
Cost-Effective Feature Placement of Customizable
Multi-Tenant Applications in the Cloud

Hendrik Moens • Eddy Truyen • Stefan Walraven •

Wouter Joosen • Bart Dhoedt • Filip De Turck

Received: 7 May 2012 / Revised: 14 January 2013 / Accepted: 21 January 2013 /

Published online: 3 February 2013

� Springer Science+Business Media New York 2013

Abstract Cloud computing technologies can be used to more flexibly provision

application resources. By exploiting multi-tenancy, instances can be shared between

users, lowering the cost of providing applications. A weakness of current cloud

offerings however, is the difficulty of creating customizable applications that retain

these advantages. In this article, we define a feature-based cloud resource man-

agement model, making use of Software Product Line Engineering techniques,

where applications are composed of feature instances using a service-oriented

architecture. We focus on how resources can be allocated in a cost-effective way

within this model, a problem which we refer to as the feature placement problem. A

formal description of this problem, that can be used to allocate resources in a cost-

effective way, is provided. We take both the cost of failure to place features, and the

cost of using servers into account, making it possible to take energy costs or the cost

of public cloud infrastructure into consideration during the placement calculation.

Four algorithms that can be used to solve the feature placement problem are defined.

We evaluate the algorithm solutions, comparing them with the optimal solution

determined using an integer linear problem solver, and evaluating the execution

times of the algorithms, making use of both generated inputs and a use case based

on three applications. We show that, using our approach a higher degree of multi-

tenancy can be achieved, and that for the considered scenarios, taking the rela-

tionships between features into account and using application-oriented placement

performs 25–40 % better than a purely feature-oriented placement.

H. Moens (&) � B. Dhoedt � F. De Turck

Department of Information Technology, iMinds-Ghent University, Gaston Crommenlaan 8/201,

9050 Ghent, Belgium

e-mail: hendrik.moens@intec.ugent.be

E. Truyen � S. Walraven � W. Joosen

DistriNet Research Group, Department of Computer Science, iMinds-Katholieke Universiteit

Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

123

J Netw Syst Manage (2014) 22:517–558

DOI 10.1007/s10922-013-9265-5

Keywords Distributed computing � Cloud computing � SPLE � Application

placement

1 Introduction

In recent years, there has been an increasing interest in cloud computing [1]. By

moving applications to cloud platforms, and making use of multi-tenancy, where

multiple end users utilize the same application instances and hardware, adminis-

trators can consolidate hardware and save costs. Cloud-hosted applications can also

react faster to sudden changes in demand. Different obstacles to the widespread

adoption of cloud computing do however still exist. One of the issues with

contemporary cloud Software as a Service (SaaS) offerings is that the applications

generally offer a one-size-fits-all package, with only limited customizability. Often

it is only possible to add minor changes using configuration changes. Software

customizability, where entirely separate code paths are executed in different

software versions, significantly changing the behavior of applications, is difficult to

add to SaaS applications.

Often, applications must however be tailored for specific customer needs,

offering similar but slightly differing functionality for different end users. The

CUSTOMSS [2] project seeks to create solutions to develop, deploy and manage

highly customizable software and services on multi-tenant cloud infrastructures, by

incorporating management of the variability of applications into the cloud platform

itself. Within the project we focus on applications from three domains: (1)

document processing, in which large batches of documents are processed and

managed using a web interface; (2) medical information management, where

medical data and patient information are stored and processed; and (3) medical

communication systems, where communication between patients and nurses is

coordinated based on a management system using advanced ontologies. While we

focus our evaluation on these three use cases, the presented approach could be

applied to all cloud-based applications that require high variability, provided the

applications can be split into interacting components. The techniques can either be

applied on top of an Infrastructure as a Service (IaaS) or Platform as a Service

(PaaS) platform, or can be integrated into existing PaaS platforms. In this article, we

will discuss how customizable multi-tenant applications can be managed by a cloud

platform.

Software Product Line Engineering (SPLE) [3] concepts are often used to

develop customizable applications. In this approach, the software is modeled as a

collection of features. By selecting and deselecting features, different software

variants can be created. Features themselves are organized by relating them to each

other in a feature model. These techniques can however not easily be adapted to a

cloud context, as most approaches in SPLE focus on the development of statically

configured products, where changes are compiled into the application. In this

approach, all variations are instantiated and compiled before a product is delivered

to customers and, once the decisions are made, it is difficult for users to alter them.

When used in a cloud context, this implies that every software variant would be an

518 J Netw Syst Manage (2014) 22:517–558

123

entirely separate application, making it impossible to use multi-tenancy where

instances are shared between users if these users do not use the same variant,

thereby greatly reducing the potential cost savings of a migration to the cloud.

An alternative approach [4], where the software is split up into sepnt feature

instances using a Service-Oriented Architecture (SOA), and where the individual

services are multi-tenant alleviates this shortcoming, but in this case, some services

risk being underutilized, especially if many features and variants exist. Furthermore,

as these services are dependent on each other, failure of a single service can result in

performance degradations for the entire application, which can not be taken into

account by current cloud resource allocation mechanisms.

By adding variability information to the applications running on a cloud

platform, and managing variability at this platform level, developing highly

customizable SaaS applications becomes easier. One very important functionality of

the platform, is to decide which applications are executed where. This is known as

the application placement problem [5, 6]. Current application placement techniques

are however inadequate for this purpose, as they do not take relationships between

services, introduced by variability modeling, into account. For our purposes, the

placement must take the variability of the managed applications into account,

ensuring all application components are allocated sufficient resources. Furthermore,

the cost of using servers for running applications must be taken into account as well,

as this makes it possible to either minimize the carbon footprint of the managed

cloud, or to reduce costs when part of the application is executed on public cloud

infrastructure. Within this article, we consider two costs: the cost of failing to

provision capacity for application components (determined e.g. by a service level

agreement) and the operational cost of using a server.

In this article, we focus on the design of algorithms for placing high-variability

applications on cloud infrastructure, extending the methods and evaluations from

our previous work [7], adding energy efficiency and server usage costs, and

incorporating relations between applications components. The applications are

composed from a set of multi-tenant feature instances using a SOA. For this purpose

we designed a variation of the application placement problem [8], which we refer to

as the feature placement problem. An overview is shown in Fig. 1. The resulting

feature placement determines which servers will execute which feature instances,

taking into account the datacenter server configuration, applications to be placed,

and the feature model of which the applications are instantiations. A single feature

instance is capable of serving multiple applications, ensuring applications composed

of a set of features are themselves multi-tenant. We address the following research

questions: (1) How can we define the feature placement problem, and what

information is required to define it? (2) How can the feature placement problem be

formally modeled? (3) Which algorithms can be designed to solve this problem in

an efficient way? and (4) Which performance is achieved by the algorithms

compared to the optimal solution, in terms of placement quality and execution

speed, and what is the impact of model parameters on the obtained performance?

The contribution of this article is two-fold: (1) we describe how SPLE techniques

can be combined with cloud application placement techniques to facilitate the

management of high-variability applications; and (2) we formally define the feature

J Netw Syst Manage (2014) 22:517–558 519

123

placement problem, define optimal and heuristic algorithms, and evaluate them. In

the next section, we will discuss related work. Afterwards, in Sect. 3 we explain the

feature modeling approach, and how it can be applied to cloud applications. We

then formally define the feature placement problem in Sect. 4. This is followed by

Sect. 5, where we outline different approaches to solve the placement problem. In

Sect. 6 we describe the set-up of the evaluation. Subsequently, in Sect. 7 we

evaluate the algorithms. Both the quality of the results of the algorithms, and their

execution speeds are discussed. Finally, Sect. 8 contains our conclusions.

