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Abstract The pervasiveness of computers in everyday life has already increased

and keeps increasing the available digital data both in volume and variety/disparity.

This large and dynamic availability of digital data is referred to as Big Data and is

very promising in bringing forward new insights and knowledge. For obtaining these

insights, the proper combination and processing of the data is required. However, the

dynamicity and the increasing size of data start making their handling impossible for

analysts and raise many concerns on the manner in which data will be processed from

now on. Towards this direction, this paper proposes a tool that processes and com-

bines disparate data in order to create insights regarding a future network load. In

particular, the tool (based on the unsupervised machine learning technique of Self-

Organizing Maps) builds knowledge on the network load that is encountered with

respect to the date of interest, the location, the weather, and the features of the day

(e.g., weekend, bank holiday, etc.). The obtained results reveal that the tool is capable

of learning the traffic pattern and thus predicting the network load that will be

encountered in the near or distant future given information for the above presented

parameters with small deviations (up to 0.000553 in terms of Mean Square Error).

Moreover, the tool maintains only the most representative data instances and thus

reduces the data storage requirements with no loss of information.
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1 Introduction

According to [1], unstructured data increase more than 50 % every year due to both

numerous available applications and user devices. In particular, the pervasiveness of

the network technologies in everyday life through social networking, public

information, Rich Site Summary (RSS, also known as Real Simple Syndication)

feeds, and other applications create a vast amount of diverse data. Moreover, the

large number of disparateries, in software and hardware, user devices (such as

laptops, notebooks, mobiles and others) further increase the volume, the variety, and

the velocity of the available digital data making their management difficult with on-

hand database management tools. These data have been referred to as ‘‘Big Data’’,

and despite their difficulty being managed, they have been conceptualized to offer

valuable insight on application provisions and network technology aspects when

they get analyzed and properly processed. The heavy data analysis that is required

for retrieving these insights suggests that new architectures and mechanisms are

needed for (a) handling the volume of data that will be stored, (b) aggregating,

(c) exploiting, and (d) building knowledge on them. In telecommunication

networks, the term ‘‘knowledge’’, refers to information useful for the operators

and the network, which cannot be directly monitored. Following the knowledge

definition of the European Committee for Standardizations [2] and specifically, the

‘‘Official Guide to Good Practice in Knowledge Management’’, ‘‘knowledge is the

combination of data/information with the opinions/skills/experience of experts,

which can be humans or computational systems and results in a valuable asset that

can be used to aid decision making’’.

On the other hand, despite the large recent research initiatives that target a more

flexible and automated resource management, current resource management is

rather manual and is quite static. Moreover, resources are planned based on the

worst case scenario, i.e., the most demanding scenario. However, network

technologies evolve and penetrate everyday life, while the users’ mobility increases.

The continuously changing environment often results in calling for reconfigurations

at various time scales. Thus, the dynamicity that the network should handle

increases as well. Additionally, dynamic resource planning, especially when

combined with autonomicity can reduce both the Capital Expenditure (CAPEX) and

the Operational Expenditure (OPEX). More specifically, dynamic resource planning

means that the system is capable of changing its parameters, e.g., transmit power, so

as to either expand its capacity and serve more users, when there is high load in an

area or to operate using less power when less users need to be served. Power levels

impact OPEX. Moreover, autonomicity in the reconfiguration of a network will

further reduce OPEX since less human resources are required. Finally, dynamically

configuring the network, based on real conditions minimizes the infrastructure

investments, which currently are often guided by the worst case scenarios and thus,

the CAPEX. Overall, dynamic resource planning of the network is a requirement for
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coping with the continuously changing environment and facilitates cost-efficient

solutions. Predictions of load that will be encountered in the network in the near or

distant future are expected to facilitate future dynamic network planning and

resource management, but they cannot be directly monitored. It needs to be

extracted from processing and/or combining proper unstructured data. In other

words, we will need to acquire knowledge about it.

Motivated by these two observations, this paper proposes a machine learning

based tool that exploits Big Data for building knowledge on network load and

predicting it. The motivation and the high level description of the problem are

summarized in Fig. 1. The tool is anticipated to enhance network management

procedures by guiding more dynamic network planning and compressing the

available data that need to be stored with the least possible loss of information. In

fact, the stored information should, and will, eventually be of higher interest to the

Network Operators (NOs). As a final result, the task of heavy data analysis that

provides insight into the NOs will be transferred from humans via manual processes

to an automated mechanism that is part of a larger system or framework.

The rest of the paper is structured as follow. Section 2 familiarizes the reader

with the problem and the directions needed to move closer to its solution. Section 3

analyzes how similar issues are currently treated as well as other initiatives in this

area. Moreover, Sect. 4 analyzes the proposed tool, i.e., the mechanisms that

comprise it, while Sect. 5 presents the data that were used and the obtained results.

Finally, the main conclusions of this paper and the future plans of this research are

summarized in the last section.

2 Problem Statement

This paper addresses 2 challenges:

Fig. 1 Motivation and high level problem statement
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1. the need for a mechanism that will analyze Big Data, build knowledge upon

them and decrease the data that will eventually need to be stored;

2. the need for short- and long-term predictions of network load in order to

enhance decision making mechanisms that dynamically plan the resources of

the network and manage it.

