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Abstract The replication of popular data objects can effectively reduce the access

time and bandwidth requirements of network services. We study the replication

problem in the model of distributed replication groups and propose two distributed

algorithms: an approximation optimal replication algorithm, which is an asyn-

chronous distributed algorithm as it takes more time to be completed. However its

performance approaches the optimal algorithm, and a fast replication algorithm that

is very suitable as the initial algorithm of the approximation optimal algorithm. We

give a proof of the complexity of the algorithms, and show that the time and

communication complexities of the algorithms are polynomial with respect to the

number of objects and the maximum storage capacities of the servers. Finally,

simulation experiments are performed to investigate the performance of the algo-

rithms, and the results show that the two algorithms can effectively solve the rep-

lication problem.

Keywords Replication of popular data � Access cost � Distributed replication

group � Asynchronous distributed algorithm

1 Introduction

The access time and bandwidth requirements are always two important issues of

network application services. With the rapid growth of network data and the
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prevalence of distributed systems, recent efforts on improving network services

have paid more attention to replication algorithms of network resources. A server

maintains a copy of popular network data objects locally according to the

replication algorithm, and then provide it to local users or other servers that are

close to the server. A good replication algorithm can efficiently use the storage

capacity to replicate network data objects and acquire the best access performance.

A commonly considered model to study such a problem is the distributed replication

group.

A distributed replication group consists of a number of servers that provide

storage capacities to replicate network data objects. The requests of a user are

processed by a local server. If the local server has stored the required data objects,

the requests can be responded to in a very short period of time. Otherwise, the local

server should retrieve the storage resources of other servers in the same group. If the

required data objects are found, the requests can be responded to within a longer

period of time. In the case that no required data objects are fetched in the group, the

local server must contact the original server that lays outside of the group to get the

required data, the response time will be very long.

Consequently, the replication problem can be defined as follows. Each server

receives the requests for network data objects in accordance with certain rates, and

the servers replicate some data objects to serve the requests that come from local

users and nonlocal users within the group. The replication algorithm should

efficiently use the storage resources and maximize the total performance of all the

servers in the group. Two distributed replication algorithms are proposed to solve

the problem in our study: An approximation optimal replication algorithm (AORA)

and a fast replication algorithm (FRA). AORA is an asynchronous distributed

algorithm with shared memory, it will spend more time to complete the

configuration, but its results will approach those of the optimal algorithm. Then

we will give the detailed proofs of the time and communication complexities of the

algorithm after its description. The FRA is a three-step optimization algorithm that

can complete the configuration of the servers’ storage resources in a short period of

time. It is very suitable as the initial algorithm of the AORA for the reason that it

can make the configuration close to the optimal state and greatly reduce the running

time of the approximation optimal algorithms. The FRA can also be suitable for

high real-time requirements due to its low latency. At last, we will compare the

various performances of the AORA and FRA with the algorithms that have been

proposed.

Some replication algorithms have been proposed to solve the replication

problems in different environments. Leff [1] classifies the algorithms for the model

of distributed replication group as three kinds of algorithms: optimal algorithms,

distributed algorithms and isolationist algorithms, and then tests their performances

by simulations. An optimal algorithm shares all the access patterns at every server

and the replication decisions are completely coordinated, so at every moment, the

best decisions are made. The distributed algorithm doesn’t make decisions in a

completely coordinated fashion but will consider the information of other servers.

The isolationist algorithm ignores all the decisions made by other servers when a

server replicates data objects. The optimal algorithms require a lot of computing
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resources and time, and the performance derived by isolationist algorithms can’t

meet the requirements of systems. Therefore a distributed algorithm is thus more

appropriate, the results of simulations show us that the distributed algorithm is a

more appropriate solution.

Zaman [2] and Laoutaris [3] also consider the model of the distributed replication

group and propose two distributed algorithms: distributed greedy replication (DGR)

and two-step local search (TSLS). The performances of these two algorithms will be

compared with the algorithm that we propose in the section of experiments. The

time complexity of the TSLS is low, but it doesn’t approach the performance of the

optimal algorithm. The DGR is an approximation algorithm, but the time

complexity is very high. In our work, the time complexity of the AORA is proved

that it has been reduced by the times of the number of servers, and under some

conditions, the performance can remain the same. Khan [4] proposes the A�-star

algorithm that is used to replace the optimal algorithm for comparison in the section

of experiments. The other replication algorithms for a variety of systems are

considered in [5–23]. The studies of [5–14] are used to minimize the data access

cost and [15–23] consider the algorithms that can improve the system reliability.

The performance analysis is a key method to validate the proposed algorithms. The

studies of [24–27] use the Markov chain to model the network transmission

procedure and do the performance evaluation, they can provide great help to the

simulation of the proposed algorithms. The studies of [28–30] provide more ideas

for the later research in the distributed and cloud computing systems.

2 Problem Formulation

We consider that the distributed replication group consists of M servers, and there

are N data objects of unit size that will be replicated in the group. Let sm; 1�m�M

and on; 1� n�N denote the mth server and the nth data object respectively, and sm
is supposed to have a storage capacity of cm. The request rates of objects are

described as a M 9 N matrix r, and its member rm;n denote the number of requests

for on that arrive at sm in a unit time.

Since there are many notations in the definition of the problem, we want to give a

summary list to make the notations clear in Table 1.

