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Abstract Quality of experience is of critical importance in streaming video ser-

vices, because the traditional quality of service cannot represent the quality per-

ceived by viewers. This work evaluates several objective quality metrics under

realistic bursty packet loss conditions in the network, with the support of a packet

loss model. Alignment of reference and streamed video sequences (with different

levels of spatial-temporal information) are also explored as a technique to prevent

inaccurate computation of objective metrics due to frame loss. Finally, the corre-

lation between subjective and objective metrics for each motion level and the

computing time of metrics are analysed. The most suitable objective metrics to

characterize the real degradation in the quality perceived by viewers, for both off-

line and real-time assessment, are proposed. The integration of motion, busty packet

loss, sequence alignment after frame loss and computing time of metrics are the

main contributions of this research work.
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1 Introduction

Quality is an important subjective concept. Like everything related to human

perceptions, it can be said to be related to the level of satisfaction with an

experience. In the case of streaming video services, if the end user is not satisfied by

his experience, the utility of the service decreases. Thus, prediction and

measurement of the quality perceived by viewers must be studied in depth.

Providing streaming video services at different quality levels is one of the most

important business models in current technology. Lossy encoding techniques are

necessary to keep the network requirements of these services within specified limits.

Lossy methods introduce degradation and distortions depending on the selected

encoding parameters. Thus, user satisfaction must be correlated with encoding

parameters to provide a satisfactory level of quality without using more resources

than strictly necessary.

In addition to encoding parameters, impairments introduced by the network (such

as packet loss) can lead to quality degradation. Previous work such as [1] has shown

that packet loss patterns tend to be bursty; that is, the probability of packet loss is

not randomly distributed but depends on previous losses. This can be represented

with finite-state stochastic models adapted to the parameters and characteristics

observed in traffic traces obtained under realistic conditions [2, 3].

Traditional quality of service (QoS) is based on network metrics such as jitter,

throughput, packet loss, corrupted packets, and latency. Two approaches can be

considered: the reservation of network resources by applications, and the

differentiation between services carried out by network hardware such as routers.

The main problem with classic QoS is the heterogeneous nature of multimedia

services in the Internet, which complicates the identification of the most suitable

metric for each case. In addition to network features, other aspects such as codecs,

compression, video source, or the nature of the content must be taken into account.

In [4] it is concluded that the classical approach is no longer valid when considering

services oriented to the end user. Although network metrics are still important, they

can no longer provide a faithful representation of the quality perceived by the user.

As a result, a new vision should be introduced: quality of experience (QoE).

Fig. 1 Video quality assessment classification
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QoE is meaningful only within the mind of the user; it is qualitative rather than

quantitative, built from different factors and human behaviours that together provide

a final level of perceived satisfaction. A measure of the quality perceived by viewers

can be obtained through a wide variety of assessment methods. These methods are

classified as subjective or objective. The former involve the participation of viewers

and require time and resources. The latter can be implemented on computing

devices and automated, although they are not as reliable as their subjective

counterparts. There is some consensus in the classification of existing methodolo-

gies to assess video quality, with minor differences between the most prominent

authors. In this section, we follow the classification presented in [5] and shown in

Fig. 1.

Subjective methods are based on the selection of a small representative group of

people exposed to a variety of video qualities in a controlled situation. Their

opinions are registered on a scale that measures relative degradation or absolute

quality. Closely related is the concept of mean opinion score (MOS), which is the

most common level of satisfaction for a given resource as interpreted by an average

user on a numerical scale.

Objective methods represent human perception to predict the MOS in an

automated way. There are three main classes:

• Full reference (FR) methods insert reference signals alongside the tested signals

to improve the estimation. They are usually more precise, but need more

resources to process the extra workload.

• Reduced reference (RR) methods insert features extracted from the reference

signal instead of the reference itself. They introduce a reasonable overhead and

are an intermediate state between FR and NR methods.

• No reference (NR) methods only take into account the degraded signal, and are

therefore adequate when the reference, or information about it, is not available.

FR and RR objective methods are further classified as follows:

• Traditional point-based metrics (FR only) are traditional mathematical metrics

(PSNR, MSE) calculated comparing the reference and the noisy/degraded

sequences in the luminance or colour components.

• Natural visual characteristic models extract statistical and visual features from

the sequences. Some of these models use traditional point-based metrics as their

foundation.

• A third group of metrics model the human visual system (HVS) (e.g., modelling

the visual masking effects that occur in the eye) operating in the pixel or

frequency domains of the video sequences (e.g., through DCT transform).

The objective of our work is to correlate subjective and objective metrics when

video sequences are received by viewers under realistic packet loss conditions in the

network. As a result, the objective metrics most suited to characterize the real

degradation observed by viewers will be fixed.
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The remainder of this paper is organized as follows. Section 2 is an overview of

the related work. Section 3 describes the packet loss model that supports the

emulation of realistic bursty packet loss conditions in the network. Section 4

introduces the technique of sequence alignment used to prevent inaccurate

computation of objective metrics due to frame loss. Section 5 details the

experimental framework for the quality assessment. Section 6 presents and analyses

the results of the assessment. Finally, Sect. 7 presents our conclusions and outlines

future work.

