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Abstract In this paper, we present a multivariate recurrent neural network model

for short-time prediction of the number of failures that are expected to be reported

by users of a broadband telecommunication network. An accurate prediction of the

expected number of reported failures is becoming increasingly important to service

providers. It enables proactive actions and improves the decision-making process,

operational network maintenance, and workforce allocation. Our previous studies

have shown that the recursive neural network is flexible enough to approximate the

dynamics of the failure reporting process. Development of the model is based on

long-term monitoring of failure-reporting processes and experience gained through

fault management related to the network of one of the leading Croatian telecom

providers (T-HT). Many factors, both in the network and outside the network,

influence the time series representing failure reporting. The model encompasses the

most important predictor variables and their logical and temporal dependencies.

Predictor variables represent internal factors such as profiles of past and current

quantities of failures as well as external factors like weather forecasts or announced

activities (scheduled maintenance) in the network. External factors have a strong

effect on fault occurrence, which finally results in failures reported by users. These

factors are quantified and included as input variables to our model. The model is

fitted to the data from different sources like an error-logging database, a trouble-

ticket archive, announced settings logs and a meteo-data archive. The accuracy of
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the model is examined on simulation tests varying the prediction horizons.

Assessment of the model’s accuracy is made by comparing results obtained by

prediction and the actual data. This research represents a real-world case study from

telecom operations. The developed prediction model is scalable and adaptable so

that other relevant input factors can be added as needed. Hence, the proposed

prediction approach based on the model can be efficiently implemented as a

functionality in real fault-management processes where a variety of available input

data of different volumes exist.

Keywords Proactive fault management � Failure reporting � Failure prediction �
Predictor variables � Multivariate model � NARX � Telecommunication network

1 Introduction

Plain Old Telephone Service (POTS) networks were developed over a long period

of time during the last century. Due to their long-term development and fault-

tolerant design, these systems are reliable and work in a stable manner. Fault

tolerance is achieved by duplication of the essential parts of access and transit

switches as well as transmission and management systems. Even though an IP

(Internet Protocol)-based broadband telecommunication network in Croatia was

introduced to the mass market more than 10 years ago, and the quality of the

network is continuously improving, it still hasn’t reached the level of reliability that

the POTS networks have. Therefore, fault detection, diagnosis, and correction are

still major concerns for a telecom operator. The parameter that best reflects the

quality of a network regarding fault occurrence is the mean time between failures

(MTBF). The service complexity, longer average service usage time, many more

instances of terminal equipment compared to the POTS network, and a higher

bandwidth demand on the access network all have an impact, so the MTBF of

broadband services is 2–6 times lower than the MTBF of narrowband services.1

A broadband network, as opposed to a POTS network, includes a multitude of

active and passive elements that can be subject to fault. Elements most susceptible

to faults are as follows: an Asymmetric Digital Subscriber Line (ADSL) modem,

customer’s equipment, Internet Protocol TeleVision (IPTV) set-top box, ADSL

splitter, home installation, copper twisted pair, distribution point, main distribution

frame, fibre optic cable, and ADSL Digital Subscriber Line Access Multiplexer

(DSLAM) port. Faults, as commonly defined, are problems that can be detected and

handled directly. A consequence of a fault, i.e., its manifestation is a discrepancy

between some observed value or condition and a true, specified, or theoretically

correct value or condition. Faults are usually reported by a surveillance system in

the form of alarms. Generally, faults can be caused by the following:

1 The range of values of this MTBF reduction factor has been published as a result of an internal

technical analysis encompassing networks of 16 telecom operators in Western and Central Europe. The

range (2–6) is quite large because of considerable differences in the equipment that is installed in the

analyzed national networks and because of different efficiencies of the fault-repair systems and processes

implemented.
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(a) intrinsic factors such as age of equipment, life expectancy of equipment,

manufacturing defects, or software bugs;

(b) environmental factors such as wind, animals, humidity, lightning (electric

discharge), ice, or power supply outages;

(c) human factors such as misconfigurations, incorrect maintenance (upgrades,

replacement of equipment, or addition of new functions), accidents caused by

an operator, contractor, or a third party work crew, other effects caused by

human activity, etc.

Some faults result in the service delivered deviating from the agreed or specified

service that is visible to the outside world. The term failure is used to denote this

situation. Failures are commonly defined as follows: a system failure occurs when

the service delivered deviates from the specified service, where the service

specification is an agreed description of the expected service [1]. Similar definitions

can be found in papers of Melliar-Smith and Randell [2], Laprie and Kanoun [3],

and Salfner [2–4]. The main point here is that a failure refers to misbehavior that

can be observed by the user, which can either be a human or another software or

hardware component. Failures can be reported either by a surveillance system or by

users. For example, the most common failures that can be reported by users are

complete interruption of a service, low downstream bandwidth, inability to access

web sites, noise during Voice Over Internet Protocol (VoIP) phone calls, inability to

establish a phone call, and problems with IPTV service like error blocks or

jerkiness.

There are many other problems that could affect customer service, so for IPTV

the following issues are listed Tiling, Ringing, Quantization Noise, Aliasing Effects,

Artifacts, Object Retention, Slice Losses, Blurring, and Color Pixelation [5, 6].

In some cases, faults are not recognized immediately from the systemic alarms,

but later they become apparent due to failures reported by users. More often,

occurrence of a fault is accompanied by one or more alarms while users report

failures afterward. Operators can minimize failure occurrence with proper design

and preventive maintenance of the network. In order to resolve a failure, the fault

that caused it has to be detected and fixed. Failures should be eliminated as soon as

possible for the sake of the customers’ satisfaction as well as respecting signed

Service-Level Agreements (SLA) and rules laid down by the regulatory agencies.

They need to be resolved reactively after a user complaint, but it would be better to

act preventively and proactively. The enabler for this is failure prediction.

Generally, proactivity based on failure prediction increases overall quality of

service (QoS) and a customer’s perception of the QoS has a major impact on her

satisfaction and loyalty.

Two types of failure predictions are considered in the literature: online failure-

occurrence prediction and quantity-of-failures prediction. The aim of online

prediction is to predict the occurrence of failures during runtime based on

system-state monitoring, [4]. This type of prediction can enable proactive action and

thus, directly increase customer satisfaction and loyalty at the individual level. On

the other hand, accurate prediction of the expected number of failures (quantity of

failures) that will be reported by customers of a broadband network is becoming
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increasingly important to service providers. Information about the number of

failures that could appear in the future gives enough time for preparation and

proactive action. Long-term predictions allow providers to anticipate future

operating expenses enabling more confident strategic decisions for planning

investments and increasing business efficiency. Short-term predictions improve

the decision-making process, operational network maintenance and workforce

allocation. Temporal tracking and predicting the number of failures that will be

reported can be achieved by observing reported failures as a time series. A time

series that describe failure-reporting processes are influenced by a large number of

random factors, which make them a complex, nonlinear, time-series. Moreover,

imperfections of surveillance systems used for monitoring have an impact. Errors

during data collection, ambiguous interpretation of alarms, or complete absence of

alarms in specific cases introduce noise in a time series. Also, there are many

relevant but unobserved variables whose values are not known at all.