We assume that a server can access the data object with the access cost tl, if the

object is stored locally. Else, if the object can be retrieved in other servers of the

group, the access cost becomes tr. Otherwise, if the object can only be found in the

original server which is outside of the group, the access cost is ts. In the actual

model of [1], tl, tr and ts are given values of tenths of millisecond, milliseconds and

tens of milliseconds, respectively. We can see that ts is much larger than tr and tl in

the actual background. The collaboration of the storage resources of servers in the

same group becomes meaningful when the access cost of the original server is large.

Here, we adopt the model, which has been defined in the study of [2].

Each server knows the copies of objects stored locally. The copies of all servers

are described as M vectors fX1;X2; . . .;XMg, and one member of Xm is given by
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Xm;n ¼
1 if sm stored a copy of on

0 otherwise

�
:

Then, the total access cost of the group AC [2] can be given byX
Xm;n¼1

rm;ntl þ
X
Xm;n¼0PM

m¼1
Xm;n � 1

rm;ntr þ
X

PM

m¼1
Xm;n¼0

rm;nts
ð1Þ

subject to

XN
n¼1

Xm;n � cm; 1�m�M:

The first term of (1) represents the total access cost when the required objects are

stored locally. The second term represents that the required objects are stored in the

group, but they are not stored locally. The third term represents that the required

objects can only be found in the original server. The replication algorithm should

make its best effort to minimize AC. From the opposite side, when the distributed

replication group doesn’t replicate any data objects in the servers, all the servers

have to access the original servers to serve the users, the access cost ACO [2] is

maximum, and it can be given by

ACO ¼
XM;N

m¼1;n¼1

rm;nts:

Consequently, we can denote the performance gain PG [2] of a replication algo-

rithm for the group as

Table 1 Summary notations
sm Server m

on Data object n

cm Storage capacity of sm

rm,n Request rate for on at sm

tl Access cost of the local server

tr Access cost of the group

ts Access cost of the original server

Xm,n Number of on at sm

AC Total access cost of the group

ACO Maximum access cost of the group

PG Performance gain of the group

pgþm;n Performance gain of sm for storing on

pg�m;n Performance gain of sm for deleting on

tpgþm;n Performance gain of the group for storing on

tpg�m;n Performance gain of the group for deleting on
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PG ¼ ACO� AC:

By transforming the equation above, we can obtain that

PG ¼
X
Xm;n¼1

rm;nðts � tlÞ þ
X
Xm;n¼0PM

m¼1
Xm;n � 1

rm;nðts � trÞ
ð2Þ

The first term of (2) represents the performance gain when the required data objects

are stored locally, and the second term represents the performance gain while the

required data objects are stored in the group. So the higher the value of PG, the

better the replication algorithm.

To describe the algorithms, two important parameters pgþm;n and pg�m;n must be

defined. Let pgþm;n denote the performance gain of sm when it stores a copy of on

locally, and pgþm;n � 0. Let pg�m;n denote the performance gain of sm when it deletes a

copy of on that stored locally, and pg�m;n � 0. First, to simplify the expressions of the

parameters, some restrictions are given simplified notations in Table 2.

Then, the values of the parameters can be obtained by the following equations.

pgþm;n ¼
rm;nðtr � tlÞ caseþ1
rm;nðts � tlÞ caseþ2
0 caseþ3

8><
>: ð3Þ

pg�m;n ¼
�rm;nðtr � tlÞ case�1
�rm;nðts � tlÞ case�2
0 case�3

8><
>: ð4Þ

With the definition of pgþm;n and pg�m;n, we can get the impact of the replication and

deletion operations of sm on the total performance gain of the group. Let tpgþm;n
denote the total performance gain of the group when sm stores a copy of on locally,

and tpgþm;n � 0. Let tpg�m;n denote the total performance gain of the group when sm

deletes a copy of on that stored locally, and tpg�m;n � 0. Their values can be obtained

by the following equations.

Table 2 Simplified notations of

restrictions
Case Restrictions

caseþ1 Xm;n ¼ 0;
PM

m¼1 Xm;n � 1

caseþ2 Xm;n ¼ 0;
PM

m¼1 Xm;n ¼ 0

caseþ3 Xm;n ¼ 1

case�1 Xm;n ¼ 1;
PM

m¼1 Xm;n � 2

case�2 Xm;n ¼ 1;
PM

m¼1 Xm;n ¼ 1

case�3 Xm;n ¼ 0
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tpgþm;n ¼
rm;nðtr � tlÞ caseþ1PM

i¼1 ri;nðts � trÞ þ rm;nðtr � tlÞ caseþ2
0 caseþ3

8><
>: ð5Þ

tpg�m;n ¼
�rm;nðtr � tlÞ case�1

�
PM

i¼1 ri;nðts � trÞ � rm;nðtr � tlÞ case�2
0 case�3

8><
>: ð6Þ

Under case�1 and case�3 , the expressions of tpg�m;n can be obtained from the defi-

nition of PG. Under caseþ2 , there is not any copy of on in the group. If the replication

operation of on happens in sm, the other servers in the group can access on in sm
rather than the original server, this affects the performance of the group, so we get

the expression in Eq. (5). Under case�2 , there is only one copy of object on in the

group. The deletion operation of on also affects the performance of the other servers,

so we can get the expression in Eq. (6).

3 Approximation Optimal Replication Algorithm

The AORA is an asynchronous distributed algorithm with the shared memory, it

essentially makes the servers in a group perform the non-critical operations

asynchronously. Here, the non-critical operation denotes the operation that doesn’t

affect the performance gains of the other servers, such as the operation under case�1
or case�3 . The critical operation denotes the operation that affects the performance

gains of the other servers, such as the operation under case�2 .

