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Abstract Conventionally, network migration models study competition between

emerging and incumbent technologies by considering the resulting increase in revenue

and associated cost of migration. We propose to advance the science in the existing

network migration models by considering additional critical factors, including (1)

synergistic relationships across multiple technologies, (2) reduction in operational

expenditures as a reason to migrate, and (3) implications of local network effects on

migration decisions. To this end, we propose a novel agent-based migration model

considering these factors. Based on the model, we analyze the case study of network

migration to two emerging networking paradigms, i.e., IETF Path Computation Ele-

ment (PCE) and Software-Defined Networking (SDN). We validate our model using

extensive simulations. Our results demonstrate the synergistic effects of migration to

multiple complementary technologies, and show that a technology migration may be

eased by the joint migration to multiple technologies. In particular, we find that

migration to SDN can be eased by joint migration to PCE, and that the benefits derived

from SDN are best exploited in combination with PCE, than by itself.
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1 Introduction

Technical novelties in conjunction with economic factors decide the fate of an

emergent technology, protocol, standard or product in present-day communication

networks. Networks are constantly migrating to new technologies and services, not

only driven by the growth of subscribers base and application demand, but also new

technological advances. The migration is typically a gradual transition over time,

requiring the interoperability and integration of different network applications,

technologies and protocols. For instance, though the first IPv6 specification was

released in 1998 [1], the migration process is still ongoing with only 0.2 % of

current Internet traffic being IPv6-compliant [2]. On the other hand, IP backbones

today migrate to router interfaces of a higher capacity at a much faster pace. A

typical carrier IP network is re-planned and increased capacity every 12–18 months,

so that maximum utilization at peak traffic loads is never higher than approximately

30–40 % [3]. Thus, there is no doubt that understanding the strategy and the

investments for network migrations, as well as the expected revenue, network

operation expense and user growth are at the heart of every network migration

decision.

Technology adoption has been significantly investigated in the literature using

various migration models. However, a few increasingly important factors have not

received enough attention. First, the majority of previous studies model technology

migration in isolation, disregarding the effect of co-existing technologies in the

market. Such studies, thus, do not account for the synergistic relationships that may

exist across technologies, which as a result, may either facilitate or impede the

adoption of a new technology. For instance, an offering of VPN services with

guaranteed QoS may result in a higher revenue, when combined with automated

network management systems. Second, the majority of migration models are based

on the capital expenditures (CapEx) required to purchase the new technology.

However, technology migration often results in tangible reduction of operational

expenditures (OpEx) that is gained over time, which is typically neglected in the

current models. Finally, human decisions are subject to influence of the social and

behavioral factors involved in the process of migration. For example, although

bandwagon effect [4] (or network effects) plays a significant role in the adoption of

a technology, over and beyond its technological merits, it is rarely captured in

migration models.

In this paper, we propose a generic agent-based model to explore network

migration to multiple new complementary technologies—technologies whose

simultaneous migration is expected to provide greater rewards than the sum of

the rewards derived from their isolated migrations. In addition to CapEx, our model

also incorporates the difference in the OpEx incurred pre- and post-migration, which

significantly affects an agent’s decision to migrate. In the proposed model, an agent

also incorporates its estimates of its neighbor’s decision to migrate, in its own

migration decision. An agent estimates its effective migration coefficient (see Sect.

4.2) based on the migration decisions of all neighboring agents within its circle of

influence (see Sect. 4.2). In this estimation process, it considers the mutual effect of

a neighbor’s migration state as inversely proportional to the distance between them.
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We accomplish this by means of both deterministic and probabilistic heuristics. Our

results confirm that a technology migration may be eased by the joint migration of a

complementary technology that is more likely to be adopted [5].

To validate our proposed model, we analyze the case study of optimal path

computation with joint migration to two emerging networking paradigms, i.e., IETF

Path Computation Element (PCE [6]) and Software-Defined Networking (SDN [7]),

respectively. The assumed network is a typical multi-vendor and multi-adminis-

tration network, where separate network islands of routing systems need to

cooperate to provision an end-to-end connection, and are subject to migration

decision pertaining to PCE, SDN, or both. PCE enables optimal path computation

across network islands, an improved price/performance ratio, while, at the same

time simplifying path computation operations [8]. All these benefits added together

attract considerably more users (and in turn traffic) to the network. Exchanges

between PCE and network elements, though standardized, are limited to PCEP

messages, and thus a PCE cannot setup the computed paths itself. To overcome this

limitation, the network operator may decide to migrate to another technology, say,

SDN, which facilitates configuration of all the network elements, and thereby helps

in setting up the computed paths. Moreover, combining a stateful PCE with

OpenFlow provides an efficient solution for operating transport networks [9]. Thus,

there is an implicit correlation between the deployment of PCE and SDN in a

network, which make these two technologies an interesting and practically relevant

case study.1

We simulate various experiments studying the effect of a variety of factors

affecting the network migration profile, such as equi-cost routing, strategy

estimation approaches, early adopters, coupling coefficient, network topology, etc.

Here, by migration profile, we mean the progress of the network-wide migration

captured by monitoring the number of migrated nodes throughout an experiment.

Our results indicate that the migration to SDN can be promoted by several factors,

namely, (a) in combination with a widely-accepted complementary technology such

as PCE, (b) early adopters, (c) an agent’s ability to predict its neighbor’s decisions

to migrate to either of the technologies. Although our proposed generic model (in

Sect. 4.1) is broadly applicable to diverse scenarios, our results (in Sect. 5) have

been derived for the particular case study involving PCE and SDN.

Our paper is organized as follows. Section 2 discusses the related literatures and

puts our contributions into perspective, while Sect. 3 provides an overview of the

technologies that we study, namely PCE and SDN. Section 4 defines our generic

multi-technology migration model and its application to the case study of PCE/

SDN. Section 5 discusses the simulation framework to evaluate our network

migration model, and highlights its various aspects using the empirical results,

while, Sect. 6 presents some concluding remarks.

1 In Sect. 3.3, we discuss at length the inter-relationships between PCE and SDN. However, here we

would like the reader to note that SDN and PCE are not really fundamentally re-thinking the technologies

in the networking landscape. For instance, SDN is more like a natural evolution, incorporating

technologies that existed already for quite some time. Just like, before OpenFlow, there was SNMP.
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2 Related Work and Our Contribution

In this section, we summarize the previous research in the domain of our work, and

highlight our contributions in this paper.

