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Abstract For purposes such as end-to-end monitoring, capacity planning, and

performance bottleneck troubleshooting across multi-domain networks, there is an

increasing trend to deploy interoperable measurement frameworks such as perfS-

ONAR. These deployments expose vast data archives of current and historic

measurements, which can be queried using web services. Analysis of these mea-

surements using effective schemes to detect and diagnose anomaly events is vital

since it allows for verifying if network behavior meets expectations. In addition, it

allows for proactive notification of bottlenecks that may be affecting a large number

of users. In this paper, we describe our novel topology-aware scheme that can be

integrated into perfSONAR deployments for detection and diagnosis of network-
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wide correlated anomaly events. Our scheme involves spatial and temporal analyses

on combined topology and uncorrelated anomaly events information for detection of

correlated anomaly events. Subsequently, a set of ‘filters’ are applied on the

detected events to prioritize them based on potential severity, and to drill-down

upon the events ‘‘nature’’ (e.g., event burstiness) and ‘‘root-location(s)’’ (e.g., edge

or core location affinity). To validate our scheme, we use traceroute information and

one-way delay measurements collected over 3 months between the various U.S.

Department of Energy national lab network locations, published via perfSONAR

web services. Further, using real-world case studies, we show how our scheme can

provide helpful insights for detection, visualization and diagnosis of correlated

network anomaly events, and can ultimately save time, effort, and costs spent on

network management.

Keywords Performance monitoring � Correlated anomaly detection � Spatial

and temporal analysis filters � perfSONAR measurement framework � Active

measurements

1 Introduction

The pace of scientific discovery has been rapid in recent years owing to

cyberinfrastructures that enable researchers to: (a) remotely access distributed

computing resources and big data sets in clouds, and (b) effectively collaborate with

remote peers, at a global-scale. Given the fact that remote access and collaboration

often occur over networks that are multi-domain, there is a need to instrument

individual network domains with interoperable measurement frameworks that

enable them to join a multi-domain measurement federation. The motivation for

joining a measurement federation is to facilitate measurements across multiple

domains over the Internet for reaping the mutual benefits of performing ‘end-to-end’

network monitoring, capacity planning, and performance bottleneck

troubleshooting.

To serve the needs of multi-domain measurements, there is a rapidly growing

trend to deploy interoperable measurement frameworks such as perfSONAR [1]

that assist in measurement data collection, storage and publishing/subscribing of

data archives of current and historic measurements (e.g., bandwidth, delay, jitter

and loss) via web services. The web service schemas in perfSONAR have been

standardized in the Open Grid Forum [2] and have been adopted in frameworks

such as OSCARS [3], Cricket-SNMP [4], and PingER [5]. Using web services, any

site can register with the global lookup service [6] to allow intra-domain or inter-

domain users to initiate measurements from their measurement servers or to query

their published measurement datasets. Numerous perfSONAR deployments are

sampling both active and passive measurements of various metrics several times a

day. They are exposing these collected measurements via web services in the form

of vast data archives of current and historic measurements on national and

international backbones (e.g., ESnet, Internet2, GEANT, SWITCH). The successful

J Netw Syst Manage (2014) 22:208–234 209

123



adoption of perfSONAR can be attributed to the open, modular, and distributed

architecture.

The consumers of the perfSONAR active measurements (e.g., network operators

and researchers in data-intensive science disciplines) are now faced with the

challenge to analyze, visualize, and interpret the vast measurement data sets across

end-to-end multi-domain network paths with minimal human inspection. They

direly need automated techniques and intuitive tools to query, analyze, detect,

diagnose, and notify prominent network performance anomaly events such as

plateaus within active measurements that may hinder data transfer speeds [7, 8].

Timely and accurate bottleneck anomaly event detection coupled with effective

notification can lead to quicker resolution of network faults, and thus can

proactively prevent large numbers of end-users from experiencing annoyingly slow

data transfers or poor interaction response times of critical applications on well-

provisioned high-speed networks. In addition, anomaly event notifications allow for

verifying whether network behavior meets expectations, especially when known

application traffic events such as daily data backups or scheduled network

maintenances occur. Further, anomaly event notifications can suggest improved

performance plateaus for network operators to validate their network capacity

upgrades.

Uncorrelated network anomaly events (change-points from statistical norm) can

be detected at the ‘network-path level’ by analyzing for e.g., end-to-end one-way

delay and throughput measurement time series from OWAMP and BWCTL active

measurement tools used in perfSONAR deployments, respectively. In comparison,

correlated network anomaly events can be detected at the ‘network-wide level’ by

analyzing several network-path level (uncorrelated) anomaly events in order to

localize the change-cause to a particular network segment. There have been several

schemes developed to automatically and accurately detect uncorrelated network

anomaly events [7–9] within multi-domain active measurements that are publicly-

accessible through frameworks such as perfSONAR. However, in this same context,

there is a clear dearth of schemes in prior literature that leverage topology

information along with a measurement time series of network health metrics to

address the challenges of automated detection and drill-down of correlated network

anomaly events. Existing works such as [10, 11] use network domain-specific

operations information such as router logs and command histories, which are

typically not readily available in perfSONAR-like multi-domain measurement

infrastructures, and hence are not applicable. The ability to detect and diagnose

correlated network anomaly events using topology and a measurement time series

can be helpful in multi-domain measurement infrastructures to: (a) group uncor-

related events as having a common root-cause(s), (b) order anomaly events based on

severity (i.e., the entry with the highest ratio value of ‘common event ratio

temporally’ to ‘common hops ratio spatially’ tops the list) to help efficient isolation

and remediation of bottlenecks, and (c) narrow down the diagnosis to determine the

pertinent location(s) of the common root-cause(s).