2 Related Work

Several works have been published that measure the influence of packet loss on

video quality. The effects of the main network impairments (packet loss and jitter)

on the perceptual quality of the video are analysed by emulation in [6]. The author

concludes that the effects are similar. In fact, jitter could be mostly translated to

extra packet loss when analysing the effects of network impairments. The impact of

packet loss on MPEG streams transmitted over the Internet is measured in [7]. In [8]

the results of an exhaustive experiment to detect the possible artifacts that may

appear in an MPEG-2 video due to packet loss is presented. The results relate the

number of frames affected by packet loss to the number of frames in the final

degraded sequence that present artifacts, highlighting the nature and quantity of

these artifacts. The effects of packet loss on video-chat applications [9] and HDTV

[10] are also analysed.

The literature also includes exhaustive analyses of video traffic over Internet in

streaming systems [11], conferencing systems [12], or IPTV systems [13] where

packet loss rates and patterns are detailed. These patterns can be used to emulate

packet loss in further experiments under realistic conditions with the support of a

suitable packet loss model.

In recent years, much work has been focused on designing new and efficient

approaches to quality assessment, to obtain reliable, simple, global metrics to

represent perceived quality of multimedia services. There are also studies that

compare and classify these proposed metrics. The studies developed by the video

quality experts’ group (VQEG) [14] are among the most relevant and recognized,

included as recommendations of the International Telecommunication Union (ITU).

In [5], a more recent extensive classification, comparison, and review of FR and RR

objective video quality assessment methods are presented. A comparison of

objective quality metrics for video scalability can also be found in [15].

As our work is a comparison of FR an RR objective video quality metrics, this

background review focuses mainly on these metrics. The most simple metrics in this

category are those originally developed for analysis of still images. Although these

metrics only consider spatial quality degradation in video frames, they can be

complemented with temporal aspects for video quality prediction. Peak signal to noise

ratio (PSNR) is one of the most popular metrics because of its simplicity and direct

mathematical interpretation. The original video sequence is the reference, and the

streamed (degraded) video sequence is considered as noise, the metric representing the
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level of degradation between the two. This metric is currently adopted as the reference

metric for performance comparisons in video quality assessment (VQA). Structural

similarity (SSIM), presented in [16], is based on the comparison of the luminance,

contrast and structural components of both the reference and degraded sequences. The

multi-scale SSIM (MS-SSIM) metric [17] is based on the previous SSIM metric. The

authors argue that the perceptual evaluation of a given image varies with the

parameters that depend on the signal, the visualization environment, and the particular

characteristics of the observer. Thus, a single-scale method seems to be appropriate

only for a limited set of specific settings. A multi-scale method is proposed as a more

convenient way to consider these parameters. The noise quality measure (NQM) [18]

measures the effect of additive noise on the human visual system. A degraded image is

modelled as an original image subjected to linear frequency distortion and noise

injection. A complementary metric, distortion measure (DM), is also defined. The

NQM takes the following into account: the variation in contrast sensitivity with

distance, image dimensions, and spatial frequency; variation in the local luminance

mean; contrast interaction between spatial frequencies and contrast masking effects.

The [19] universal quality index (UQI) is a mathematically defined metric that models

any image distortion as a combination of three factors: loss of correlation, luminance

distortion, and contrast distortion. Visual information fidelity (VIF) [20] approaches

the image quality assessment problem as an information fidelity problem. It is an

image information measurement that quantifies the information that is present in the

reference image and how much of this reference information can be extracted from the

distorted image.

When the image quality metrics described above are applied to the VQA, the

metrics are computed for each frame and finally aggregated into a single value. The

aggregation or pooling strategy [21] assigns weights to the frames in order to

correlate the quality scores of viewers. The average score of all the frames is the

basic pooling strategy [22]. An example of this kind of video quality metrics is

VSSIM [23], the metric based on SSIM specifically designed for video. It leads to a

quality measurement that aggregates SSIM metric measurement from all sampling

windows in all frames. Lower weights are given to frames with dark regions,

because they attract fewer fixations, and to high motion frames, where distortion

perception competes with the motion perception. Other VQA works based on image

quality metrics are VIF for video [24] and PSNR for 3D video [25].

A second group of FR and RR objective quality metrics are those specifically

designed for video quality assessment, taking into account aspects of both spatial

and temporal domains. The discrete cosine transform-video quality metric (DCT-

VQM) [26] (based on Watson’s proposal in [27]) operates in the frequency domain

of the sequences through a DCT. It takes into account the decrease in human visual

sensitivity at high spatial and temporal frequencies. The VQM [28] is a different

metric supported by the General Model. The model utilizes reduced-reference

parameters extracted from spatial-temporal regions of the video sequence. It

includes associated calibration techniques that comprise a complete automated

objective video quality measurement system. The calibration of the original and

processed video streams includes spatial alignment, valid region estimation, gain

and level offset calculation, and temporal alignment. The General Model contains

120 J Netw Syst Manage (2016) 24:116–139

123



seven independent parameters, four based on features extracted from spatial

gradients of the luminance component, two based on features extracted from the

chrominance components, and one based on the product of features that measure

contrast and motion, both of which are extracted from the luminance component.