The shared memory denotes the shared variables that can be writable and

readable by all servers. The group will be locked and all servers stop the operations

if a critical operation arrives, this criterion can guarantee the total performance gain

of the group. Since the number of non-critical operations is much larger than the

critical operations’, the AORA can greatly reduce the running time of the replication

algorithm.

To describe the algorithm, we first define the vector sc ¼ ðsc1; . . .; scNÞ where scn is

denoted by
PM

m¼1 Xm;n. Let nd and nr denote the sequence numbers of two objects

that will be deleted and replicated in a server, respectively. Let nid denote the

sequence number of the object that has been replicated in a server for 1� i� cm. Let

njr denote the sequence number of the object that has not been replicated in a server

for 1� j�N � cm. Let twait denote the total sum of the maximum processing time of

actions try�updatem; updatem; crit�updatem; sendm and receivem, which will be

defined in the following algorithm. Meanwhile, sm should maintain a replication

vector Xm. With these definitions, the description of the AORA is given in

Algorithm 1.
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Algorithm 1. AORA
Shared variables:

scn ∈ {0, 1, ...,M}, initially generated by initial algo-
rithm scn = M

m=1 Xm,n , writable and readable by all
servers, for every n ∈ {1, ..., N}.
turn ∈ {0, 1, ...,M}, initially 0, writable and read-
able by all servers. If turn = 0, each server can
replicate and delete the copies of objects, andmodify
the values of sc. If turn = m, only sm can perform
operations and modify sc.

Actions of sm :

try − updatem examines whether the copies of sm
should be updated.
updatem examines whether the group has been locked,
and if not, updates the copies of sm .
cri t−updatem updates the copies of sm , if the group
has been locked.
wai tm examines whether the waiting time has ex-
pired.
f inishm stops the algorithm.
receivem receives the message.
sendm broadcasts the message.

States of sm :

pc ∈ {try−update, update, cri t−update, wai t, f inish},
initially try − update.

Transitions of sm :
try − updatem:

Precondition:
pc := try − update;
Effect:
for every n ∈ {1, ..., N}
if Xm,n = 1, then calculate t pg−

m,n;
else if Xm,n = 0, then calculate t pg+

m,n;
end if

end
choose:
−t pg−

m,nd = min{−t pgm,n1d
, ...,−t pgm,ncmd

};
choose:
t pg+

m,nr = max{t pgm,n1r , ..., t pgm,nN−cm
r

};
if −t pg−

m,nd < t pg+
m,nr , then pc = update;

else pc = wai t ;
end if

updatem:

Precondition:
pc := update;

Effect:
if turn = 0, then
if scnd = 1 or scnr = 0, then
turn = m; pc = cri t − update;
else if scnd > 1, then
scnd = scnd − 1; scnr = scnr + 1;
Xm,nd = 0; Xm,nr = 1;

end if
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sendbu f f = {replication placement change};
pc = try − update;

cri t − updatem:

Precondition:
pc := cri t − update;
Effect:
if turn = m, then
scnd = scnd − 1; scnr = scnr + 1;
turn = 0;
Xm,nd = 0; Xm,nr = 1;

end if
sendbu f f = {replication placement change};
pc = try − update;

wai tm :

Precondition:
pc := wai t ;
Effect:
while (wait time twait )
if receivebu f f NULL, then
receivebu f f = NULL;
pc = try − update;

end if
end
pc = f inish;

f inishm :

Precondition:
pc := f inish;
Effect:
stop AORA algorithm at server sm ;

sendm :

Precondition:
sendbu f f NULL;
Effect:
broadcast the message of sendbuff to all servers;
sendbu f f = NULL;

receivem(message):

Precondition:
receive a message;
Effect:
add the message to receivebuff;

else if turn = m, then pc = cri t − update;
else pc = wai t ;
end if

Since the detailed description of the AORA is complex and unreadable, we

summarize the state transition process in Fig. 1 to give a concise description.

Initially, the state is try-update in a server. Then, if the data allocation of this server

is globally optimal, the state goes to wait, else the state goes to update. The server

should first check whether the system has been locked when its state is update. If the

system has been locked, the server’s state should go to wait, else the server checks

whether the system needs to be locked in order to perform the update operation.
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According to the result, the server’s state will go to crit-update or return try-update.

We should note that the state of a server may leave wait when it is motivated by an

update message. The detailed text description is given as follows.

For the server sm, first, it will set the state as try-update which leads to try-updatem.

In try-updatem; sm calculates the minimum of the performance degradation of the

group when a copy of ond is deleted. Then the maximum of the group’s performance

improvement will also be calculated when a copy of onr will be replicated. To

improve the the group’s performance, sm can decide whether to replace nd with nr
by comparing these two values. If the server tries to replace the copies, the state

goes to update, and the server performs updatem, else the state goes to wait.

In updatem; sm first checks turn to see if turn = 0. If not, and if the current value

of turn is not m, the state goes to wait. If turn ¼ 0; sm checks scnd and scnr . If scnd [ 1

and scnr [ 0, the replication and deletion operations of sm will not affect the

performances of the other servers, the group doesn’t need to be locked. When the

replacement of the copies of ond and onr is completed, the sendbuff is filled with the

message {replication placement change} to be broadcast to the other servers. The

state will be back to try-update for examining that whether the copies of sm need to

be optimized again. If scnd ¼ 1, which means that the group has only one copy of ond ,

the deletion operation of sm will affect the performances of the other servers. If

scnr ¼ 0, which means that the group doesn’t have any copy of onr , the replication

operation of sm will affect the performances of the other servers, the value of turn

will be set as m to lock the group, and the state goes to crit-update.