In this paper, we address the above dearth and present our novel ‘network

topology-aware correlated anomaly detection and diagnosis’ (NTA-CAD) scheme

that can be integrated into perfSONAR deployments. Our scheme involves spatial
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and temporal analyses on combined topology and uncorrelated anomaly events

information from a measurement time series for detection of correlated anomaly

events. Subsequently, a set of filters is applied on the detected events to prioritize

them based on severity and to drill-down upon the events nature (e.g., event

burstiness) and root-cause location(s) (e.g., edge or core location affinity). The

severity prioritization analysis involves matrix manipulations to classify correlated

anomaly events into grids of ‘Low–Low’ to ‘High–High’ along axes of spatial

commonness (i.e., ‘‘common hop ratio’’) and of temporal commonness (i.e.,‘‘com-

mon event ratio’’). To validate our scheme, we use traceroute information and one-

way latency measurements collected over 3 months between the various U.S.

Department of Energy (DOE) national lab network locations, published via

perfSONAR web services. Further, using real-world case studies, we show how our

scheme can provide helpful insights for detection and diagnosis of correlated

network anomaly events. For example, we illustrate how to identify paths that are

critical temporally (e.g., paths with links that have high common event frequency)

and spatially (e.g., paths that have links that are common amongst most of the

critical paths). To accomplish these analyses, we leverage representations that are

used typically in studies involving social networks [12] and apply them to the

context of active network measurement data analysis. Finally, our scheme

implementation in this paper builds upon perfSONAR web service interfaces and

is designed to be integrated into widely-used anomaly notification dashboards such

as RACF perfSONAR dashboard [13] and can thus save time, effort, and costs spent

on network management in high-speed networking communities.

The remainder of the paper is organized as follows. Section 2 discusses related

work. Section 3 describes the problem scope and motivations for our work. Section

4 presents the novel approaches for data transformations in our NTA-CAD scheme.

Section 5 details the network-wide results and filters evaluation with our NTA-CAD

scheme in a DOE labs perfSONAR data set case study. Section 6 concludes the

paper.

2 Related Work

To assist network operators in troubleshooting bottlenecks (e.g., prolonged

congestion events or device mis-configurations) in high-speed networks, a number

of smart and effective network monitoring tools based on statistical measurement

data analysis techniques have been developed in earlier literature. In particular,

there have been studies on correlated anomaly detection such as [14–16]. Principal

component analysis (PCA) discussed in [14] focuses on network anomaly detection

on a network link basis. In [16], the authors aim to overcome limitations of PCA’s

failure in detecting strong correlations in distributed network traffic anomalies. Both

[14] and [16] do not use topology information and can be considered as black-box

techniques in comparison to other aware works such as [10, 15, 17]. The authors in

[15] use Kalman-filter for anomaly detection and build a traffic matrix of an

enterprise network to overcome link basis limitations. In [10], the authors present a

general framework called Network-wide Information Correlation and Exploration
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(NICE) for analyzing data through correlations and present a qualitative as well as

quantitative analysis approach with network related data such as router logs and

topology information. Routing connection relationships are used in [17] for

network-wide anomaly detection in backbone networks; relationships are estab-

lished based on features such as packet sizes, IP addresses and ports.

Our NTA-CAD work is closely related to the NICE framework [10] and can even

be integrated into their framework to perform detailed diagnosis and troubleshoot-

ing of active measurements that are not originally supported. NICE uses a database

repository that houses diverse passive sets of data such as router syslogs, work-flow

data, and routing protocol events. Such a data repository is built to support

correlated anomaly detection schemes and can be leveraged in our NTA-CAD

scheme analysis for verification with potential ground truths. Works such as [18–20]

use correlation analysis over different measurement data sets. However, their

motivation is to optimize the measurement frequency, whereas our scheme works on

infrastructures involving multi-domain networks whose measurement sampling

frequency is typically selected by network domain administrators. In [11], the

authors use a campus-specific network anomaly event data set to classify anomalies

and describe a workflow for dealing with an anomaly event after it has been

detected.

There have been a few studies such as [21] that have focused on developing

methods for classifying anomalies for prioritization purposes. The authors in [21]

define a set of attributes and conditions based on ports and packets source/

destination fields for classifying anomalies. A signature based data analysis is

discussed in [22], where historical events are analyzed to extract signatures that are

subsequently indexed for efficiently matching events to a current sample signature.

Works such as [23] use basic visualizations of perfSONAR time-series data for

manual detection of correlated anomaly events. Our NTA-CAD scheme would be

best suited to augment these visualizations for automated detection of correlated

anomaly events in perfSONAR data sets, and our novel concepts such as applying

spatial and temporal filters combined with drill down can be effective for

prioritizing, identifying root-cause locations, and the nature of anomaly events for

bottleneck resolution.