The contributions of this paper are as follows:

On the basis of a sample that covers fault-management data collected during a

four-year period, we have done analysis of the main causes of faults related to

broadband networks. We present locations in the network, i.e. network elements

where faults appear statistically more frequently, as well as causes of these faults.

Among all causes, we identify those whose occurrences can be predicted for a

period of time. Through the analysis, we gain insight into the variables that could

be selected as candidates for predictor variables for our model.

By using real operational data, we explain the characteristics of a time series that

represent the number of reported failures. Also, we explain how fault–occurrence

processes, the users’ average daily usage of services, and the users’ expected

behavior in the moment when they become aware of service failure, impact the

dynamics of failure reporting. By applying a formal statistical method, elements

such as outages, lightning, rainfall, and announced work on the network are

identified as the most significant predictable causes of faults. To the best of our

knowledge, temporal analysis of the interdependence between meteorological

factors like humidity (rain) and failures noticed and reported by customers as

presented in this paper has not yet been studied. Furthermore, the significance of

the historical data on the number of reported failures (e.g., weekly averages or

reports in the last few days) for prediction accuracy is noticed by examination of

the time series. These data yield information about seasonality and information

about the current buffer of the unresolved failures and their impact on the future

sequence of reporting failures.

Considering the complexity of the dynamics of failure reporting and the results of

our previously-published comparative analysis of various predicting methods, we

propose the nonlinear autoregressive network with exogenous input (NARX) as

the most promising one for predicting quantities of reported failures in the context

of complex systems, such as broadband networks. We believe that due to the

inherent adaptability of the proposed multivariate predicting approach based on

NARX, it can be used and implemented in fault-management processes by other

telecom operators. A system that is able to predict the expected number of
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reported failures several days in advance enables operators to plan and allocate

necessary resources and can considerably decrease operational costs.

This paper is organized as follows. In the introductory Section we state the

objectives and motivation for the work and provide an adequate background with

minimum details. Related work on failure predictions and multivariate predictions

that has generally influenced this research is presented in Sect. 2. Locations and

causes of faults and failures in a broadband network are explained in Sect. 3.

Characteristics of the time series representing the dynamics of the failure reporting

process are also presented. A multivariate model for short-time prediction of

reported failure quantities based on the recursive neural network, together with an

approach to determination of significant predictor variables, is described in Sect. 4.

Accuracy of the model and predictions are presented in relation to variable

prediction horizons and the number of input variables. Finally, conclusions are

drawn at the end of the paper.

2 Related Work

There are various systems developed for real-world networks, SHRINK [7],

NetworkMD [8], Draco [9] and so forth, whose purpose is to enable proactive action

based on network analysis and network diagnosis. Improvement of performance

management and network reliability in similar types of networks are analyzed in

papers [10–12].

Generally, proactivity assumes existence of data and knowledge about processes

as well as efficient intelligent methods for data analysis, learning, and predictions.

Selection of the optimal prediction method depends on the nature of the processes

being modeled, data availability, and the duration of the monitoring period, as well

as on adaptability of involved operational support systems. In order to improve the

accuracy of prediction models, research is conducted in two directions. First, there

are efforts to improve performance of the existing prediction methods, e.g., to

develop a new training method for a neural network or to propose a new network

topology, and second, researchers are developing their own predictive models

customized to a specific application [13, 14]. An interesting example of multivariate

forecasting is presented in [13], where the authors develop their own predictive

model to forecast the overall sales of retail products. Their model consists of three

modules: Data Preparation and Pre-processing (DPP), Harmony search Wrapper-

based Variable Selection (HWVS), which prunes redundant and irrelevant variables

and selects out the optimal input variable subset, and Multivariate Intelligent

Forecaster (MIF) used to establish the relationship among variables and forecast the

sales’ volumes. The proposed model has proved to be effective in handling

multivariate forecasting problems. Similar principles for using three-stage predic-

tive models (preprocessing-selecting-forecasting) were used extensively in the field

of forecasting; this idea is used in our work as well. Variation and evaluation of

different configurations of neural networks are frequently encountered for predictive

purposes. In [14], the authors compare different types of neural networks with their
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own method, Multiple Forward Stepwise Logistic Regression (MFSLR), to predict

customer purchase behavior. Their conclusion is that the MFSLR method shows

superior performance.

An interesting application of a recurrent neural network on real world

telecommunications data is shown in paper [15] where the authors describe a

forecaster for telecommunications call-volume forecasting. The forecaster is a

recursive neural network called the Block-diagonal Recurrent Neural Network

(BDRNN) with a simpler structure than fully recurrent networks usually have.

BDRNN forecasting results are compared with a series of well-established

forecasting models such as the traditional forecasting methods—the Naive Forecast,

Linear Extrapolation with Seasonal Adjustment (LESA), Simple Exponential

Smoothing (SES), and the Seasonal Auto Regressive Integrated Moving Average

method (SARIMA), methods that use computational intelligence like the

Orthogonal Least Squares-based Fuzzy Forecasting Model (OLS-FFM), Locally

Recurrent Neurofuzzy Forecasting System (LR-NFFS), and Recurrent Neurofuzzy

Forecaster (ReNNFOR). Results show that the BDRNN gives much more precise

forecasts in comparison with the other models. The data set covers a period of

10 years and the model can be applied for telecom-bill optimization and

unnecessary-cost reduction in large organizations.

The impact of currently existing element outages and announced work on the

network that can potentially cause new outages on failure occurrences is the subject

of a lot of research, e.g., [16–18]. Impact of lightning on faults in the network and

suggestions for mitigation of their effects were also a subject of research [19].

Similarly, a research on how severe weather (e.g., thunderstorms) can cause loss of

Internet connection for residential users is presented in [20]. To determine the effect

of weather conditions on connectivity, the authors designed and implemented a

measurement tool called ThunderPing. This tool is able to detect the loss of

connectivity by pinging residential Internet hosts. An example of an online failure-

occurrence prediction system is NEVERMIND, [21]. The system is composed of

two components: a trouble-ticket predictor and a trouble locator. Both components

infer future tickets and trouble locations based on existing sparse line measure-

ments, and the inference models are constructed automatically using supervised

machine learning techniques. The ticket predictor utilizes existing measurements on

individual DSL lines to proactively identify lines on which customers are likely to

register problem tickets in the near future.