In crit � updatem; sm will first check turn to see if turn = m. If it is, when the

copies of ond and onr are completed, turn is set as 0 to unlock the group, the sendbuff

is filled with the message {replication placement change} to be broadcast to other

servers. Then, the state will be back to try-update to examine that whether the

copies of sm needs to be optimized again.

Fig. 1 State transition process of AORA
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In waitm; sm repeatedly checks receivebuff to see if receivebuff = NULL until the

waiting time exceeds twait. If not, which means the copies in the group has changed,

and this affects the configuration in sm, the state should go to try-update. Once the

waiting time expires, the state will go to finish, and the AORA will be stopped.

When the group stays on state finish, the AORA is completed.

4 Complexity of the AORA

We analyze the time and communication complexities of the AORA in this section.

The time complexity is determined by the maximum number of replacement

operations that take place in a server, and the communication complexity is

determined by the total number of replacement operations that take place in the

group. We will give the proofs of these two propositions in the following lemmas.

Before getting the further conclusions, we first define a assumption to limit the

values of ts; tr and tl.

Assumption 1 ts; tr and tl are such that ts � tr � tr � tl and

PM
j¼1 rj;n2

ri;n1

ts � tr

tr � tl
[ 1

for each i; n1; n2; 1� i�M; n1 6¼ n2; 1� n1; n2 �N.

Assumption 1 is always true in the actual network model.

Let C denote the total sum of the storage resources of the group
PM

m¼1 cm. Let nro
denote the maximum number of replacement operations which take place in a

server. Let tro denote the maximum time of one replacement operation. Then, we

can give the following proposition.

Proposition 1 The time complexity of the AORA is determined by the maximum

number of replacement operations that take place in a server.

We first give a lemma to support Proposition 1.

Lemma 1 sm doesn’t replace any copy that has been stored to optimize the

performance gain when its state goes to finish, for each m 2 f1; 2; . . .;Mg.

Proof By contradiction. We assumed that sm still needs to replace some copies

when its state went to finish. There are two cases that may lead to this result. Case 1:

when sm stays in finish, it receives a message. Case 2: when the state of sm is try-

update, sm doesn’t transfer its state to wait.

In case 1, when sm is in finish, we assume that one server si; i 6¼ m performs the

replacement operation and broadcasts a message. Because twait is larger than the

total sum of the processing time of all actions, sm should be in wait when si is in try-

update. Then, we consider the action that makes si go to try-update, the previous

state of si should be update, crit-update or wait. Consequently, si has broadcast a

message or received a message. sm should receive a message in either case, it can’t

go to finish. A contradiction, case 1 doesn’t hold.
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In case 2, sm can transfer state from try-update and update to wait. But when the

previous state is update, by the code, a server is performing replacement operation

and then broadcasts a message, sm can’t go to finish. So sm must transfer state from

try-update to wait before going to finish. A contradiction, case 2 doesn’t hold.

The lemma is thus true. h

Then the proof of Proposition 1 can be given.

Proof With the proof of Lemma 1 in case 1, we can see that there is not any

replacement operation in the group. Consequently, the entire group is in wait, all the

servers will go to finish at most twait time later. The maximum running time should

be less than nroðtro þ twaitÞ. So the maximum running time is determined by nro. h

4.1 Time Complexity

Let cmax denote maxfc1; c2; . . .; cMg, we can give the time complexity of the AORA.

Theorem 1 If the initial algorithm replicates the copies of all data objects in the

group, the time complexity of the AORA is Oðcmaxðtro þ twaitÞÞ under Assumption 1.

We first give some lemmas to support Theorem 1.

Lemma 2 If one copy of on replaces one copy of oi; i 6¼ n in a server sm, this copy

of on will never be replaced if no server goes to crit � update after this event for

each 1� n�N; 1�m�M.

Proof By the code, if the deletion operation takes place in updatem, the value of

turn should equal 0, and scnd [ 1. Consequently, there are at least 2 copies of ond in

the group. So, when sm deletes the local copy, the other servers can still access ond in

the group. Only the access cost of sm has changed from tl to tr. The performance

gains of replacement operations that take place in the other servers will not change.

If the replication operation takes place in updatem, the value of turn should equal 0,

and scnr [ 0. Consequently, there has been at least 1 copy of onr in the group.

Therefore, the other servers can still access onr in the group when sm replicates one

copy of onr locally. Only the access cost of sm has changed from tr to tl. The

performance gains of replacement operations that are taking place in the other

servers will not change.

We can see that the deletion or replication operation of one server can’t affect the

performance of the other servers if the server won’t go to crit-update. Here, sm has

completed the replacement operation, and goes to try-update. Because the

performance doesn’t change, with the result of the previous action try-updatem,

we know that the performance improvement of on is maximum in the set of objects

that have not been replicated in sm. In the following replacement operations, if no

server goes to crit-update, the performance improvement of the set of objects, which

have not been replicated in sm, will always be less than that of on. Consequently, on
will never be replaced. h

Lemma 3 If the group has the copies of all objects, no server will go to crit-

update under Assumption 1.
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Proof By contradiction. We assume that sm goes to crit-update and replaces the

copy of on with oi for each 1�m�M, 1� n�N; i 6¼ n, the value of scn is 1. sm will

delete the only copy of on, and make scn be 0. Meanwhile, because all the objects

have copies in the group, the value of sci must be not less than 1. Because of

Assumption 1, we can get the following inequality.

tpg�m;n ¼
PM

j¼1 rj;nðts � trÞ þ rm;nðtr � tlÞ[
PM

j¼1 rj;nðts � trÞ[
rm;iðtr � tlÞ ¼ tpgþm;i

ð7Þ

A contradiction, the inequality shows us that the copy of oi can’t replace on. So if

the group has copies of all the objects, no server will go to state crit-update under

Assumption 1. h

Then, we can prove Theorem 1.