2 Related Work

This work builds on two research areas: SPLE and feature-oriented application

development, and application placement.

2.1 Software Product Line Engineering

SPLE is used to manage the variability of applications, making it easier to build and

manage groups of similar applications, with different feature sets. Managing a

separate codebase for every software variant family would introduce a large

overhead. Instead, only a single codebase is used, in which the variability is

managed using SPLE techniques. Research has been done on configuration policies

and methodologies to support customizations of SaaS. In Zhang et al. [9], discuss a

policy-based framework for publishing customization options of web services and

building customizations on top of this, enabling clients to build their own

customizations. They however do not take multi-tenancy and runtime aspects into

account, nor do they propose a software development methodology to create the

customizable applications. Sun et al. [10] propose an approach choosing

Fig. 1 A schematic representation of the feature placement problem. Application instantiate a feature
model. Features instances are placed on physical servers and can be used by multiple applications

520 J Netw Syst Manage (2014) 22:517–558

123

configuration over customization to create modifiable applications, and propose a

software development methodology to develop such applications. We, by contrast,

focus on the customization aspect by using SPLE methods in combination with a

SOA development approach. In Mietzner et al. [4] an approach for modeling

customizable applications built using SOA is described. The application is linked to

a feature model, allowing automatic generation of deployment scripts. Our approach

is similar in its use of SOA in the proposed development approach. We however

focus on the resource allocation of customizable applications, proposing optimal

and heuristic algorithms to determine where to run specific features. Recent work in

the SPLE community [11–14] further progresses towards the development of

customizable SaaS applications, but mainly focuses on the design-time variability of

these applications, and not on their runtime management. Work on the dynamic

adaptation of SOA applications was conducted in [15], but it does not address how

these applications must be placed on physical infrastructure.

2.2 Application Placement

The application placement problem is used within clouds and clusters to determine

which services to execute on which servers, and has previously been formally

described [5, 6, 8, 16–18]. Many different approaches to application placement in

clouds have been developed over the recent years. Specific requirements have

however led to the creation of many extensions to the application placement

problem, each focusing on different parameters. Whalley and Steinder [19]

extended a Virtual Machine (VM) management system to take into account the

complexities of software licensing. In a similar way, Breitgand and Epstein [20]

added the consideration of Service Level Agreements (SLAs) to the placement

problem. The consideration of energy consumption and carbon emissions was added

in [21] using a system that works in parallel with existing datacenter brokering

systems. We extend the generic application placement problem formulation to place

the features of applications in a cloud environment. Our approach further differs

from the traditional application placement problem formulation and its variants, as

we consider an application to be a set of interacting services, and not just a single

service. By contrast to the existing work surrounding application placement, our

placement approach not only takes these services, but also the relations between

them into account during the placement calculation.

The algorithm we describe within this article has similarities with the linear

application placement algorithm described in [16]. Our work however adds the

concept of software variability. Furthermore, our application-based feature place-

ment algorithm aims to place all application components at once and adds a

backtracking phase to the algorithm if placement of an application fails, lowering

the cost of placements.

Energy efficiency and server usage costs are incorporated in an application

placement system in [22]. The authors however focus on the placement at a VM

level, while our approach focuses on managing multi-tenant applications where

multiple applications can make use of a single instance, meaning more fine-grained

control is needed. Furthermore, our algorithm also adds explicit support for software

J Netw Syst Manage (2014) 22:517–558 521

123

variability. This enables the management system to dynamically fill in undecided

variability, known as open variation points, at runtime.

In [23], the concept of application component placement is introduced, where

applications consisting of separate components are placed within datacenters, and

an integer linear programming algorithm to solve the problem is introduced. Our

approach similarly focuses on applications consisting of multiple components, but

we by contrast add support for multi-tenancy, making it possible for multiple

tenants to make use of individual application components. Additionally, we also

take relations between application components, modeled using SPLE, into account

during the placement.

We have previously discussed the runtime management of, and resource

allocation for highly customizable applications [7]. In this article we extend the

problem description, generalizing the inputs, and add a server use cost, ensuring

energy efficiency and hybrid cloud scenarios can be taken into account. We also

incorporate requirements that improve the problem applicability, ensuring the

algorithm can better handle scenarios where memory requirements increase when

the loads increase, and situations where features depend on each other to function.

We also present and evaluate an improved, application-centric placement algorithm

yielding more cost-effective resource allocations than the algorithms described in

our previous work

In literature, most application placement algorithms make use of specific

resources, usually taking into account CPU and memory limitations [5, 8, 24, 25],

application bandwidth requirements [26], or generalized load-dependent and load-

independent resources [27]. Our approach generalizes these inputs, as done in [27],

but goes further by allowing for the definition of multiple resources. This is

achieved by making use of concepts we previously described in [28], enabling the

management of high-variability applications with heterogeneous resource demands.

In [29, 30], a management system for services composed of multiple VMs is

presented. These works focus on the definition and deployment of composed cloud

services. Our work is complementary with this approach, as it focuses on the

relations between the different services using SPLE techniques and not on how

these relations are represented. We also focus on the physical location where the

instances are executed, rather than how they are deployed.

3 Feature Placement Concepts

Using SPLE, an application is modeled as a collection of features and relations

between these features. The features are then linked to actual code modules or

configuration files. Sometimes the inclusion of a feature can imply the inclusion or

exclusion of other features, which is represented using relations in the feature

model. A software variant can then be generated by selecting and excluding features

from this feature model.

To facilitate reasoning on these relations, feature models are often created in a

hierarchical fashion. Table 1 contains the different relation types, a description, a

graphical representation, based on the notation used in [31], and a formal notation

522 J Netw Syst Manage (2014) 22:517–558

123

which will be used later on in this article. An example feature model is shown in

Fig. 2. The figure shows an illustrative fragment of the feature model for a medical

data processing application. The application contains an interfacing engine feature

to connect to individual hospitals, which is capable of handling input in one or more

different formats. Additional encryption can optionally be added to the interfacing

engine. Finally, parts of the application can be hosted at the hospital or they can be

hosted by the application provider. An application created for a hospital using their

own datacenter and a hospital specific interface will differ significantly from the

application created for a hospital using public cloud infrastructure and a standard

medical data interface.

Table 1 Graphical representation of feature models, description of relations, and formal representation

Mandatory

If the parent is selected the child must be selected as well

Mandatory(fA, fB)

Mandatory(fA, fC)

Optional

If the parent is selected the optional children can be selected

Optional(fA, fB)

Optional(fA, fC)

Alternative

If the parent is selected exactly one of the child nodes must be selected

Alternative(fA, {fB, fC})

Or

If the parent is selected at least one of the child nodes must be selected

Or(fA, {fB, fC})

The nodes on the left are parent features, those on the right are child features

Fig. 2 A feature model fragment for a medical data processing application

J Netw Syst Manage (2014) 22:517–558 523

123

Sometimes a feature can be implemented by simply updating configuration files.

This could for example be changing the logo of an application. More complicated

changes can be created by adding code changes. The most complicated changes lead

to completely different modules being used by the applications. The first method is

variation by configuration, the latter two variation types are referred to as

customization [10]. In this article, we only consider customization, which leads to

the creation of applications that are different at the code level. Configuration-based

features can already be adapted into a cloud context using existing software

development techniques [10]. The feature models used further on in this article will

only contain features that cause changes at a code level in the deployed services.

The development of applications will be driven using the feature model, building

an application using a SOA, in which the individual services map to the different

features defined in the feature model. An example of this is shown in Fig. 3a.