3 Failures in a Broadband Network

Failure reporting is a complex process influenced by numerous environmental and

technical factors. Service failures arise due to the occurrence of faults in a network

and the lack of redundancy in its design. In this Section, we explain the structure of

a broadband network, locations in the network where faults appear, types of faults,

and root causes of these faults. Understanding the root causes helps in selecting

variables that have significant impact on the failure reporting process.
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3.1 The Process of Failures

We distinguish two random processes related to faults and failures: a process

representing the occurrence of faults caused by the many factors previously

mentioned and a process that represents failure reporting influenced by fault

occurrences and users’ habits, i.e. their behavior while perceiving and reporting

failures. Users’ failure-reporting behavior is complex. The moment of reporting the

failure depends primarily on the following:

The users’ average daily usage of services—whether the user is using the service

at the time or shortly after the fault occurs, (e.g., after midnight service usage is

minimal so almost no reporting exists),

The users’ expected actions/behavior (active or passive/indifference) in the

moment when they become aware of a service failure (if the user knows a

reporting procedure, whether the user is trying to fix the problem alone, has a

habit of calling the call center or a habit of passively waiting until the service

starts to work again, etc.).

Both processes directly drive the execution of the failure-handling process

implemented by the operator. Processes together with the factors that influence them

are depicted on Fig. 1.

FAULT 
OCCURRENCE 

PROCESS

intrinsic factors: age of 
equipment, manufacturing 
defects, bugs

FAILURE 
REPORTING 

PROCESS
(FAILURES 

NOTICED BY 
THE 

CUSTOMERS)

environmental factors: 
lightning, humidity, 
electrical discharges, ice

human factors: improper 
handling

FAILURE 
FIXING / 

HANDLING 
PROCESS 

faults successfully detected by system

user behavior and service 
usage 

trouble �cket opening

informa�on about faults affec�ng 
whole group of customers

faults (detected and 
undetected)

Fig. 1 Fault occurrence and failure reporting processes
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In this paper, we only consider failures caused by detected faults or failures

reported by users. Other phenomena such as transient failures, unreported failures,

or undetected faults, which were observed neither by the user nor by a fault-

management system, represent additional problems and are not the subject of this

paper.

3.2 Locations and Types of Faults

A broadband network contains a multitude of hardware and software components in

different locations that can be subject to fault more or less frequently depending on

their MTBF. A typical broadband network shown in Fig. 2 consists of three main

parts:

1. The Internet Protocol/Multiprotocol Label Switching (IP/MPLS) core part (1) is

based on MPLS technology for switching labels. There are two types of routers

in the core part: the Label Switch Router (LSR) and Label Edge Router (LER).

The core part also includes head-end servers that provide services to users such

as: Internet access, access to video services, IPTV and Video On Demand

(VOD), and telephone (Voice) over IP (VoIP).

2. The second part of the network is the access part (2) where DSLAM

architecture is used as the link to the Ethernet aggregation. Subscriber traffic is

directed over an ADSL port to the DSLAM, which does the conversion of

Asynchronous Transfer Mode based DSL traffic into Ethernet frames. Ethernet
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Fig. 2 Broadband network—main parts
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traffic flows into an aggregation card and is transported to the network through

Gigabit Ethernet rings (Metro Ethernet transport). Cables with twisted copper

pairs that form a part of the access network were inherited from the Public

Switched Telephone Network (PSTN). Broadband technology has imposed

much higher requirements on this part because the speed, and therefore the

spectrum, have dramatically increased. These have initiated new problems. The

physical link between user and the DSLAM port is a twisted copper pair in a

subscriber cable. Access via the copper pair is, at the moment, the most

common kind of access to the network. In each area of central or remote

subscriber access there is a main distribution frame (MDF), which marks the

beginning of the subscriber lines. The end point of the access part is a

Distribution point behind which the customer installation begins.

3. The third, user part (3) includes network termination equipment (ADSL

modem, Splitter), other customer premises equipment (IPTV set-top box,

television set, handset and other devices) and in-house customer installations.

This part of the network is spatially the most abundant.

A variety of elements in all three parts are possible locations of faults. The fault-

management system is designed to record all faults detected and failures resolved.

The data about alarms are entered into the database automatically while other

data are entered by technicians during the resolving process. The result is that the

database gives an accurate insight into the faults, causes of faults, and failures that

have been reported. By analyzing operational data on faults and their locations we

get the distribution of faults displayed in Table 1.

The majority of faults, 70.86 %, occur in the customer part of the network. Of

these, 34.55 % relate to the user equipment, 14.36 % to the ADSL modem (router)

and 12.36 % to the in-house customer installation. In the access part we find

26.53 % of the faults, while the rest, or 2.61 %, occur in the core part of the

network. Over the years, causes have been recorded for each fault detected. Their

frequencies are shown in Table 2. The majority of failures that occur in the users

part of the network (34.89 %) are caused by users themselves (by improper handling

and wrong initial settings) or because of errors in CPE software.

The distribution of faults by locations together with the preponderance of faults

in the user part of the network have an influence on the shape of the time series of

reported failures. In fact, the dynamics of service usage by customers introduces

periodicity and seasonality in the time series. Slight discrepancies between

percentages related to total quantities of faults per parts of the network (Tables 1,

2) arise from the measurement noise already mentioned in the Introduction. Table 3

shows an overview of the most frequent causes of faults recorded during the period

2010–2012.
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3.3 Number of Reported Failures: Time Series

The diagram in Fig. 3 shows annual quantities of reported failures by services in the

last 10 years. During this period the transition from the POTS network to the

Table 1 Locations of faults

Fault location Fault equipment Frequency (%) Total (%)

Customer Premises Equipment (CPE) ADSL modem 14.36 70.86

Customer equipment 34.55

Set top box 6.16

ADSL splitter 3.43

Customer house installation 12.36

Access network Cooper twisted pair 3.22 26.53

Network termination point 6.53

Main distribution frame 4.24

Optical cable 2.82

ADSL DSLAM port 6.44

DSLAM 3.28

Core network Internet service provider 0.76 2.61

Core network 0.19

Ethernet aggregation 0.73

IPTV content center 0.93

Source: T-HT internal report, 2012

Table 2 Causes of faults

Fault location Fault reason Frequency (%) Total (%)

Customer Premises Equipment Misconfiguration 8.31 71.26

Improper handling 34.89

In-house installation fault 11.93

Electrical discharge 7.32

Worn-out equipment 8.81

Access network Corrosion 1.22 26.25

Breakdown 6.53

Hardware defect 11.24

Electrical discharge 3.82

Over-threshold attenuation 3.44

Core network Misconfiguration 0.33 2.49

Incorrect wiring 0.07

Hardware defect 0.57

Failed upgrade 0.59

Low-grade content 0.93

Source: T-HT internal report, 2012
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Table 3 Most frequent causes of faults

Fault causes 2010 2011 2012 %

Fault due to deterioration and oxidation 173,010 151,699 148,564 26.95

Defective equipment 90,610 103,035 106,728 17.11

Fault on the twisted pair (shunt, short circuit, break) 61,519 56,867 61,183 10.23

