8
1
9
1

0
.8
3
1
8

0
.8
6
0
1

C
Q
C
R
F
C

0
.5
8
7
2

0
.7
2
7
3

0
.7
5
2
5

0
.7
3
8
9

0
.7
6
7
3

0
.8
2
7
5

0
.8
2
4
4

0
.8
3
6
4

0
.8
6
3
3

J Netw Syst Manage (2016) 24:916–943 933

123

T
a
b
le

4
A
n
al
y
si
s
o
n
N
D
C
G

v
er
su
s
m
an
if
es
t
u
si
n
g
K
R
C
C

M
et
h
o
d
s

M
at
ri
x
d
en
si
ty

=
1
0
%

M
at
ri
x
d
en
si
ty

=
3
0
%

M
at
ri
x
d
en
si
ty

=
5
0
%

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

N
D
C
G
1

N
D
C
G
1
0

N
D
C
G
1
0
0

Q
C
U
C
R

0
.5
8
7
4

0
.7
1
5
2

0
.7
5
9
8

0
.7
4
2
3

0
.7
6
6
7

0
.8
4
1
4

0
.8
1
7
9

0
.8
4
8
2

0
.8
9
4
9

Q
C
U
C
R
K

0
.5
8
9
3

0
.7
1
8
7

0
.7
6
2
3

0
.7
4
6
8

0
.7
7
0
4

0
.8
5
1
1

0
.8
2
6
7

0
.8
4
9
6

0
.8
9
6
5

Q
C
U
C
R
F
C

0
.5
9
0
5

0
.7
2
0
1

0
.7
6
8
7

0
.7
5
1
4

0
.7
7
6
7

0
.8
5
2
6

0
.8
2
8
6

0
.8
5
1
2

0
.8
9
7
3

C
Q
C
R

0
.5
9
2
3

0
.7
2
3
2

0
.7
7
0
7

0
.7
5
7
8

0
.7
8
4
9

0
.8
5
8
4

0
.8
3
9
5

0
.8
5
8
1

0
.8
9
8
5

C
Q
C
R
K

0
.6
0
0
7

0
.7
2
9
7

0
.7
7
5
6

0
.7
5
8
2

0
.7
9
0
6

0
.8
6
0
2

0
.8
4
1
6

0
.8
6
3
2

0
.8
9
9
4

C
Q
C
R
F
C

0
.6
0
5
3

0
.7
3
6
8

0
.7
7
9
2

0
.7
5
9
9

0
.7
9
5
3

0
.8
6
8
9

0
.8
4
8
4

0
.8
6
9
7

0
.9
0
9
1

934 J Netw Syst Manage (2016) 24:916–943

123

4. Correlated QoS CloudRank without Data Smoothing (CQCR).

• This method employs correlation property among multiple QoS values for

user similarity estimation as well as to predict personalized ranking.

5. Correlated QoS CloudRank with (Data Smoothing) K-Means (CQCRK).

• This method is similar to CQCR. In this approach, a pre-processing

technique such as data smoothing is employed with the help of the K-Means

algorithm.

6. Correlated QoS CloudRank with (Data Smoothing) FCM (CQCRFC).

• This method is similar to CQCR. In this approach, a pre-processing

technique, such as data smoothing is employed with the help of the FCM

algorithm.

In the actual world, the user-item matrixes are generally very sparse since a user

normally only chooses a very rare number of cloud services. So to make our

experiments practically, we randomly remove entries from the user-item matrix to

make sparser with various densities. The user-item matrix density (i.e., proportion

of nonzero entries) is reduced randomly to d %.

In our experiment, all the six proposed correlated QoS ranking algorithms

employ a matrix density from 10 to 50 % percent with the step value as 5 %. While

evaluating the ranking accuracy, each six proposed correlated QoS ranking

algorithms are executed up to 30 times and the average value is illustrated in this

paper. The rankings based on the unique full matrix are utilized as model rankings

to learn the QoS ranking accuracy. The Top-K value is set to 10 in the prediction

process. The threshold assigned for the hybrid Top-K algorithm is 0.25.

The three traditional similarity computation methods such as the PCC, SRCC and

KRCC are employed for all six proposed correlated QoS ranking algorithms, whose

performance is evaluated in the form of NDCG1, NDCG10 and NDCGG100.