The metric was included in two International Telecommunication Union (ITU)

recommendations. A recent highly competitive metric is motion based video

integrity evaluation index (MOVIE) [29]. Quality is evaluated in space and time

using motion information from the reference video sequence, and the spatial and

temporal quality scores are pooled to obtain an overall video integrity index score.

MOVIE is also related to SSIM and VIF metrics, but is a very complex and

computational intensive quality metric. Perceptual evaluation of video quality

(PEVQ) [30] is a recent, very precise, patented algorithm, divided into four blocks.

The first block, pre-processing, is responsible for the spatial and temporal alignment

of the reference and the impaired signal. The second block calculates the perceptual

difference of the aligned signals. The third block classifies the previously calculated

indicators and detects certain types of distortions. Finally, in the fourth block, all the

appropriate indicators according to the detected distortions are aggregated, forming

the final result—the mean opinion score (MOS). A family of RR VQA algorithms,

that vary in the amount of reference information required for quality computation, is

presented in [31]. Finally, recent works deal with VQA under packet loss influence,

e.g., the algorithm with low computational cost in [32], the packet layer model for

VQA in [33] and the perceptual model in [34].

Although not directly related to this work, there are also several recent works

dealing with NR metrics, more suitable for real time monitoring of video quality

[15, 35–42]. They propose QoE models and metrics considering system parameters

like the packet loss rate and application level parameters like sender bitrate, frame

rate, and content type.

In the context of the packet loss impact on video quality assessment, [43]

addresses the problem of frame desynchronization due to packet loss in video

sequences evaluated with objective metrics. Since FR and RR objective metrics are

calculated by comparing corresponding frames in the original and degraded

sequences, this desynchronization generates incorrect metric scores. The authors

highlight the fact that almost no previous work considers this problem and proposes a

frame-matching algorithm, extending the peak signal to noise ratio (PSNR) metric to

include the effects of packet loss. The new metric is called MPSNR and is validated

through subjective assessment. Another work that considers frame synchronization is

[44]. Once the frames are synchronized, several pooling strategies can be adopted to

weigh the video frames when computing the quality metric [21, 22].

Many of the most widely referenced and adopted methods regarding subjective

assessment are proposed by the International Telecommunication Union (ITU), e.g.,

[45]. Taking into account the related work and to the best of the authors’ knowledge,

there is further need to compare the quality prediction of FR and RR objective

metrics with the opinion of the end users. The comparison should consider different

motions in video content and realistic bursty packet loss conditions. With the study

we would achieve a better understanding of the degradation in the QoE due to

packet and frame loss, and how objective metrics reflect that degradation.
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3 Packet Loss Model

The simplest packet loss model is the Bernoulli model, which is only able to

represent uncorrelated losses and whose only parameter is loss probability. Because

of its simplicity, it is not suitable to represent packet loss in real networks.

One of the first and most referenced models to represent bursty losses was

proposed by Gilbert in [46]. The Gilbert Model is based on a Markov chain and has

two states, a zero loss state G (Good) and a lossy state B (Bad). No errors occur in

the G state, and the loss probability in the B state (loss density within the burst) is

1-h. Two other parameters, p and r, represent the transition probability between

states G and B. A graphical representation of the Gilbert model is shown in Fig. 2.

The Gilbert model was extended in [47] by Elliot. The Gilbert-Elliot model

introduces a new parameter (1 � k) that represents the loss probability when the

system is in G state. Thus, it is possible to have loss events in both states G and B

(note that the Gilbert-Elliot model is equivalent to the Gilbert Model when k ¼ 1).

This model is able to represent systems that have one state in which the loss rate is

low (packet losses in this state can be considered independent) and another state

where loss probability is relatively high (bursty loss).

Another model (4 state Markov) is implemented in the patch available for the

Linux kernel [48]. It is based on the previous models and is the combination of two

2-state Markov models that represent two periods: a burst period (similar to the

previous B state) and a gap period (similar to the G state). The resulting four states,

shown in Fig. 3, have a specific physical meaning: packet received successfully(1),

packet received within a burst (2), packet lost within a burst (3), and isolated packet

lost within a gap (4). This model uses transition probabilities between states as

parameters to characterize the packet loss process. These parameters are not closely

related to quantities that have an understandable meaning for an end user, so a set of

five equivalent and more intuitive parameters are defined for the model: loss

probability, mean burst length, loss density within the burst, isolated loss

probability, and mean good burst length. An interesting feature of this model is

that through manipulations and assumptions (e.g., no correlation between losses

occurred during burst periods), the initial set of five input parameters can be reduced

to represent the Gilbert-Elliot, Gilbert and Bernoulli models.

Fig. 2 Gilbert model
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Gilbert models have been widely used for emulation of packet loss during

transmission in IP networks. When used together with real traffic traces, the results

show that these simple models fit the observed loss patterns, as stated in recent

works [2, 3].