3 Problem Scope and Motivation

3.1 Anomaly Event Detection

One of the significant challenges in dealing with measurement data sets is to decide

which kind of network events need to be labeled and notified as anomaly events and

finding the cause of a given anomaly event. Various traffic related anomaly events

are caused due to IP route/AS path change events that involve traffic re-routing on

backup paths due to ISP traffic migration for maintenance reasons involving BGP

policy modifications [14, 24] or handling cable faults [25], cyber attack events

involving malware/worms [26] and botnets [27], as well as misconfigurations in

router advertisements [8] and access router bandwidth settings [28]. These events
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manifest in the form of spikes, dips, bursts, persistent variations and plateau trends

in network performance metrics such as end-to-end round-trip delay, available

bandwidth and loss obtained through end-to-end active measurements. Some

anomaly events that manifest as short intermittent spikes, intermittent dips, and

bursts in network performance metrics are not of interest for notification as anomaly

events because they are generally caused due to user-behavior during normal

network operations i.e., users generating various application traffic.

Based on experiences from network operators and application users [8, 28] and

based on our extensive discussions with other network operators supporting data-

intensive science and engineering communities (e.g., ESnet, Internet2, GEANT),

the notification of ‘plateau anomalies’ shown in Fig. 1 are the most worthy to be

notified. These anomaly events are commonly known to impact data transfer speeds

at the application-level on high-speed network paths. Network operators, when

analyzing a measurement time-series of network performance metrics, typically

look for plateau event trends (such as the example event shown in Fig. 1) through

visual inspections and seek for automated notification of such network-wide

detected anomaly events from measurement systems. Variants of plateau anomaly

event detectors have been developed and adopted in large scale monitoring

infrastructures such as NLANR AMP [7] and SLAC IEPM-BW [8], which are

predecessors to the perfSONAR deployments. These detectors detect that a plateau

event or a ‘change event’ has occurred if the most recent measurement sample value

crosses the upper or lower thresholds of the summary (i.e., TSU, TSL) and quarantine

(i.e., TQU, TQL) buffers that are continuously updated over time as new samples

arrive. The summary buffer is used to maintain sample history that indicates the

normal state (before anomaly event occurs), and a quarantine buffer is used to store

outlier data samples that are twice the normal state sample values. The sample

counts in these buffers are used to maintain trigger count values over a pre-

configured trigger duration before an alarm of anomaly event occurrence (indicated

by the cross mark in Fig. 1) is notified. The trigger duration before samples are

marked for impending anomaly states (triangle symbols shown in Fig. 1) should be

chosen long enough to avoid false alarms due to noise events corresponding to

intermittent spikes, dips, or bursts [9].

The main limitation in the plateau detectors in NLANR AMP and SLAC IEPM-

BW deployments is that they used static configurations of salient threshold

parameters to detect change-points from the statistical norm. Specifically, they used

a static configuration of ‘‘sensitivity’’ and ‘‘trigger elevation’’ threshold parameters

for increasing the probability of anomaly event detection while at the same time

decreasing the probability of false alarms. The sensitivity parameter is used to

specify the magnitude of plateau change that may result when an anomaly event on

a network path is to be triggered for notification. The trigger elevation parameters

are used to temporarily increase the thresholds to avoid repeated triggers for a brief

period after an anomaly event has been detected. The sensitivity and trigger

elevation threshold parameters in static plateau detection (SPD) schemes need to be

manually calibrated to accurately detect plateaus in different measurement sample

profiles on network paths. Such a laborious process for accurate anomaly detection
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is impractical for large-scale monitoring infrastructures involving large numbers of

end-to-end network paths with dynamically changing traffic characteristics.

To overcome the shortcomings of such SPD schemes, we recently developed an

adaptive plateau detection (APD) scheme [9] for perfSONAR deployments. The

APD dynamically configures thresholds to accurately detect ‘uncorrelated’ network

anomaly events. The intuition behind the dynamic configuration is based on

reinforcement learning principles and the observation that raw measurements just

after an anomaly event provide direct intelligence about the anomaly event itself;

leveraging them for reinforcement of the machine learning (to compare statistics of

historic and current measurement samples for detecting change points) can make the

uncorrelated anomaly detection more robust and accurate. The difference in the

working of APD in comparison to SPD can be understood as follows. For any

example trace given, SPD schemes commonly choose a static sensitivity setting of

2, which is known to produce relatively low false alarms compared to other settings

through empirical observations of similar traces. For the same case, APD

dynamically updates the sensitivity values during trace analysis as new samples

are considered over time and produces lower false alarm rates at the cost of a

fractional increase in detection time that is needed for the reinforcement learning.

A reliable plateau detector to trigger uncorrelated network anomaly events is a

critical component for notifying correlated network anomaly events, and for this

reason we adopt the APD to detect uncorrelated anomaly events, which we

subsequently analyze to find correlations in these events with our NTA-CAD

scheme presented in this paper.