Deploying the application then comes down to allocating feature instances and

connecting them either to each other or by using a coordinator component,

illustrated in Fig. 3b. To determine where these instances are placed, a feature

placement algorithm is used. We assume that the individual services are multi-

tenant and can serve multiple applications. In our use cases, the various feature

instances are developed, managed and tested by the platform provider, ensuring the

components can be trusted and that calls to a service respect the tenant resource

limits. This in turn minimizes performance interference between tenants which can

be caused by sharing a feature instance between different tenants. The allocation of

the different feature instances, taking into account relations as defined by the feature

model, is the main focus of this article. We assume the application has already been

split up into components, and that data isolation issues are resolved using existing

techniques [32, 33]. We also assume the performance of the various components has

been evaluated using performance models such as those in [34], possibly grouping

components that often communicate together to guarantee they are colocated, which

ensures good performance is achieved.

When configuring a SPLE application, part of the variability can be left

undecided, creating open variation points [4]. When two applications with different

feature configurations exist, and some have open variation points, this information

can be used to reduce the cost of the full placement. This makes it particularly

interesting to take these points into account during the placement of applications.

Fig. 3 Features are associated with code modules. Applications containing the features are created by
instantiating these features and linking them together. a Associating code modules with features.
b Deploying applications composed of feature instances

524 J Netw Syst Manage (2014) 22:517–558

123

An application with, e.g., regular availability requirements can use high availability

instances when such instances exist with remaining capacity, rather than creating

new instances with lower reliability, effectively lowering the total resource usage.

This is further illustrated in Fig. 4, where two applications are shown. The first

application uses Feature D, and the second application requires either Feature B, C,

or D. If the placement function is unaware of these open variation points, it would

simply choose the cheapest alternative, while a choice for the, possibly more

expensive Feature D might be preferable as this choice reduces the total number of

feature instances used in the application.

The inputs and outputs of the feature placement problem are shown in Fig. 5.

Input for the placement problem comes from three sources: the servers, on which

the application are executed, the feature model, that defines the structure of

applications that are to be placed, and the applications themselves. More

specifically:

– The servers contain resources, such as CPU, memory, disk space and bandwidth.

Each of these are limited, and it is impossible to allocate more of these resources

Fig. 4 Different feature model selections for two applications. Features with a solid border are selected,
features with a dotted border are undecided and remain open variation points. By selecting Feature D for
Application 2 during placement, the total resource requirement of both applications can potentially be
decreased

Fig. 5 A detailed overview of the feature placement inputs and outputs. We use a small example feature
model to illustrate the inputs. The root of this feature model is marked using the letter R

J Netw Syst Manage (2014) 22:517–558 525

123

to feature instances than available. Using a server also incurs a server use cost.

This is the operational cost of using the server, and can represent an energy cost,

to determine an energy-efficient placement, or an instance cost in a hybrid or

public cloud environment.

– The feature model describes the different features, and the relations between

them. These must be expressed, ensuring they can be taken into account during

the placement process. For every feature, instance resource requirements are

needed. The different feature instances may also impact each others resource

requirements. For example, the addition of a security feature can increase the

load on other services, that then have to use encryption in their communications.

To get a realistic view of the actual resource need of features, the impact

features have on each others resource demands is added as an input. Finally, it is

possible that a single instance of a feature, with a fixed amount of e.g. memory,

can only use a limited amount of resources, e.g. CPU. If this is the case, these

limitations are also added as an input of the feature placement problem. Then,

multiple instances of a feature can be instantiated on a single server to handle

higher resource demands.

– Each application is an instantiation of the feature model, with a specific

selection of features. Applications add three parameters to the feature

placement: (1) the demand, that varies depending on the load on the application,

(2) a feature selection, that indicates the selected and excluded features, and (3)

the cost of failing to place the application. In some cases an additional cost for

the failure to provision specific features can be added, for example a feature

providing a minimal service. If so, this feature failure cost is also added as an

input. The cost of failing applications and features can either be an actual

economical cost, defined in a SLA, or it can be an estimated cost such as the

potential cost of losing customers due to a bad service.

Using these inputs, the feature placement will generate two outputs:

– For every application, a feature selection will be returned. This contains all the

features that were selected in the feature selection input variable, but any

remaining open variation points are filled in.

– A placement, that contains for every server the number of instances of a feature

that are executed on it, and the amount of resources allocated to them. Each

instance of a feature uses part of the available resources on the server on which

it is executed (represented using pie charts in Fig. 5). When no services are

allocated on a server, it can be turned off, reducing the operational cost of the

placement.

When a resource conflict occurs, and more resources are needed by applications

than available, the algorithm handles this conflict by choosing the best configuration

based on its resulting cost. In this case, some of the application features will not be

placed. The cost used within the optimization is composed of the cost incurred by a

failure to place applications and the cost of using a server, with the cost of failure of

placing applications typically significantly larger than the cost of using servers. An

526 J Netw Syst Manage (2014) 22:517–558

123

optimal solution to the feature placement problem is a placement that minimizes the

total cost.

A feature placement algorithm will be used as one of the central components of a

cloud management system. The system architecture of this management system

contains three components that are responsible for determining feature placement

inputs: (1) a staging environment where new configurations are tested, and where

the impact of features on other features can be measured in a controlled

environment; (2) a monitoring system, that can be used to dynamically improve

estimated demand and impacts during execution; and (3) an admission controller,

limiting the number of applications admitted into the system.

4 Formal Problem Description

The variables used in the model are listed in Table 2. We begin by discussing the

optimization objective. This is followed by a description of the input variables.

Three variable types can be distinguished: input variables, decision variables and

auxiliary variables. Finally we will discuss the constraints used within the model.

4.1 Optimization Objective

The objective of a placement algorithm is to minimize two costs: the cost of failure

to place an application or feature, which we refer to as the cost of non-realized

demand, and the cost of using servers, referred to as the server use cost. When

multiple applications contend for resources, the configuration with the lowest cost

according to this objective function will be chosen.

More formally, the goal of the model is to minimize the cost, C, of the placement.

This cost is determined by two factors: the cost of non-realized demand, CD, which

is incurred due to failure to place applications, and a server use cost, CU which is

incurred when servers are used. We express this cost using Eq. (1).

C ¼ CD þ CU ð1Þ

CD is defined in Eq. (2).

CD ¼
X

a2A

pa � CVðaÞ þ
X

f2selðaÞ
pf ;a � CVðf ; aÞ

0
@

1
A ð2Þ

Equation (2) uses binary variables to indicate when the provisioning of features

or applications fail, and multiplies these binary variables with the cost that this

failure causes. The variable pf,a takes on value 1 if the feature f of an application a is

not provisioned sufficient resources, and 0 otherwise. Similarly, a binary variable pa

is used to express the failure of any feature of an application a. To determine the

total costs, these binary variables are then combined with the cost of failing to

provision individual features CV(f, a), and the cost of failing to provision an

application CV(a).

J Netw Syst Manage (2014) 22:517–558 527

123

Table 2 The different symbols used in Sect. 4

Symbol Type Description

Input variables

C The set of considered resource types (eg. memory, CPU, bandwidth)

Cs }ðCÞ Resource types for which the demand is strict: they must be allocated for each

feature instance for the instance to be usable

Cs }ðCÞ The resource types for which the demand is non-strict: the goal of the optimization

process it to allocate as much of this demand as possible, but a configuration in

which not all of these resources have been allocated is still valid

S The set of servers

Ras
c ½0;þ1Þ The available resources on a server s for a resource type c 2 C

F The feature model used by the applications

F The set of features contained in F

R The set of relations contained in F, using relations as described in Table 1

A The set of applications

sel (a) }ðFÞ The features that must be included for application a

excl (a) }ðFÞ The features that must not be included for application a

FIf_1
c (f2) ½0;þ1Þ The impact on the resource requirement for feature f2 if feature f1 is included in the

selected features of an application, for a resource type c 2 Cs

Da ð0;þ1Þ The demand for an application a

IRf
c ½0;þ1Þ The resource requirement of a single instance of a feature f for a resource type

c 2 Cs

Lf
c ð0;þ1Þ The instance limitations indicate the maximum amount of non-strict resource type c

that can be allocated to a single instance of a feature f

CV(f, a) ½0;þ1Þ The cost of failing to place a feature f for an application a

CV(a) ½0;þ1Þ The cost of failing to place an application a

CU(s) ½0;þ1Þ The cost of using a server s.