2.1 Technology Adoption and Diffusion Modeling

Technology adoption and innovation diffusion have been extensively studied in the

literature. The term diffusion process was first coined to track the purchase patterns

of hybrid seed corn by farmers [10], and have since found widespread applications

in various context, including technology adoption [11, 12]. This idea was further

generalized to describe spread of new ideas and technologies in different cultures

[13]. Bass proposed his first diffusion model [14] describing how new products get

adopted in a population. This model has been revised over the years [15, 16] and

still remains one of the most widely used models till date.

2.2 System Dynamics and Agent-Based Models

Network migrations are typically studied using system-dynamics [17, 18] and agent-

based models [19, 20]. The former approach is based on aggregate system-wide

properties, while, in the latter approach, simple rules of mutual interaction between

agents govern the evolution of the system. In the system dynamics approach, the

migration problem is treated as a dynamic system in [17, 18], where the rate of

migration depends on the existing number of migrated agents in the system,

according to the traditional diffusion theory of innovation [14]. On the other hand,

in an agent-based approach [19, 20], the system consists of an ensemble of agents,

each trying to increase its own utility. For example, in [21], the migration to secure

BGP is studied as a series of decisions by each domain to adopt the technology,

based on the inter-domain routing and the deployment of secure BGP in other

domains. Both approaches demonstrate that the cumulative number of migrations

increase over time assuming a ‘S’-shaped (or sigmoidal) curve, implying that a

majority of migrations is triggered in a short time interval [22]. Despite comparable

results, an agent-based approach is preferred over system dynamics, when the

mutual interactions between agents in the system is non-uniform, for example, when

an agent does not interact uniformly with all other agents, but only with those in its

local neighborhood. Hence, we choose agent-based modeling over system dynamics

approach for our study in this paper.

2.3 Single Versus Multiple Migrations

The network migration problem has typically been studied for a single technology

or protocol (e.g., IPv6 [23, 24] or secure BGP [21, 25]), where it is assumed that an

emerging protocol/technology replaces an incumbent protocol/technology. For

example, in case of IPv6, the models assume that the domain operates either in IPv4

or migrates fully to IPv6, at which point it operates only with IPv6. Even when

multiple protocols are considered, such as S-BGP and soBGP [25], there is only a
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single prevalent protocol, and a decision is made by an agent to adapt to only one of

the competing protocols. Sohn et al. propose an economic evaluation model for a

particular aspect of migration, namely, joint development and standardization of

correlated technologies [26]. Thus, although majority of the prior migration studies

deal with migration of a single technology, the novelty of our model is in

considering multi-technology migrations.

2.4 CapEx and OpEx Considerations

An agent’s migration decision is often considered to be solely based on the CapEx

involved. OpEx was recently introduced in cost analysis of migration research to

precisely estimate the cost that the migration to a technology requires and compare

the alternatives [27]. However, the game-theoretic modeling of migration have not

yet considered it [17, 18, 21, 23–25]. In this paper, we consider both CapEx and

OpEx in an agent’s decision to migrate. In our work, the OpEx reflects an

assumption that the proposed new system will include a level of automation into the

network that alleviates human efforts, resulting in its overall cost reduction. Our

model is thus novel in considering both revenue increase and OpEx reduction,

resulting from migration, as the factors affecting an agent’s decision to migrate.

2.5 Our Approach and Contribution

This paper extends our previous work on agent-based modeling of network

migration to new technologies [28]. In this paper, we improve our CapEx, OpEx and

revenue functions used in the network migration model. In particular, we take into

consideration that revenue of a network island follows economies of scale, i.e.,

every subsequent unit of traffic incurs a lesser cost to the network operator than the

previous. In contrast to [28], we differentiate between the OpEx functions in the

unmigrated and migrated states. In migration to technologies such as PCE, the

derived benefit depends not only on the particular network island deploying it, but

also on the PCE deployments in each of the intermediate network islands between a

given source and destination. As a result, it is important to study the technology

migration of a network island with reference to that of its neighbors. Unlike [28],

where only an agent’s immediate neighbors were considered to affect the migration

choices of the agent in question, we now extend this effect to include even distant

neighbors within an agent’s circle of influence (defined in Sect. 4.2). The mutual

effect of an agent’s migration choice on another is weighted by the reciprocal of the

distance between them, restricted to a threshold distance (beyond which the effect is

considered negligible). This inverse proportionality with distance results from the

fact that for PCE-like technologies, the derived benefits are insignificant if an agent

adopts it in isolation, and increase if neighboring agents adopt it too. Hence, the

farther an unmigrated agent is from a migrated agent, the lesser is its incentive to

migrate. We also introduce the notion of coupling coefficient to effectively capture

the degree to which two complementary technologies couple with each other. We

propose two novel heuristics for an agent to estimate the strategies of its

neighboring agents in the immediate future, which, in turn, plays a significant role in
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the migration decision of the agent in question. Another unique contribution is in

definition of an agent’s payoff from a transition, which is based on its CapEx, OpEx

and revenue functions. An agent migrates only if such a transition results in a

positive payoff for itself.

To validate our model, we consider a novel case study of multi-vendor enterprise

network, considering the revenue of a network to vary with the volume of traffic it

transits for its customers. To this end, we consider simultaneous and correlated

deployment of an automated network management system for path computation

(PCE) as well as a programmable network configuration with SDN controllers, such

as based on OpenFlow [29]. We show that the proposed model is applicable for

scenarios, where competing network solutions (such as multi-vendor environments)

collaborate and compete at the same time for path setup, while aiming at maximum

utilization in course of its operation. As is well-known, inter-operability of multi-

vendor network islands remains a challenge, and a migration to standardized and

programmable automated systems is an ongoing open problem in carrier networks

[30].

3 Case Study of PCE and SDN: Background and Reference Architecture

In this section, we present an overview of the technologies, namely PCE and SDN,

which we later study using our network migration model. We compare these two

technologies on grounds of path computation and provisioning of a connection

request across multiple network islands in a multi-vendor enterprise network based

on emerging carrier-Ethernet (connection-oriented) networks.

3.1 Technology Overview

PCE is a network-wide centralized server that receives path computation requests

from Path Computation Clients (PCC), and computes optimal constrained end-to-

end paths within a network island. The PCE can reduce the computation overhead

and optimize resource utilization by computing optimal paths. A major advantage of

the PCE architecture is its ability to compute optimal paths across multiple network

islands using the Backward Recursive Path Computation (BRPC) mechanism [31].

In the BRPC mechanism, PCEs in different islands along a pre-defined chain

progressively compute a Virtual Shortest Path Tree (VSPT) from the destination to

the source, in order to compute the optimal end-to-end path. In absence of PCE,

network islands use Interior Gateway Protocols (like Open-Shortest-Path-First and

Routing-Information-Protocol) and Exterior Gateway Protocols (like Border

Gateway Protocol) to compute paths by means of predefined routing table entries.