3.2 Anomaly Event Notification

Our APD scheme implementation is currently deployed in network monitoring

environments of perfSONAR communities such as the Energy Sciences Network
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(ESnet), DOE E-Center [29] and US Atlas [13]. The anomaly event notification in

these communities is being done using Nagios plugins [30] of APD and visualized

in the form of dashboards (e.g., RACF perfSONAR dashboard) [13] as shown in

Fig. 2. These dashboards are helpful to alert network-path level anomaly events

using status messages such as: ‘OK’, which is marked in green to indicate that the

network path does not have any current anomaly events, and ‘CRITICAL’, which is

marked in red to indicate that the network path is currently experiencing anomaly

events. In our interactions with these communities of network operators and data-

intensive science researchers, we realized that additional context for diagnosis and

localization was needed when ‘CRITICAL’ alerts were found i.e., information about

alert severity, event characteristics and the network segment that caused the

anomaly event was needed to effectively troubleshoot any bottlenecks.

To illustrate why additional context is needed for effective troubleshooting, let us

consider 3 sites say BNL, AGLT2 and MWT2 and their related paths BNL-AGLT2,

BNL-WT2, and AGLT2-WT2 that are shown in Fig. 2. Let us also assume that there

are network-path level (i.e., uncorrelated) anomaly events detected on these paths

over a specific time period, and we have the timestamps of when the anomaly events

were detected. With only this information, it is challenging and time consuming for

network operators to diagnose the event root-cause and location. Now, as the

number of paths to be monitored increases, and/or the number of anomaly events

detected over a specific time period increases, the challenge and time consumption

for the network operators increases drastically. However, based on topology

information, let us assume it is determined that the paths BNL-AGLT2, BNL-

MWT2, and AGLT2-WT2 share many common links that are likely the root-cause

for the triggered anomaly events (spatial analysis). Also, based on inter-event times

information, let us assume that it is determined that the events detected on the path

BNL-WT2 occurred in a relatively more bursty manner within a short time interval

Fig. 2 RACF perfSONAR dashboard using APD on OWAMP measurements
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(temporal analysis). Now, we can combine these 2 analyses’ results to inform the

network operator about which anomaly event has a higher severity in terms of

performance degradation that needs prioritized attention (combined analysis and

drill down). By eliminating any bottlenecks (e.g., device mis-configurations or

inadequate bandwidth provisioning) to resolve the higher priority and more severe

anomaly event on BNL-WT2, it may likely result in the resolution of the other two

detected anomaly events on BNL-AGLT2 and AGLT2-WT2, hence saving time,

effort, and costs spent by the network operator on network management.

4 Network Topology Aware Approach

4.1 Overview

Figure 3 shows the various system components that support our NTA-CAD

analysis scheme. In the first step (Step 1: ‘input step’), active measurement time-

series data (i.e., temporal data) are downloaded from perfSONAR archives through

the openly accessible web service interfaces as explained in Sect. 4.2 Once the

temporal data sets are downloaded, they are then analyzed in the second step (Step

2: ‘matrices manipulation step’) along with network topology data (i.e., spatial

data) downloaded from topology services maintained by network operators

deploying perfSONAR measurement points. The analysis is performed through

matrices manipulation on a network path level basis for (uncorrelated) event

detection using our APD scheme [9] as explained in Sect. 4.3 If the number of

paths being analyzed is large or if the data volumes are large due to high sampling

frequency of measurements or due to measurement data queries being made over

large time periods, the APD analysis can be done in a distributed manner at various

measurement point locations, and the event information can be relayed to the

Network Operations Center location for further analysis and bottleneck resolution.

It is obviously possible to also have the Network Operations Center be the only

location for all of the APD as well as the NTA-CAD analysis to be performed. We

showed in [9] that in such scenarios, the agility of analysis can be improved by

using parallel queries of web services, versus using sequential queries. In addition,

it should be noted that the effectiveness of the NTA-CAD analysis is dependent on

the reliability of the topology information (especially in the cases of paths with

many common links), and is affected if there is lack of information such as missing

links [31] or misinformation such as spurious third-party addresses [32] or lack of

up-to-date intermediate link capacity information. Finally, as part of the third step

(Step 3: ‘output step’), joint analysis with the detected uncorrelated anomaly events

information in the NTA-CAD analysis is performed to prioritize the events based

on correlation characteristics such as event location or event burstiness as

explained in Sect. 4.4 The prioritized events information can simultaneously be

visualized through pertinent highlighting in dashboards monitored by the Network

Operations Center personnel.
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In the following, we explain the details of the 3-step sequence involved in the

NTA-CAD scheme for correlated anomaly detection and diagnosis shown in Fig. 4;

we also refer to Algorithm 1 that outlines the various computation details within the

3-step sequence.

4.2 Data Collection and Processing

The data collection involves querying distributed measurement archives (accessible

at an address e.g., http://testproject.example-university.edu:8085) by using perfS-

ONAR-compliant web service clients. The site list of measurement archives that are

available for query can be selected using a global lookup service [6] hosted by the

perfSONAR community. This service registers the addresses of all openly-acces-

sible measurement archives within individual domains. Through standardized

request/response messages, active measurement time series data relating to end-to-

end performance measurement tools such as BWCTL (TCP/UDP throughput) and

OWAMP (one-way delay as specified in IETF RFC 4656) as well as traceroute data

are downloaded. The downloaded time series data in the form of XML files are then

processed using parsing for further analysis.

4.3 Event Detection and Analysis

For anomaly detection in the processed data, we use our APD scheme that performs

uncorrelated path level anomaly detection. The time-series data sets that have been

annotated to have anomaly events by an APD are examined for further common-hop

(spatial) and common-event (temporal) analysis. In the common-hop analysis that
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leverages the network-wide route topology data obtained from the traceroute tool,

we analyze every pair of network-wide paths using a simple common hop scheme.