To achieve valid results and generate packet loss traces that resemble real

networks, the input parameters for the model must be realistic and obtained from

real traces in previous work. Research conducted to obtain data from recent studies

of traces to feed a five parameter model gave poor results. Thus, for this work, a

compromise between simplicity and accuracy was chosen, opting for a simplifi-

cation of the original 4-State Markov model with two parameters. This simplified

model is equivalent to a Gilbert model with h ¼ 0 (Simple Gilbert). The two-

parameter 4-State Markov is identified by the transition probabilities p and r, or by

the loss parameters PLoss and EðBÞ, where PLoss is the packet loss probability and

EðBÞ is the average loss burst length. Equation 1 defines the correspondence

between the two pairs of parameters.

p ¼ PLoss

EðBÞð1 � PLossÞ
and r ¼ 1

EðBÞ ð1Þ

The simplicity of the selected model has the disadvantage of somewhat lower

accuracy, but the advantage of managing only two very intuitive parameters. This

makes it much more feasible to find studies of real network traces to obtain data to

feed the model.

4 Sequence Alignment

Video sequences streamed through lossy transport networks tend to lose frames in

the process, as explained in [43]. This generates a critical problem when calculating

FR and RR metrics. Metrics usually compare sequences of reference and streamed

video frame to frame, but if the degraded sequence has lost frames, both sequences

Fig. 3 Four state Markov model
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became miss-aligned, causing inaccuracies in quality metrics calculations. Both

high and low quality degraded sequences tend to produce low quality scores that can

seriously influence the correlation with the perceptual quality assessed by viewers.

Thus, the degraded sequences must be aligned with the original sequence.

VQA studies based on metrics that were originally developed for image quality

assessment do not usually consider sequence alignment. Even recent top ranked

metrics specifically developed for VQA, like VQM, PEVQ or MOVIE, do not

explicitly handle frame loss despite their complexity. Thus, in this work we address

the sequence alignment problem explicitly.

Figure 4 compares the computing of metrics with and without alignment. Frames

in the reference sequence are consecutively numbered and the frames in the

streamed sequence are identified with their original numbers. If there is no

alignment, frame loss is not analysed. In consequence, the frames of the sequences

are incorrectly compared. Metrics are calculated by comparing the first frame of the

Fig. 4 Sequence alignment
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streamed video with the first frame of the reference video, and then comparing the

second frames of the streamed and the reference videos, and so on. Thus, the frame

in the streamed sequence received after the lost frame (Fðiþ2Þ) is compared with the

frame (Fðiþ1Þ) in the reference sequence. The same gap is introduced in the

comparative of subsequent frames. Additional frame loss, both consecutive and

isolated, increases the gap in the comparatives, making metrics’ calculation less

accurate.

Sequence alignment requires a previous matching of the frames in the streamed

sequence with the frames in the reference sequence. Thus, the matching process

helps to locate the correct frame for comparison. The International Telecommu-

nication Union (ITU-T) has recently proposed an improved PSNR calculation

algorithm to address the problem of constant delays in a processed video [49].

Although it did not consider the problem of frame loss in the processed video, its

approach to finding the corresponding frame could be used. In this work, we use the

matching process proposed in [43], where the similarity between the streamed video

and the reference video is used to find the correct match. The proposal assumes that

the sum of PSNR of all frames in a streamed video is at its maximum when all the

frames are correctly matched with the corresponding frames in the reference video.

The dynamic programming algorithm shown in Eq. 2 is used to obtain the maximun

PSNR value of the streamed video sequences and also finds the optimum match of

the frames in the streamed video to the frames in the reference video. The time

complexity of the matching algorithm is OðgnÞ, where n is the number of frames in

the streamed video and g is the total number of frames lost. This time complexity

can be reduced to values close to the time complexity OðnÞ of the traditional PSNR

through the heuristic algorithm detailed in [43].

OPTði; jÞ ¼ max½psnrði; jÞ þ OPTði� 1; j� 1Þ;OPTði� 1; jÞ� ð2Þ

Once the sequences are aligned, we propose two alternatives for frame comparison.

The first and simplest compares the matched frames directly, ignoring the corre-

sponding lost frames in the reference sequence. The second alternative takes into

account the common way of playing a streamed video, where the frame that pre-

cedes a lost frame is ‘‘frozen’’ until the arrival of the next frame. This implies

comparison of a frame in the streamed sequence (Fi) not only with the matched

frame in the reference sequence (Fi), but also with the frame or frames in the

reference sequence that were lost just after (Fiþ1 in this example).

5 Experimental Framework

Figure 5 resumes the experimental framework for computing and evaluating video

quality metrics. The videoLan client (VLC) application [50] was used as a

streaming server and video streaming client. The streaming server was configured to

use the real time streaming protocol (RTSP) when transmitting the test video

streams. Finally, the packet loss model was implemented in a network emulator, the

J Netw Syst Manage (2016) 24:116–139 125

123



NetemCLG patch for the Linux Kernel [48]. In the following subsections, each part

of the framework is detailed.