Software-defined networking is an emerging networking architecture that

facilitates programmability of the network control plane and its separation from

the data plane [7]. It provides a centralized control interface to all the network

elements that support SDN protocols, such as Open Flow [29], which helps in quick

experimentation, reconfiguration, optimization, and monitoring of switching/routing

algorithms. SDN reduces the network OpEx by simplifying operations, optimizing
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resource usage through centralized data/algorithms, and simplifying network

software upgrades. SDN also significantly cuts down a network operator’s CapEx,

since a commercial-off-the-shelf (COTS) server with a high-end CPU is much

cheaper than a high-end router [8]. Further, SDN offers the possibilities of dynamic

network topologies and network virtualization, which makes it currently a highly

popular paradigm [32].

3.2 Reference Architecture

Figure 1 illustrates an automated connection setup in a typical multi-vendor, multi-

technology network island setting. Two different network islands are shown. The

network island A consists of six different IP routers (C1–C6) from vendor C (e.g.

Cisco), whereas, the network island B consists of six IP routers (J1–J6) from Vendor

J (e.g. Juniper).

The choice of technology for network island A is PCE-only. A Path Computation

Element (PCE-A) is used within the network to compute constrained-based paths

across intra- and inter-network island scenarios. The topology discovery and

distribution is handled via separate protocols, such as OSPF, and the RSVP-TE

protocol can be used for path setup. All protocols need to be installed and

configured separately on every router, with only limited possibilities for function-

ality extensions and optimizations. Network island A has the possibility to migrate

to SDN in future. The migration to SDN would benefit network island A by

introducing a central intelligence that is capable of automating processes, thus

saving OpEx.

The choice of technology for network island B is PCE ? SDN. In this network, a

central intelligence (SDN Controller B) is directly accessing every router in the

network, via a SDN router interface for flexible configuration of router equipment.

The SDN Controller B can choose from different network functionalities, such as

topology discovery, topology distribution, path computation and path setup. All

functionalities are software-defined modules, that are programmed on top of the

SDN Controller for on-the-fly functionality extensions and optimizations. Network

Fig. 1 Example of connection request setup in a multi-vendor network using both PCE and SDN
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Island B already has the maximal technology set of our case-study. All operations

can be fully automated, thus no manual intervention is necessary, resulting in

significant OpEx savings.

Both network island are connected via two inter-network island connections. A

path computation request from C1 to J6 is handled via the PCEP protocol supported

by both network islands. Router C1 sends a PCEP Request message to PCE-A (1).

PCE-A tries to compute an end-to-end path to J6, but does not have enough

information to calculate this path. PCE-A knows the existence of PCE-B (either

through pre-configuration or discovery), and issues a Backward-Recursive PCE-

Based Computation. The PCE-B computes the shortest path from J2 to J6 by

accessing the SDN Controller B, that is retrieving all necessary information from

the Topology Discovery and Distribution for optimal path computation within

network island B. The optimal path from the entry-router (J2) to the destination (J6)

is returned to PCE-A (4). PCE-A now has the optimal path from J2 to J6 and

computes the best path from C1 to J2 and returns the whole path to C1 (5). The

resulting path (C1–C2–C4–C6–J2–J3–J5–J6) is used to reach the destination.

A couple of comments are worth noting. First, although each PCE sees only its

own network topology, BRPC enables an optimized (i.e., best QoS) end-to-end path.

Second, despite the fact that each SDN controller can implement its own path

computation algorithm, the assumption here is that they often tend to be highly

proprietary in nature. Thus, lack of standards makes it hard for SDNs to interoperate

in a multi-vendor setting—that is where the IETF-standardized approach with PCE

comes in as an effective solution for interoperability.

3.3 Interplay Involved in Joint Migration to PCE and SDN

As can be seen, the interplay involved in joint migration to PCE and SDN can lead

to interesting, non-trivial network behavior, which we now discuss in further detail.

In our analysis, we assume a typical control plane with management network

control environment. Although the PCE’s design addresses mainly path computation,

it was previously used in networking settings in conjunction with SNMP for path setup

[33]. SDNbringsmore programmability in path setup, but this is not its only difference

to PCE (later on wemention others, such as path provisioning, topology discovery and

topology distribution). A network operator has an advantage inmigrating to SDN over

PCE, as a PCE can only compute paths, while a SDN controller can as well provision

the computed paths in a highly programmable fashion. However, as previously

mentioned, in a typical multi-vendor setting, a PCE has advantages over SDN. This is

because PCE (being standardized) can communicatewith neighboring PCEs,whereas,

SDNs (being non-standardized) cannot. Thus, larger the diversity of network

equipment in the same network, greater is the incentive for the network operator to

migrate to PCE than SDN, on account of interoperability considerations.

Within a network island, a SDN controller is likely to be able to provision a path,

even when a PCE may not. A typical SDN controller, based on OpenFlow, is in fact

expected to access and configure network elements at the operator’s liking,

including the handling of lower layers of the network, such as optical circuits. Not

only can a SDN controller find paths that a PCE is requesting, but it can potentially
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even reconfigure the whole network such that a totally new path is configured to

provision a connection request. Thus, SDN can potentially create paths with a better

QoS unlike PCE, which only computes paths based on requests. Hence, the end-user

benefits more if its network provider migrates to SDN, than PCE. On the other hand,

as the PCE protocol is reactive in nature, unlike SDN (which is proactive), end-users

stand to gain more from PCE than from SDN.

Whereas a SDN controller is triggered by the NMS/OSS in the network, PCE can

be triggered by the end-user. Both SDN and PCE benefit the network operator

through OpEx reduction; whereas, PCE, in addition, benefits the end-user by

providing improved QoS for end-to-end connections involving multiple vendors.

Although a network does not attract any additional traffic by migrating to PCE/

SDN, it benefits significantly by reducing its OpEx after migration.

As SDN offers more functionalities than PCE (such as path provisioning,

topology discovery and topology distribution), both the CapEx required to migrate

to SDN and the resulting OpEx is more than that required to migrate to PCE. In

addition, unlike PCE, the non-standardized nature of SDN adds to its OpEx. Further,

the CapEx involved in simultaneous migration of a network island to PCE and SDN

is less than the sum of the CapEx involved in separate migrations to PCE and SDN.

This is because, in case of simultaneous migrations, the PCE can be incorporated

within the SDN controller, thus providing an integrated platform at a reduced cost.