Towards this direction, the paper uses the unsupervised machine learning

technique of Self-Organizing Maps (SOMs) [3, 4] in order to build knowledge on

network load and reduce the storage requirements, i.e., the volume of the data that

will need to be stored. It also proposes a mechanism that exploits this knowledge to

predict network load in the near and distant future. SOMs, as defined by Kohonen,

receive multi-dimensional data, i.e., data that come from diverse sources and

clusters them based on their similarity. This clustering eventually allows the

mechanism to keep only some representative data and discard the rest without any

loss of information. A mechanism that exploits this knowledge to predict the load

that will be encountered in the near or distant future is proposed and validated.

In order to also support long term predictions of load, the mechanism builds

knowledge using not only network parameters but parameters coming from other

sources as well. In particular, network load patterns are expected to be related to the

area in which the network load is observed and shows the time, the day, the weather,

and the features of the days. For example, in southern countries the load in an

entertainment area will probably decrease on a rainy day as most people would

prefer staying at home rather than going outside. Moreover, user habits and thus,

load patterns may differ among countries, e.g., in northern countries, user

preferences for going out (in an entertainment area) may not be directly influenced

by the weather. Accordingly, load would be expected to decrease in business areas

during a weekend or a (bank) holiday while load in domestic or entertainment areas

would most likely increase in similar cases. The above statements/examples are

only qualitative estimations and do not necessarily apply in all cases. Therefore,

more quantitative study and validation is needed to also facilitate the use of the

predictions in dynamic network management and resource planning.

In a nutshell, this paper proposes a tool that is capable of (a) using Big Data in

terms of collecting and processing past observations/measurements of diverse

sources; (b) building knowledge on the network load that is observed with respect to

the past observations; (c) exploiting the knowledge obtained so as to predict the

network load under predefined conditions; and thus, (d) offering insights into

decision making mechanisms, which are responsible for dynamically managing

network resources and guiding potential reconfigurations of the network.

3 Related Work

The availability of large amounts of unstructured data, which come from various

sources and change quickly, are regularly referred to as Big Data and, although data

often seem irrelevant to each other, researchers see much potential in exploiting and

combining them so as to derive high level information and new insights for the

J Netw Syst Manage (2014) 22:150–173 153

123



business world. Easier access to them through the Web facilitates the research

towards this direction. Two website examples that host such free datasets for

exploitation and/or exploration are Amazon and Data.gov, a Web site that was

initiated in 2009 in Washington and makes all kind of government data accessible to

the public. Examples that combine data for inferring useful information have

already been recorded in areas involving computers and electronic products, as well

as finance, insurance, and government [1] while initiatives have also shown up.

A Big Data R&D Initiative was announced in March 2012 in the US [5, 6]. The

initiative commits more than $200 million in new funding for enhancing the ability

of building knowledge that provides insight from Big Data in sectors such as

science, engineering, health, geology, and national security.

Big Data also raises concerns on the manner in which all these unstructured data

can be managed and processed. Towards this direction, core technologies are

needed to collect, store, preserve, manage, analyze, and share them. In other words,

Big Data requires exceptional technology to efficiently process large quantities of

data within tolerable timeframes.

Although, Big Data analytics can be done with the software tools commonly used

as part of the advanced analytics’ disciplines, such as predictive analytics and data

mining, the unstructured data sources used for Big Data analytics may not fit in

traditional data warehouses. Furthermore, traditional data warehouses may not be

able to handle the processing demands posed by Big Data. As a result, a new class of

Big Data technology has emerged and is being used involving technologies such as

NoSQL databases, Hadoop, MapReduce, in-memory databases [7, 8] and HPCC

Systems from LexisNexis [9]. The McKinsey report in 2011 [10] suggests that the

involved technology should also include A/B testing, association rule learning,

classification, cluster analysis, crowd sourcing, data fusion and integration,

ensemble learning, genetic algorithms, machine learning, natural language

processing, neural networks, pattern recognition, predictive modeling, regression,

sentiment analysis, signal processing, supervised and unsupervised learning,

simulation, time series analysis and visualization. In particular, advances in

machine learning, data mining, and visualization are often mentioned when

referring to Big Data issues and envisaged to enable new ways of extracting useful

information and knowledge in a timely fashion from the available massive data sets

and thus, complement and extend existing methods of hypothesis testing and

statistical inference.

Towards this direction, a SOM seems to be a very good candidate, since it is an

unsupervised machine learning technique that clusters and mines multi-dimensional

data by mapping them on a 2D-map according to their similarity. The main

contribution of this paper is the application, testing, and validation of a SOM to

manage and analyze Big Data. Moreover, the study will focus on the problem of

network load prediction, i.e., the data that will be selected will be related to this

issue.

Research regarding load prediction can also be found in the literature. Indicative

studies that have been conducted in this area are analyzed in [11–13], and [14]. The

authors in [11] present a technique that is based on time-series theory and

hierarchical clustering for predicting the network load. The input parameters that
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define each flow are the source and the destination IP and the source and destination

ports. Ref. [12] focuses on the network load that is observed in IEEE 802.11 based

infrastructures. It proposes and evaluates several traffic forecasting algorithms based

on various traffic models that employ periodicity, traffic history, and flow-related

information. Moreover [13], proposes a mechanism for predicting load in highly

dynamic distributed online games and compares it to other approaches. The input

used for each subarea in this prediction mechanism can also be monitored by the

network and is the entity count at equidistant past intervals. This parameter is

exploited by the mechanism so as to identify the entity count at the next time step.