5.1 Objective Quality Metrics

The selection of FR objective metrics for comparison in our study is based on the

non patented character of the metrics and the public availability of tools and

software for computing them. Finally, eight metrics have been selected, six

originally designed for image quality assessment: PSNR, SSIM, MS-SSIM, NQM,

UQI and VIF; and two specifically designed for video quality assessment: DCT-

VQM and VQM. The metrics originally developed for still image analysis are

computed using the Python Visual Quality Metric Package (PyMetrikz) [51]. The

Moscow State University Video Quality Measurement Tool (MSU VQMT) [52]

allows us to compute the DCT-VQM metric. Finally, the matlab based visual quality

metric (VQM) software of the Institute of Telecommunication Sciences (ITS) in the

US National Telecommunication and Information Administration (NTIA) [53] was

configured to compute the VQM metric with our test video sequences.

5.2 Parameters of the Packet Loss Model

A representative packet loss model is implemented in our test environment to

faithfully represent realistic network conditions. These conditions have been

extracted from the related work in the video traffic analyses [11–13] which were

previously commented on above. From the results of these works and our first tests

with the streaming environment, we reach the following conclusions.

• Values of PLoss [ 5% completely degrade the video sequence and produce the

lowest perceptual quality possible with many visible artifacts. The streams often

block suddenly in the middle of the transmission.

Fig. 5 Experimental framework
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• EðBÞ is approximately within the range of 1 � 2 for most of the lost packets,

increasing with the packet loss rate.

Taking these conclusions into account, a total of 36 values, 6 PLoss and 6 for EðBÞ,
were selected for the parameters of the packet loss model, as shown in Table 1.

Most of the values are in the region of PLoss � 1% because the decrease in

perceptual quality caused by an increase in packet loss is more pronounced when

packet loss is low. In addition, the central point of EðBÞ increases with PLoss. As

detailed later, a more compact set of values, shown in Table 2, will also be used in

order to reduce the number of experiments.

5.3 Video Sequences

The video sequences selected are cartoons, where the complexity of the video

objects is low and viewers assessment is clearly linked to the video artefacts caused

by network impairments.

Because the quality degradation caused by packet loss increases with the motion

level, spatio-temporal information was also used to select the video sequences.

Repositories of standard video sequences like ITS Standard Video Sequences and

Video Trace Library were analysed in order to select the sequences, but only one

cartoon with few motion changes was found. Finally, the sequences were recorded

from TV.

Three different sequences—with high, medium and low motion levels—were

chosen, selecting sequences that show scenes with similar conditions of color,

luminance, etc. Thus, the parameter that differs in each of the sequences is the

spatio-temporal information level. The three sequences can be downloaded from

[54] and the spatio-temporal information of the sequences is measured with the

metrics proposed in [45]:

Spatial information (SI): Level of detail of the sequence, that is, the complexity

of its elements.

SIn ¼ stdspace½SobelðFnÞ� ð3Þ

SIscene ¼ maxtimeðSInÞ ð4Þ

Equations 3 and 4 are used to calculate the spatial information of sequences. Fn is

the nth frame of the sequence. The global SI level of a sequence (SIscene) is the

Table 1 Full set of values for

parameters of the packet loss

model

PLoss 0.1 % 0.25 % 0.5 % 1 % 2.5 % 5 %

EðBÞ 1.0 1.0 1.0 1.0 1.1 1.2

1.1 1.1 1.1 1.1 1.2 1.3

1.2 1.2 1.2 1.2 1.3 1.4

1.3 1.3 1.3 1.3 1.4 1.5

1.4 1.4 1.4 1.4 1.5 1.6

1.5 1.5 1.5 1.5 1.6 1.7
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maximum of the SI levels of its frames. Sobel refers to a Sobel filter for edge

detection.

Temporal information (TI): Motion level of a sequence over time, that is, the

dynamism of its elements.

Mnði; jÞ ¼ Fnði; jÞ � Fn�1ði; jÞ ð5Þ

TIn ¼ stdspace½Mnði; jÞ� ð6Þ

TIscene ¼ maxtimeðTInÞ ð7Þ

Equations 5, 6 and 7 are used to calculate temporal information about sequences. The

TI level of a frame TIn is the standard deviation of Mn, where Mn is the pixel plane

that comes from removing the luminance component of frame Fn�1 from the lumi-

nance component of frame Fn. The SI and TI of the selected sequences are shown in

Table 3 (l and r2 are the mean and variance of the SI and TI for all frames of the

sequence). The final specifications for the video sequences are listed in Table 4.

The length of the sequences is determined from the number of packets needed for

the loss model to converge, that is, to show the loss behaviour expected from the

input parameters. Salsano et al. [48], Sqngen is a loss sequence generator, developed

with the network emulator, to evaluate the behaviour of the various loss models

before implementing them. It provides statistical information (mean, variance, and

standard deviation) after generating a series of sequences with certain input

parameters, helping to check the convergence of the loss model with the number of

packets. The Sqngen tests (with an increasing number of packets) allowed us to find

a threshold of 4000 packets for the model to converge. With this number of packets,

the average value of all 95 % confidence intervals is 0.013 for packet loss

Table 2 Reduced set of values for parameters of the packet loss model

PLoss 0.25 % 1 % 2.5 % 5 %

EðBÞ 1.0 1.0 1.2 1.3

1.3 1.3 1.4 1.5

1.5 1.5 1.6 1.7

Table 3 Spatio-temporal

information of sequences
High Medium Low

TIscene 46.5410 54.5922 17.8479

lTIn 17.6871 2.8905 1.8155

r2
TIn

75.4723 26.2917 6.0946

SIscene 122.5812 117.2555 89.7910

lSIn 85.9009 76.4562 87.6395

r2
SIn

125.3617 206.0620 0.6432
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probability and 0.011 for average loss burst length among all the video sequences

generated in the experimental plan detailed below.