In summary, network islands that migrate to PCE can compute optimal paths

(i.e., with QoS), which can be provisioned using automated network management

frameworks, such as SDN. Thus, it is clear that SDN controllers, with its reach

limited to a network island, ideally complement the PCEs that can communicate

across networks, thereby, enabling optimal end-to-end, multi-vendor, multi-domain

path computation and provisioning under QoS constraints.

4 Multi-Technology Network Migration Model

In this Section, we present our generic agent-based model for studying network

migration to complementary technologies. As a case study, we apply our model to

study the dynamics of joint migration to multi-vendor path computation and

provisioning, namely PCE and SDN, respectively.

4.1 Generic Model

Our model captures the collaborative and competitive business relationships between

the agents and also the inter-dependencies involved in their decision-making process.

The time is discretized, and thus the model progresses in time-steps. The agents are

considered to bemyopic (in time) in their decision-making and are assumed to act under

complete information. The former assumption entails each agent optimizing their

strategy choices locally (in time), while the latter means that each agent is aware of the

complete network topology as well as the past strategy choices of all other agents.

Notations: The agents in our model are denoted by N1;N2; . . .;Ni; . . .. An agent’s

strategy set is represented by a compatible combination of the available strategies.
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We denote this universal set of strategies available for the agents to choose from, by

two sets of substitutive strategies, S ¼ Su; Svf g, where u and v are the complemen-

tary technologies under consideration, which implies that the payoff that an agent

derives by adopting both of them simultaneously is higher than the sum of its

payoffs derived by adopting each of them separately (while, no such relationship is

assumed to exist between su;0 and sv;0). Here, Su ¼ su;0; su;1
� �

represents the

strategy of non-adoption and adoption of technology u, respectively. Similarly,

Sv ¼ sv;0; sv;1
� �

represents the strategy of non-adoption and adoption of technology

v, respectively. Further, su;0 (or sv;0) and su;1 (or sv;1) are substitutive strategies, as an

agent can adopt only one of them at any given time. Thus, an agent’s strategy set for

any given time-step is denoted by a ¼ su;k1 ; sv;k2
� �

, where, k1; k2 2 f0; 1g. The
volume of sales of agent Ni given its strategy set a is denoted by Ti

a.

An agent’s revenue and OpEx depends on its amount of sales, while the cost of

changing its strategy set depends on the required CapEx. Considering this, we define

the following notations.

Ciða! a0Þ , CapEx ofNito from a to a0

RiðaÞ , Revenue of Ni with strategy set a

OiðaÞ , OpExof Niwith strategy set a

where, a denotes the current strategy set of agent Ni and a0 denotes the strategy set

to which Ni migrates in the subsequent time-step. We define the payoff of an agent

on migrating to a different strategy set by the return on investment it derives from

such a decision. The payoff derived by an agent on migrating from a to a0 is thus
given by the CapEx involved in the migration and the corresponding change in

revenue and OpEx as:

Piða! a0Þ ¼ DðRevenueÞ � CapExþ DðOpExÞ½ �
CapEx

¼ Riða0Þ � RiðaÞ½ � � Ciða! a0Þ � Oiða0Þ � OiðaÞ½ �
Ciða! a0Þ

ð1Þ

Each agent thus optimizes its strategy choices at every time-step based on its payoff

maximization in the immediate future. Note that each of the CapEx, OpEx and

revenue functions, in turn depend on the amount of sales of agent Ni, namely, Ti
a and

Ti
a0 . Ti

a, viz. the current amount of sales of agent Ni, can be deterministically

computed by Ni from its system measurements, whereas, Ti
a0 , viz. the expected

amount of sales of Ni on transitioning from strategy set a to a0, is unknown. We next

present two different approaches to estimate this expected amount of sales, Ti
a0 .

4.2 Estimation of Ti
a0

The amount of sales of an agent primarily depends on the agent’s technology

choices, which in turn is significantly affected by the strategy choices of the

neighboring agents within its ‘circle of influence’ [34, 35]. We define this novel
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concept referred to as a circle of influence of an agent as its neighborhood

comprising of all agents, whose technology choices significantly affects the

migration decision of the agent under consideration. Thus, the circle of influence of,

say, agent Ni comprises of all agents whose distance from agent Ni is bounded by a

threshold distance (by the shortest path), say di. We call di as the ‘relevant radius’
2

of Ni’s circle of influence. We also note that the mutual effect of the strategy choices

of two agents (within each others circle of influence) is inversely proportional to the

distance between them. To capture this aspect, we define the effective migration

coefficient of agent Ni, as the weighted average of the strategy sets of all agents

within Ni’s circle of influence; the weights being the reciprocal of the distance of the

corresponding agent from Ni. The influence of the strategy choices of an agent,

which does not fall within Ni’s circle of influence, on Ni’s migration decision is,

hence, considered negligible. Thus, for an agent to estimate its expected amount of

sales in the immediate future, it needs to estimate of the strategy choices of all

agents within its circle of influence, in the immediate future. This computation of

effective migration coefficient for agent Ni is further illustrated in Algorithm 1.

Figure 2 shows a 12-node network to illustrate the above mentioned concepts. In

this topology, the relevant radius of agent N1, i.e. d1, is considered to be 2 hops, and

N1’s circle of influence is marked by a dotted line. The adjoining tables in Fig. 2 list

the current migration state of all agents in the network. Given this, the effective

migration coefficient of N1 is thus given by,

1

1

z}|{
N2

þ 0

2

z}|{
N3

þ 0

1

z}|{
N4

þ 1

2

z}|{
N5

þ 0

1

z}|{
N6

þ 0

2

z}|{
N7

þ 1

2

z}|{
N10

1

1
þ 1

2
þ 1

1
þ 1

2
þ 1

1
þ 1

2
þ 1

2

¼ 2

5
¼ 0:4

2 Although in our simulations (in Sect. 5), we consider the relevant radius to be five hops, it would be

interesting to investigate the effect of this parameter on the migration profile for real-world scenarios.

This effect can probably be game-theoretically modeled, however, this is in particular is not our focus

here, and hence beyond the scope of this paper.
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We next present two heuristics for an agent to estimate its neighbor’s strategy in the

subsequent time-slot, based on probabilistic and deterministic methods. The

underlying rationale behind both these heuristics is that an agent’s strategy choice is

very likely to vary with that of the majority of the agents in its circle of influence

[36, 37].

1. Deterministic Strategy Estimation: In the deterministic approach, an agent

considers the strategy choices of its neighboring agents to be the same as that of

the majority of the agents in their circle of influence. Thus, while agent Ni is

estimating its future amount of sales, if Nj is within Ni’s circle of influence, and

if more than 50 % of the agents in Nj’s circle of influence employ strategy set a

in the current time-step, then Ni expects Nj to switch to strategy set a in the next

time-step, under this approach.