Decision variables

Ms,f,a
c ½0;þ1Þ The amount of a resource c 2 Cs to be allocated for a given server s, feature f and

application a

Uf ;a {0,1} A binary variable indicating whether application a includes feature f

ICs,f N The instance count is an integer variable, indicating how many instances of a

feature f are instantiated on a server s

Auxiliary variables

AIf,a
c ½0;þ1Þ The application impact, containing the actual resource impact per feature f of a

specific application a, for a resource c 2 Cs

pa {0,1} A binary variable that has value 1 if an application a is not correctly placed, that is

when any of its features are not placed

pf,a {0,1} A variable that has value 1 when the resource demand of a single feature f of an

application a is not placed

pf,a
c {0,1} A variable indicating whether the resource demand of a single feature f of an

application a is not placed, for a specific resource c 2 Cs

Us {0,1} A binary variable indicating whether a server s is used

528 J Netw Syst Manage (2014) 22:517–558

123

Note that within our approach, any feature can fail, including those that are

considered mandatory; feature failure is handled by assigning a cost to it. This is

done to ensure the feasibility of results: by enforcing the inclusion of selected

features using constraints, some inputs could lead to an infeasible result to which no

solution exists. It is better for a single application or feature to fail, than for there not

to be a feasible solution at all. More importantly, if no feasible solution can be

determined, it is important that the application or feature that fails incurs the lowest

possible cost.

The cost of using a server is expressed in Eq. (3). The equation makes use of a

server usage cost CU(s), denoting the cost of using a server, and binary variables Us

indicating whether a server is used.

CU ¼
X

s2S

Us � CUðsÞ ð3Þ

4.2 Input Variables

In literature, application placement techniques are generally designed to place

application instances on servers, ensuring a global CPU demand is met. Each of

these application instances requires a fixed amount of memory for it to work. Some

works, however, make use of different resource types, e.g. bandwidth [26], or

sometimes the resource types are abstracted [27]. To ensure maximum applicability

of the formal model, we will define it making use of two generalized resource types,

and we will allow multiple resources of these types to occur:

– The first resource type is associated with individual instances, and these

resources are needed to create a valid instance. Every instance needs exactly the

right amount of these resources to function correctly. We refer to these resources

as strict resources, as a given amount of them is needed to create a valid feature

instance. This in turn implies these requirements are enforced as constraints.

The memory resource, in a VM placement scenario, has this behavior, as an

instance needs a fixed amount of memory to run. Similarly, disk space is also a

resource of this type, as each VM requires disk space for its image. In some

cases, a fixed amount of bandwidth is required per instance, making it a resource

of this type.

– The second resource type behaves differently. For these resource, there is a

global demand, that must be fulfilled, and fulfilling as much of this demand as

possible is the goal of the optimization process. To succeed, instances must be

created that handle part of the resource demand. We refer to these resources as

non-strict resources. The traditional example of this resource requirement is the

CPU demand, that is often used in application placement. In some cases other

resource types can occur, such as bandwidth, if fulfilling a given bandwidth

demand is the optimization goal.

We have previously made a similar distinction between resources in [28], and a

similar approach was used in [27]. Within the model, we define C as the collection

of all resource types, and we use Cs and Cs to denote strict and non-strict resource

J Netw Syst Manage (2014) 22:517–558 529

123

types respectively. Note that in practice less strict resources than needed could be

allocated to an instance: a virtual machine can for example function with less

memory at the cost of performance degradation. Characterizing this performance

degradation is however service-specific, and as every service is used by multiple

applications this performance degradation impacts the quality of multiple applica-

tions. By using conservative fixed resource requirement estimates, these issues can

be avoided. For these reasons, strict resources are defined as a fixed value

requirement within this article.

Sometimes a pure separation between the two resource types is difficult to

achieve, as an increase in for example CPU use can sometimes cause increasing

memory utilization. To linearize this problem, we will introduce instance limitations

further in this section. These ensure a limit is added to the amount of work a single

instance can process, ensuring that memory-intensive applications can also be

modeled using this formulation.

Each problem also has a set of servers S with an amount of available resources.

For a server s 2 S the available resources are given by Ras
c, for the different resource

types c 2 C. The goal of the optimization is to allocate the required non-strict

resources for applications at a minimal cost, while ensuring the created instances

have the required strict resources they require to execute.

The problem statement also contains a set of applications A that must be placed.

Each of the applications is a specific instantiation of a global feature model F. This

feature model contains a set of features F and a collection of relations R, formally

describing the feature model tree. The possible relations are described in Sect. 3 and

Table 1. This approach still allows the placement of entirely distinct application

types with separate feature models Fi by creating a set containing the roots of every

feature model, R, and linking these different feature models in a global feature

model by the addition of a new root feature r and a relation Alternative(r, R). This

ensures that each application executed on the cloud is an instance of exactly one of

the separate feature models, and that an arbitrary amount of different application

types can be placed using the model. An example of this will be shown in Sect.

7.3.2.

Every application a 2 A contains a set sel ðaÞ 2 F with features that must be

selected in the application and a set excl ðaÞ 2 F, containing features that must be

excluded. The configuration of both is assumed to be valid according to F. Features

contained in neither set are considered open variation points as described in Sect. 3.

It is possible for features to impact the resource needs of other features. For

instance, adding the encryption feature to the application in Fig. 2 can increase the

CPU load on the interfacing engine, and applications hosted by the application

provider will require more CPU resources than applications partially hosted at the

client site. We assume that applications with similar feature selections will have

similar load characteristics, as this is the case for the three application use cases, and

represent this using a feature impact matrix FI. FI
c
f1
ðf2Þ represents the impact of

feature f1 on feature f2 for a non-strict resource type c. The resource requirement of

a feature f can be expressed using the feature’s impact on itself FIf
c(f). By including

a feature f, it’s own feature impact FIf
c(f) is added, representing the resource

530 J Netw Syst Manage (2014) 22:517–558

123

requirement of the feature itself, and it’s impact is added to all other features f0 for

which FIf
c(f0) = 0. When two applications make use of the same feature, they will

both require resources allocated to this feature, and thus both resource requirements

will be counted to determine the total resource demand for this feature. As the

demand for an application varies in time, we also add a Da variable denoting the

user demand for an application a. This variable impacts the resource need for

the entire application. If load characteristics can vary for individual applications, the

approach could be extended ensuring a FI matrix is defined per-application, but in

such a case detailed measurements would be needed to determine this matrix for

every individual application. Every instance of a feature f also requires a specific

amount of strict resources IRf
c.

In many situations, it is unrealistic to assume that a single instance with limited

strict resources allocated to it, would be able to use an unlimited amount of non-

strict resources. Because of this, we introduce resource limitations: A single

instance of a feature f cannot use more than Lf
c of non-strict resource c 2 Cs. E.g. an

application component that is memory intensive will have a low limit, ensuring only

a limited amount of CPU can be used by it. These limitations make the model more

applicable to real-life applications, ensuring the ratio between allocated non-strict

and strict resource types remains realistic.

The optimization process is used to minimize the cost of failed placement and the

server use cost. Two variables are needed to represent the cost of failing to place

specific features and applications:

– The cost of failing to reserve the capacity for a specific feature f of an

application a is given by CV(f, a). This can be used if failure of specific features

needs to be taken into account.