In [14], the Seasonal AutoRegressive Integrated Moving Average (SARIMA)

process is proposed for modeling the traffic of a network in terms of the number of

bytes passing through the observed link during the time interval. Exploiting its

capability of Kalman recursions, the mechanism can eventually predict the bytes

that will be encountered in the future but it is based on the fact that the network load

repeatedly follows the same pattern without being influenced by factors other than

the time. All of these mechanisms, apart from [14], base their knowledge and their

functions on network observable parameters. This means that their prediction is

rather short-term, e.g., they cannot predict the load in the next month, and this

leaves little time for the system to react, e.g., be reconfigured. In this context, the

main contribution of this paper is that it is the first study that combines so many

phenomenally unrelated, more human oriented Big Data such as the area, the date,

the weather, and the features of the date in order to provide long-term predictions as

well.

Studies that are considered to be closely related to load prediction are those

which deal with congestion prediction and/or avoidance. For example, the

mechanism proposed in [15] predicts how close to congestion a link will be in

the next timestamp. In order to do so, the proposed mechanism is also based on

SOMs and builds knowledge with respect to network monitored data, the current

load, and its trend for the last interval. Accordingly, [16] proposes a mechanism that

predicts congestion of Asynchronous Transfer Mode (ATM) networks. The

mechanism is based on Rough-Fuzzy Neural Networks (RFNN) and is capable of

learning and estimating the arriving flow feature, i.e., the total bytes that arrive to

the node in an interval. Finally, it predicts if congestion is to be encountered by

combining this information with (a) the node buffer, (b) the interval, and (c) the

queue size. The Kalman Congestion Avoidance (KACA) scheme for traffic and

congestion management that is applied in ATM networks is presented in [17]. In the

same study, the KACA scheme is also qualitatively compared to two more schemes,

namely the Ohio State University (OSU) scheme and the Dynamic-Congestion

Avoidance using Proportional Control (D-CAPC) scheme. However, not even these

studies are time and/or spatially oriented.

Load prediction schemes and tools based on time and space can be found in the

literature from the field of power electrics. Authors in [18] based on the weather, the

day, the time, and the electric load of the past days make short-term predictions of

the electric load. Two techniques are exploited for developing two different

mechanisms for predicting the electric load. These are the Multilayer Perceptron

Neural Network (MLP) and the SOM. The comparison of the two mechanisms
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reveals a similar performance. Ref. [19] also targets the forecast of the daily energy

load. In this case, the parameter of the date being a holiday (or not) is also taken into

account. As a result, the year, month, day of the month, day of the week, if it is a

holiday or not, and the load in Megawatts (MW) consumed are what compose the

historical data that are exploited as input for the predictions of the mechanism.

This last study, presented in [19], is the closest in terms of used parameters to the

study that is presented hereafter. The most related study, in terms of input

parameters from the area of telecommunication networks, can be found in [20]. This

study focuses on the self-optimization of networks. The proposed mechanism uses

clustering techniques for learning and recognizing characteristic patterns, e.g.,

traffic patterns, performance parameter patterns, and/or configuration parameter

patterns, for one or more sites and/or cells of the network given the time of the day,

the day of the week, and the geographical area. Accordingly, the network element

that is involved is automatically auto-configured for the duration and/or geograph-

ical areas defined by the cluster from which the pattern originates.

4 The Tool

The proposed tool is divided into two phases consisting of one mechanism for each

(Fig. 2) and is tested on a network of Wi-Fi hotspots. During the first phase, the

mechanism collects observations/data with respect to the observed network load, the

Wi-Fi hotspot, the timestamp, the weather, and the selected feature of the day. The

following parameters are used as input: (i) the area/access point (AP0, AP7, AP8,

AP37, AP64 or AP66) expressed in a 6D variable that consists of 0 and 1 s

depending on the access point from which the observation was received, e.g.,

100000 for AP0 or 001000 for AP8; (ii) the time expressed in minutes

(0–1,440 min); (iii) the day (Sunday to Saturday) expressed in a 7D variable that

consists of 0 s and 1 s (similarly to the access points, e.g., 1000000 for Sunday or

0001000 for Wednesday); (iv) the week of the year expressed as an integer (1–52);

(v) the mean temperature of that day in Celsius; (vi) the precipitation of that day in

millimeters; (vii) (bank) holidays expressed in a boolean way (0 or 1); and (viii) the

observed load from the access point to the end users under these circumstances in

Mbps. These data are then processed/combined so as to transform to information of

interest for the NO, i.e.; to knowledge, with respect to the pattern that the load

exhibits at a given area in the period of time and to the environmental conditions

and the (bank) holidays.

Given the self-similarity nature of network traffic, i.e., the fact that the pattern

(when and how the load increases and/or decreases) slightly changes, learning the

pattern is expected to offer insights into the load to be encountered in the future

(near or distant) at this area. In particular, this knowledge becomes available and is

provided to the NO when the latter triggers the second mechanism, i.e., the proposed

load prediction mechanism, through a request that specifies (i) the area/access point,

(ii) the time, (iii) the day, (iv) the week of the year, (v) the expected mean

temperature, (vi) the expected precipitation, and (vii) if the day of interest is going

to be a holiday or not. Alternatively, the trigger could include only the area/access

156 J Netw Syst Manage (2014) 22:150–173

123



point, the time and the date, leaving the rest of the information to be completed by a

preprocessing module that would receive them from e.g., a calendar RSS feed.