2. Probabilistic Strategy Estimation: In this estimation approach, an agent

considers the probability of its neighbor’s strategy choice in the subsequent

time-slot to be a, as x, if x denotes the fraction of agents with strategy set a, in

this neighbor’s circle of influence, in the current time-slot. Thus, in the process

of agent Ni estimating its future amount of sales, if Nj is within Ni’s circle of

influence, and if, say, 30 % of the agents in Nj’s circle of influence employ

strategy set a in the current time-step, then Ni assumes the probability of Nj

switching its strategy set to a in the subsequent time-step as 0.3, under this

approach.

Note that it is due to our assumption of complete information that these heuristics

can be realized. Figure 3 plots the probability of migration of an agent using

deterministic and probabilistic estimation approaches, as a function of its effective

migration coefficient.

An agent thus estimates the strategy sets of all agents within its circle of influence

in the immediate future, using one of the two strategy estimation approaches,

mentioned above. It thus disregards the future strategy choices of agents outside its

circle of influence, and assumes them to maintain the same strategy set, in the

subsequent time-step. Thereafter, the agent takes note of its own set of possible

transitions from its current state, i.e., a! fa1; a2; . . .g (see Fig. 4). It then computes

the payoffs resulting from each of its possible transitions, in sync with the strategy

set estimations of the agents within its circle of influence, i.e., fPiða! ajÞg; 8j, and
accordingly chooses its future strategy set as the one that maximizes its resulting

payoff, i.e., a0 ¼ argmax aj
fPiða! ajÞg, given its current strategy set a. In this

way, an agent optimizes its strategy set at each time-step.

4.3 Agent-Based Model Applied

In this subsection, we customize our generic network migration to the particular

scenario of migration to PCE and SDN.

Table 1 summarizes the mappings between the generic network migration model

and PCE/SDN scenario. In the context of PCE/SDN, agents translate to network

islands, strategies correspond to technology choices, amount of sales relate to the
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amount of traffic that a network transits for its customers, technology u maps to

PCE, while, technology v maps to SDN.

Figure 4 shows all possible strategy set transitions for a network island, under the

assumption that an island that has once migrated to sPCE;1 or sSDN;1 does not revert

back to sPCE;0 or sSDN;0, respectively, in the future. This assumption is justified

because the functionalities provided by PCE and SDN are beneficial to a network,

irrespective of external factors, such as the technology choices of other network

islands, etc. For instance, a migrated node definitely saves its OpEx, even if the

resulting traffic does not increase post-migration (see Fig. 8).

A network island incurs CapEx if it migrates to PCE or SDN. Secondly, the

CapEx of a network island is expected to follow economies of scale, i.e., cost of

provisioning per unit of traffic decreases with increasing scale. Thus, the second

derivative of the CapEx function with respect to traffic should be less than zero.

Although, there are many functions that satisfy this condition, both intuitively and
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Table 1 Mapping generic

migration model to PCE/SDN
Agent  ! Network Island

Strategy  ! Technology Choice

Amount of Sales  ! Amount of Traffic

Technology u  ! PCE

Technology v  ! SDN

932 J Netw Syst Manage (2015) 23:920–949

123



arbitrarily, we assume the CapEx to vary with the square root of the network traffic.

In addition, on account of the complementary relationship between PCE and SDN,

the CapEx incurred by a network island in migrating to both the technologies

simultaneously is less than the sum of the CapEx incurred by migrating to each of

them separately. This is because, although PCE and SDN are separate components,

if a network island migrates to both of them simultaneously, it can integrate both the

technologies into a single, integrated component, leading to a reduced CapEx, as

compared to a PCE component, and a separate SDN component. Considering both

these aspects, the CapEx of network island Ni from the generic model in Eq. (1) can

be expressed, in this case, as

Ciða! a0Þ ¼ ciða; a0Þ
ffiffiffiffiffiffi
Ti
a0

q
ð2Þ

where, ciða; a0Þ 2 ½0; 1� is a coefficient given by,

ciða; a0Þ ¼

cPCE fsPCE;0; sSDN;kg ! fsPCE;1; sSDN;kg
cSDN fsPCE;k; sSDN;0g ! fsPCE;k; sSDN;1g

cPCE þ cSDN

g

� �
fsPCE;0; sSDN;0g ! fsPCE;1; sSDN;1g

8
>>><

>>>:

ð3Þ

where, k 2 f0; 1g; cPCE; cSDN 2 ½0; 1� and g 2 ½1; 2� denotes the coupling coeffi-

cient—g ¼ 1 implies fully independent technologies, such that, migrating to both

these technologies simultaneously is equivalent to migrating to each of them sep-

arately, whereas, g ¼ 2 implies fully substitutive technologies, such that, migrating

to both of them simultaneously is equivalent to migrating to any one of them. In the

context of PCE and SDN, we consider g ¼ 1:5 in this paper.

The revenue of a network island primarily depends on the amount of traffic

flowing through it, and does not vary with the set of technologies deployed by the

network operator. This is because the revenue comes from the customer, who is

oblivious to the technology adopted by its network operator. The customer,

generally, pays to the network operator, solely based on the amount of traffic that

the operator transits for it. In addition, revenue of a network island is expected to

Fig. 4 Strategy set transitions in a network
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follow economies of scale. We, thus, consider the revenue of a network island to

vary as the square of the network traffic. And, given the qualitative nature of our

model, without loss of generality, we set,

RiðaÞ ¼ ðTi
aÞ

2 ð4Þ

Similar to CapEx, the OpEx of PCE and SDN in a network island is expected to

follow economies of scale, i.e., every subsequent unit of traffic incurs a lesser

CapEx than the previous. Hence, we consider the OpEx of a network island to vary

with the square root of the network traffic. Thus,

OiðaÞ ¼ aiðaÞ
ffiffiffiffiffi
Ti
a

q
ð5Þ

where, aiðaÞ is a coefficient given by,

aiðaÞ ¼

aPCE þ aSDN a ¼ fsPCE;0; sSDN;0g
aPCE þ aSDN a ¼ fsPCE;0; sSDN;1g
aPCE þ aSDN a ¼ fsPCE;1; sSDN;0g
aPCE þ aSDN

g

� �
a ¼ fsPCE;1; sSDN;1g

8
>>>>><

>>>>>:

ð6Þ

where, the overline operator ðPCE and SDNÞ denotes the alternatives available (say,
manual operations) to the corresponding technology, (i.e., PCE and SDN, respec-

tively) and aPCE; aSDN; aPCE; aSDN 2 ½0; 1�. Thus, aPCE is the coefficient of the PCE

component of OpEx in the presence of PCE, whereas, aPCE denotes the corre-

sponding coefficient in the absence of PCE. Similarly, for aSDN and aSDN. The
presence of g in Eq. (6) captures the complementary relationship between PCE and

SDN, i.e., the OpEx incurred by a network island on migrating to both the tech-

nologies simultaneously is less than the sum of the OpEx incurred by migrating to

each of them separately.