– The cost of failing to reserve the capacity for any feature of an application is

given by CV(a).

Finally, for every server s, the cost of using the server CU(s) can be determined.

This cost can be the energy cost of using the server, or the cost of using a server from a

remote IaaS provider. This parameter allows the system to take energy-efficiency of

the cloud into account, and could also be used to differentiate between the cost of

using the local datacenter and a remote IaaS cloud in a hybrid cloud scenario.

4.3 Decision Variables

The output of the formulation is a placement, indicating which applications are

executed where, and the amount of resources allocated for each of these

applications. The resource types behave differently, leading to two separate

expressions. For strict resource types, we determine how often an application is

instantiated on a server, a value that can be used to determine the required strict

resource requirement. As the amount of non-strict resources that can be allocated for

a given feature can be limited, it is possible for there to be multiple instances of a

feature on a single server. For non-strict resources we make use of a matrix

representing the amount of resources allocated on a server. This yields two

variables:

J Netw Syst Manage (2014) 22:517–558 531

123

– The variable ICs,f determines the number of instances of feature f on server s.

This integer variable can be used to determine the total strict resource usage of

features on servers, by multiplying it with the, fixed, per-instance resource

requirements IR.

– For non-strict resources we use an allocation matrix M. For a server s, feature f,

and application a, Ms,f,a
c contains the amount of non-strict resources of a type c

that need to be allocated.

Another output is the feature selection matrix U, indicating which applications

are selected and excluded for a given application. For application a and feature

f ;Uf ;a ¼ 1 if the application contains the feature and Uf ;a ¼ 0 if it does not. At the

start of the algorithm this matrix can be partially filled in by using sel (a) and

excl (a), the remaining features are assigned values during the optimization process.

4.4 Auxiliary Variables

Up until now, we have not yet defined a variable that determines the actual resource

requirement of a feature of an application. For this, we define the application impact

matrix AIf,a
c which contains, for every feature f of application a, the actual resource

requirement for a given non-strict resource c. This matrix can be constructed using

the selected features and the feature impact matrix.

A set of binary variables is needed to express whether an application is correctly

provisioned. We do this by introducing variables denoting application failure, feature

failure, and the failure to provision specific resource demands for an application:

– For every application a there is a variable pa, indicating whether the

provisioning of an application has failed. If pa = 1, a feature of a exists that

has not been allocated sufficient non-strict resources.

– For every application a and feature f there is a variable pf,a. This variable indicates

whether a specific feature of the application is insufficiently provisioned.

– For every application a, feature f and non-strict resource c, there is a variable

pf,a
c , which has value 1 when too few resources of type c were allocated for a

feature of an application.

Finally, a collection of variables is needed to determine whether a server is

active. For every server s there is a binary variable Us, indicating whether the server

is used. If Us = 0 the server is not used and can be turned off.

4.5 Constraint Details

In the following sections we will discuss the different constraints included in the

model.

4.5.1 Feature-Based Constraints

The feature selection matrix U is used to indicate whether a feature f is present in an

application a;Uf ;a being 1 if f is included in a, and 0 if it is not. For an application a

532 J Netw Syst Manage (2014) 22:517–558

123

we add the constraints Uf ;a ¼ 1 if f 2 sel ðaÞ and Uf ;a ¼ 0 if f 2 excl ðaÞ. If the

feature does not occur in either set, the value of Uf ;a remains undecided, creating

open variation points, which will be filled in during the optimization process.

The relations between features R must also be converted into constraints.

Elements of R define relations between individual features. As the constraints of the

feature model affect all applications, they must be applied to all application features

in the feature selection matrix. Because of this, we define fi ¼ Ui;� a row of the

feature selection matrix. We describe the conversion for the relation types to

constraints in Table 3. This conversion is required as the logical constraints defined

by the relations must be converted into linear expressions for them to be formally

used within the model. When we, for example, apply this conversion to the

Alternative(fA, {fB, fC}) relation, this yields the constraint UfA;a ¼ UfB;a þ UfC ;a, for

every a 2 A.

4.5.2 Application Resource Requirement Constraints

Each feature f can have resource requirements, but it can also impact resource

requirements of other features. If feature f is selected, its impact matrix, FIf
c will be

added to the total resource requirement for the application. A feature fi can only

affect a feature fj if fi requires fj according to the feature model. Otherwise the

feature impact matrix would be able to add feature constraints not included in the

feature model, which could in turn lead to inconsistencies.

Using the selected features U and the feature impact matrices FIf
c, an application

impact matrix AIf, a
c can be constructed. This application impact matrix, expressed in

Eq. (4), displays the resource requirements for individual features f, of an

application a, for a given non-strict resource c, and additionally takes into account

the global application demand variable Da for the application.

AI
c
f ;a ¼ Da �

X

f 02F

Uf 0;a � FI
c
f 0 ðf Þ ð4Þ

4.5.3 Resource Constraints

Resource constraints are expressed for every server s, but this is done differently for

strict and non-strict resources. For non-strict resources, the used resources are

expressed using the allocation matrix Mc, of which the requirement is aggregated

Table 3 Conversion of

relations in the feature model F
to constraints

Relation Conversion

Mandatory(fA, fB) fA = fB

Optional(fA, fB) fA C fB

Alternative(fA, {fB, fC}) fA = fB ? fC

Or(fA, {fB, fC}) fA C fB

fA C fC

fA B fB ? fC

J Netw Syst Manage (2014) 22:517–558 533

123

over all features and applications. This is done, for every c 2 Cs, in Eq. (5). Strict

resource limitations follow from the instance count IC for the service, indicating the

number of times a service is allocated, and the required amount of strict resources

per-instance, as shown in Eq. (6), which is added for every c 2 Cs.
X

f2F

X

a2A

M
c
s;f ;a�Rac

s ð5Þ

X

f2F

IR
c
f � ICs;f �Rac

s ð6Þ

As discussed earlier in Sect. 4.2, we assume that single feature instances are only

capable of using limited amounts of resources. This is expressed using Eq. (7). The

equation expresses that the total resource allocation, for a non-strict resource type c,

of a given feature f, on server s, must not exceed the amount of resources the

instances can handle.
X

a2A

M
c
s;f ;a� L

c
f � ICs;f ð7Þ

4.5.4 Application Provisioning Constraints

Additional constraints are needed to ensure the variables ps,f,a
c , pf,a and pf,

introduced in Sect. 4.4, correctly express whether the application and features are

insufficiently provisioned. Logically, we can express the pf,a
c this using Eq. (8):

p
c
f ;a �

X

s2S

M
c
f ;s;a\AI

c
a;f ð8Þ

This statement can be turned into constraints using the transformation of Eqs. (9–

10), with x 2 f0; 1g, and M a number larger than any possible value of expr. If

x = 0, it follows from Eq. (10) that expr B 0, while x = 1 yields the constraint

expr B M, which is always true. Consequently, this transformation holds only in

optimizations where the objective function value improves when x = 0, which is the

case here as a placement in which no applications fail (pf,a
c = 0) is preferred by the

optimization objective function.

x � expr [0 ð9Þ
expr� x�M ð10Þ

Applying the transformation to Eq. (8), expr ¼ AI
c
a;f �

P
s2S M

c
f ;s;a. To determine

a minimal value for M, we must find a maximum value for the first term, and a

minimal value for the second term of expr. For the first term, the definition of AI,

Eq. (4), can be used with an application that contains all features. For the second

term, an empty allocation matrix can be used. This leads to M ¼ 1þ
P

f 02F FI
c
f 0 ðf Þ,

ensuring M [expr for all possible values of expr.