The packet size corresponds to the maximum transmission unit of transmission

control protocol (TCP MTU, 1500 bytes) and the video bitrate is 800 Kbps, so the

time to send 4000 packets can be calculated. Taking into account that not all the

data in the packets corresponds to video information, the length of time of the video

sequences which guaranties more than 4000 packets is about a minute.

5.4 Subjective Assessment Methodology

To obtain subjective data, the degradation category rating (DCR) method

(introduced in [45]) was used. Due to the high number of different sequences

(many different quality levels), we used the extended degradation scale (from 1 to 9)

as proposed in appendix V of the recommendation. The viewers must evaluate the

perceived quality in the degraded sequence when compared to the reference

sequence. A score of 1 means the highest degradation (minimum quality) and 9

means no perceived degradation at all (maximum quality). Ten viewers participated

in the experiment (a number within the range suggested by the recommendation): 6

men and 4 women, 20–29 years old, most of them with university degrees and a

relationship with the media world. The sequences were presented to them in pairs

(the reference along with the degraded) in sessions of 30 min, with 15 min of break

time between each session. The results of the subjective experiment captured the

perception of viewers, and once correlated with the objective metrics, allowed us to

estimate the QoE with network impairments.

The subjective scores given by the viewers for the video sequences in the training

set ranged from 1 to 9, covering the full scale. This shows that we chose degraded

sequences covering a wide range of quality. The average value of all 95 %

confidence intervals for the scores among all the sequences in the training set was

0.45 on the 1–9 scale and hardly varied with the motion level. This small confidence

interval indicates a very good agreement among the viewers.

5.5 Evaluation Metrics

The Pearson correlation coefficient (PCC), the linear correlation coefficient (LCC),

and the outlier ratio (OR) were the metrics used to evaluate and compare the

selected objective quality metrics. The PCC coefficient represents the strength of

the linear relationships between two variables. The PCC between variables X and Y

Table 4 Video sequences

specification
Video codec H.264/MPEG-4 AVC

Bitrate 800 Kbps

Frames per second 25 fps

Resolution HVGA (480 � 320Þ
Container format AVI

Length *1 min
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can be calculated with Eq. 8, where an absolute value of 1 means a perfect

relationship, and 0 means no relationship at all.

PCC ¼
PN

i¼1ðXi � XÞðYi � YÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðXi � XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðYi � YÞ2
q ð8Þ

In our study, PCC represents the correlation or level of linear relationship between

the objective and the subjective data. It is important to have a strong linear rela-

tionship to derive subjective information from objective data. Using a linear re-

gression (least squares), we modelled the subjective data with a third degree

polynomial. The regression function provided a formal way to predict subjective

scores from objective scores. The LCC represents the PCC between the original

subjective data and the output of non-linear cubic polynomial regression. High

values of this coefficient mean that the approximation fits the observed subjective

data very well; that is, that the predictions obtained from the regression function are

reliable. Finally, we obtained the OR that is defined as the percentage of the number

of predictions outside the range �2rdcr, where rdcr is the standard deviation of the

subjective data.

5.6 Experimental Plan

Taking in account the number of selected metrics (8), sequence alignment

alternatives (3), motion sequences (3), and values for packet loss probability (6),

and the average loss burst length (6), the total number of experiments to carry out

can be obtained. If the influence of the sequence alignment is also explored, the total

number of experiments is 5184. This number of experiments is too high to be

practical, because some metrics are computationally intensive and the test video

sequences are long. For this reason, the experiments were carried out in two phases.

In the first phase only three PSNR-based metrics were evaluated: a traditional

PSNR without sequence alignment; a ‘‘modified’’ PSNR with previous sequence

alignment and frame comparison of type A (M-PSNR-A); and a modified PSNR

with previous sequence alignment and frame comparison of type B (M-PSNR-B).

The objective in this phase was to fully understand the influence of sequence

alignment, video motion, and packet loss on PSNR, commonly used as a reference

metric for comparison with other metrics. For each test video sequence (high,

medium, and low motion), each metric was computed for the full combination of

parameters (36) of the packet loss model, resulting in 324 experiments in total. The

pooling strategy adopted was the simple mean of the frame scores, since this is the

most suitable for long test videos, as stated in [22]. Finally, the PCC coefficients for

each metric and motion were calculated. Phase I ends with the selection for each

motion level, of the PSNR-based metric with the best PCC. These selected metrics

will be the reference metrics in the next phase.

In the second phase, the comparison of all the selected metrics was carried with

and without sequence alignment. Thus, the influence of sequence alignment on the

performance of the metrics could be analysed. To reduce the number of experiments
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in this phase, the combinations of parameters of the packet loss model were reduced

from 36 to 12, as shown in Table 2. This reduced set of values was selected ensuring

very similar values of the PCC for the PSNR-based metrics to those obtained for the

full set. The number of experiments in this phase was 504, making 828 experiments

in total for both phases instead of the original 5184.