Consequently, the load prediction mechanism that uses the knowledge on the

traffic pattern of all the areas with respect to the time and the considered parameters

is able to predict the network load. These predictions are returned to the NO

expressed in Mbps and followed by a percentage that designates the certainty of the

mechanism with respect to this prediction, i.e., the probability of being correct.

Sections 4.1 and 4.2 present the two mechanisms of the tool, i.e.,

(a) the knowledge building and data minimization mechanism, which is capable of

handling large amounts of data coming from long time-windows, i.e., multiple

months and diverse sources and which derives useful and meaningful, higher

level information regarding the load of the network; and

(b) the learning-based mechanism for a load prediction mechanism that will

predict the load in the future and provide the NOs with such an insight.

4.1 Knowledge Building and Data Minimization

In order to build knowledge from the past experience of the network and not only

from its current state, this mechanism needs to include a machine learning

technique. The selected technique in this study is the unsupervised neural network

called the Self-Organizing Map (SOM).

Fig. 2 Phase 1 (upper part of the figure): building knowledge on the pattern of the load; Phase 2 (lower
part of the figure): use of the built knowledge for predicting the load

J Netw Syst Manage (2014) 22:150–173 157

123



As a technique based on neural networks, SOM mimics how human perception

functions and thus, it is expected to be an adequate substitute for human processes.

On the other hand, the term ‘unsupervised’ characterizes those learning techniques

that do not require the desired output of the algorithm or a reward when coming to

the right conclusion/correct action during their training; i.e., during the process of

identifying the pattern of the data. Thus, using this unsupervised technique provides

us with the advantage of not needing the network load that will be encountered

when trained. However, it will need the network load that it encountered in the past

under a similar context, e.g., at the same access point, time, day, week, temperature,

precipitation, and occasion of having a (bank) holiday or not. The training of such

techniques and the SOM in particular are thus more flexible and necessary so that

the training data can be collected much easier.

The technique was first proposed by Kohonen [3] back in 1997 [4] and is capable

of mapping multi-dimensional data, known in SOM theory as data samples on 2D

maps. One of the main advantages of a SOM is the fact that this representation is

made in such a way that the distance, in terms of difference, between the different

data samples can actually be maintained after their representation on the 2D map. In

particular, the data are mapped through a process where the more similar the data

are, the closer the elements of the map (known as cells of the map) to which they are

assigned. The way that the data are mapped is actually the training process of the

technique.

In the context of this paper, the dimensions of the data are 19 and comprise 6

dimensions for the area/access point, 1 for the time, 7 for the day, 1 for the week, 1

for the mean temperature, 1 for the precipitation, 1 for holidays and 1 for the load.

The analysis of these dimensions is summarized in Table 1.

The steps of the training of the map are depicted in Fig. 3 and are as follows: (1)

the map is initialized, i.e., each of its elements/cells is represented by a vector that is

comprised of as many components as the dimensions of the data; (2) each data

sample is also expressed as a vector with weights that are equal to the values of the

dimensions of the data sample and is mapped on the cell whose vector is closest to it

when using Euclidean distance; (3) the most important part is that the vectors of the

Table 1 Summary of the input

variables, their dimensions, and

the parameters

Variable Dimensions Parameters

Access point 6 AP0, AP7, AP8,

AP37, AP64, AP66

Time 1 T

Day 7 Sun, Mon, Tues,

Wed, Thur, Fr, Sat

Week of the year 1 WoY

Mean temperature 1 MT

Precipitation 1 P

Holiday 1 H

Load 1 L
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data that are inserted into the training process of the map, also influence the weights

of the map (cells) vectors as to adjust them closer to their weights; (4) the end of the

training process finds the map complemented with the multi-dimensional data and

split into clusters since the distance between the data samples is now represented by

the distance between the cells of the map. This is also the reason why this technique

is very popular not only as a representation/visualization one but as a clustering

technique as well. It should be noted here that, although the total number of

parameters that were used for each data sample is 19, only 18 of them were used for

the creation of the clusters and the knowledge building, i.e., the components of the

vectors were only 18. The measurements of the load (19th parameter/dimension)

have been incorporated in the data sample only to be used later during the load

prediction.

The exact learning technique that was used was not originally introduced by

Kohonen in [3, 4]. The growing [21], the parameterless [22], the hierarchical SOMs

[23] and their hybrids [24, 25] are more automated versions of a SOM in terms of

not requiring that the user defines the value of so many algorithmic parameters. In

particular, a growing SOM enables the map to adjust its size according to its needs

for better organizing the data. A parameterless SOM provides flexibility to the map

by not demanding that the user specify the number of map cells that will be affected

by new training data, i.e., data used for the training, but deciding its own best option

while a hierarchical SOM grows in interacting layers allowing better maintenance of

the information incorporated in the multiplicity of the data. The mechanism

proposed in this paper is based on a hybrid of these versions, namely the

Parameterless Growing SOM (PLGSOM) as defined in [25], i.e., a version that is

capable of adjusting both its size and its learning parameters. This occurs in order to

Fig. 3 Overview of the SOM technique
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enhance its performance and to allow the use of the technique without requiring a

priori knowledge of the data set that will be used and/or human intervention to test

and specify the optimal value of the algorithmic parameters. The less the parameters

that need to be tuned, the more self-adaptable the technique. In this context, a

parameterless growing SOM is more appropriate for online learning mechanisms in

self-adaptive/autonomic systems, like the ones envisaged for future networks. Here,

it is used for building the knowledge that is represented by a map similar to the one

in the final phase of Fig. 3.