Proof First, we can get that no server will go to state crit-update according to

Lemma 3. For each 1�m�M; 1� n�N; i� n, because once sm replaces on with

oi, the copy of oi will never be replaced according to Lemma 2, we can get that sm
can perform at most cm replacement operations during the running time of the

AORA. Consequently, the maximum number of replacement operations of one

server is cmax. Then, we can get that nro ¼ cmax, and the time complexity is

Oðcmaxðtro þ twaitÞÞ according to Proposition 1. h

4.2 Communication Complexity

Let Bmes denote the number of bytes of the broadcast messages, we can give the

communication complexity of the AORA.

Theorem 2 If the initial algorithm replicates the copies of all the objects in the

group, the communication complexity of AORA is OðMcmaxBmesÞ under

Assumption 1.

Proof According to Theorem 1, we can get that the maximum number of

replacement operations of one server is cmax, so the maximum number of

replacement operations of the group is Mcmax. Each replacement operation

broadcasts a message, so the communication complexity of the AORA algorithm

is OðMcmaxBmesÞ. h

5 A Fast Replication Algorithm

The FRA is used as the initial algorithm of the AORA. The FRA is essentially a

3-step optimization algorithm, the performance of the group is optimized in step 2

and step 3. At step 1, we replicate all the data objects in the chosen servers of the

group. As a result, each remaining server in step 2 can access the data objects in the

chosen servers, the replication and deletion operations of one server can’t affect the

other servers. Consequently, the remaining servers will become independent of each

other. When each remaining server obtains its best performance, the remaining
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servers will obtain the best performance. At step 3, we optimize the performance of

the chosen servers whose storage capacity is nearly N. Each chosen server can

release some storage resources when some copies of objects can be retrieved in the

remaining servers. Like step 2, the released storage resources of the chosen servers

become independent of each other, we can make these storage resources utilized

with their best performances.

Especially, the FRA can greatly supplement the AORA according to Theorems 1

and 2; it can guarantee that the copies of all objects are replicated in the group, the

complexity of the AORA can thus be greatly reduced. The details of the FRA are

given in Algorithm 2.

Algorithm 2. FRA

Step 1: We first choose Mc servers, and Mc subjects to:

Mc �M;
XMc

m¼1

cm �N;
XMc�1

m¼1

cm\N

Then, we replicate all the data objects to these servers according to the

following greedy algorithm.

The values of fpgþ1;n; pgþ2;n; . . .; pgþMc;ng are calculated under caseþ2 for each

1� n�N. If the remaining storage resources of sm is 0, or one copy of on
has been replicated in a server, pgþm;n should equal 0. on will be replicated

in the server with the maximum value. When all the objects are replicated

in the group, the greedy algorithm is completed.

Step 2: The remaining servers sMcþ1; . . .; sM calculate the values of fpgþm;1; pgþm;2;
. . .; pgþm;Ng under caseþ1 . sm should replicate the data objects corresponding

to the cm largest values for each Mc þ 1�m�M.

Step 3: sm deletes all the copies of objects that can be retrieved in the servers

sMcþ1; . . .; sM for each 1�m�Mc, and calculates the values of fpgþm;1;
pgþm;2; . . .; pg

þ
m;Ng under caseþ1 and caseþ3 . Then, sm should replicate the

data objects corresponding to the largest values according to the

remaining storage resources.

From the implementation of the FRA, we can see that the optimizations in

step 2 and step 3 are distributed computing in each server, so the algorithm

will finish in a short period of time. Let tc and tr be the maximum times of

one calculation operation and one replication operation, respectively. The

time complexity of the FRA is OðNtc þ cmaxtrÞ.

6 Numerical Validation

In this section, we perform experiments to test the performance of the FRA

algorithm and the AORA algorithm in practice.
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6.1 Experimental Environment

The experimental environment is set as a video on demand platform, which is

shown in Fig. 2. Such a system has been running for two years in our laboratory,

and we can get the adequate system log. The video server cluster stores all the

videos and serves five residential districts, all the modification operations on the

videos should be performed here. In a residential district, there are about ten

residential buildings, and each residential building has one local server that stores

the popular video blocks. The local servers are used to share the service pressure of

the video server cluster and reduce the access time of the video on demand platform

for the users in the residential building. All the servers in a residential district are

considered as one server group, and we apply the distributed replication algorithms

for such a group.

However, a server group doesn’t have the capacity to store all the videos, it can

only store the popular videos blocks. In the platform, one video is first encapsulated

into some blocks by the package tasks, then these blocks are stored. The size of one

block is usually 20 MB. Consequently, the blocks of the popular videos should be

replicated by the server group. Meanwhile, since people usually watch the

beginning of new videos, the blocks at the beginning of the unpopular videos should

also be replicated. Thus, the size of all the popular video blocks is not very large and

the server group can satisfy the storage requirements of the popular data in practice.