Blockade 41,937 44,828 52,635 7.94

Fault caused by improper handling (user) 50,698 44,038 42,870 7.84

Fault caused by severe weather conditions 35,658 40,104 38,399 6.50

Fault in configuration 17,812 30,905 42,261 5.18

Faults on a system 27,736 28,485 33,006 5.08

Occasional faults with unknown cause 20,868 23,767 25,968 4.02

Damage caused by outside contractors 16,891 21,295 19,932 3.31

Faulty cabling 12,224 13,306 17,502 2.45

Damage due to internal works 7186 7944 8538 1.35

Large attenuation on a twisted pair 3938 4002 4442 0.71

Great distance from the switch 2559 4001 3576 0.58

Wrong account 2122 2249 2024 0.36

Splitter is connected incorrectly 955 1138 906 0.17

Faults occurred under the influence of humidity 933 642 453 0.12

Crosspoint 664 538 351 0.09

Blown fuse—equipment damage 25 53 164 0.01

Power outage 4 6 40 0.00

Blown fuse—cause unknown 4 17 24 0.00

Source: T-HT internal report, 2012
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broadband network took place. The number of failures related to the traditional

services such as POTS voice telephony and Integrated Services for Digital Network

(ISDN) services is in decline because these services are being replaced by

alternative services on broadband platforms. Another reason for the decline of

POTS failures is the migration to the other shared models of services among

multiple service providers. On the other hand, the number of failures on broadband

services such as ADSL and IPTV grows along with the total number of users of

these services. Note that the total number of failures in the whole observed period

increases, and this trend is expected to continue in the upcoming years.

The failure-reporting process can be represented by a time series. These are

stochastic series whose future development in time can be estimated based on

previous values. Thanks to the fault-management system we have precise data about

failure reporting, i.e., daily, weekly, monthly and annual series on the number of

reported failures are available. Sampling was carried out in equal intervals so that

interval sequences are cumulative in nature and can be considered as a series of a

discrete time parameter.

As we said before, the failure-reporting process is strongly driven by customers.

Failure reporting has daily dynamics that depend on the users’ habits of using

services and on their actions when they notice the presence of failure. Therefore, the

time series representing the number of reported failures displayed in hourly and

daily intervals reveals periodicity in time (Figs. 4, 5).

Daily or weekly patterns simply reflect work activities (usage of services) of

residential and business customers during a day or week (Monday–Saturday). In the

daily pattern a notable drop happens during the night while in the weekly pattern a

reduction in the usage of the services on Sundays results in a lower number of

reported failures. In a time series representing reported failures displayed in weekly

and monthly intervals (monthly and yearly patterns) no periodicity in time is notable

(Figs. 6, 7), because the cumulative number of reported failures in a week or in a

month is more under the influence of random factors, such as bad weather or

unexpected breakdowns in the network. In regular circumstances, time series have a

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100

A
ct

ua
l n

um
be

r o
f f

ai
lu

re
s

Time (hours)

Actual
Fig. 4 Number of failures in
hourly intervals

200 J Netw Syst Manage (2016) 24:189–221

123



common and recognizable shape. However, unexpected events such as core network

element malfunctions or thunderstorms can significantly affect the shape of the

curve. One such anomaly that occurred in the 21st week can be seen in Fig. 6.

Furthermore, the sharp decline that reaches a minimal value in the 52nd week is

caused by characteristics of the calendar, i.e., by an incomplete last week in the

year. Prediction of such anomalies on the curve is important in order to reserve the

human resources that can prevent or resolve additional failures. A common daily

distribution of reported failures (working day) is shown in Fig. 8 (gray line).

These are ‘‘regular failures’’ that occur mainly in the access network, and are

caused by problems in the customer equipment; their reporting can be expected in

similar daily distributions. For these quantities of failures, telecom operators have

reserved resources to deal with their removal. However, in some situations

anomalies occur, i.e., incidents that lead to an increased number of failures. One

such anomaly recorded by the management system is shown in Fig. 8. The black-

colored addition to the common shaped baseline curve represents the increased

number of reported failures caused by a serious fault in equipment. Two things are

important to define a prediction model of good quality: knowing the characteristics
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of the common series (trend, periodicity) and detecting the main external factors

that cause substantial increases in the number of reported faults.

Estimates of future failures only on the basis of past information concerning

quantities, without recognizing the external factors (environmental and human

factors) and their influences can be optimistic and insecure. For example, the access

and customer parts of the network are susceptible to environmental factors.

Particular weather conditions (lightning or high humidity) can result in negative

influences on lines and equipment, leading to sharp increases in the failure rate. In

the next Section we show that the additional quantity of failures that appear under

the influence of external factors (like adverse weather conditions) can be

successfully predicted by the recursive neural net model. The multivariate modeling

concept is introduced to reflect the effect of continuously varying influences of

internal and external factors. It is very important that the model is scalable in a way

that allows inclusion of additional factors that will be subsequently detected as
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relevant. Selection of important factors can be done by determining correlations

between quantified factors and the number of reported faults. An example is

presented in Sect 4.3.

4 Multivariate Model for Short-Term Prediction of Failure Quantities

A large variety of data from network management systems or data about external

conditions are now available to the service providers. In this Section, we discuss the

influence of the data and other characteristics of the broadband network

environment and its processes on the choice of prediction method, predictor type,

topology of predictor, and learning method. On the other hand, comprehensive data

analysis and evaluation of the significance of input variables represent a

precondition for development of a multivariate prediction model of good quality

that encompasses the most relevant predictor variables. With such an approach it is

possible to eliminate redundancy, enhance processing efficiency, and improve

prediction accuracy.

4.1 Data Set

The data sets that have been used in this study were obtained from three different

sources.

The first source—the Trouble Tickets database—contains information related to

trouble reporting and troubleshooting. Three fields from the database were used, see

Table 4. The second data source—the Error Logging database—is a component of

the Network Management System. It includes information about network-element

outages (alarm logs). Relevant data extracted from the Error Logging database is

shown in Table 5.

Finally, the third data source—the Meteorological database—contains data from

external sources. These data represent daily readings of meteorological measure-

ments from 3 main regional centers in Croatia (Zagreb, Split, and Rijeka) that cover

the most populated areas in the country. Seven relevant fields were extracted from

the Meteorological database, Table 6.

Table 4 Relevant data extracted from the Trouble Tickets database (Trouble Tickets table)

ID Field name Field description

1 Faulty_Service Affected service, identified according to customer’s reports. For the purpose

of this study only ADSL and IPTV related services have been selected

2 Reporting_Time The time at which the customer who reported the failure called the contact

center

3 General_Description General description of a failure and possibly additional text about noticed

causes
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We analyzed data collected during the period from January 2012 to August 2012.

The total number of failure reports recorded in the Service Management Center in

this period was 585,000, while the number of network-element outages in the same

period was 591. There were a total of 103 rainy days, 53 days with lightning,

23 days with snow, 2 days with fog, and a day with hail observed in all 3 meteo-

stations in the period of observation.