6 Results

The evaluation of the selected video quality metrics was carried out following the

experimental plan in the two phases detailed above. In each phase, the results were

analysed independently for each motion level in video sequences and also for the

aggregation of the video sequences. Aggregation helps to understand the behaviour

of the metrics for any kind of video. Correlation for the aggregation of video

sequences is always lower than correlation for a specific motion level.

6.1 Phase I: Initial Evaluation of PSNR-Based Metrics

Table 5 shows the PCC values and corresponding 95 % confidence intervals for the

three reference PSNR-based metrics, computed from the full set of values of the

packet loss model. As indicated above, the results are presented independently for

each level of motion in video sequences and also for the aggregation of the video

sequences. Correlations clearly increased with the level of motion in video. For high

motion, both alternatives of the modified PSNR had correlations much higher than

the traditional PSNR, highlighting the importance of sequence alignment. For low

motion, the modified PSNRs had correlations slightly above the traditional PSNR.

For medium motion, correlations of modified and traditional PSNRs were also very

close but, surprisingly, the correlation of traditional PSNR was above. Finally, for

aggregation of sequences, the modified PSNRs had correlations slightly above

traditional PSNRs. In summary, the sequence alignment seems to be critical only for

Table 5 Correlation of PSNR-

based metrics for motion

scenarios

Motion Metric PCC CI ð95%Þ

High PSNR 0.6849 0.4591–0.8270

M-PSNR-A 0.9198 0.8468–0.9585

M-PSNR-B 0.9201 0.8474–0.9587

Medium PSNR 0.9057 0.8211–0.9510

M-PSNR-A 0.8834 0.7811–0.9391

M-PSNR-B 0.8832 0.7808–0.9390

Low PSNR 0.8478 0.7191–0.9199

M-PSNR-A 0.8562 0.7335–0.9244

M-PSNR-B 0.8553 0.7320–0.9239

Aggregated PSNR 0.7516 0.6551–0.8232

M-PSNR-A 0.7825 0.6959–0.8460

M-PSNR-B 0.7799 0.6925–0.8441
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high motion, and much less important for low and medium motion levels. In all

cases, the two alternatives of the modified PSNR have very similar correlations, and

so the type of frame comparison does not seem to be relevant for the level of frame

loss in the test video sequences. Finally, we selected the traditional PSNR and the

M-PSNR-A (with the simplest frame comparison) to be the definitive reference

metrics in the next evaluation phase.

6.2 Phase II: Comparison of all the Selected Metrics

In this phase a comparison of all the selected metrics was carried out with and

without sequence alignment. Figure 6 shows the PCC and LCC values of the eight

selected metrics for high motion sequences. The PCC values are represented for

both the traditional metrics without sequence alignment, and the modified metrics

with sequence alignment (noted as ‘‘mod’’ in the figure), while the LCC values are

represented only for modified metrics. Traditional PSNR and M-PSNR-A, as

indicated in the first phase, are the reference metrics. The strong linear relationships

between all the metrics is because network impairments introduced in high motion

sequences were magnified and easier to detect both for viewers and for the metrics.

For a better comparison of metrics, the curves were built in decreasing order of the

PCC values of the modified metrics. All the modified metrics, with sequence

alignment, have higher correlations than the corresponding traditional metrics

without sequence alignment. This is consistent with the results in the first evaluation

phase. The slope of both PCC curves are almost opposite, so the behaviour of

metrics drastically changed with sequence alignment for this level of motion. The

correlation increased with sequence alignment 55.7 % for the best metric and

28.3 % on average for all the metrics. Modified versions of NQM, PSNR, and VQM

are the metrics with the best correlations for this level of motion, with similar high

Fig. 6 Correlation of objective quality metrics for hight motion
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values above 0.95. All the other metrics have correlation values above 0.91. The

LCC values are between 0.95 and 0.96 for seven of the eight metrics.

Figure 7 shows the PCC and LCC values of the metrics for low motion video

sequences. These values are quite low in general if compared with the high motion

scenario. The low dynamism of the scenes in low motion sequences helps the codec

to predict video frames, even under frame loss, so degradation is lower. The viewers

are able to detect the slight degradation differences, but the objective metrics are

not. This is reflected in the low correlation of the metrics. Only two metrics, the

modified versions of UQI and VIF, have correlation values above 0.91, the rest are

below 0.87. It is interesting to note the low correlation values of the two ‘‘native’’

video quality metrics, DCT-VQM and VQM. The correlation of metrics increases

with sequence alignment for three metrics, decreases for four metrics, and does not

change for one metric; on average the differences are negligible. The LCC values

are also at their maximum for the best correlated metrics, with values around 0.92.