Tables 2, 3 and 4 shows the performance analysis of the NDCG based correlated

cloud rank approach with the PCC, SRCC and KRCC calculated for 0, 30, and 50 %

density for user-item matrix (Figs. 8, 9, 10).

Fig. 8 Impact of PCC with correlation ranking scheme

J Netw Syst Manage (2016) 24:916–943 935

123

The result analysis shown in Tables 2, 3 and 4 clearly describes that the ranking

accuracy (in terms of NDCG values) increases as the density of the user-item matrix

also increases from 10 to 50 %. The denser user-item matrix provides more data for

the ranking accuracy.

Figure 11 clearly shows that the ranking accuracy has been improved as the

density of user-item matrix has been increased from 10 to 50 %. In our work, the

CQCR-PCC in 50 % outperforms CQCR-PCC in 10 % with 0.0203 NDCG same

for SRCC and KRCC with 0.1094 NDCG and KRCC with 0.1278 NDCG.

The inclusions of the pre-processing technique, i.e., the data smoothing technique

enhance the accuracy level. Compared with the K-Means data smoothing algorithm

technique, the FCM algorithm based data smoothing consistently achieves a better

ranking accuracy.

Figure 12 clearly shows that CQCRFC outperforms CQCR with 0.0298 NDCG

for PCC, with 0.0075 NDCG for SRCC, with 0.0106 NDCG for KRCC and

Fig. 9 Impact of SRCC with correlation ranking scheme

Fig. 10 Impact of KRCC with correlation ranking scheme

Fig. 11 Matrix density 10, 30
and 50 %

936 J Netw Syst Manage (2016) 24:916–943

123

outperforms CQCRK with 0.023 NDCG for PCC, with 0.0032 NDCG for SRCC,

with 0.0097 NDCG for KRCC. This examination indicates that, the correlation

property in the combined form of QoS with the data smoothing technique improves

the ranking accuracy for multiple QoS constraints.

On the basis of the similarity computation technique, the KRCC method obtained

improved results compared to the PCC and SRCC.

Figure 13 clearly shows that the algorithm with the KRCC outperforms SRCC by

0.0427 NDCG and outperforms the PCC by 0.1699 NDCG.

While employing the correlation property of multiple QoS values for similarity

estimation and ranking prediction yields a better result than applying the correlation

property only for a similarity estimation.

Figure 14 clearly shows that the Correlated QoS CloudRank without Data

Smoothing (CQCR) outperforms the QoS Correlated User based CloudRank

without Data Smoothing (QCUCR). CQCR outperforms with 0.027 NDCG for

PCC, with 0.0141 NDCG for SRCC and with 0.0036 NDCG for KRCC when

compared with QCUCR.

Fig. 12 Impact of data smoothing

Fig. 13 Impact of similarity
computation methods

J Netw Syst Manage (2016) 24:916–943 937

123

The Correlated QoS CloudRank with (Data Smoothing) FCM (CQCRFC)

technique obtains the improved prediction accuracy (largest NDCG values) with

combined QoS under all the experimental settings consistently. It achieves a higher

ranking accuracy than the other five techniques. Figure 15 clearly shows that the

KRCC with FCM outperforms CQCR with 0.0106 NDCG and outperforms CQCRK

with 0.0097 NDCG.

In [58], the CloudRank2 (response time) approach with its ideal ranking (single

QoS) it achieves a ranking accuracy 0.8884 NDCG for 50 % matrix density and

KRCC for similarity estimation, for CloudRank2 (throughput) it is 0.8943 NDCG.

The proposed approach CQCRFC compared with its ideal ranking (multiple QoS) it

achieves 0.9091 NDCG for 50 % matrix density.

Figure 16 clearly shows that, the CQCRFC technique improves the ranking

accuracy with 0.0148 NDCG compared with CloudRank2 (throughput) and with

0.0207 NDCG CloudRank2 (response time).

Fig. 14 Impact of QoS
correlation property in ranking

Fig. 15 Impact of Kendall with FCM

938 J Netw Syst Manage (2016) 24:916–943

123

5 Related work

Cloud computing is gaining popularity these days. There are numerous works on

cloud computing such as multimedia communication [13], virtualization [38, 46,

50], load balancing [10], fault tolerance [24, 40], service pricing [55], profit

maximization [2, 4], admission control [32], service composition [6], queuing

systems [3, 8], and resource monitoring [56]. The QoS is also an important concept

in cloud computing [5, 34, 41]. Different applications have different QoS

requirements [5, 15, 57]. QoS of cloud services can be compared either from the

client side or at the server side (e.g.; price, availability, etc.). QoS measures have

been used for various approaches such as resource management [11, 15], resource

scheduling [9, 20, 23, 30, 48], service measurement [45], data replication [25],

swarm optimization [14], and resource optimization [49]. This paper focuses on

predicting optimal service selection using Correlated QoS ranking to improve

accuracy.