Then we can give the values of tl; tr; ts. Because the block access time in the local

server is similar, the block access time in the server group is similar, the block

access time in the video server cluster is similar, we use the average block access

time in the local server, the average block access time in the server group, the

Fig. 2 Experimental environment
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average block access time in the video server cluster to denote tl; tr; ts, respectively.

In our system, the values of tl; tr; ts are very different from the actual model of [1],

and they are calculated as tl ¼ 7:19s; tr ¼ 28:56s; ts ¼ 373:28s.

The measurement of the access time is an important problem. The time to get the

data from the original server fluctuates dramatically while the time to get the data

from the local and group servers fluctuates gently. We consider this problem from

two aspects. The most important aspect is that the access time of original server ts is

much larger than the access time of local server tl and the access time of group

server tr. If this condition doesn’t hold, the work of the replication algorithm has no

practical meaning. In the experiment, tl ¼ 7:19s; tr ¼ 28:56s; ts ¼ 373:28s , even ts
changes dramatically and becomes 273.28 s , it’s still much larger than tl and tr; this

only has a small impact on the overall result. The second aspect is that the average

access time of the original server in a period of time fluctuates gently. The average

access time can be used to replace the instantaneous access time.

A simulation system is designed to improve the performance of the video on

demand platform in our laboratory, the communication environment is set as the

actual platform. We select the system log of the past month to simulate the users’

behaviors in such a simulation system for the reason that statistical regularities of

the users’ behaviors will become invalid over time. We extract the demand

information from the system log for each popular video block, and the values of

request rates rm;n can be counted according to the demand information. The

performance gain of the replication algorithms can be given by the following

equation according to its definition.

PG ¼
X
userID

ðts � tuserIDÞ

where tuserID denotes the actual video block access time of the user with ID userID.

The experiments include 2 steps. In the first step, we compare the performances

of the FRA and AORA with the optimal algorithm and isolationist algorithm. A

fully optimal algorithm is determined by the optimal solution of knapsack problem

that has not been solved, so we use a centralized algorithm A�-star proposed in [4]

to replace it. The isolationist algorithm work as follows: sm replicates cm copies of

objects with the highest performance gains independently, the performance gain of

on is denoted by rm;nðts � tlÞ for each 1�m�M; 1� n�N.

In the second step, we compare the performance of the AORA with the

Distributed Greedy Replication algorithm(DGR) proposed in [2] and the two-step

local search algorithm (TSLS) proposed in [3]. These two algorithms are both

synchronous distributed algorithms. The DGR works as follows: In the beginning,

all the servers have been fully filled with copies of objects by the initial algorithm.

Then in a round, each server calculates the maximum total performance gain of

replacement operations of a server, and then the algorithm chooses the maximum

total performance gain, and performs the operation. The algorithm continues until

the maximum total performance gain is less than 0 in a round. TSLS works as

follows: In the beginning, all the servers don’t have any copy of objects, and the

algorithm sorts all the servers with 1; . . .;N. Then in the round m, server m chooses
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cm replication operations with the highest total performance gain for the group, and

performs the operations for each 1�m�M. The algorithm stop in the round

M. Since the simulation system is a typical distributed replication group and the

DGR, TSLS are specially applied to such a system, the fair comparisons can be

made in this experimental environment.

Today the trend of video systems is to go towards adaptive streaming protocols

that make the server keep several variants of the same video. This technique is

called as scalable coding. For example, one scalable video has two copies according

to high definition (HD) and standard definition (SD), respectively. A user may

request the HD copies of one video if the network condition and the terminal

equipment are very good, else the user may request the SD copies. In our model, the

AORA is also suitable for this case for the reason that we replicate the copies of the

video chunks instead of the video chunks into the servers. One video may have two

groups of copies according to HD and SD. The HD and SD copies are very different

from each other. The number of SD copies must be far less than that of HD, and one

SD copy contains more frames than the HD copy. The weight of one copy is very

important in our algorithm. However, the value of the weight is not assigned by our

algorithm, the behaviors of the users decide the weight. For example, if the users

usually request a copy, this copy is very popular and its weight is large, else the

weight is small. For one video, its weights of the SD and HD copies may be

different, the SD copy’s weight may be large when the HD copy’s weight is small.

Consequently, the AORA focuses on the copy’s weight of one video instead of the

video’s weight, and it is also suitable for adaptive streaming protocols.

6.2 Experimental Results

In the first step of experiments, we compare the performances of the algorithms

under the following situations: 10 servers and 100, 500, and 2,000 objects. We

calculate the ratio of the performance gains of the FRA, AORA and isolationist, as

well as the optimal algorithms to analysis the performances of the FRA and AORA.

In the second step of experiments, we compare the performances, the time and

communication overhead of the algorithms under the following situations: 10

servers and 100, 500, and 2,000 objects; 1,000 objects and 5, 10, and 20 servers. The

storage capacity of a server is set as 30 % of the number of objects.

Here, we set the number of servers as 10, and adjust the number of objects as 100,

500, and 2,000, respectively. We repeat each comparison experiment 1,000 times. In

Table 3, we give the performance comparison results of the FRA and isolationist

algorithms. The first column of the table is the number of objects. The second

column shows the percentage of comparison results when the performance gain of

the AORA is larger than the isolationist algorithm’s within the repeated

experiments. The third, fourth and fifth columns indicate the minimum, maximum

and average of the values of the FRA/Isolationist, respectively. The similar

descriptions are suitable for Tables 4, 5, 6, 7, 8, 9, 10 and 11.