We look into all the intermediate links in a path and compare it with another path to

find out the number of common links that these paths share between them. A path-

to-path matrix is constructed for representing common links between the paths,

which we call the common hops matrix Hc. For example: Hc[A, B] = 8 implies 8

common links exist in the A and B paths. Another matrix Ht contains the sum of

total links in the two paths. For comparison purposes, we normalize the matrix for

further use and consequently create another matrix called Hn, the normalized

common hops matrix, where each element is calculated as a ratio as shown in Eq. 1

for two paths say, A and B.

Element in Hn ¼
ð2 � Number of common links between A and BÞ
ðTotal number of link sin both A and BÞ ð1Þ

In the common-event analysis, we study the anomaly events information of

network-wide paths being monitored with the APD, and determine those anomaly

events that are happening around the same time window. To better understand how

the study is done, we look at an event in say, path A at a time t and look for an event

that happened around the same time within a certain time window in path B. If such

common events between paths exist in time, we use that information to build a path-

to-path matrix Ec and normalize it as a common event matrix En, where each

element of this matrix is calculated as a ratio as shown in Eq. 2 for two paths say, A0

and B0.

Element in En ¼
ð2 � Number of common events between A0 and B0Þ

ðTotal number of event in both A0 and B0Þ ð2Þ

Fig. 3 System components that support the NTA-CAD scheme
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4.4 Output Presentation and Drill Down

As we reach this step, we have both Hn and En matrices that contain spatial and

temporal information about the anomaly events occurring network-wide. We can

now jointly perform correlated analysis and filter events of higher priority based on

topology awareness. First, we filter only those events that have common links by

applying spatial constraints on the Hn matrix. To illustrate this, consider a condition

(Hn [ 0) on the normalized common hop matrix. In such a condition, the resulting

binary matrix Hn0 will contain only the paths that have at least one common link

between them. Now applying this spatial constraint on the common event matrix,

we have En.(Hn0) that would give us only those paths that share common links. Next

we can filter with a En [ 0.5 threshold condition to obtain En0 that represents a

common event binary matrix with only those paths pairs that have at least half of the

events happening within the same time window. Now to separate those path pairs

with at least 50 % of events happening within the same time window and having at

least one common link between them, a dot product of (En0).(Hn0) can be performed

Fig. 4 NTA-CAD scheme block diagram
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to obtain the resulting binary event matrix (EHn0). The (EHn0) matrix can now be

utilized to overcome the current limitations in network monitoring dashboards that

only indicate occurrence of uncorrelated anomaly events at a path-level. Network-

wide correlated anomaly events based on common links and events can be filtered

by configuring suitable thresholds for the normalized Hn and En matrices. The

filtered anomaly events can be classified under different severity levels and plotted

as a graph of ‘common hops’ versus ‘common events’ for each of the rows of the

(EHn0) matrix (on a normalized scale from 0 to 1), thus producing a more effective

output presentation for any given analysis window. The thresholds can be selected

by network operators in a custom fashion, or they can be selected qualitatively by

dividing the severity space into equal sized grids using high (H), low (L) and

medium (M) thresholds. Each of the anomaly events thus falls into one of the

(H|M|L, H|M|L) grids that have a corresponding severity level. For example,

anomaly events in the (H, H) grid are most severe and are of high priority for further

investigation and resolution because they represent a network-wide state where a

large number of anomaly events are occurring at the same time on paths that share

many common links. Obviously, any common events in time between paths that do

not share any common links between them may call for a different analysis

perspective than those anomaly events that share several common links and happen

close to each other in a time window. In any case, such an output presentation of

correlated anomaly events provides network operators a more guided direction for

proceeding with further diagnosis of the anomaly events using a spatial drill down

(i.e., identify links that may be the root-cause) and a temporal drill down (i.e.,

analyze the inter-event times that can be quantified in terms of burstiness). In the

following, we use an example scenario shown in Fig. 5 to illustrate how we can do a

spatial and temporal drill down of anomaly events for diagnosis.

4.4.1 Spatial Drill Down

Let us consider the set of paths B, G and R shown in Fig. 5a that share common

network segments among them. Due to this sharing, they feature in the common hop

Fig. 5 a Paths B, G and R showing sharing of common network segments between them; b anomaly
events occurrence for paths B, G and R
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matrix as having a certain spatial relation between each other. When anomaly events

occur on all these paths around the same time window, this information is captured

in the common event matrix. In order to determine the anomaly event occurrence

root-location(s), we can analyze the shared network segments or underlying

common links using the spatial drill down. Paths B and G share between them a

greater part of the common network segments than path R, and hence are relatively

more interesting. Also, there is a small network segment closer to the edge of

Domain Y, which is common to all the three paths experiencing anomaly events,

and in our case could most likely have the links that have high ‘‘location affinity’’ in

the core towards the edge of Domain Y i.e., this segment could contain the root-

location causing the correlated anomaly events.