Recommendations are specified to the user based on assessment of items by other

users from the same group, with whom he/she shares common preferences. If the

item has been positively rated by the community, it will be recommended to the

user. Collaborative filtering methods are widely adopted in recommender [28] and

QoS systems [17]. Two types of collaborative filtering approaches are widely

studied memory based [21, 22, 27, 43] and model based [21, 22, 27, 37, 43]. The

model-based approaches group together different users in the training database into

a small number of classes based on their rating patterns. In order to predict the rating

from a test user on a particular item, these approaches first categorize the test user

into one of the predefined user classes and use the rating of the predicted class on

Fig. 16 Impact of correlated property of multiple QoS

J Netw Syst Manage (2016) 24:916–943 939

123

the targeted item as the prediction [37, 43]. Algorithms within this category include

bayesian network approaches [27], the aspect model [33, 52], gradient descent [12]

and the latent class models [52, 53].

Two types of memory-based methods [29] have been studied: user-based [21, 43]

and item-based [7, 21, 37, 39]. User-based methods first look for similar users who

have similar rating styles with the active user and then employ the ratings from

those similar users to predict the ratings for the active user. Item-based methods

share the same idea with user-based methods. The only difference is user-based

methods to find the similar users for an active user but item-based methods try to

find the similar items for each item. However, the most common method used in a

collaborative filtering method is the user based model [7, 43]. To find similarity

between users, the Vector Similarity (VC) [16, 39], Cosine Based Similarity [7, 36,

37], KRCC [39, 58], SRCC and PCC [21, 22, 43], methods were employed. The

present work is different from the preceding work [57, 58, 59] in the sense that the

accuracy of QoS based ranking has improved with the help of correlation and

combination of QoS properties. Still enormous effort is needed for employing

collaborative filtering methods for Web service QoS value prediction.

6 Conclusion and Future Work

In this paper, we propose a correlated QoS ranking algorithm to predict personalized

ranking for service selection for an active user. Six different kinds of correlated

ranking algorithms were proposed and we compared their accuracy in terms of

NDCG. The process of selecting similar neighbors for an active user is a very

important one for the accuracy of prediction; hence, in this scheme we proposed a

QoS correlation property based user selection with hybrid Top-K algorithm.

Multiple QoS correlation properties were efficiently extracted and combined

properly to predict the rank for the cloud service. The investigational results show

that our approach improve the accuracy of the QoS ranking prediction.

For future work, we would like to investigate time-aware correlated QoS ranking

approaches for cloud services by using data collected from service users, cloud

services, and time. Apart from the correlation property of QoS, the location aware

ranking prediction scheme can be extended in the future. Furthermore, we also plan

to detect and handle malicious QoS values provided by users.

Acknowledgments The authors would like to thank Zibin Zheng, Yilei Zhang and Michael R. Lyu for

providing the WSDream-QoS datasets [60] that were publicly released from the website (http://www.

wsdream.net). This dataset was very helpful for our research purposes. We would also like to thank the

anonymous reviewers for their valuable and insightful suggestions.

References

1. Amazon.: Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/,1 (2009)

2. Ani Brown Mary, N.: Profit maximization for SAAS using SLA based SPOT PRICING in CLOUD

COMPUTING. Int. J. Emerg. Technol. Adv. Eng. 3(1), 19–25 (2013)

940 J Netw Syst Manage (2016) 24:916–943

123

http://www.wsdream.net
http://www.wsdream.net
http://aws.amazon.com/ec2/%2c1

3. Ani Brown Mary, N., Saravanan, K.: Performance factors of CLOUD COMPUTING data centers

using [(M/G/1):(/GDMODEL)] queuing systems. Int. J. Grid Comput. Appl. 4(1), 1–9 (2013)