From the results of Tables 3 and 5, we can see that both the FRA and AORA can

obtain better performance gains than the isolationist algorithm. The reason is that

both the FRA and AORA consider the total performance gain of the group when
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Table 3 Performance comparison of FRA and isolationist

N FRA[ isolationist (%) Min Max Mean

100 100 1.41734 1.45287 1.44010

500 100 1.43629 1.46163 1.44904

2,000 100 1.43261 1.47116 1.45775

Table 4 Performance

comparison of FRA and optimal
N FRA\ optimal (%) Min Max Mean

100 100 0.70126 0.96983 0.74054

500 100 0.75024 0.94979 0.77001

2,000 100 0.76216 0.94961 0.78443

Table 5 Performance comparison of AORA and isolationist

N AORA[ isolationist (%) Min Max Mean

100 100 1.77032 1.82221 1.79737

500 100 1.79078 1.83164 1.83143

2,000 100 1.82601 1.85426 1.84517

Table 6 Performance Comparison of AORA and Optimal

N AORA\ optimal (%) Min Max Mean

100 83.1 0.97633 1.00070 0.98117

500 75.9 0.96978 1.00114 0.97925

2,000 81.2 0.97013 1.00197 0.98716

Table 7 Performance

comparison of AORA and DGR
M N AORA[DGR (%) Min Max Mean

10 100 62.9 0.89982 1.23106 1.06613

10 500 66.2 0.9377 1.31002 1.06972

10 2,000 71.7 0.92978 1.27037 1.07126

Table 8 Performance

comparison of AORA and DGR
M N AORA[DGR (%) Min Max Mean

5 1,000 73.8 0.87539 1.16026 1.06793

10 1,000 76.7 0.89978 1.24037 1.07431

20 1,000 76.4 0.89997 1.26002 1.07979
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they make decisions. But in fact, when the size of the group is very small, the first

step of the FRA may let the performance be worse than the isolationist in some rare

cases. From the results of Tables 4 and 6, we can see the comparison results of the

FRA, AORA and the optimal algorithm. If there is a real optimal algorithm, the

percentages should be all 100 %, but here we replace it with an approximation

algorithm. We can see that the performance of the FRA is worse than AORA, and

the performance of the AORA is similar with the optimal algorithm’s.

In the second step of experiments, we will compare the AORA with two other

distributed algorithms: the TSLS and DGR. We first set the number of servers as

ten, adjust the number of objects as 100, 500, and 2,000, respectively, and then set

the number of objects as 1,000, adjust the number of servers with 5, 10, and 20,

respectively. We repeat each comparison experiment 1,000 times. From Tables 7, 8,

9 and 10, we can see that the performance of the AORA is higher than the TSLS’

and DGR’s. The DGR is an approximation algorithm, and increases the time

complexity to get a high performance, but the high latency also reduces its

Table 9 Performance

comparison of AORA and TSLS
M N AORA[TSLS (%) Min Max Mean

10 100 100 1.29021 1.44116 1.37334

10 500 100 1.33083 1.43835 1.39127

10 2,000 100 1.32096 1.45983 1.41132

Table 10 Performance Comparison of AORA and TSLS

M N AORA[TSLS (%) Min Max Mean

5 1,000 100 1.27827 1.41461 1.35037

10 1,000 100 1.30196 1.44983 1.36832

20 1,000 100 1.33103 1.44647 1.38593

Table 11 Time and communication overhead

M N AORA AORA with FRA DGR TSLS

Time Com Time Com Time Com Time Com

10 3,000 15 78 9 41 147 587 24 92

10 6,000 31 124 17 83 319 1,174 37 131

10 9,000 42 196 33 142 642 1,753 44 191

20 3,000 17 136 10 59 294 1,738 34 204

20 6,000 33 268 19 132 682 3,328 67 342

20 9,000 51 412 41 309 1,842 6892 93 677

30 3,000 19 164 9 71 404 3,117 52 493

30 6,000 41 372 22 211 1,227 5,046 88 737

30 9,000 68 693 42 457 2,793 10,132 119 1,039
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performance in our experiments. The TSLS is a distributed selfish algorithm, it can

be completed quickly, so the comparison results of the performance is not

unexpected. We also plot the frequency distribution for the relative gain of AORA

over DGR in Figs. 3 and 4. A bar in these figures represents the percentage of the

performance ratio in the specific limit. Figures 3 and 4 show the distributions

summarized in Tables 7 and 8. From Fig. 3, we can see that the performance ratio

of the AORA and DGR increases as the number of data objects increases. From

Figure 4, we can see that the performance ratio of the AORA and DGR increases as

the number of servers increases. Meanwhile, we can also observe this slight increase

of performance ratio in Tables 7, 8, 9 and 10. By analyzing the performance records

of the algorithms, we find that the performance gains of the AORA, DGR, and TSLS

for one server or one data object decreases for different data objects or servers,

however, the AORA’s decreases more slowly.