Once the different pf, a
c variables are determined, we can use these to determine

the value of pf, a by expressing, for all of the non-strict resource types c, that pf,

a C pf, a
c , as the failure for a single resource type (pf, a

c = 1) implies the failure of the

534 J Netw Syst Manage (2014) 22:517–558

123

entire feature (ff, a = 1). We also add the constraint pa C pf,a for every feature f and

application a, using a similar logic.

4.5.5 Cascading Failure of Features

Child features are dependent on their parent features, and require the parent feature

to be selected for them to be used. This implies that, should the parent feature fail,

the child feature will fail as well. This is easy to add to the model by, for every

parent feature f and child feature c related in the feature model, and every

application a, adding the following constraint:

pf ;a� pc;a ð11Þ
Equation (11) expresses that if a parent feature fails for an application, the child

features must fail as well.

4.5.6 Server Usage Constraints

The variable Us expresses whether a server s is used. Logically, a server is used if

any resource r 2 C is allocated on the server. We express this using Eq. (12).

Us � TSUs 6¼ 0 ð12Þ

TSUs ¼
X

c2Cs

X

f2F

X

a2A

M
c
f ;s;a þ

X

c2Cs

X

f2F

IR
c
f � ICs;f ð13Þ

Equation (13) describes the total server use (TSU) for a server s, and calculates

the sum of all resources used on the server. This adds values for all non-strict

resource types, by summing them over the allocation matrix M, and for all the strict

resource types by multiplying the instance counts IC with the instance requirements

IR. This summation adds elements with different unit types, so the actual resulting

value is of little use, but as soon as a single resource is used on the server, TSUs will

be non-zero, ensuring Us = 1.

The transformation from Eqs. (14) to (15) transforms these logical statements

into constraints, and only holds if expr is non-negative, which is the case here as

negative resource requirements are impossible. If x = 1, then expr B M, which is

always true. If x = 0, it follows that expr B 0, which taking into account that

expr C 0 implies that expr = 0. Again, this transformation holds only if the

placement quality benefits when x = 0, as otherwise this option will not necessarily

be taken, but this is the case as switching off servers (Us = 0) lowers the cost of

execution.

x � expr 6¼ 0 ð14Þ
expr� x�M ð15Þ

J Netw Syst Manage (2014) 22:517–558 535

123

Like in the previous section, we can determine a minimal value for M, again by

finding a maximal value for expr. Here this can be done by observing that expr
equals the sum of all resources used on a server, which can never be larger than the

sum of all available resources. Thus, we choose M ¼ 1þ
P

c2C Rac
s .

5 Solution Techniques

We consider an optimal algorithm, based on an Integer Linear Programming (ILP)

solver, and several heuristic algorithms to solve the feature placement problem.

5.1 Integer Linear Programming (ILP)

The formulation, discussed in the previous section, can be used to define an ILP.

This program can be solved using a commercial ILP solver, and yields the optimal

problem solution using Simplex and Branch and Bound algorithms. As the model

contains integer values, the ILP algorithm can not be run in polynomial-bound

execution time. Therefore, we will define heuristic algorithms that approximate the

optimal solution generated by the ILP solver.

5.2 Heuristic Algorithms

We first define a single meta-heuristic, consisting of two recursive functions: an

inner function placeFeature, placing individual features and a place function that

does the actual feature placement. The meta-heuristic as we define it makes use of

four functions that are left open. We then present different approaches for filling in

these functions. The combination of the algorithm with different function

Table 4 The different functions used in Sect. 5.2

Function Description

place This recursive function forms the main part of the feature placement algorithm, and

is responsible for placing a collection of features on a collection of servers

placeFeature This function is responsible for placing a single feature on a collection of servers

featureConversion A function used to fill in open variation points in feature models

groupStrategy A function determining whether an application features are placed at once or in

multiple steps

featureOrder Determines the order in which features or applications are placed

serverOrder The order in which servers are considered during placement

536 J Netw Syst Manage (2014) 22:517–558

123

implementations can be used to define different algorithms with varying perfor-

mance and properties. The different functions used in this section are shown in

Table 4.

Algorithm 1, describes the placeFeature function, responsible for the placement

of a single feature. As input, this function requires different parameters: (1) the

problem configuration P, containing all the input variables of the formal problem

formulation, (2) the instance count matrix ICf,s, which contains the number of

instances of a features each server has, (3) the placement matrix Ms,f,a
c , which

specifies the amount of resources allocated to a feature and application on a server,

(4) the feature f that must be placed, and (5) a list Servers containing all the servers

in the system and their remaining resource capacities.

The algorithm sorts the list, based on a given serverOrder, and uses a

findServer operation to find the first server s in the sorted list on which either a

feature instance exists with remaining free space, or on which enough resources

remain to create a new instance of the feature. In the latter case, a new instance is

created. The serverOrder, which determines the order in which servers are

considered, is essential for the performance of the algorithm, and will be elaborated

on later on in the article. Subsequently, the maximum amount of resources possible,

taking into account instance resource limitations, are allocated for the feature that is

to be placed, by adding them to Ms,f,a
c . The server information of s is also updated, to

reflect the decrease in available resources on the server. If the entire feature f is

J Netw Syst Manage (2014) 22:517–558 537

123

placed, the updated allocation IC and M is returned, along with the updated server

list Servers are returned. If the feature is not fully placed yet, the placeFeature
function is repeated recursively, and is given as an argument the residual demand of

feature f. The placeFeature function will always either return a placement where

the feature is placed in its entirety, or not placed at all.

The main body of the heuristic is listed in Algorithm 2, which displays the place
function. The function is responsible for placing a list of applications or features. It

requires five parameters: (1) the problem model description P, (2) the instance count

IC, (3) the current placement matrix M, (4) a list Servers, containing all the servers,

(5) a list AppFeatures, of which every entry is either an application or a feature, and

(6) a collection Failed containing the applications for which the placement of the

application as a whole has failed. The first four parameters are also used for the

placeFeature function. The fifth parameter determines the order in which features

and applications are added, and makes it possible to place features as either

applications, or as individual instances. The sixth parameter maintains a list of

applications and features that could not be placed successfully.

The formulation of the place function makes use of two additional functions:

1. The dependingFeatures (f) function returns the set of all features that depend

on the feature f. All the features present in the subtree with root f of the feature

model tree, except the feature f itself, are included in this set.

2. The dependentFeatures (f) function is the opposite of the previous relation,

and returns the collection of all features upon which the feature f is dependent.

This set can be constructed by, within the feature model tree, selecting the

parent feature of f, and subsequently recursively adding all of the parent

features of the features present in the set.

The place function starts by choosing the first element of the AppFeatures list. If

this element is a feature, it first checks whether the feature should be added. If any

feature upon which the feature depends has already failed to be placed for this

application, the selected feature is not placed, as it would automatically fail because

of the cascading of failure constraint described in Eq. (11). If the application has

already failed to be placed, and there is no additional cost for the failure of this

feature or any of the child features, the feature is not placed either. This rule is

added, as placing these features would increase both the load on the system and the

cost of used servers, without decreasing the cost of failed placement. If neither

condition is met, the algorithm continues by using the placeFeature function to

place the feature on the infrastructure. The place function is then repeated with the

remaining elements of the AppFeatures list and, if the feature was correctly placed,

the server configuration

538 J Netw Syst Manage (2014) 22:517–558

123

returned by the placeFeature function. Otherwise the initial server configuration is

reused.

If the head element of the AppFeatures list is an application, the list of all

features in the application will be determined, and this list will be placed by

recursively calling the placeFeature function. If this succeeds, and all the features

of the application can be placed, the algorithm will continue by processing the tail

of the AppFeatures list. If this fails, the changes are undone, and the individual

features of the applications are added to the AppFeatures list, which will be sorted

again, and then placed using a recursive call to the placeFeature function. This

ensures that, if an application can not be placed in its entirety, the algorithm will

still make an effort to place individual application features. As the cost of failing to

J Netw Syst Manage (2014) 22:517–558 539

123

place the application is incurred by this, only features that further add to the cost of

failure will still be considered for placement.