4. Ani Brown Mary, N.: Profit maximization for service providers using hybrid pricing in cloud

computing. Int. J. Comput. Appl. Technol. Res. 2(3), 218–223 (2013)

5. Ani Brown Mary, N., Jayapriya, K.: An extensive survey on QoS in cloud computing. Int. J. Comput.

Sci. Inf. Technol. 5(1), 1–5 (2014)

6. Al Falasi, A., Serhani, M.A.: A framework for SLA-based cloud services verification and compo-

sition. In: Proceedings of 2011 International Conference on Innovations in Information Technology

(2011)

7. Sarwar, B., Karypis, G., Konstan, J. & Riedl J.: Item-based collaborative filtering recommendation

algorithms. In: Proceedings of WWW Conference (2001)

8. Bharathi, M., Sandeep Kumar, P., Poornima, G.V.: Performance factors of cloud computing data

centers using M/G/m/m?r queuing systems. IOSR J. Eng. 2(9), 06–10. e-ISSN: 2250-3021, p-ISSN:
2278-8719. www.iosrjen.org (2012)

9. Li, B., Song, A.M., Song, J.: A distributed QoS-constraint task scheduling scheme in cloud com-

puting environment: model and algorithm. Adv. Inf. Sci. Serv. Sci. 4(5), 283–291 (2012)

10. Mondala, B., Dasguptaa, K., Duttab, P.: Load balancing in cloud computing using stochastic hill

climbing—a soft computing approach. Proced. Technol. 4, 783–789 (2012)

11. Yeo, C.S. Buyya, R.: A taxonomy of market-based resource management systems for utility-driven

cluster computing. Softw. Pract. Exp. 36, 1381–1419 (2006). Published online 8 June 2006 in Wiley

InterScience (www.interscience.wiley.com). doi:10.1002/spe.725

12. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to

rank using gradient descent. In: Proceedings of ICML 2005, pp. 89–96 (2005)

13. Angeli, D., Masala, E.: A cost-effective cloud computing framework for accelerating multimedia

communication simulations. J. Parallel Distrib. Comput. 72(10), 1373–1385 (2012)

14. Kumar, T.A.D., Sumathi, G.: Intelligent management of remote facilities and quality of cloud ser-

vices. Int. J. Grid Distrib. Comput. 4(2), 43–51 (2011)

15. Armstrong, D., Djemame, K.: Towards quality of service in the cloud. In: Proceedings of the School

of Computing, University of Leeds, United Kingdom

16. Wu, D., Mendel, J.M.: A vector similarity measure for linguistic approximation: interval type-2 and

type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)

17. Adomavicius, G., Kwon, Y.O.: Improving aggregate recommendation diversity using ranking-based

techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)

18. Google, App Engine. http://code.google.com/appengine/. 17 February 2009

19. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering.

IEEE Internet Comput. 7, 76–80 (2003)

20. Liu, G., Liu, C., Yang, C. Li, D.: Scheduling research based on genetic algorithm and QoS constraints

of cloud computing resources. J. Theor. Appl. Inf. Technol. 51(1), 91–96 (2013)

21. Xue, G.R., Lin, C., Yang, Q., Xi, W., Zeng, H.J., Yu, Y. Chen, Z.: Scalable collaborative filtering

using cluster-based smoothing. In: Proceedings of SIGIR (2005)

22. Ma, H., King, I., Lyu, M.R.: Effective missing data prediction for collaborative filtering. In: 30th

International ACM SIGIR Conference Research and Development in Information Retrieval

(SIGIR’07), pp. 39–46 (2007)

23. Lawrance, H., Silas, S.: Efficient Qos based resource scheduling using PAPRIKA method for cloud

computing. Int. J. Eng. Sci. Technol. 5(3), 638–643 (2013)

24. Dean, J. Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of

the OSDI 2004

25. Lin, J.W., Chen, C.H., Chang, J.M.: QoS-aware data replication for data intensive applications in

cloud computing systems. IEEE Trans. Cloud Comput. 1(1), 101–115 (2013)

26. Wu, J., Chen, L., Feng, Y., Zheng, Z., Zhou, M.C., Wu, Z.: Predicting quality of service for selection

by neighborhood-based collaborative filtering. IEEE Trans. Syst. Man Cybern. Syst. 43(2), 428–439
(2013)

27. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative

filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence,

Madison (1998)

28. Canny, J.: Collaborative filtering with privacy via factor analysis. In: Proceedings of the Twentieth

International Conference on Machine Learning (ICML-2003), Washington, DC (2003)

J Netw Syst Manage (2016) 24:916–943 941

123

http://www.iosrjen.org
http://www.interscience.wiley.com
http://dx.doi.org/10.1002/spe.725
http://code.google.com/appengine/

29. Wang, J., de Vries, A.P., Reinders, M.J.T.: Unifying userbased and itembased collaborative filtering

approaches by similarity fusion. In: Proceedings of the SIGIR’06, Seattle, Washington, USA, August

6–11 (2006)

30. Kim, Kyong Hoon, Lee, Wan Yeon, Kim, Jong, Buyya, Rajkumar: SLA-based scheduling of bag-of-

tasks applications on power-aware cluster systems. IEICE Trans. Inf. Syst. E93-D(12), 3194–3201
(2010)

31. L.S.V. Singh, J.A.: A greedy algorithm for task scheduling and resource allocation problems in cloud

computing. Int. J. Res. Dev. Technol. Manag. Sci. Kailash 21(1), (2014). ISBN: 978-1-63102-445-0
32. Wu, L., Garg, S.K., Buyya, R.: SLA-based admission control for a software-as-a-service provider in

cloud computing environments. J. Comput. Syst. Sci. 78, 1280–1299 (2012)

33. Si, L., Jin, R.: Flexible mixture model for collaborative filtering. In: Proceedings of the Twentieth

International Conference on Machine Learning (ICML-2003), Washington DC (2003)

34. Devgan, M., Dhindsa, K.S.: A study of different QoS management techniques in cloud computing.

Int. J. Soft Comput. Eng. 3(3), (2013). ISSN: 2231-2307
35. Dodge, M.: Finding the source of the Amazon.com: hype of the ‘‘EARTH’S biggest bookstore. In:

Proceedings of the Centre for Advanced Spatial Analysis Working Paper Series

36. Khatr, M.: Cosine similarity function for the temporal dynamic web data. Int. J. Comput. Sci. Eng.

Technol. 3(8), 315–318 (2012)

37. Deshpande, M., Karypis, G.: Item-based top-n recommendation. ACM Trans. Inf. Syst. 22(1),
143–177 (2004)

38. Sultan, N.: Cloud computing for education: A new dawn? Int. J. Inf. Manag. 30(2), 109–116 (2010)

39. Liu, N.N., Yang, Q.: EigenRank: a ranking-oriented approach to collaborative filtering. In: Pro-

ceedings of the SIGIR’08, New York, USA

40. Garraghan, P., Townend, P., Xu, J.: Real-time fault-tolerance in federated cloud environments. In:

Proceedings of the 2012 IEEE 15th International Symposium on Object/Component/Service-Ori-

ented Real-Time Distributed Computing Workshops

41. Wu, Q., Iyengar, A., Subramanian, R., Rouvellou, I., Silva-Lepe, I., Mikalsen, T.: Combining quality

of service and social information for ranking services. In: IBM T.J. Watson Research Center, Skyline

Drive, Hawthorne, NY 10532, USA

42. Cannon, R.L., Dave, J.V., Bezdek, J.C.: Efficient implementation of the fuzzy-c-means clustering

algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 8(2), 248–255 (1986)

43. Jin, R., Chai, J.Y., Si, L.: An automatic weighting scheme for collaborative filtering. In: Proceedings

of SIGIR (2004)

44. Salesforce.com. CRM salesforce.com. http://www.salesforce.com/

45. Garg, S.K., Versteeg, S., Buyya, R.: SMICloud: a framework for comparing and ranking cloud

services. In: Proceedings of 2011 Fourth IEEE International Conference on Utility and Cloud

Computing

46. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing—the business

perspective. Decis. Support Syst. 51(1), 176–189 (2011)

47. Sforce: the client/service application development utility. www.salesforce.com

48. Dubey, S., Agrawal, S.: QoS driven task scheduling in cloud computing. Int. J. Comput. Appl.

Technol. Res. 2(5), 595–600 (2013)

49. Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., Turrini, E.: QoS-aware clouds. In: 2010 IEEE 3rd