Then, we compare the time and communication overheads of the AORA, GDR,

and TSLS. In Table 11, we can see the comparison results of the time and

communication overhead. The first column indicates the number of servers, and the

second column indicates the number of objects. The capacity of a server keeps 30 %

of the value of N The column with the label Time indicates the time overhead of the

algorithm, and the unit of a value is a millisecond. The column with the label Com

indicates the communication overhead of the algorithm, and the unit of a value is

Kb. From the comparison results, we can see that the time overhead of the AORA

0.9 1 1.1 1.2 1.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

AORA/DGR

Fr
eq

ue
nc

y(
/%

)

(a)

0.9 1 1.1 1.2 1.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

AORA/DGR

Fr
eq

ue
nc

y(
/%

)

(b)

0.9 1 1.1 1.2 1.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

AORA/DGR

Fr
eq

ue
nc

y(
/%

)

(c)

Fig. 3 Distribution of relative gain of AORA over DGR for M = 10. a N = 100, b N = 500,
c N = 2,000
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Fig. 4 Distribution of relative gain of AORA over DGR for N = 1,000. a M = 5, b M = 10, c M = 20
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almost doesn’t increase with the growth of the number of servers; the reason is that

the time complexity of the AORA is not affected by the number of servers M.

Meanwhile, since the time complexities of the DGR and TSLS are polynomial with

respect to M, the time overhead of the DGR and TSLS have large growth with

different rates; the DGR’s increases faster, and the TSLS’ increases more slowly.

Then we consider the experiment results over different values of N, because the

maximum capacity of a server cmax is indicated by the value of N and the time

complexities of the AORA and TSLS are polynomial with respect to cmax, the time

complexity of the DGR is polynomial with respect to the sum of the capacities of all

servers Mcmax, all the time overhead of the DGR, TSLS and AORA have large

growth. The DGR’s increases faster, TSLS’ and AORA’s increase more slowly.

Since the communication complexity is affected by the similar variables that affect

the time complexity, the similar comparison results in communication overhead.

From Table 10, we can find that the AORA is much faster and requires a less

amount of data for the communication than the DGR in all cases, and performs

better than the TSLS in most cases. And another important observation in Table 10

is that the AORA with the initial algorithm FRA has greatly reduced both the time

and communication overhead for the reason that the FRA can make the storage

configuration of the group close to optimal state and guarantee the requirements of

the AORA. So the AORA is highly recommended to use the FRA as its initial

algorithm.

In the above experiments, the storage capacity of a server is fixed as 30 % of the

number of objects for the reason that the number of popular data objects is not very

large and the server group can usually meet the storage requirement. Here, we want

to explore the case where the server group cannot meet the storage requirement. The

storage capacity of one server is set as cm = 50.

Figure 5 shows the frequency distribution for the relative gain of the AORA over

the DGR when cm = 50 and N = 1,000. We can see that the distribution is similar

with the distribution of Fig. 4, the performance gain of the AORA is still better.

However, we also compare the time and communication overhead in Table 12.

Since Theorems 1 and 2 can’t be met, the time and communication complexities of

the AORA have a great increase; for example, the theoretical time overhead for

M = 30 and N = 9,000 should be 1.1s if Theorems 1 and 2 can be satisfied,

however, it is now twenty times.

At last, we want to explore the performance gain of the proposed algorithms

when the capacities of servers are heterogeneous. We adopt ten servers, and three

servers have the storage capacity of 10 % data objects, three servers have the

storage capacity of 20 % data objects, four servers have the storage capacity of

30 % data objects. The number of data objects varies over 100, 500, and 2,000.

Figure 6 shows the frequency distribution for the relative gain of the AORA over

the DGR when the capacity of servers is heterogeneous. We can see that the AORA

performs a little worse when the results are compared with Fig. 3. This is because

the performance gain of the AORA greatly decreases when its complexity doesn’t

change according to Theorems 1 and 2.
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7 Conclusion

An effective replication algorithm can help reduce the access time and improve the

performance of services. This work has described two distributed replication

algorithms: the FRA and AORA. The FRA is the initial algorithm of the AORA, and

can greatly meet its requirements. The AORA is an asynchronous distributed
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Fig. 5 Distribution of relative gain of AORA over DGR for cm = 50 and N = 1,000. a M = 5,
b M = 10, c M = 20

Table 12 Time and

communication overhead for

cm = 50

M N AORA DGR

Time Com Time Com

10 3,000 1.2 9.7 7.2 31.4

10 6,000 1.7 12.4 7.9 37.9

10 9,000 3.1 21.9 10.3 42.6

20 3,000 2.7 16.2 21.9 183.6

20 6,000 4.8 23.1 31.7 212.2

20 9,000 9.1 41.6 58.4 263.4

30 3,000 8.7 37.2 67.2 459.1

30 6,000 13.5 57.5 98.4 607.6

30 9,000 22.9 113.4 167.6 718.5
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Fig. 6 Distribution of relative gain of AORA over DGR for heterogeneous capacities. a N = 100,
b N = 500, c N = 2,000
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algorithm with shared memories; it spends more time to complete the configuration,

but its result will approach the optimal algorithm’s. We give detailed proofs of the

complexity of the AORA, and the proofs show us that the time complexity has been

reduced by the times of the number of servers when the performance is similar with

the DGR’s. The results of the experiments also show us that the FRA can be

completed in a short period of time and reach 77 % performance of the optimal

algorithm, and the AORA can be completed much faster than the DGR, and obtain

98 % performance of the optimal algorithm.

However, there are still some problems that can be considered to improve the

distributed replication algorithms. First, from the simulation results, we can find that

the time and communication complexities of AORA significantly increase if the

storage capacity of the group can’t meet the requirements. Second, the replication

algorithms need the values of tl; tr; ts to allocate the data objects. If the data sizes of

the objects are very different from each other, the values of tl; tr; ts can’t be

calculated, and the package technique may be used to solve this problem. Third, an

adequate system log is required for the reason that the statistic regularities of access

rates are needed to complete the replication algorithm.
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