In addition to this, and in order to verify the improved performance of the

PLGSOM compared to the parameterless SOM, their performances were tested

using the same data sets and comparing one to the other. The performance metric

that was used is the Mean Square Error (MSE). In an indicative test case, the MSE

when using the PLGSOM was equal to 0.000553 while in the case of the

parameterless, the MSE was equal to 0.000563. This shows that the PLGSOM

performs even better than parameterless SOM.

4.2 Learning-Based Mechanism for Load Prediction

As explained in Sect. 4.1, the SOM technique is used to build the knowledge on the

load that is observed with respect to the geographical area, the time, the day, the

week, the mean temperature, the precipitation, and the (bank) holidays. The load

prediction is made based on this knowledge. In particular, the prediction is based on

the fact that when mapping new data samples on the designed map, the new data

sample is expected to be mapped among similar ones. Thus, knowing the load that

was observed with those data samples, one can safely predict the load that is related

to the new data sample. More precisely, the predicted value of the load is considered

as equal to the mean value of the loads that have been mapped on the specific cell

where the new data sample was mapped. In order for this to be accomplished, the

load prediction requests should be in the form of a message consisting of similar

input parameters to those used during the training of the map.

Moreover, the load prediction is followed by a percentage C that designates the

certainty of the mechanism with respect to this prediction, i.e., the probability of

being correct. This percentage is calculated by (1), where r and DL are the standard

deviation and the range of the loads that have been mapped on the cell on which the

data sample in question was mapped, respectively.

C ¼ 1� r
DL=2

� �
ð1Þ

This percentage can also be used as a trust metric, i.e., as a metric of moving

forward with or without this prediction. For example, if a network operator received

an answer of the form (10, 99 %) that would inform him that the load for this

context will be 10 Mbps with a certainty of 99 %, then he would most probably

move forward with this prediction. On the other hand, if he received an answer like

(100000, 40 %), which informs him that the mechanism predicts a 100 Gbps load

but is only 40 % sure of this prediction, then the network operator probably would

decide to avoid any reconfiguration as he is not that sure of this prediction.
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Additionally, the mechanism is capable of providing insight with respect to the

future load of an area either in a time period equal to the observation interval time or

for longer time periods by calculating the average of the network load for them. In

other words, the request includes the following parameters: (i) the area/access point

in question AP; (ii) the time period in question (T0—first minute of the period and

Tf—last minute of the period); (iii) the day in question—DayID; (iv) the week of the

year in question—WoY, e.g., 28th week of the year; (v) the expected temperature of

that day—T; (vi) the expected precipitation—P; and (vii) if it is going to be a

holiday or not—H. Thus, the request will be formed as LInitReq(AP, T0, Tf, DayID,

WoY, T, P, H).

This request (from now on called initial request) is then broken into more

requests, equal to the number of times that the time interval of the observations fits

in the requested period. For example, if the period is 1 h and the time interval is

15 min, then the initial request is split in 4 new requests. These requests, consisting

of (i) the area/access point in question—AP, (ii) the time in question—tk, (iii) the

day in question—DayID, (iv) the week of the year in question—WoY, (v) the

expected temperature of that day—T, (vi) the expected precipitation—P, and (vii) if

it is going to be a holiday or not—H are formed as LReq(AP, tk, DayID, WoY, T, P,

H), and are mapped on the created SOM. The load of each request is equal to the

mean value of the loads that had been mapped on the specific cell during the

knowledge building phase.

Thus, the SOM will return the load prediction Ln in Mbps and the probability of

being correct is the mechanism of this prediction in percentage Cn through equal (in

the number) responses of the form LRes(AP, tk, DayID, WoY, T, P, H, Ln, Pn).

Finally, the mechanism responds to the request by sending back an aggregated

response that consists of (i) the area/access point—AP; (ii) the day—DayID; (iii) the

week of the year—WoY; (iv) the expected temperature of that day—T; (v) the

expected precipitation—P; (vi) if it is going to be a holiday or not—H; (v) the first

minute T1,0 and the last minute T1,f of the 1st sub-period of the time period in

question which is comprised of minutes with an equal load; (vi) the load prediction

of this sub-period L1; (vii) how certain the mechanism is of this prediction C1; (viii)

the first minute T2,0 and the last minute T2,f of the 2nd sub-period of the time period

in question; (ix) the load prediction of this sub-period L2; (x) how certain the

mechanism is of this prediction C2, etc., i.e., the final response is in the form of

LFinRes(AP, DayID, WoY, T, P, H, T1,0, T1,f,L1, C1, T2,0, T2,f, L2, C2, …, Tn,0, Tn,f,

Ln, Cn).

The above described process with an indicative example is depicted in Fig. 4.