Algorithm 3 shows how the initial parameters are generated, and contains the

complete feature placement algorithm.

The algorithm contains four components that we have not yet elaborated on. At

the start of the algorithm, the open variation points of the feature model are filled in

using a featureConversion function. This function ensures that for every

application, all features are either selected or excluded, eliminating open variation

points. The groupStrategy is used to determine whether all the application features

should be considered as a whole, or whether they should be placed independently.

The result of this function is a list containing a mix of features and applications: the

AppFeature list. The featureOrder is used to sort the AppFeature list, and can

compare features and applications to determine the order in which they are placed.

Finally, the order in which servers are considered is determined by the serverOrder
function. The effectiveness of the meta-heuristic is largely determined by the

featureConversion, groupStrategy, featureOrder, and serverOrder functions.

We will now present different implementations for these functions.

5.2.1 Feature Ordering

The order in which features are considered significantly impacts the quality of the

final result, as it determines which features are placed first, and thus assigns a

priority to the features. We make use of an application-based ordering, where

applications and features with a higher cost of failure are placed first. For

applications, we define the cost of failure as the sum of feature failure costs, and the

application failure costs. For features, we define this cost as the sum of the cost of

failure of the feature, the application, and the cost of failure of all features

dependent on the feature. When according to this ordering no preference is

achieved, we consider the number of instances required to place the feature or

application. The instance requiring the smallest number of instances is placed first.

5.2.2 Grouping Strategies

As explained above, the list AppFeature can contain either entire applications,

individual application features or a combination of both. The groupStrategy

540 J Netw Syst Manage (2014) 22:517–558

123

function determines for each application present in the problem definition whether it

must be considered as a whole, or as a group of features. We consider two versions:

– Feature grouping, where every application is split up into features, and the

features are placed independently. This corresponds to the approach we

previously described in [7].

– Application-based grouping, where applications are always grouped, their

features are placed at the same time. Should the placement of an application fail,

the algorithm will still try to place individual features, as described in the

Algorithm 2.

It is important to note that in both cases, the algorithm will place multi-tenant

feature instances, and allocate part of their capacity to the placed applications.

Using application-based grouping, the algorithm will however start by trying to

place all of the feature instances of a given application at once.

5.2.3 Server Ordering

We consider two different server orderings:

– Instance Based (IB) ordering, which orders servers according to the best fit for

the feature f that is to be placed. This ordering prefers servers that have instances

of the feature placed on it, that are not fully utilized by the current allocation. If

multiple servers comply, the server with the best fit will be selected. If, using

this approach, two servers score the same, the server with the lowest utilization

cost is used.

– Cost Based (CB) ordering, where servers are ordered according to their

utilization cost.

Note that the IB ordering of nodes changes for every invocation of the place

method, whereas the CB ordering does not change. This ensures the sort in

Algorithm 1 does not have to be executed for the CB ordering. Both of the

approaches take the cost of using servers, CU, into account, but only in the IB case is

it the primary selection criterion.

5.2.4 Feature Model Conversion

The featureConversion function is used to fill in open variation points. This

function determines the features that must be included in the placed applications.

We make use of an approach in which the cheapest feature combination in terms of

resource requirements is determined in two steps. First, ten cheap combinations of

feature models are determined for every application. As the number of combinations

increases exponentially, at each point in time the list of possibilities is shortened.

We have shown before that shortening to ten elements is sufficient for improving the

placement [7]. This can be determined as soon as an application is added, rather

than when application placement is executed. Within the evaluation section, we will

refer to this as the preparation step of the algorithm.

J Netw Syst Manage (2014) 22:517–558 541

123

Secondly, when the list of all applications is known, the best total configuration is

determined. This is done by incrementally iterating all applications, and creating a

partial list containing a the best configuration for the subset of applications that has

already been considered. In every step, an application is added, and each of its ten

feature combinations is combined with the list of best applications from before.

From the resulting collection, the ten best elements are retained and passed on to the

next iteration.

5.2.5 Heuristic Algorithms

The described functions can be combined with the meta-heuristic to create different

algorithms. For this article, we use the two grouping strategies, feature and

application based, and the two server orderings, IB and CB. This creates four

algorithms: IB_application , IB_feature , CB_application and CB_feature .

6 Evaluation Setup Details

We implemented the ILP problem and the heuristics using Scala. The ILP solver

uses CPLEX [35] as its back-end. Within the evaluations, we will make use of two

types of problem models: (1) problem models based on the three real-life

applications studied in the CUSTOMSS project, and (2) problems created using a

generator capable of creating a wide range of random problems.

6.1 CUSTOMSS Problem Model

The full model, used by the CUSTOMSS project, is shown in Fig. 6, and contains

the features and relations as they are currently defined in the project. The feature

names have been replaced by numbers. Each feature entry also contains an

estimated CPU requirement and a CPU use limitation (in the form CPU = require-

ment/limit), and an instance memory requirement (Memory = requirement). The

relations between features are expressed in the format as described in Sect. 3. As

discussed earlier, features can impact each other. This is illustrated by the arrows

between nodes, the number on the arcs represents the impact on CPU requirement

other nodes. For example, the addition of Feature 7 increases the CPU demand for

Feature 1 by 100.

The presented model groups the models for the three real-life applications, with

application roots Feature 1, Feature 16 and Feature 28 into a single model by adding

a new root node, modeling a cloud that executes these distinct applications. As the

nodes are grouped using an Alternative relation, every application will be an

instance of exactly one of the CUSTOMSS applications. This approach for running

multiple distinct applications was discussed previously in Sect. 4.2. Note that some

of the features do not have any CPU or Memory requirement. These features are

either used for grouping other features, improving the structure of the complete

feature model, or as they do not create new feature instances but significantly impact

542 J Netw Syst Manage (2014) 22:517–558

123

Fig. 6 The combined feature model containing the CUSTOMSS applications. Each entry in this model
corresponds to a feature in one of three real-life applications

J Netw Syst Manage (2014) 22:517–558 543

123

the demand for other features. When these features are included, they are

automatically satisfied, provided that their parent nodes are correctly provisioned.

Applications feature selections are randomly generated by creating random valid

selections, where all features are either selected or excluded. Open variation points

are then randomly added. The application failure cost is set to 10. Some features are

selected in the feature model and are considered as being critical: if they are

selected, they must be correctly provisioned, or an additional cost of 5 will apply.

The features in the model that can be considered as critical are Features 13, 21, 22,

26 and 40. The energy cost is chosen as 1. This ensures applications will always be

placed if possible, the desired behavior, and that, if an application does fail, only its

critical features are placed.

In practice, a realistic cost could be determined by utilizing the actual economical

cost of failure of applications. This cost would however vary throughout time, based

on previous placement performance. Practically, it is better to assign relative costs

that are maintained by the management system. In general, the cost of failure of

applications is always bigger than the cost of using servers, and specific features

exist that significantly increase the cost, on top of application placement failure cost,

if they fail to be placed.

6.2 Generated Problem Models

To evaluate the algorithms for differing problem sizes and varying features models,

we generated different problem models. These models are similar in structure to

those of the applications studied in the CUSTOMSS project, but the number of

features in the feature models can be varied.

The generator creates a collection of servers, a feature model, and a set of

applications. For the purposes of the evaluation, we use Cs ¼ fCPUg and

Cs ¼ fMemoryg. First, the servers S are generated. For these evaluations we

assume a uniform server configuration with 4,000 MiB memory and a 2,000 MHz

processor. We also use a uniform server use cost of 1. The costs of failure are

chosen relative to this cost.