4.4.2 Temporal Drill Down

A temporal drill down can be further helpful in understanding the nature of the

correlated anomaly events. Figure 5b shows different inter-event time spacing

between anomaly events detected at different times on paths B, G and R. From our

previous discussion on the spatial drill down, we know that path R only has a small

segment that is common with the other paths B and G. However, from Fig. 5b we

can see that the path R exhibits ‘‘burstiness’’ i.e., it has many anomaly events that

occur within short intervals. Path G has just one event and path B has events that are

relatively far apart. By such a temporal drill down, burstiness of paths in terms of

anomaly events can be calculated, and the paths with higher burstiness can be

investigated further with any other possible ground truth information (e.g., router

logs). For quantifying burstiness, let us consider an analysis window within which

we have anomaly event occurrence times obtained after APD processing. We can

define burstiness B* as shown in Eq. 3.

B� ¼ Et

ET

ð3Þ

Note that Et is the number of anomaly events within the analysis window with inter-

event times below a threshold ttime, and ET is the total number of anomaly events

within the analysis window. As the numerator Et increases, the value of burstiness

B* increases. Since burstiness characterizes anomaly events occurring in an analysis

window on a normalized 0–1 scale, it does not provide information about the

number of anomaly events occurring. Hence, we also look at the number of anomaly

events within this analysis window and assign a weight or importance level to the

burstiness B* levels.

5 NTA-CAD Network-Wide Evaluation and Results

In this section, we validate our NTA-CAD scheme with a case study involving analysis

of a perfSONAR data set collected between various geographically-distributed

locations. We also illustrate how different spatial and temporal filters can be applied on

the data set for the drill down and diagnosis of correlated network anomaly events.
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5.1 Dataset

For our NTA-CAD scheme validation experiments, we use traceroute information

and one-way delay measurements collected via perfSONAR web services over

3 months among the various U.S. Department of Energy (DOE) national lab

network locations. More specifically, our data collection covers 17 DOE national

lab sites shown in Fig. 6 selected from across the United States that have

perfSONAR deployments. Our data query involves 216 paths and their performance

data for approximately 50 days over a 3 month time span. We selected one-way

delay measurement data from the OWAMP tool for our validation experiments

because they contain more samples per day and have more detailed information of

network status. We remark that the perfSONAR data set corresponding to the DOE

national lab network locations is valuable since the DOE community has invested

significant resources for training and deployment of perfSONAR. In addition, the

paths whose performance data we sampled features traffic to-and-from large high-

performance computing systems serving sites all over the world and supports a good

mix of bandwidth-intensive and latency-sensitive application cross traffic.

5.2 Common Hop and Event Analysis

Figure 7 shows our traceroute data analysis to obtain a histogram of the common

hops distribution over the entire topology. We can see that there are several path

pairs with one common hop, and the number of path pairs decreases significantly as

the number of common hop count increases. There were path pairs we found that

had as much as 9 common hops between them. We remark that we do not show the

zero common hops bin, however we found 41010 path pairs within the total 46656

path pairs analyzed over 216 paths that had no common hops between them. Thus,

we can see that using spatial filters based on common hops relationship on topology

Fig. 6 US Map showing various DOE national lab network locations
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information can greatly reduce the data processing to identify critical links and

paths in troubleshooting correlated anomaly events.

To further analyze the spatial relationships between the different DOE lab sites in

terms of common hops that may have significant impact on network-wide path

pairs, we use the Graphviz [33] tool, which is an open source graph visualization

software that is commonly used to visualize social network graphs. The Graphviz

tool output is shown in Fig. 8, where graph nodes represent path pairs of the

normalized path-to-path matrix Hn of the topology, and the edges represent the

common hop ratio strength values between the paths. The matrix Hn could be

trimmed at various levels using different threshold configurations. For example, we

can look at clustering of the path pairs which have at least 0.65 common hop ratio

values. We can see that some paths have more edges than other paths, and the paths

with the most number of edges can be assumed to have a greater impact on the

network status. Thus, we can identify spatially critical paths in this case study that

are annotated in Fig. 8, whose performance issues need to be more carefully

monitored than other paths.

A similar analysis can be performed on the temporal relationships between the

different DOE lab sites in terms of common events in the one-way delay measurement

data set that may have a significant impact on network-wide path pairs. Figure 9 shows

the graph nodes that represent path pairs of the normalized path-to-path matrix En of

the detected anomaly events, and the edges represent the common event ratio strength

values between the paths. The matrix En could also be trimmed at various levels using

different threshold configurations. For example, we can look at clustering of the path

pairs that have at least 0.70 common event ratio values. We can see that some paths

have more edges than other paths, and the paths with the most number of edges can be

assumed to have a greater impact on the network status. Thus, in this case study, we can

identify the most critical path (STAR-BNL) annotated in Fig. 9 whose performance

issues need to be more carefully monitored than other paths.

5.3 Ratio Grids

In this section, we analyze the anomaly events within the case study data set and

classify them into one of the (H|M|L, H|M|L) grids that has a corresponding severity
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Fig. 7 Common hops distribution over entire topology (Note: Outlier value for path pairs sharing zero
common hops is 41,010 within the total 46,656 path pairs analyzed over 216 paths)
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level. To construct the grid, any one path can be chosen as the reference path; we

choose the FNAL-BNL as the reference path for illustrative purposes. As mentioned

earlier, we select thresholds for differentiating the grids qualitatively by dividing the

severity space within the (EHn’) matrix into equal sized grids with a common hop

ratio as y-axis and common event ratio as x-axis. All the points on the x-axis

represent those events between paths that do not have any common hops. Likewise,

events on the y-axis represent those events that do not have any common events.