We also note that both PCE and SDN are significantly more efficient than their

alternative technologies (say, manual operations). Thus, a domain migrating to

either PCE or SDN is expected to result in a non-negative change in OpEx, or in

other words, in OpEx savings. To put it mathematically, the corresponding OpEx

coefficients of PCE and SDN, pre- and post-migration must satisfy the following

inequalities.

aPCE\aPCE
aSDN\aSDN

ð7Þ

In all migration scenarios in general, and in migration to PCE or SDN in particular,

the major investment is often in the CapEx involved, whereas, the post-migration

OpEx decreases, compared to pre-migration OpEx costs. Moreover, the CapEx of

migration generally supersedes the post-migration OpEx costs by a significant

margin. This, in conjunction with Eqs. (3) and (6), leads us to state,

934 J Netw Syst Manage (2015) 23:920–949

123



cPCE [max aPCE þ aSDN;
aPCE þ aSDN

g

� �
ð8Þ

cSDN [max aPCE þ aSDN;
aPCE þ aSDN

g

� �
ð9Þ

cPCE þ cSDN

g
[

aPCE þ aSDN
g

ð10Þ

Equation (8) results from the fact that the CapEx of migrating from fsPCE;0; sSDN;kg
to fsPCE;1; sSDN;kg is greater than the post-migratin OpEx costs in both cases

(k ¼ 0; 1). However, since the CapEx and OpEx functions are similar in nature, this

relationship also holds for the corresponding coefficients. Thus, the corresponding

CapEx coefficient (cPCE) must be greater than both the OpEx coefficients in the two

scenarios (viz., aPCE þ aSDN and
aPCE þ aSDN

g
). Equations (9) and (10) result from

similar arguments for migrations from fsPCE;k; sSDN;0g to fsPCE;k; sSDN;1g, and from

fsPCE;0; sSDN;0g to fsPCE;1; sSDN;1g, respectively.
Eliminating aSDN between Eqs. (7) and (8), we have,

cPCE [ aPCE þ aSDN ð11Þ

Similarly, eliminating aPCE between Eqs. (7) and (9), we have,

cSDN [ aPCE þ aSDN ð12Þ

With the above definitions of CapEx (Eq. (2)), OpEx (Eq. (5)) and revenue (Eq. (4)),

as applicable for the joint migration to PCE and SDN, and subject to the associated

contraints amongst the various coefficients (Eqs. (7)–(12)), the payoff function in

Eq. (1), reduces to,

Piða! a0Þ ¼ ½ðT
i
a0 Þ

2 � ðTi
aÞ

2� � ½ciða; a0Þ þ aiða0Þ�
ffiffiffiffiffiffi
Ti
a0

p
þ aiðaÞ

ffiffiffiffiffi
Ti
a

p

ciða; a0Þ
ffiffiffiffiffiffi
Ti
a0

p ð13Þ

We now summarize the overall migration decision-making process of a network

island. As our model advances in discrete time-steps, at every time-step, each

network island chooses its strategy set for the subsequent time-step by computing its

payoff (Eq. (13)) resulting from each of its feasible strategy set transitions (see Fig.

4). As evident from Eq. (13), this payoff computation for a network island depends

on the traffic it transits in the subsequent time-step i.e. Ti
a0 , which is unknown as it

depends on the new network-wide routing configuration resulting from the migra-

tion decisions of each network island. Each network island, hence, estimates this

traffic as detailed in Sect. 4.2, and thus determines their strategy set for the sub-

sequent time-step. It is to be noted that although the migration decisions of a

network island effectively depend on the migration coefficients, it is the payoff
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function of a network island that provides a uniform metric to quantify the effect of

the PCE/SDN migration coefficients of all neighboring nodes.

5 Numerical Results

In this section, we present our simulation framework and the empirical results to

evaluate various aspects of our proposed network migration model.

5.1 Simulation Model

The inter-AS (autonomous system) network topology of the Internet is not a random

mesh, but has a well-defined hierarchical tree-like structure, with Tier-1 ISPs at the

top, and smaller and smaller ISPs as we go down. Also, the links are not randomly

distributed between the nodes, but are more concentrated at the Tier-1 ISPs and

decrease with lower and lower ISPs. These realistic characteristics are effectively

(and very simply) modeled by the scale-free network and, as a result, we model our

inter-AS topology using a scale-free network.

For our simulation, we consider a scale-free network of 100 interconnected

network islands, comprising of 39 ‘‘transit’’ islands and 61 ‘‘stub’’ islands. Akin to

the terminology used in global Internetworks, a network island that is not a provider

for any other island is called a stub island, while all other islands are called as

transit islands [38]. Stub islands represent the end-users, and hence, the choice of

migration rests only with the transit islands. Our topology was generated using

Barabási and Albert’s topology generation algorithm [39], where the seed network

comprised of 16 fully inter-connected network islands, referred to as seed islands

due to their higher resulting connectivity. In our topology, a node represents a

network island and a link represents an inter-island connection. To comply with

policy-aware routing, each edge is marked as either Customer-to-Provider (C2P) or

Peer-to-Peer (P2P). We employ No-Valley-Prefer-Customer (NVPC) routing to

provision connection requests between two network islands, which comprises of the

following two rules [40]:

• Paths learned from providers or peers are never advertised to other providers or

peers.

• Paths learned from customers are preferred to the paths learned from peers and

providers, and paths learned from peers are preferred to the paths learned from

providers, regardless of path length.

Our simulation concerns with migration to technologies such as PCE, which are

beneficial to a connection request, only when all domains on its path from source to

destination, have migrated to the technology in question. This reflects in our routing

algorithm, such as, while provisioning a connection request, amongst various equi-

cost paths, the source domain prefers a path in which all domains have migrated to

PCE. And if multiple equi-cost, shortest paths exist, the traffic is uniformly

distributed across all such paths, or randomly over one of these paths, depending on
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the user preference. We model the incoming connection requests for each source-

destination stub domain pairs as Poisson arrivals. The connection requests once

provisioned are assumed to stay the same till the end of simulation. Link capacity is

assumed to be unlimited, since for a given increment in incoming traffic (which

translates to revenue for the host network island), the host network operator can

easily increment the link bandwidth, with minimal effort. This is especially true

since our study is not based on infinitesimal timescales, but of the order of weeks or

months, wherein a domain has the flexibility to increase its link capacity, subject to

incoming requests. It is to be noted here that our choice of unlimited link capacities

does not contradict our need for multi-path routing. Had the routing depended only

on the link capacities, multi-path routing would have been redundant. However, in

our model, the routing depends on the link capacities as well as the migration states

of the intermediate nodes. Furthermore, to exclusively study the inter-relationships

between the migration decisions and the network-wide routing, we set the link

capacities to be unlimited. All stub-to-stub paths had traffic since the beginning of

the simulation.