Figure 8 shows the PCC and LCC values of the metrics for medium motion video

sequences. In general, correlation values have intermediate values between those

corresponding to high and low motion. The curves were built in decreasing order of

PCC values for the traditional version of the metrics. With regard to the influence of

sequence alignment on correlation, the slightly worse correlation of a modified

PSNR in the first evaluation phase is confirmed here for the modified versions of all

other metrics, with a decrease of 3.1 % on average. The curves are quite plain in this

scenario, with low differences between correlations. The traditional DCT-VQM has

the highest correlation, with a value close to 0.93, but is quite remarkably the lowest

correlation of VQM. The LCC values, around 0.94 for most of the metrics,

correspond to traditional metrics.

Figure 9 shows the PCC and LCC values of the metrics for the aggregated

sequences. All the metrics (except VQM) have a higher correlation with sequence

Fig. 7 Correlation of objective quality metrics for low motion
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alignment, with an increase of 19.5 % for the best metric and 11.9 % on average for

all the metrics. The best PCC value, the only one above 0.8, and the best LCC value

above 0.85, also correspond to the modified version DCT-VQM, followed by

modified versions of PSNR and NQM.

Figure 10 shows the outlier ratios corresponding to the best correlated metrics for

each motion and the aggregated sequences.

Finally, Fig. 11 shows the best PCC values of the metrics for each motion level

in video sequences and also for the aggregated video sequences. An additional

Fig. 8 Correlation of objective quality metrics for medium motion

Fig. 9 Correlation of objective quality metrics for aggregated sequences
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curve, with an independent scale on the right, represents the approximate relative

computing times for the metrics. The time of the modified version of the PSNR,

with value 1, is the reference time. The curves were built in increasing order of

computing time. The metrics with the best correlation values, the modified versions

of the DCT-VQM and PSNR, are also the fastest to compute. Table 6 summarizes

our proposal of metrics for off-line and real-time assessment. In the table, the

modified versions of metrics are denoted with a M� prefix.

Fig. 10 Outlier ratios of polynomial predictions

Fig. 11 Correlation and computing time of the objective quality metrics
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7 Conclusions and Future Work

In this paper, we have explored the influence of important aspects that affect the

correlation between objective and subjective video quality metrics in a QoE

assessment: motion level in video sequences with bursty packet loss and sequence

alignment after frame loss. As expected, the results showed higher correlations with

the level of motion in video sequences. Furthermore, sequence alignment strongly

increased correlations for high motion videos, making it a mandatory technique for

this common kind of video. On the other hand, the technique did not change

correlations for low motion videos and slightly decreases correlations for medium

motion videos. Finally, taking into account the relative computing times of the

metrics, the most suitable objective metrics to characterize the quality scores from

viewers, both for off-line and real-time assessments, were proposed. Future work is

focused on assessing new objective metrics and exploring the potential of standard

video sequences in publicly available databases for packet loss analysis.
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Francisco J. Suárez is a professor in the Department of Computer Science and Engineering at the

University of Oviedo, Spain, where he received his Ph.D. degree in 1998. His current research focuses on

evaluation of networked multimedia systems and he has been working on several related projects as head

of the Interactive Multimedia Services research team.

Andrés Garcı́a is a software engineer and data analyst at labSens company in Spain. He received his

M.Sc. degree in Computer Science from the University of Oviedo, Spain, in 2010. His current work

focuses on the design and development of tools to analyze and improve the performance of networks and

industrial processes.

Juan C. Granda is an associate professor in the Department of Computer Science and Engineering at the

University of Oviedo, Spain, where he received his Ph.D. degree in Computer Science in 2008. He has

been involved in the research activities of the Computer Engineering Area, focusing on performance

analysis of synchronous e-learning systems.

Daniel F. Garcı́a is a full professor in the Department of Computer Science and Engineering at the

University of Oviedo, Spain, where he leads the Computer Engineering Area. His current research focuses

on self-adaptive multimedia and real-time systems. He has led many research projects during the last 20

years and coauthored more than 50 articles in journals and more than 130 papers in conferences and

workshops. He is a member of the IEEE Computer Society.

Pelayo Nuño received his Ph.D. degree in Computer Science from the University of Oviedo, Spain, in

2013. He has been involved in several research activities of the Computer Engineering Area. His research

interests include multimedia networking and autonomic computing.

J Netw Syst Manage (2016) 24:116–139 139

123

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-J.340-201006-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-J.340-201006-I!!PDF-E&type=items
http://www.videolan.org/vlc/
https://bitbucket.org/kuraiev/pymetrikz
https://bitbucket.org/kuraiev/pymetrikz
http://compression.ru/video/quality_measure/video_measurement_tool_en.html
http://compression.ru/video/quality_measure/video_measurement_tool_en.html
http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx
http://www.atc.uniovi.es/personal/fran/papers/SuarezFJ13-videos.rar

	Assessing the QoE in Video Services Over Lossy Networks
	Abstract
	Introduction
	Related Work
	Packet Loss Model
	Sequence Alignment
	Experimental Framework
	Objective Quality Metrics
	Parameters of the Packet Loss Model
	Video Sequences
	Subjective Assessment Methodology
	Evaluation Metrics
	Experimental Plan

	Results
	Phase I: Initial Evaluation of PSNR-Based Metrics
	Phase II: Comparison of all the Selected Metrics

	Conclusions and Future Work
	References