The points falling within the (L, L) grid have very low spatial and temporal

significance and can be given less priority compared to the points falling within the

(H, H) grid that have the highest spatial and temporal significance.

Figures 10 and 11 show the grids plotted with events from the FNAL-BNL

reference path correlated with all other paths in the network when SPD and APD are

applied on the case study data set, respectively. Note that the events shown in the

case of APD correspond to data spanning over 3 months, whereas the events in the

case of SPD correspond to data spanning only for 2 weeks. From these Figures., we

can make two major observations. First, the classification of anomaly events within

the grids can be helpful to network operators to quickly analyze network-wide status

and also prioritize the troubleshooting of most significant anomaly events. Second,

Fig. 8 Common hop graph showing paths having a common hop ratio above [0.65
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we can realize that the APD plot has much less noise than the SPD over an extended

period of data analysis, and the SPD can be extremely dense and noisy in terms of

false alarms, even over short periods of data analysis. We remark that we found a

10–15 % higher number of alarms of plateau events reported by the SPD in

comparison to the APD in our data sets. Details of improved anomaly detection

accuracy without false positives or false negatives of the APD over the SPD can be

found in [9] for a variety of traces with time series characteristics that include events

such as persistent decrease, persistent increase, intermittent bursts, intermittent dips,

and persistent variations.

5.4 Spatial Drill Down Filter

In addition to analyzing critical paths and monitoring high priority anomaly events

on these paths, we can also drill down the topology data to identify the most

common links across these critical paths. Links that are part of most critical paths

can be given a high ‘path score’ and a ranking list can be generated to carefully

monitor these links in comparison to other links. For our case study data set, Table 1

shows such a ranking list for the links among the paths shown in Fig. 9 with a high

common event ratio between them.

To illustrate the application of a spatial drill down filter in our case study data set,

we select a set of paths {FNAL-ATLA, KANS-FNAL, SDSC-FNAL, SNLL-

FNAL} within the case study data set that are comprised of links with high path

scores, and also are part of critical paths with high common event ratios. Figure 12

Fig. 9 Common events graph showing paths having a common event ratio above [0.70
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shows the links on these paths with correlated events. We can see that there are

many links that have only one path in common, however there are other links that

have up to 4 paths in common, and all the links that have more than one path in

common are closer to the FNAL edge. Hence, we can conclude that some factor

closer to the FNAL edges and may be causing several of the correlated anomaly

events seen on all the select set of paths. Obviously, such a conclusion can be used

as a guidance, and additional information sources (e.g., router logs, maintenance

activity logs) need to be referred to the network segments closer to the FNAL edge

to determine the ground truth. In any case, such a guidance and additional context of

spatial filter analysis is extremely helpful to network operators when there are

several network-wide events with varying degrees of severity showing up as ‘red’

Fig. 10 APD grid showing events between FNAL_BNL and all other paths over 3 months

Fig. 11 SPD grid showing noisy events between FNAL_BNL and all other paths over 2 weeks
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alerts on their dashboards. Note that the link 134.55.221.58–134.55.209.46 in

Fig. 12 has 2 paths in common in the context of events being analyzed to be affected

near to the FNAL edge. However, its path score overall in the network is 11 as

indicated in Table 1, and hence resolution of any problem corresponding to this link

is of relatively high importance from a network-wide perspective.

5.5 Temporal Drill Down Filter

In addition to analyzing critical paths and monitoring high priority anomaly events

on these paths, we can also drill down the instantaneous measurement data to

identify the event burstiness and related manifestations in the critical paths. Recall

that event burstiness as described in Sect. 4.4 is based upon inter-event time spacing

between anomaly events detected and can help in determining how rapidly the

anomaly events are occurring. We analyzed around 5462 inter-event time spacing

samples within the case study data set and found the mean of these inter-event times

(l) to be 2,912 s (&48 min). We remark that the sampling frequency of the

measurements within the individual domains (i.e., individual DOE lab domains in

our case study) is a major factor that influences the mean calculation. Figure 13

shows the network-wide event burstiness results for the case study data over 50 day

samples (i.e., samples are collected on a daily basis in our data set for 50 days over a

3 month time span) with different inter-event time thresholds. The thresholds are

chosen based on a geometric progression involving fractions of l in the range of

½l=2; l=4; l=6; . . .; l=14� on the order of minutes. We can see that the average

Table 1 Links ranked based on

path score
Links Number of paths

R5-134.55.221.58–R6-134.55.209.46 11

R14-134.55.217.141–R15-198.124.238.49 9

R16-134.55.209.97–R17-134.55.217.1 9

R9-134.55.209.46–R10-134.55.220.49 9

R18-134.55.41.145–R19-134.55.41.121 8

R20-134.55.217.53–R18-134.55.41.145 8

R19-134.55.41.121–R14-134.55.217.141 8

R10-134.55.220.49–R16-134.55.209.97 7

R17-134.55.217.1–R21-134.55.219.9 6

R21-134.55.219.9–R22-134.55.217.41 6

R22-134.55.217.41–R23-134.55.217.33 6

R23-134.55.217.33–R24-198.129.254.33 6

R25-134.55.220.37–R26-198.124.252.97 5

R27-198.129.252.45–R9-134.55.209.46 5

R28-134.55.38.185–R16-134.55.209.97 5

R20-134.55.217.53–R5-134.55.221.58 5

R28-134.55.220.149–R29-134.55.38.185 5

R29-134.55.217.153–R30-198.129.254.141 5
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burstiness at the granularity of any given day decreases with a decrease in the inter-

event time thresholds, and burstiness becomes steady at a lower range of threshold

values. The day granularity of average burstiness network-wide is a reasonable

timescale for network operators for receiving alerts and potential resolution of

bottlenecks.