As a new connection request arrives in a network island, the network provisions

the request and reconsiders its migration choices based on its payoff function, as

defined in Sect. 4. This, in turn, leads to its neighbors reconsidering their respective

migration choices, which thus cascades throughout the network. Finally, on

registering a change in the migration decision of any domain in the network, each

domain revises the routes of its provisioned connections. All the presented results

plot average values across 50 traffic profiles (each Poisson distributed), with each

traffic profile replicated 5 times to eliminate any statistical variations. Paths were

precomputed and stored, instead of on-the-fly path computations, as it significantly

improved the simulation run time. The two primary input preferences to our

simulation are (1) equi-cost routing—when multiple equi-cost paths exist to

provision a given connection request, we consider both possibilities of assigning it

to a single random node amongst them (single-path routing), as well as, that of

uniformly distributing the traffic over all such paths (multipath routing), and, (2)

strategy estimation approach—the approach used by domain to estimate the future

technology deployment in neighboring domains in the process of optimizing its own

migration decision; we consider two approaches for the same, namely, deterministic

and probabilistic approaches, as defined in Sect. 4.2.

We next present our simulation results from various experiments studying a

variety of factors affecting the network migration profile. By ‘migration profile’, we

mean the progress of the network-wide migration captured by monitoring the

number of migrated nodes throughout the simulation. Unless otherwise stated, the

parameter values assumed in our simulation are g ¼ 1:5, cPCE ¼ 0:3, cSDN ¼ 0:4,
aPCE ¼ 0:1, aSDN ¼ 0:2, aPCE ¼ 0:5 and aSDN ¼ 0:8 (though other parameter

combinations were also found to result in similar plots). The relevant radius for

each domain (as defined in Sect. 4.2) was set to 5 hops. Throughout our case studies,

we consistently observe that the number of migrants increase during the simulation,

perhaps rapidly in the beginning, and saturate gradually. Further, it is important to

note that although the nature of the plots looks similar across the case studies, what
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is important to note is the difference in the migration profiles subject to variation in

parameters within a case study. The choices made by network islands in our

proposed model play a vital role on the resultant migration profile, be it the choice

of strategy estimation approach (deterministic/probabilistic), routing preferences

(single/multi-path) or the values of the various coefficients. Equations (7)–(12)

capture real-life constraints on these coefficients to reflect the real-world conditions.

Similarly, incorporation of more and more such relationships would bring the model

closer to real-world conditions. The effects of these choices (deterministic/

probabilistic estimation strategy, single/multi-path routing preferences) on the

migration profile are further demonstrated in the following sub-sections.

5.2 Single Versus Double Migration

In this experiment, we study the migration profiles of PCE and SDN, under varied

circumstances.

Figure 5 plots the migration profiles of nodes in the network to PCE, SDN and

PCE?SDN, under probabilistic strategy estimation approach and multi-path routing

preference. Given that we assume migration to SDN is more expensive than that to

PCE (i.e., aPCE\aSDN), Fig. 5 shows that a greater number of nodes migrate to PCE,

than SDN, and also that almost every node that migrates to SDN also migrates to

PCE. We observe from Fig. 5 that almost every domain that migrates to SDN, also

migrates to PCE. This demonstrates the fact the benefits derived from SDN are best

exploited in combination with PCE, than by itself.

Figure 6 plots the migration profiles to PCE and SDN, in three different

scenarios, under deterministic strategy estimation approach and multi-path routing
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preference. PCE-only plots the PCE migration profile in the network, when only

migration to PCE is studied in isolation, i.e., SDN is not considered at all. Similarly,

SDN-only plots the SDN migration profile in the network, when only migration to

SDN is considered in isolation, i.e., PCE is not studied at all. Finally, PCE?SDN

plots the profile of nodes migrating to both PCE and SDN, when PCE and SDN

migrations are considered simultaneously. This plot shows that migration to SDN

which is generally small by itself, can be further promoted by joint migration to

PCE, which is more widely accepted, given the complementary relationship

between PCE and SDN. Also, a small increase can be observed in the PCE

migration from PCE-only to PCE?SDN, thus SDN also has a small impact in

improving the PCE deployment.

5.3 Early Adopters

We next study the effect of early adopters on the PCE and SDN migration profiles in

the network, based on the type and number of early adopters. In this experiment, an

early adopter is a network domain that has migrated to PCE since the beginning of

simulation. Early adopters act as the seed for migration in the network, thereby

catalyzing the migration process.

Figure 7 (top) plots the effect of type of PCE early adopters on the PCE migration

profile in the network, under deterministic strategy estimation approach and multi-

path routing preference. We choose the early adopters based on their degree of

connectivity in the network. Figure 7 (top) contrasts the PCE migration profile in the

network given no early adopters, 3 early adopters (amongst the minimum degree

nodes in the network), and 3 early adopters (amongst the maximum degree nodes in

the network). As can be intuitively expected, these plots suggest that nodes with
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high degrees, on migrating, have a greater effect in promoting the network-wide

migration profile, than nodes with smaller degrees. This can be attributed to the fact

that a large number of paths pass through the high-degree nodes in the network.

Thus, the migration of a single high-degree node would affect the migration choices

of a large number of transit nodes, due to its high degree of connectivity.

Figure 7 (bottom) plots the effect of number of PCE early adopters on the PCE

migration profile in the network, under deterministic strategy estimation approach

and multi-path routing preference. It contrasts the PCE migration profile in the

network given 0, 3 and 5 early adopters (amongst the minimum degree nodes in the
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network). As can be intuitively expected, the plot shows that a higher the number of

early adotpers result in a better migration profile.