4.2 Description of the Model

As we already said in the Introduction, both long-term and short-term predictions of

the number of reported failures are valuable for telecom providers. The long-term

prediction procedure based on a time series is not as complex as the short-term

prediction because of exogenous factors that can be largely ignored. Actually,

effects of exogenous factors are reduced and diluted over long periods (months and

years). Exogenous phenomena are relatively rare so accurate long-term predictions

can be made on the basis of the past values alone. We can say that the impact of

exogenous factors is already incorporated in the time series, and the time series

themselves embody all information necessary for modeling. On the other hand, a

Table 5 Relevant data extracted from the Error Logging database (Alarm Logs table)

ID Field name Field description

1 Element_Name DSLAM identification. Unique ID for the entire network This field is used as

a link to the trouble-tickets table

2 Fault_Type Fault type. Possible types are: breakdown, service degradation or

occasionally occurring fault, and announced work

3 Fault_Cause Causes of problems are grouped as software errors, hardware failure,

transmission, and power supply

4 Alarm_Start_Time The time at which the alarm first appeared

5 Alarm_End_Time Alarm ceasing time, after repair

6 Affected_Customers The number of customers affected by the network-element outage

Table 6 Relevant data extracted from the Meteorological database

ID Field name Field description

1 Meteo_Station Location of the meteorological station

2 Meteo_Date Date of reading

3 Var_Rain Binary variable indicating whether on the Meteo_Date rain is observed or not in

the area of Meteo_Station

4 Var_Lightning Binary variable indicating whether on the Meteo_Date lightning is observed or not

in the area of Meteo_Station

5 Var_Snow Binary variable indicating whether on the Meteo_Date snow is observed or not in

the area of Meteo_Station

6 Var_Hail Binary variable indicating whether on the Meteo_Date hail (hailstorm) is observed

or not in the area of Meteo_Station

7 Var_Fog Binary variable indicating whether on the Meteo_Date fog is observed or not in the

area of Meteo_Station
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short-time prediction should be based on multivariate models supported with input

data of adequate quality that represent external influences. Correlation analysis

helps in determining the significance of input factors. That input has no significant

impact that can be excluded from the model, thereby reducing its complexity. In

order to ensure a more accurate short-term prediction of the number of reported

faults, a prediction model based on a neural network with exogenous input has been

developed. All available and relevant input data collected from various sources

inside and outside the network, as well as historical data, are included in the model.

Also, the model has the ability to deal with temporal cross-correlations, i.e., the

input variables can lag behind the dependent variables. The model meets the

following criteria:

Users shouldn’t be able to know variable dependencies or enter initial

presumptions about dependencies in the system;

Relationships among the variables ought to be calculated automatically, not

manually;

The model is nonlinear, due to the nature of the process being described;

The model allows an arbitrary number of input variables (new input can be added

subsequently);

The model has sufficient tolerance to noise;

The possibility of generalization, prediction of new situations;

The model is tolerant of data incompleteness;

Fig. 9 Armstrong’s decision tree that helps in the selection of an appropriate prediction method
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There is a possibility to predict an arbitrary number of steps ahead;

The model isn’t too slow during the learning and prediction.

In [22], Armstrong developed a decision tree (Fig. 9) that helps in the selection

of an appropriate method. Bearing in mind the characteristics of the broadband

network environment and its processes, the following facts, which are relevant to

the selection of the method, can be stated:

Data sets of sufficient size and accuracy are available—input data for prediction

can be obtained from Operations Support Systems (OSS), Business Support

Systems (BSS), and external sources. In the research described in this paper, we

used actual data that exceeds 1.5 million items collected by performance and

fault management systems in the period of 2009–2012, data about users’ habits,

data warehousing, external sources—meteo-data logs and data about relevant

announced events;

Good knowledge about the relationship between relevant variables is missing.

Data type—discrete time series;

Inner nature of the system is not known well;

The system is massive with inertia, i.e., there is a low probability of changing

conditions in the system during a period of predictions.

Considering these facts in relation to the Armstrong decision tree reveals that the

most appropriate prediction approaches should be: extrapolation, neural networks,

and data mining. These prediction approaches were reached by passing through the

decision tree according to the responses to the following questions:

1. Do we have a data set with sufficient size and accuracy?… Yes

2. Is there good knowledge of the relationship between the variables of the

system?… No

3. Type of data—time series?… Yes

4. Is there good knowledge of the nature of the system?… No

We used the decision tree as guidance for selection of an appropriate method.

Besides this, we carried out a comparison test of several promising candidate

methods [23, 24]. We compared and analyzed the prediction quality of the following

prediction methods applied to the time series representing the numbers of reported

failures: Autoregressive Integrated Moving Average (ARIMA), Multi Layer

Perceptron with time-delayed inputs (MLP), Focused Time-Delay Neural Network

(FTDNN)—also known as Input Delayed Neural Network (IDNN)-, Layer

Recurrent Network (LRN) using back connection from a hidden layer to the input

layer and Nonlinear Autoregressive Network with Exogenous Inputs network where

output data is preserved in a delayed memory line (NARX). The recursive models

(LRN and NARX) showed dominant results, while the NARX model achieved the

best overall prediction results during the comparison test [25], so it is used for the

development described in this paper.
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Our previous results in the area of predicting quantities of reported failures

related to broadband networks are presented in [24, 25]. The objective was to

compare different prediction methods and assess their applicability for short-term

prediction. The paper [25] presents detailed comparative analysis related to the

following traditional prediction method and methods based on artificial intelligence:

ARIMA, MLP—Multi Layer Perceptron, IDNN (FTDNN)—Input Delayed Neural

net, LRN—Elman network, and NARX—Jordan network. Accuracy of predictions

obtained by these methods was estimated by using the Root Mean Square Error

(RMSE) and Model Efficiency Index or Coefficient of determination (R2)

parameters. These parameters are calculated by comparing the actual and predicted

data. In short and long-term predictions, the NARX and LRN models achieve the

best overall results. The results obtained show that dynamic recurrent neural

networks outperform static neural networks. Also, the traditional prediction method

(ARIMA) couldn’t achieve the accuracy of the recurrent neural networks. This

confirmed the hypothesis about the non-linear character of most fault causes in

telecommunications’ networks. Detailed simulations have been made with variable

prediction horizons from 1 to 8 days ahead. Comparisons of the accuracy of

prediction results are shown in Table 7.

Models based on recursive networks (LRN, NARX) give better results, i.e.,

smaller errors in comparison with two other models. Therefore, we have selected

dynamic memory models, such as the ‘‘NARX’’ and ‘‘LRN’’ neural networks [26],

due to their ability to deal with logical and temporal correlations among variables,

as the most promising candidates [27] for prediction in complex systems, which

broadband telecommunication networks indeed are. In the text that follows, we

show how further improvements in prediction accuracy can be achieved by applying

additional fine tuning of network parameters and, of course, by recognition and

introduction of relevant input variables that would bring additional knowledge to the

model. Exogenous input allows feeding the NARX network with an arbitrary

number of data values related to input (predictor) variables. Optimal choice of input

variables is critical for accurately predicting the output variable. In the domain of

Table 7 Prediction accuracy—prediction horizon is varied

Prediction hor.