To illustrate the application of a temporal drill down filter in our case study data

set, we select the same set of paths {FNAL-ATLA, KANS-FNAL, SDSC-FNAL,

SNLL-FNAL} within the case study data set that are comprised of links with high

path scores, and also are part of critical paths with high common event ratios.

Fig. 12 Locations of all the common links originating from FNAL

Fig. 13 Effect of various inter-event time thresholds on Burstiness
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Figure 14 shows the anomaly events annotated instantaneous performance graphs of

one-way delay measurements for these four paths. Based on our burstiness

definition in Sect. 4.4, we can apply a burstiness based temporal filter on the

common events data and obtain Table 2 that shows the burstiness values along with

the corresponding number of common events. Obviously, the path SNLL-FNAL

that just has one event has zero burstiness. Among the other paths, we can observe

that the FNAL-ATLA and SDSC-FNAL have the same burstiness value. However,

the FNAL-ATLA has 7 common events, which is higher than the 6 and 5 for the

KANS-FNAL and SDSC-FNAL, respectively. Thus, although burstiness value gives

a quantifiable measure of how quickly anomaly events are occuring, the number of

common events information supplements the burstiness information in prioritization

of critical paths for troubleshooting, and the paths with relatively higher burstiness

and common events need to have a higher priority during troubleshooting.

Fig. 14 Burstiness of APD events in one-way delay measurements

Table 2 Burstiness results for

case study paths
Paths Burstiness Number of events

FNAL-ATLA 0.5 7

KANS-FNAL 0.6 6

SDSC-FNAL 0.5 5

SNLL-FNAL 0.0 1
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Fig. 15 Distribution of network-wide events on a per-hour basis over the case study data set

Fig. 16 Distribution of anomaly events of critical paths on a per-hour basis
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Several other temporal drill down filters can be applied to the case study data set

to obtain interesting guidance regarding the temporal nature of the anomaly events.

We looked at a history based temporal filter that can be helpful in expectation

management of network status. Figure 15 shows the heat map visualization of

network-wide events distribution on a per-hour basis for the entire case study data

set. We can easily identify the times during the day such as between 12:00 and

13:00 h that experience a higher number of anomaly events. Breaking down the

event distribution for the critical links as shown in Fig. 16, we can identify which

paths contribute the most for the heat level of the network-wide status in the heat

map visualization. Obviously, impact of any periodic events that are part of the

expectation of network status, such as scheduled daily backups can be easily

identified with this temporal filter, and those can be ignored in the context of

troubleshooting.

6 Conclusion and Future Work

In this paper, we presented a novel topology-aware scheme that can be integrated

into perfSONAR monitoring dashboards for detection and diagnosis of network-

wide correlated anomaly events across multiple domains. Our scheme involves

using an adaptive plateau detector (APD) to generate anomaly events with low false

alarms, and applying spatial and temporal analyses by combined topology

information to detect correlated anomaly events. We devised a set of ‘filters’ that

can subsequently be applied on the detected correlated anomaly events to prioritize

them into one of the (H|M|L, H|M|L) (i.e., High, Medium, Low) grids based on

potential severity. We showed how spatial and temporal drill-down of the events

can reveal information relating to the ‘‘nature’’ (e.g., event burstiness) and ‘‘root-

location(s)’’ (e.g., edge or core location affinity). Such information provides helpful

guidance in identifying clusters of critical hops/links network-wide that need to be

closely monitored and also eases the bottleneck troubleshooting time and efforts of

network operators.

We validated our NTA-CAD scheme using traceroute information and one-way

delay measurements collected over 3 months involving 216 paths between the 17

DOE national lab network locations, published via perfSONAR web services. We

showed how the APD can be used to generate uncorrelated anomaly events with

high accuracy and much less noise, than using traditional SPD, which can be

extremely dense and noisy in terms of false alarms, even over short periods of data

analysis. Using the critical hop/link based spatial filtering, we were able to conclude

that some factor closer to the FNAL edges may be causing several of the correlated

anomaly events. Further, we showed that the burstiness information has to be

supplemented with the number of common events information in prioritization of

critical paths for troubleshooting, and the paths with relatively higher burstiness and

common events need to have higher priority during troubleshooting.

As part of our future work, we are interested in using the guidance provided by

our NTA-CAD scheme and coupling it with additional information sources (e.g.,

router logs, maintenance activity logs) within frameworks such as NICE [10] to
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more effectively determine the ground truth. In addition, we plan to conduct more

extensive spatial and temporal filter analysis for other perfSONAR data sets

belonging to academia and industry communities as well as other metrics. This will

allow us to better understand how network operators can effectively and easily

handle several network-wide anomaly event occurences with varying degrees of

severity showing up as ‘red’ alerts on their monitoring dashboards.
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