According to the example, let’s assume that the initial request was ‘‘what will the

load be at AP0 (100000) during the period that starts from the 480th minute of the

day and ends at the 600th min of the day, on Monday (0100000), the 28th week of

the year given the fact that the temperature will be 30 �C, it won’t rain, and will not

be a holiday?’’. Thus, the request would be LInitReq(100000, 480, 600, 0100000,

28, 30, 0, 0). The mechanism will split this initial request in 8 new requests, one for

each time that the interval time (15 min) fits in the time period of 120 min, i.e., will

split the initial request to 8 new ones of the form LReq(100000, 480 \ tk \ 600,

0100000, 28, 30, 0, 0) and map them. For each such request, the SOM will send a
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response similar to LRes(100000, 480 \ tk \ 600, 0100000, 28, 30, 0, 0, 10, 90).

Finally, assuming that the load level prediction will be 10 Mbps for the period

480–570 with a certainty of 90 % and 130 Mbps for the period 570–600 with a

certainty of 80 %, the mechanism will respond to the request with the following

aggregated response: LFinRes(100000, 0100000, 28, 30, 0, 0, 480, 570, 10, 90, 570,

600, 130, 80).

5 Validation of the Tool

This section presents the way the tool was validated. Towards this direction, the

used data and the required pre-processing process is explained in Sect. 5.1 while the

results from the tests are analyzed in Sect. 5.2.

5.1 Data and Data Pre-processing

The data used for the research were retrieved from the CRAWDAD database [26].

In particular, the retrieved dataset refers to user session traces that were collected

from a large number of Wi-Fi hotspots of ‘‘Île sans fil’’ [27] in Montréal, Québec,

Canada for 3 years. The used trace [28] contains 587782 user sessions for 69689

(distinct) users, which were collected from 206 hotspots for the time period from

August 28th, 2004 up to August 28th, 2007.

From this trace, the timestamp, the incoming bytes, and the access point ID of

the entries that were related to the 6 access points with the highest load were

exploited. Those access points were the AP0, AP7, AP8, AP37, AP64 and AP66.

These data were then pre-processed so that (a) the timestamp to be translated into

the minute of the day, the day (expressed as a 7D variable) and the week of the

year; (b) the interval between the entries to be equal to 15 min; and (c) the access

point ID to become a 6D variable. Let us note here that both the day and the access

Fig. 4 Load prediction mechanism: an example: a a long request is treated as many ‘‘15-min’’ requests,
which are then, b aggregated in one ‘‘Final’’ response
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point IDs have to be expressed as 7D and 6D variables, respectively, so as to be

processed correctly by the SOM. The SOM technique is very much based on the

Euclidean distance between the data. Thus, if the days were only numerically

identified, e.g., 1 for Sunday, 2 for Monday, 3 for Tuesday, etc., the SOM would

misinterpret their distance for a sign of more or less similar load patterns among the

days. Thus, it would suppose that e.g., Monday’s observed load pattern is more

similar to Tuesday’s than it is to Friday’s (since Monday–Tuesday Euclidean

distance would be equal to 1 and Monday–Friday Euclidean distance would be

equal to 4), which is something that cannot be assumed, nor can it be assumed that

there is a linear relationship between days of the week (1 through 7) and the

observed network load. Using the 7D variable for the day, the Euclidean distance

among them (no matter what the days are) is equal to H2. The same applies for the

IDs of the access points.

Moreover, the data had to be complemented with weather and holidays. The

information related to the mean temperature and the precipitation of each day from

August 24th, 2004 up to August 24th, 2007 for the area of Montréal, Québec,

Canada, i.e., the area where the access points are located, were retrieved from [29]

using the Montréal-Pierre Elliott Trudeau International Airport as a reference point

and a custom Java tool.

As soon as this was completed, for each load measurement there were data

designating (i) the access point from which the load measurement had been

monitored, (ii) the time, (iii) the day, (iv) the week of the year, (v) the temperature,

(vi) the precipitation during the day that the load was monitored and (vii) if that day

was a holiday or not.

Eventually, the data had to become normalized and to be in a format recognizable

by the SOM (Table 2). The latter means that the data had to be organized in data

samples each of which contained one value for each of the 8 variables (access point

ID, time, day, week of the year, temperature, precipitation, holidays and load

measurement).

To summarize, before performing the tests, a custom Java tool was used to pre-

process the data, i.e., to:

• Read the trace file from [28], extract the information of the timestamp, the AP

and the load, convert it in 1–7D variables and make the time interval of the

observations equal to 15 min;

• Retrieve the temperature and the precipitation of the area from [29] so as to

complement the observations;

• Retrieve from online calendars the (bank) holidays of the area;

• Normalize the values of the data; and

• Gather all the information in the form of data samples, i.e., in one file in which

each row (observation) had information for the 8 variables, which had 1–7

dimensions each (see also Table 2).

This file was the one that was inserted in the ‘‘Knowledge Building and Data

minimization mechanism’’ of Sect. 4.1 in order to train the PLGSOM and build

knowledge on the network load.
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5.2 Results

This section summarizes the results that were obtained during the evaluation of the

performance of the mechanism. Three types of results are provided (a) qualitative

results, (b) quantitative results, and (c) results with respect to the efficiency of the

tool to address some of the issues related to the Big Data management. The section

concludes with the comparison of the results obtained from this scenario and the

results obtained from other scenarios.

For both the qualitative and the quantitative results, knowledge on the load had

been built using the ‘‘Knowledge Building and Data Minimization’’ mechanisms

of Sect. 4.1 and the load prediction requests were sent to the ‘‘Learning-based

Mechanism for Load Prediction’’ of Sect. 4.2. The latter returned the load

predictions that were then compared to the real observed values from the dataset.