(days)

ARIMA LRN NARX TDNN

RMSE R2 RMSE R2 RMSE R2 RMSE R2

1 362.435 0.38207 328.901 0.51459 284.795 0.59163 333.689 0.42811

2 364.259 0.35403 294.386 0.57808 292.749 0.58276 296.25 0.55525

3 368.452 0.32625 283.769 0.5952 278.002 0.61644 289.743 0.58336

4 326.821 0.44902 300.255 0.53495 287.594 0.57334 363.788 0.31733

5 301.387 0.53001 283.052 0.58546 294.247 0.55202 404.855 0.15192

6 300.79 0.50199 284.25 0.55525 289.452 0.53883 337.187 0.37417

7 290.587 0.52492 268.475 0.59447 304.043 0.47991 300.573 0.49171

8 417.017 0.29588 396.452 0.31756 371.276 0.44187 430.625 0.24918

Mean 341.468 0.42052 304.942 0.53445 300.27 0.5471 344.589 0.39388
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broadband networks, the following data can be used as input for predicting failure

quantities:

Data from the very recent past—this relates to data about reported failures

collected in a period from the past few minutes up to the past few hours;

Archived data (data warehousing (DWH))—short-term and long-term historical

data about failures (from the past few days up to several years); these data allow

time series analysis and identification of trends and seasonal patterns;

Data about network loads, performances and the operational statuses of network

elements—provide information about the operating regime of network elements

or some kind of observed irregularity (peak loads, overloads, traffic rejections,

…);

Fault-management data—degradation of services, outages of individual network

elements, faults logged and stored in the fault-management system that are

correlated with failures reported by users;

Service-usage information—data about users’ habits, i.e., about average daily

service usage time, average service usage time per session, preferences according

to types of service, the distribution of daily traffic volumes, etc.;

Equipment reliability—reliability of network elements can be calculated from

error logging and error statistic databases, providing a basis for calculating Time

To Failure (TTF) and Time To Repair (TTR) parameters; by using these

parameters, we can predict the dynamics of equipment breakdowns,

Data about external influences on network—nformation about the events that

cause external influences on the system; there are many different influences that

can cause faults in the network; for example, faults in power supply can disrupt

the operational status of customer premises equipment;

Meteorological data—due to the large impact of humidity and electrical

discharge on the network, particularly the access and transport part of the

network, these data represent important input to the model;

Data about social events—information on social events that may affect the

network, for example large gatherings of customers in a given area, a variety of

migrations, seasonal loads, ‘‘nomadism’’, scheduled or announced events that can

be taken as input variables for prediction.

Certainly, data of good quality from all the above-mentioned sources were not

available during the research described in this paper. Some data were not available

at all and it would take significant, additional effort to make them available.

Therefore, the model has been developed on the basis of available data sets. As

we emphasized before, the model is scalable, i.e. subsequent addition of input

variables are possible. The neural network used in the model belongs to the group of

nonlinear dynamic networks, which is known in the literature as NARX, NARMA,

NARMAX [28]. This is a nonlinear autoregressive neural network with exogenous

inputs, also referred to as an input–output recurrent model; the principle scheme is

shown in Fig. 10. A special feature of this network configuration is two delay lines.

The first line, known as a recurrent delay line, connects output with input and allows

the dynamics of the signal to be captured. The second line, known as a tapped delay
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line, accepts an input vector with a time delay. Both nonlinear and linear functions

can be employed in one hidden and one output layer; input and output can be

multidimensional.

An additional advantage of the model, as opposed to some other recurrent

models, is a standard multilayer perceptron located in the center of the network and

enabling learning by a standard algorithm. This ensures simplicity and reduces

learning time. The network dynamics is described by Eq. (1):

y nþ 1ð Þ ¼ F y nð Þ; . . .; y n� qþ 1ð Þ; u nð Þ; . . .; u n� r þ 1ð Þð Þ ð1Þ

where u(n) is the current observed value, u(n - 1), …, u(n - r ? 1) are past ob-

servations of the variables memorized up to r - 1 lags, and y(n), …, y(n - q ? 1)

are q past output fed into a recurrent delay line. In this way, past information can be

preserved, which means that information from the initial moment up to the current

moment affects the calculation of the new output value.

We used the Matlab [26] implementation of the neural network with configura-

tion parameters shown in Table 8. The input and output vectors consist of a total of

250 records that represent the observed period (approximately 8 months).

Fig. 10 NARX network—
principle scheme
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The network training function updates weight and bias values according to the

Levenberg–Marquardt optimization (function trainlm) [26], because this is much

faster than training by a basic error back-propagation algorithm (function train).

Another advantage of the Levenberg–Marquardt method is the ability to find a

solution in situations when training starts far away from a global minimum. The only

problem related to this method is its memory consumption. Memory exhaustion can

be avoided by adjusting the parameters to reduce memory usage, or by using other

methods such as the quasi-Newton back-propagation method, which is slower, but

uses memory more efficiently. The choice of transfer functions, like tansig, logsig,

and purelin, depends on the characteristic of the modeled system. In this specific

case, a hyperbolic tangent sigmoid transfer function (tansig) was used in the hidden

layer while a linear transfer function (purelin) was used in the output layer. The

configuration of the NARX network with 6 inputs, 1 recurrent feedback loop, and the

above-listed parameter values is shown in Fig. 11. The network consists of three

main parts. The input section ensures that the values of the variables are passed into

the 6 inputs through the delay lines. Central place is occupied by the classic

multilayer perceptron. Its function is to determine the significance and functional

dependencies using regression in the hidden and output layers of the network. The

third part is the output layer, which makes input/output links through the delay lines.

Input delay lines ensure that the input data related to past events impact the output

value (links for temporal cross-correlations); for example, how a thunderstorm that

occurred 2 days ago affects the number of faults today.

4.3 Determination of Significant Input Variables

In this subsection, we demonstrate how correlation-based procedures can be used to

detect factors that significantly affect the number of reported failures, and as such

Table 8 Neural network configuration parameters

Parameter Parameter mark Value

Input vector P 6 9 250

Output vector T 1 9 250

Length of input tapped delay lines ID 4–8

Length of output tapped delay lines OD 4–8

Hidden layer size Si 2–6

Transfer function of hidden layer TFi tansig

Transfer function of output layer TFi purelin

Training function BTF trainlm

Network performance function PF mse

Function for normalizing input vector IPF removeconstantrows, mapminmax

Function for normalizing output vector OPF removeconstantrows, mapminmax

Data division function DDF dividerand

Epochs between displays trainParam.show 10

Maximum number of epochs to train trainParam.epochs 150–500
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they are candidates to be quantified and included as input variables in the prediction

model. We can simply use scatter diagrams or mathematical methods (e.g.,

calculating Spearman’s or Kendall’s rank correlation coefficient, or coefficient of

linear correlation) to compare two phenomena. The scatter diagram in Fig. 12

shows the influence of electrical discharges on the number of failures. We can see a

significant, positive impact. The diagram in Fig. 13 shows the effect of temperature.