5.4 Cause of Migration

In this experiment, we study the motivations for transit domains to migrate to either

PCE or SDN or both. As discussed earlier, a transit node migrates either to reduce

its OpEx, or to increase the traffic flowing through it (and, in turn its revenue), or

both. For every domain that choose to migrate during the simulation, we monitored

them, and categorized their cause of its migration, amongst (1) exclusive reduction

in OpEx, (2) exclusive increase in traffic (in turn, resulting in an increase in its

revenue), and (3) both (1) and (2). Figure 8 plots this data (in percentages) for

various combinations of routing choice (single- or multi-path) and strategy

estimation choice (deterministic or probabilistic). This plot contradicts the common

misnomer that a domain migrates primarily because of a resulting increase in traffic

(or revenue). The plot illustrates an important aspect of migration, which is, a transit

node may migrate even if its migration decision does not result in an increase in

traffic (or revenue), but only based on its OpEx reduction. We observe that a

significant fraction of migrations result exclusively due to decrease in OpEx.

Moreover, OpEx reduction proves to be more important in case of single path

routing, than multi-path routing. Figure 8 also demonstrates that revenue increase

almost always results in combination with OpEx reduction as a cause of migration,

and rarely in isolation.

5.5 Effect of Coupling Coefficient

In this experiment, we study the effect of coupling coefficient on the migration

profile. Figure 9 plots the effect of coupling coefficient on PCE (top) and SDN

(bottom) migration profiles in a 150-node topology with 92 stubs and 58 transits,

under deterministic strategy estimation approach and multi-path routing preference.

We observe that the resulting migration profile is enhanced, when we account for
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the complementary relationship between PCE and SDN (coupling coefficient = 1.5)

than otherwise (coupling coefficient = 1). This is because, when PCE and SDN

operate simultaneously in a domain, the resulting benefits are larger than the sum of

benefits derived from PCE and SDN individually. Thus, domains deploying either

PCE or SDN benefit from this aspect, and also choose to adopt the complementary

technology i.e., SDN or PCE, respectively, consequently resulting in a higher

number of migrants.
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5.6 Effect of Equi-Cost Routing Preferences

In this experiment, we study the effect of routing choices, when multiple equi-cost

shortest paths exist in the network to provision a user request. Figure 10 plots the

effect of equi-cost routing preferences on the PCE (top) and SDN (bottom)

migration profile, under deterministic strategy estimation approach and multi-path

routing preference. In presence of multiple equi-cost shortest paths, we consider the

routing choices of randomly choosing any one of them (single-path routing), or
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distributing traffic uniformly across all of them (multi-path routing). As can be

observed from Fig. 10, the former choice results in faster migration than the latter.

This may be attributed to the fact that distributing traffic over multiple paths reduces

the amount of traffic flowing through each such path, thereby lessening the incentive

derived by the intermediate transit nodes from migration.

5.7 Effect of Network Topology

In this section, we discuss the effect of size of the network topology on the

migration profile of a network. In addition to the 100-node topology, we consider

50- and 150-node topologies, with similar characteristics, in terms of the fraction

of stub/transit nodes in the network, seed network size, degree of stub nodes, etc.

Figure 11 plots the percentage of nodes migrating to PCE (top) and SDN (bottom)

migration profiles, under deterministic strategy estimation approach and multi-path

routing preference. We observe that a larger fraction of nodes migrate in the

50-node topology, than in the 100-node topology, which in turn has a larger

number of migrants than the 150-node topology. This leads us to conclude that for

the same set of parameters, the migration profile is increasingly pronounced in

smaller topologies than larger topologies, as the path length increases with the

network size.

5.8 Strategy Estimation Approach

In this experiment, we compare the effect of different strategy estimation heuristics

employed by a domain on the migration profile of the network. Figure 12 plots the

number of domains migrating to PCE or SDN over time, when multipath routing is

enabled. We observe that the deterministic approach results in a lesser number of

migrants than the probabilistic approach for both PCE and SDN migrations.

This behavior can be explained as follows. As a thumb rule, greater the number

of neighboring migrated domains, greater is the likelihood of a domain to migrate.

In the deterministic and probabilistic approaches, the estimated number of

neighboring migrated domains considered by a domain is greater than or equal

to the actual number of migrated domains in the neighborhood. Amongst the

deterministic and probabilistic approaches, the likelihood of migration of a node

varies with the effective migration coefficient of neighboring nodes as shown in Fig. 3.

The reader may note that the area under curves in Fig. 3 are proportional to the total

number of migrations resulting from each estimation approach. Had the effective

migration coefficient of the nodes be uniformly varying between 0 and 1, both

approaches would have resulted in similar migration profile. However, we observe

in our simulation (and can also be intuitively derived) that the effective migration

coefficient varies roughly between 0 and 0.8, thereby providing the probabilistic

approach an upper hand. As a result, the probabilistic approach results in a greater

number of migrants than that from the deterministic approach.

Although more and more transit domains migrate with increasing traffic in the

network, it is important to note that the saturation point of migration is reached not

when all transit domains migrate, but at a lesser number of migrants. For example,
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out of 39 transit nodes in the network, only about 36 migrate at saturation, as seen in

Fig. 12. This is because of the shortest-path routing between the stub nodes. Thus,

only those transit domains which lie on the shortest path(s) between a pair of stub

nodes, eventually migrate, whereas, transit nodes with no stub-to-stub traffic have

no incentive in migrating, even when every other node in its neighborhood may

have migrated.
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Fig. 11 Effect of topology size on PCE (top) and SDN (bottom) migration profiles
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6 Conclusion

In this paper, we proposed an agent-based model to study network migration to

multiple technologies that may be correlated, and applied it to study two emerging

technology frameworks, i.e., PCE and SDN. We believe to have advanced the

science in the existing agent-based models by considering a few novel critical

factors, including (1) synergistic relationships across multiple technologies, (2)

reduction in OpEx as a reason to migrate, and, (3) implications of local network
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effects on migration decisions. As is characteristic of agent-based models, defining

the mutual, microscopic interactions between agents lead to insights about the

macroscopic, system-wide behavior, which was analyzed and demonstrated by our

model.

The results obtained from our case study suggest that migration to SDN can be

eased by joint migration to PCE, and that the benefits derived from SDN are best

exploited in combination with PCE, than by itself. The case study also showed that

studying migration to related technologies in combination is important than

studying migration to each technology in isolation. The results indicate that the

migration to SDN can be promoted by several factors, namely, (a) in combination

with a widely-accepted complementary technology such as PCE, (b) early adopters,

(c) an agent’s ability to predict its neighbor’s decisions to migrate to either of the

technologies.

Our future work includes applying our model to study larger topologies (of the

scale of thousands of domains). Also, multi-vendor, multi-layer network migration

scenarios with IP/Optical network integration is a relevant scenario to investigate.

Our model can also be extended to study inter-relationships between three or more

migrating technologies, which can be explored should a relevant case study emerge.

Another important aspect would be to study the order of migration in a network, i.e.,

‘‘migration scheduling’’, showing which type of nodes should migrate first.
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