The qualitative results were obtained in the form of comparative diagrams for

each prediction while in the case of the quantitative results, 3 different error

metrics were used for increasing the probability of finding similar error metrics in

other studies and thus making the study comparable to them. Those are (a) the

Mean Square Error (MSE), (b) the Root Mean Square Error (RMSE), and (c) the

Mean Absolute Error (MAE). Moreover, for both the qualitative and the

quantitative results two types of tests were performed 1. those that used the

same data for both building the knowledge and for the validation of the proposed

tool, and 2. those that used different data for the two functions/processes. The

main difference between them is lying in the fact that in the first case, the tool has

‘‘seen’’ the exact same data and thus has the specific experience while in the

second case, the tool is familiar with similar, but not the same data; i.e., has

similar experiences from which it will try to reach the safest conclusions it can

and predict the future load.

5.2.1 Qualitative Results

The qualitative results refer to comparative diagrams between the predicted and the

real load values. Figure 5 depicts examples for each access point for (a) seen and

(b) unseen evaluation data, respectively.

As it can be observed from the comparative diagrams of the figure in both types

of tests, although the mechanism has learn the pattern of the load, i.e., when there is

a load, it fails to predict some of its peaks. This may be caused by unpredictable

events that suddenly attract (with no prior similar experience) more users, e.g., the

place where the access point is hosted became more popular for some reason, e.g.,

openings of a new coffee shop next to it, or the access point next to it stopped

working and thus all users are now connected on it.

These are events that are not captured by any of the selected variables and thus

the mechanism cannot learn them or predict them. A potential solution towards

this direction that will be considered in the future is to offer the operator or the

user of the mechanism the opportunity of informing the mechanism of such a

change. Alternatively, a more autonomic solution would be to add a feedback loop
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to the mechanism that would inform it about the difference between the prediction

and the actual load, as part of online knowledge building. This would then insert a

correction factor that would re-adjust the learned pattern. This last solution would

probably benefit the results of the used dataset a lot where the network load seems

to increase a lot each year. Figure 6 captures the changes of the network load of

one of the access points, namely the AP0, over the years.

5.2.2 Quantitative Results

Table 3 summarizes some indicative tests and their respective quantitative results.

In the table, the data that were used for knowledge building are referred to as

training data while those used for the evaluation of the mechanism are named

evaluation data. Moreover, the table also points out the size of the map, measured in

cells, which in the case of growing the SOM also represents how adjusted the map is

to the training data.

Additionally, for the purposes of the evaluation of the mechanism, the initial

dataset was split in three sub-datasets: (a) Y1 which refers to the dates from August

28th, 2004 up to August 28th, 2005, (b) Y2 involving data from August 28th, 2005

up to August 28th, 2006, and (c) Y3 which expands from August 28th, 2006 up to

August 28th, 2007. For each of the created maps (1–3) two tests have been

performed, one using the training data for the evaluation as well (1b, 2b, and 3b) and

one having different training and evaluation data (1a, 2a, and 3a).

Fig. 6 Diagram of the network load of AP0 for the 24th week of the years 2005, 2006 and 2007
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Comparing the results presented in the table, it must be noticed that the

mechanism performs significantly better when the trigger refers to a case that has

already been ‘‘seen’’ by the SOM. This observation was expected and that is also

one more reason why online training has been considered.

Another useful observation is the fact that when only Y2 was used for building

the knowledge (cases 2a and 2b); the performance of the mechanism deteriorates.

This test was selected mainly for identifying if observations older than 1 year

deteriorate the performance of the mechanism. According to the obtained results, it

seems that older observations not only don’t deteriorate the performance of the

mechanism but they even enhance it. This is probably due to the fact that when

using data only from Y2, less data have contributed to the knowledge building and

thus, the SOM is familiar with fewer combinations of the involved variables.

The last observation, which comes from the comparison of 3a and 3b with 1a and

1b, respectively is that smaller maps result in better performance of the mechanism

when the evaluation data differ from the training data and worse performance when

the same data are used for both knowledge building and the evaluation. This is

related to the fact that the bigger the map is, the more adjusted to the training data it

becomes. In machine learning, this is also known as overtraining, which eventually

results in the learning technique being unable to generalize well. For avoiding such

cases, the performance of the technique between all the test cases (i.e., with seen or

unseen data) should be kept as close as it gets. Thus, the best performance of the

mechanism among the 3 presented in the table is considered to be the one using the

3rd map. Figure 7a depicts this map while Fig. 7b–g depict the component maps of

the access points and the days, the holidays, the time, the week of the year, the

temperature and the precipitation, respectively.

5.2.3 Results with Respect to the Big Data Issues

According to the SOM theory (see also Sect. 4.1 and [3, 4]), the SOM maps multi-

dimensional data onto 2D maps. This means that the dimensions of the data

decrease from many to 2. Moreover, the training of the SOM results in the formation

of clusters. Given the fact that the data (samples) that comprise the clusters are

similar to each other, each cluster can be represented by only one data sample

without any loss of information. Thus, storing only one data sample per cluster is

enough to maintain the information; the rest can be discarded.