In this case, the impact is negligible—the trend line is horizontal.

An additional possibility to find relations between data is detecting temporal

cross-correlations, as shown in the following example. In a large network that is

built up over years, users’ access lines do not have the same characteristics, and thus

are not all equally resistant to the effects of humidity. The reasons for this are

manifold:

Distance to the users varies (in practice from 0 to 7 km).

All wires in the cable do not have the same characteristics (some were factory

defective or deteriorated more rapidly).

Some line units are sensitive to the influence of humidity, others less so.

Some underground joints are susceptible to the influence of water, others are not,

etc.

Even though pure water is an insulator, the water that reaches the cable usually is

not clean. It picks up dust and pollutants from the air and minerals that come from

Fig. 11 Network configuration
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the soil. Manufacturing defects and wire insulation deteriorate over time (aging),

allowing moisture to penetrate into cable and therefore into the twisted pair. The

results of this are changed electrical parameters, such as the capacity and impedance

of the cable, causing a stronger attenuation of the higher frequency spectrum of the

ADSL signal [29, 30]. To analyze the influence of humidity on the occurrence of

failures, a number of measurement data were collected on a large number of lines.

The measurement data were collected from the DSLAM measurement system and

correlated with data on humidity. Our previous research [31] showed that the higher

values of humidity caused by humid weather have significant influence on a specific
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number of the twisted pairs that are poorly protected from these external influences.

Based on long-term monitoring, it was found empirically that the appearance of rain

and humidity increases the total number of failures. So the idea was to discover the

degree of correlation between the humidity and the number of reported failures. The

measured data and the data obtained as a result of the failure fixing/handling process

allowed us to show the dependency between two variables: relative humidity in the

air and number of faults (see Fig. 14). The diagram depicts two time series. A time

delay between peaks of humidity and the number of existing reported failures

indicates the correlation between them.

If we display the humidity and the number of failures in a scatter diagram,

Fig. 15, correlation is evident. Moreover, one can recognize a circular shape of the

scattered points in the diagram that suggests the existence of temporal cross-

correlation with the period of delay d.

For two series x(i) and y(i), with the mean values mx and my that are shifted by

the delay d, the expression (2) defines their cross-correlation.

r ¼
P

i x ið Þ � mxð Þ � y i� dð Þ � myð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i x ið Þ � mxð Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i y i� dð Þ � myð Þ2
q ð2Þ

Peak values of reported failures are delayed with regard to the peaks of measured

humidity by approximately 24 h. Figure 16 shows the temporal cross-correlation

and its dependence on the variable of time delay (lags) d (the highest correlation is

around the 1 day mark.). This delay is explained by the time necessary for the

moisture to enter the cable, combined with the time it takes the user to notice and

report a failure in the service.
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The accuracy of predictions by the NARX neural network model strongly

depends on the choice of input variables. Factors with a strong impact should be

quantified and introduced into the model as input variables, while factors with small

and insignificant correlations are rejected. We divided input variables into two

groups. The first group includes internal variables whose values represent the state

of the network equipment and quantities of reported failures in the past (listed in the

upper part of Table 9). The second group includes external variables whose values

represent the environmental and human factors with external influences on the

network (lower part of Table 9).

Significant input is represented by the following data:

Data about lightning and rainfall are downloaded from the three main

meteorological stations in Croatia [32];

Data about outages of network elements, data on the number of failures in the last

4 days, data about announced work on the network, and historical data on weekly

averages of the number of failures are all taken from the OSS and DWH systems

in the T-HT.

Network element outages and external factors do not equally affect all parts of

the network. Electrical discharge mainly causes problems with equipment in the

user and the access part of the network, rainfall affects the operation of equipment in

the access part, while network element outages or announced works significantly

impact the access and the core part of the network.

There were some practical limitations on the data that generally reduce the

accuracy of predictions. These limitations could be avoided by improving the data-

collection process. Variables representing thunderstorms and rainy weather are

40

50

60

70

80

90

100

7 9 11 13 15 17 19

Hu
m

id
ity

 (%
)

Number of failures (thousand)

Sca�er plot - humidity vs failures

Fig. 15 Humidity versus number of reported failures—scatter diagram

214 J Netw Syst Manage (2016) 24:189–221

123



quantized by four values (weighting factors) on the set {0, 1, 2, 3} where 3 denotes

the greatest impact. This resolution is too low to provide the precise expression of

impact. The same quantization is applied to the variables representing outages of

network elements and announced work on the network. Data on daily amounts of

failures are quite accurate with the exception of a few cases where data are not

collected due to errors in the OSS and DWH systems. Also, there were some minor

errors in the classification of failures in the DWH system. These limitations on the

data, to some extent, affect the accuracy of predictions. Due to the aforementioned

constraints, the significances of input variables are not estimated solely on the basis

of correlation coefficients but also by using special knowledge of experts.
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Fig. 16 Humidity versus number of reported failures—cross-correlation diagram

Table 9 Significance of variables

Variable A ? Number of reported failures (NRF) Spearman’s correlation

coefficient

Variable A is

significant

Network element outages ? NRF 0.238 Yes

Number of failures (last 4 days) ? NRF 0.19 Yes

Number of failures (weekly averages) ? NRF 0.082 Yes

Number of failures (monthly averages) ? NRF -0.097 No

Electrical discharges (lightning) ? NRF 0.293 Yes

Announced works in network ? NRF 0.107 Yes

Rain ? NRF 0.241 Yes

Fog ? NRF -0.03 No

Snow ? NRF -0.032 No
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4.4 Prediction Results and the Accuracy of the Model

Model learning and testing were conducted on data collected during the first

8 months of 2012. Data collected during the first 5 months were used for learning

while the rest of the data were used for prediction and model testing. This learning/

predicting ratio (5/3) was chosen because of relatively rare influences of external

factors on the network. A longer learning period is necessary to ensure proper

inclusion of the external influences into the model parameters. But once the learning

is completed, predictions can be performed for months ahead with periodic updates,

assuming a stable, unchangeable system. It is known that large systems like

broadband networks are slowly changing systems.

Figure 17 shows the actual, daily reported number of failures and values obtained

by prediction (gray circles) for a 4-day prediction horizon. The daily average failure

values, mean values of all Mondays, Tuesdays, etc. (black pluses in the figure) were

taken as reference values. The prediction approach based on the daily average

values was probably the simplest method of rough prediction and was used in the

real process. Values of all input variables were fed into the NARX model. Relative

to the reference value, the gain of using NARX model is shown (with a gray circles)

in the figure.

Certain prediction deviations are visible at some points. For example, on the

105th day the network suffered a quite unexpected outage of a large number of

devices caused by a sudden fault in an aggregation of DSLAMs. This event was not

predictable on the basis of available input information. The large number of devices

affected by the fault caused a significant increase in the number of failure reports.