International Conference on Cloud Computing

50. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud com-

puting. J. Netw. Comput. Appl. 34, 1–11 (2011)

51. Chattopadhyay, S.: A comparative study of fuzzy-c-means algorithm and entropy-based fuzzy

clustering algorithms. Comput. Inf. 30, 701–720 (2011)

52. Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: IJCAI, pp. 688–693

(1999)

53. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In: Pro-

ceedings of the SIGIR’03, Toronto, Canada, July 28–August 1 (2003)

54. Velmurugan, T.: Performance based analysis between K-Means and Fuzzy-C-Means clustering

algorithms for connection oriented telecommunication data. Appl. Soft Comput. 19, 134–146 (2014)

55. Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., Ailamaki, A.: Optimal service pricing for a

cloud cache. IEEE Trans. Knowl. Data Eng. 23(9), 1345–1358 (2011)

942 J Netw Syst Manage (2016) 24:916–943

123

http://www.salesforce.com/
http://www.salesforce.com

56. Emeakaroha, V.C., Netto, M.A.S., Calheiros, R.N., Brandic, I., Buyya, R., De Rose, C.A.F.: Towards

autonomic detection of SLA violations in Cloud infrastructures. Future Gener. Comput. Syst. 28(7),
1017–1029 (2012)

57. Qiu, W., Zheng, Z., Wang, X., Yang, X., Lyu, M.R.: Reputation-aware QoS Value prediction of web

services. In: Proceedings of the 2013 IEEE 10th International Conference on Services Computing

58. Zheng, Z., Wu, X., Zhang, Y., Lyu, M.R., Wang, J.: QoS ranking prediction for cloud services. IEEE

Trans. Parallel Distrib. Syst. 24(6), 1213–1222 (2013)

59. Zheng, Z., Ma, H., Lyu, M.R., King, I.: QoS-aware web service recommendation by collaborative

filtering. Proc. IEEE Trans. Serv. Comput. 4(2), 140–152 (2011)

60. Zheng, Z., Zhang, Y., Lyu, M.R.: Distributed QoS evaluation for real-world web services. In:

Proceedings of the 2010 IEEE International Conference on Web Services

61. Arvelin, K.J., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf.

Syst. 20(4), 422–446 (2002)

K. Jayapriya received her Bachelor of Computer Science degree from Sri Parasakthi College for Women

College of Manonmaniam Sundaranar University in 1996 and the Master of Computer Application from

Madurai Kamaraj University in 2002. She has completed her Ph.D. in Mother Teresa Women’s

University in 2013. She has over 18 years of experience in the IT field, Involved in the Development and

Training of software applications in the Client/Server environment and Research environment. Her

research interests include Image Processing, Pattern Recognition, Biometrics, Networking, Data Mining

and Mobile Computing.

N. Ani Brown Mary received her B.E. degree in Computer Science and Engineering from The Infant

Jesus College of Engineering, Tuticorin in 2009, and the M.E. degree in Computer and Information

Technology from Anna University, Tirunelveli in 2013. She is working towards Ph.D. degree at the

Information and Communication Engineering at Anna University, Chennai. Her research interests

includes Image Processing, Data Mining and Cloud Computing.

R. S. Rajesh is presently working as a Professor in the Department of Computer Science and

Engineering, M.S. University, Tirunelveli. He completed his B.E. in Electronics and Communication

Engineering from Madurai Kamaraj University in the year 1988 and M.E. in Electronics and

Communication Engineering from Madurai Kamaraj University in 1989. He has completed his Ph.D. in

Computer Science and Engineering from M.S. University, Tirunelveli in 2004. He has 25 years of

teaching experience and 20 years of research experience. He published 85 International Journals and 50

International conferences. He is also a full time recognized guide for various Universities. His areas of

interest are Mobile Computing, Computer Networks, Image Processing, and Parallel Processing.

J Netw Syst Manage (2016) 24:916–943 943

123

	Cloud Service Recommendation Based on a Correlated QoS Ranking Prediction
	Abstract
	Introduction
	System Overview
	Correlated Qos Ranking Methodology
	Finding QoS Correlated Similar Users
	QoS Data Smoothing
	Correlated QoS Ranking
	CorQoSCloudRank

	Experiments
	Dataset Description
	Evaluation Metric
	Performance Comparison

	Related work
	Conclusion and Future Work
	Acknowledgments
	References