Table 3 Quantitative results

Training data Map size Evaluation data MSE RMSE MAE

1a Y1 & Y2 3,465 Y3 0.000557 0.023607 0.007925

1b Y1 & Y2 3,465 Y1–Y2 0.000181 0.013469 0.005442

2a Y2 2,695 Y3 0.000578 0.024048 0.009601

2b Y2 2,695 Y2 0.000277 0.016655 0.007579

3a Y1 & Y2 928 Y3 0.000553 0.023517 0.007925

3b Y1 & Y2 928 Y1–Y2 0.000191 0.013817 0.005768
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In other words, using a SOM is expected to enhance Big Data management in

terms of (a) handling data from different sources, composing and treating them as

data samples; (b) decreasing the amount of data during the transition of multiple

dimensions to two when representing the multi-dimensional data on 2D maps; and

(c) decreasing the storing requirements since a representative sample of the data

(only the most informative instances, i.e., instances that are very different to the

currently observed ones) along with the clusters of the map are enough to maintain

all the information.

The data that were exploited for this research were initially 3,994,560 unstructured

numbers per year of the dataset. These data, during the pre-processing phase of the

mechanism were organized in data samples, i.e., were transformed in 3,994,560/

19 = 210,240 structured data of 19 dimensions each per year of observations. When

the information carried by these data samples was incorporated in the SOM of 928

cells, i.e., when the data were mapped on the SOM, the only data that needed to be

stored for maintaining all the information were the 928 vectors of the cells of the map.

Thus, the mechanism is capable of pre-processing and exploiting Big Data (in terms

of disparity). Moreover, the dimensions of the data can be reduced from 19 to 2 during

their visualization on the map. Last but not least, given the fact that the best performance

was received by the map that was created using the data of 2 years and its size was equal

Fig. 7 The map from which the best results were obtained from the a load, b access points and days,
c holidays, d time, e week of the year, f temperature and g precipitation points of view. The marked areas
in c refer to the holiday clusters while in d–f, and g the higher the value of the respective parameter, the
darker the area on which the data sample is mapped
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to 928 cells, the mechanism offers the capability of reducing the size of the data that need

to be stored from 2 9 210,240 = 420,480 to 928, i.e., approximately 453 times.

5.2.4 Comparison

Our first study related to the exploitation of Big Data and a SOM for predicting

network load tested the behavior of the Wi-Fi hotspots on a university campus with

respect to the time, the day, the area, the weather, and the load that had been

observed in the past. Using past observations of the network with respect to these

parameters, the mechanism learned the network behavior and was capable of

predicting the load that would be encountered given the time, the day, and the

weather conditions in which one is interested. Another scenario, where the data of

[28] are combined with information related only to (bank) holidays has also been

examined in the past. Therefore, in that scenario, the mechanism learned and

predicted the load under the context of the access point, the time, the day, the week,

and the holidays. Eventually, the scenario examined in this paper combines all the

parameters considered in the other 2 scenarios aiming to take into account more

variables that may influence the network load. This section compares these 3

scenarios in order to reach valuable conclusions with respect to the most efficient

combination of variables that can predict the network load.

To begin with, Table 4 summarizes the best obtained results from the 3 scenarios

in the case of unseen data in terms of denormalized MAE.

According to the table, the best results were obtained when apart from the main

parameters, i.e., the area, the time, the day, and the load, only weather was taken into

account. However, as the datasets used in the first scenario (main parame-

ters ? weather conditions) and the last 2 scenarios were different, the outcome

needs to be re-validated with the same dataset for all three scenarios. Moreover, user

preferences may not be equally influenced in all geographical areas by all these

factors, e.g., in northern cities/countries, the users’ intention to use the network may

be less influenced by an upcoming (bank) holiday than in southern cities/countries.

6 Conclusions

One challenge in the area of Big Data is the design of mechanisms that can derive

meaningful, as well as useful information for the stakeholders or other intermediate

systems and mechanisms in an efficient and automated fashion. Often, another

challenge is the storage of such data which, depending on their volume, might be

Table 4 Summary of the

results obtained from the three

scenarios

Study Denormalized MAE

(Mbps)

Main parameters ? weather conditions 1.198

Main parameters ? (bank) holidays 25.652

All parameters (current paper) 26.030
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prohibitive. In the latter case, the effective removal of redundancy (i.e., compres-

sion) either lossy or lossless depending on the problem is a solution.

Regarding telecommunication networks, huge amounts of data can be collected

when, for instance, traffic-related parameters are measured on a high granularity, for

long time periods and for multiple nodes. The NO is then forced to maintain

measurements in a certain time-window and discard the ones that fall out of it.

As a result, network operators may collect large amounts of historical data related

to the load of the network that need to get organized in less data while maintaining

or even augmenting/enhancing the quality of the information. In other words, they

need to be transformed in higher level information and thus, become more easily

usable by the network operators.

This paper proposed a mechanism that clusters such data with respect to the area,

the time, the day, the week of the year, the mean temperature, the precipitation, and

information regarding the (bank) holidays in order to minimize their volume with no

loss of their information. The mechanism utilizes the data and builds knowledge

upon them with respect to their relation to each other, e.g., how does the day of the

week influence the network load? The built knowledge is then exploited by a second

mechanism in order to predict/infer the load that will be required from the users in

the future at a specific area.

The evaluation of the tool that combines qualitative and quantitative results and

results with respect to the management of Big Data revealed that the proposed tool

is capable of learning the traffic pattern with deviations up to 0.000553 in terms of

MSE while it reduces data up to 453 times.
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