Therefore, the deviation between the predicted and actual number of reports was

significant.
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Usually, accuracy of prediction is estimated by using the Root Mean Square

Error (RMSE) as a measure of the differences between values predicted by the

model and actual values. To denote changes of prediction error over the time, we

calculate the Cumulative Mean Square Error (CMSE). The CMSE provides insight

into the accuracy of the predictions at all stages and facilitates finding possible

inconsistencies in the model. The gain of using the NARX model, compared to the

simple method of using the daily average failure values, is evident, Fig. 18. The

mean square prediction error of the NARX model is approximately 5 times lower.

An interesting view on the accuracy of predictions is obtained by varying the

prediction horizon from 1 to 8 days ahead. The model was tested with prediction

horizons from 1 up to 8 days (Table 10). Mean Square Errors (MSE) and R2 are

used as a measure of accuracy. R2 is often used in statistics to assess the accuracy of
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Fig. 18 CMSE—NARX versus simple prediction based on daily averaged values

Table 10 Prediction accuracy as the prediction horizon is varied

Prediction horizon (day) Day averages NARX Gain ratio

MSE R2 MSE R2

1 401,491.7 -0.212 81,883.3 0.753 4.9

2 410,255.8 -0.169 87,954.6 0.749 4.7

3 416,814.2 -0.120 93,448.9 0.749 4.5

4 420,657.0 -0.090 84,743.9 0.780 5.0

5 431,894.4 -0.117 97,787.6 0.747 4.4

6 434,448.6 -0.119 97,928.6 0.748 4.4

7 455,691.4 -0.141 168,591.1 0.578 2.7

8 454,374.2 -0.137 375,599.3 0.060 1.2

Mean 428,203.4 -0.138 135,992.2 0.646 4.0
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a model that quantifies the correspondence between actual and modeled data.

R2 = 1 means complete correspondence between the model and reality. In real

models, the values are always less than 1; the lower the value of the coefficient, the

less correspondence.

We have also measured the quality of the multi-variable prediction model by

varying the number of input variables included. By varying the number of input

variables, it is possible to observe the effect that each individual input has on the

accuracy. Table 11 shows mean square errors of the model when the number of

variables involved in the model is varied.

The model is designed based on the assumption that the input variables have the

same accuracy during the whole prediction horizon. In reality, it is very difficult to

maintain the same level of variable accuracy over a longer period. For the input

variables that represent environmental factors, such as rain and electrical discharges,

it is realistic to expect that the accuracy of prediction declines considerably when

the prediction period exceeds 3 or 4 days (accuracy of weather forecasts). Usually,

for the announced work there are plans for more than 10 days in advance, while the

outages of the network elements are very unpredictable. However, there are various

methods to anticipate outages of elements; the use of any particular method depends

on the nature and type of analyzed systems. These methods have already been

described in Salfner’s study [4]. Estimated prediction horizon lengths in which the

input variables have satisfactory accuracy are shown in Table 12. Each variable has

its own characteristics, but it is reasonable to assume that the multivariable model

developed here will provide prediction results of considerable accuracy for a

3–4 day horizon. This would be sufficient for the needs of the telecom business, i.e.,

operational network maintenance and workforce allocation.

Notwithstanding the described positive characteristics of the model, it should be

stated that the model is susceptible to erroneous input data. Generally, erroneous

data that enter into neural network models with long-term memory cause

considerable reduction in the accuracy. Therefore, it is important to estimate the

likelihood of errors in data or even better, if possible, to provide some procedure for

identifying and correcting erroneous data before they enter the model. Because we

were aware of the problem, we have been using a semi-automatic procedure for

Table 11 Prediction accuracy as the number of variables involved is varied

Prediction horizon (day) Day averages NARX Gain ratio

MSE R2 MSE R2

x1 ? x2 ? x3 ? x4 ? x5 ? x6 425,303.6 -0.097 63,134.1 0.837 6.7

x1 ? x2 ? x3 ? x4 ? x5 425,303.6 -0.097 87,558.5 0.774 4.9

x1 ? x2 ? x3 ? x4 425,303.6 -0.097 255,600.1 0.341 1.7

x1 ? x2 ? x3 425,303.6 -0.097 262,776.2 0.329 1.6

x1 ? x2 425,303.6 -0.097 273,027.2 0.316 1.6

x1 425,303.6 -0.097 312,312.8 0.194 1.4

– 425,303.6 -0.097 415,466.3 -0.072 1.0

Mean 425,303.6 -0.097 238,553.6 0.389 2.7
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recognition and correction of erroneous data. According to our experience, most

errors in data appear due to malfunctions in fault-management or data-warehousing

systems, and in some cases because of errors caused by human factors. Our semi-

automatic procedure for recognition and error correction includes log analysis,

outlier detection, and methods for reconstruction of the actual data.

5 Conclusion

In this paper, we give an overview of locations and types of faults in a common

broadband telecommunications network. The total number of reported failures is

increasing, and this trend is expected to continue in the coming years. Failures need

to be eliminated as soon as possible, reactively, after a user’s complaint, but it

would be better to act preventively and proactively. It is long and short-term failure

predictions that make this possible. Therefore, telecom operators are compelled to

include prediction procedures in their operational and strategic network manage-

ments. An accurate short-term prediction is a challenge due to a number of relevant

factors. It is shown that a prediction model based on a NARX neural network, well

trained and fed with relevant input data, is accurate and effective enough to support

operational maintenance and workflow allocation processes. The proposed model

takes into account the impact of 6 factors (network-element outages, number of

failures in the last 4 days, number of failures—weekly averages, electrical

discharges, announced work on the network, and upcoming rainfall). But the

model is also scalable in the sense that new input can be simply added. Also, it is

demonstrated how correlation-based procedures can be used for determination of

factors that significantly affect the number of reported failures in the future, and as

such, are candidates to be quantified and included as input variables to the

prediction model. As explained in the paper, predictions of expected failures are

based on large quantities of data originating from multiple sources. Consequently,

erroneous data are inevitable, but such data when entering a neural network model

with long-term memory, cause considerable reduction in the accuracy. Therefore, as

a continuation of this study, it would be necessary to improve procedures for

identifying and correcting erroneous data before they enter the model.

Table 12 Estimated prediction horizon lengths with satisfactory accuracy for input variables

Variable ID Variable description Estimated horizon length (days)

x1 Number of failures—weekly averages –

x2 Data about upcoming rainfall 2–6

x3 Data about upcoming thunder and lightning 2–4

x4 Data about announced work on the network 10–30

x5 Number of failures in last 4 days –

x6 Data about network element outages 0–2
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Mirko Randić is an Assistant Professor at the Faculty of Electrical Engineering and Computing,

University of Zagreb where he received his Ph.D. His research interests include systems, networks and

service management, software systems modeling and service performance modeling. His work has been

published in several peer reviewed journals, such as Software, practice & experience, Journal for Control,

Measurement, Electronics, Computing and Communications, Journal of Computing and Information

Technology, and other journals and book chapters.
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