To create a random feature model F, first, a collection of features F is generated

with random memory requirements from a set {0.5, 1, 2, 2.5 GB}. Subsequently a

feature model tree R is created. This is done by iteratively selecting nodes that are

not in the tree yet and adding them in a relation with a node in the tree as the parent

node. To start this process, a random feature is selected as root of the feature tree.

There is an equal chance of picking any of the four relation types, and Alternative

and Or relations have between two and six child nodes. Feature models generated in

this fashion are similar in structure to those used for the applications in the

CUSTOMSS project.

Next, we generate the impact matrix FICPU. Each feature impacts itself and has a

chance of impacting any feature required by it. This is enforced by only letting a

feature impact parent features. The CPU impact of a feature on itself is randomly

chosen from the set {100, 200, 500, 1, 000 MHz}, the CPU impact of a feature on a

parent feature is added with a probability of 50 %, and chosen randomly from the

same set. As stated earlier, we assume a homogeneous host capacity.

544 J Netw Syst Manage (2014) 22:517–558

123

Selecting features is done by randomly selecting or excluding features, and

checking the validity of the resulting feature model with SAT4J [36], an open

source SAT solver. This ensures that the selection is feasible according to feature

model F. Features are randomly removed from either the collection of selected

features, or from the collection of excluded features. All dependent features are

removed as well, ensuring an open variation point is added.

Finally, random applications A are generated using the generated feature

selections. Each application and application feature is also assigned costs for failure,

randomly chosen from a given set. We use four different scenario’s, shown in

Table 5 for the evaluations, each with a different application failure cost. The

Varying Costs (VC) scenario makes use of varying costs for both application and

feature failure, and represents the realistic case where the failure of some

applications or features can incur a much larger cost than the failure of others. The

Identical Costs (IC) scenario by contrast only considers a single cost for both

application and feature failure. Finally, the Application Costs (AC) and Feature

Costs (FC) scenarios consider situations in which either only application failure, or

only feature failure are considered. Costs are defined relative to each other, the VC

scenario representing the case where the costs of different applications differ by a

large order of magnitude.

6.3 Evaluation Methodology

We will now discuss the different evaluation strategies, and the different quality

metrics used in these evaluations.

6.3.1 Load-Based Evaluation

We use a large number of randomly generated problem models in our evaluations.

As each of the randomly generated problem models can have very different

properties, we need a common parameter to represent the difficulty of finding a

good solution. For this, we use the problem model load. The problem model load is

determined by filling in the feature model for every application, and determining the

cheapest possible application. We sum the CPU load for all features and all

applications, to determine the total application demand. We then divide this by the

sum of all available resources. This variable is indicative of the problem difficulty,

as higher load values imply that it becomes more difficult to place all applications.

Table 5 The costs for the

different evaluation scenarios 4
Scenario Application failure

costs

Feature failure

costs

Varying Costs (VC) {2, 4, 8, 16, 32} {2, 4, 8, 16, 32}

Identical Costs (IC) {2} {2}

Application Costs (AC) {2} {0}

Feature Costs (FC) {0} {2}

J Netw Syst Manage (2014) 22:517–558 545

123

Load-based evaluation of feature placement algorithms is done by first generating

a large batch of problem models: a model is generated for every value of

ðs; a; f Þ 2 f10; 20; 30; 40; 50; 60; 70; 80; 90; 100g3
, thus creating 1,000 problem

models. We subsequently removed all problem models with a load [3. In these

cases, it would be preferable to filter applications using admission policies, such as

those described in [37], in the management system, ensuring some applications are

not accepted by the system.

Due to the nature of ILP solvers, some problems require large amounts of

memory or computing time. Additionally, the CPLEX solver allows slight

constraint violations, in the order of 10-9, making the solutions to a minority of

the problem models violate constraints when the values are rounded. In both cases,

the models causing problems are excluded from the test. The placement quality

comparisons were performed using the the Stevin Supercomputer Infrastructure at

Ghent University, a hardware cluster containing quad core Intel Xeon L5420 nodes

with 16 GB ram. This ensures almost no problem models are filtered due to resource

constraints.

For the each of the evaluations in this article, we repeat this process three times,

retaining on average 150 entries for every test set, most being excluded due to the

load limitations.

6.3.2 Execution Time Evaluations

The execution speed evaluations of the algorithms were executed on a Linux server

with a Dual-Core AMD Opteron(tm) Processor 2212 with 4GiB of memory, and

using Scala version 2.9.0.1. For these evaluations, the different versions of the

algorithm are executed for varying server, application and feature count.

6.3.3 Quality Evaluation Metrics

The results of a placement can be evaluated in different ways:

– Cost of Non-Realized Demand (NRD): This metric measures the cost caused by

the failure to provision applications. It corresponds to the CD variable in the

formal model, defined in Eq. (2).

– Cost of Non-Realized Demand Simple (NRDs): This measure is similar to NRD,

but does not take cascading failure of features into account.

– Full: Measures the total cost of using servers. This measure corresponds to the

CU variable, defined in Eq. (1).

7 Evaluation Results

First, we evaluate the feature-based approach by comparing the degree of multi-

tenancy that can be achieved compared to an approach where every variant would

be provisioned its own instance. We then evaluate the impact of some of the design

546 J Netw Syst Manage (2014) 22:517–558

123

decisions, determining the maximal amount of quality that can be achieved by the

placement when the various constraints are taken into account, and the importance

of including these constraints. Then, we evaluate the placement quality of the

algorithms compared to an optimal solution, and finally we evaluate the execution

speed of the algorithms.

7.1 Degree of Multi-Tenancy

As discussed earlier, there are two approaches to build high-variability applications

in clouds: (1) by generating a binary application for every variant and (2) by

splitting the application into separate components, which we have referred to as

feature instances. In the former case, tenants can only share an application instance

if they require the same variant, in the latter case, individual feature instances are

shared by tenants. Note that the application-based grouping in Sect. 5.2.2 still makes

use of the second approach, and ensures that the different feature instances are

considered at the same time during placement.

To compare the degree of multi-tenancy that can be achieved using an

application instance approach to that of a feature based approach, we use the

CUSTOMSS problem model and count the number of instances that make use of the

same application variant for the former, and the number of applications that make

use of the same feature for the latter.

By counting the number of identical applications appearing within the problem

models used in the next subsections, we can determine how many tenants make use

of the same application. We then sort these values, showing frequently used

applications first, and average the results over the different problem models used in

the CUSTOMSS model evaluation, which will be discussed more in depth later on

in Sect. 7.3.2. The results, shown in Fig. 7a, show that in average problems, 100

different applications must be provisioned that are each used by 5–30 tenants. Many

of these instances share less than 10 tenants.

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

A
ve

ra
ge

 a
m

ou
nt

 o
f t

en
an

ts
 u

si
ng

 in
st

an
ce

Application instances

Application based

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50

A
ve

ra
ge

 a
m

ou
nt

 o
f t

en
an

ts
 u

si
ng

 in
st

an
ce

Feature instances

Feature based

(b)

Fig. 7 The maximum number of tenants sharing instances for an application-based approach, where
variants are created as monolithic instances, and a feature-based approach, where applications are
composed from feature instances. a Using application instances. b Using feature instances

J Netw Syst Manage (2014) 22:517–558 547

123

When the focus is shifted from application instances to feature instances, and we

count how many applications require specific features, we see that a much higher

degree of multi-tenancy can be achieved, as seen in Fig. 7b. Only 49 feature

instances are needed, and each instance is shared between 150 and 2,500 different

tenants.

Our more fine-grained approach where applications are composed using multi-

tenant services, thus increases the achievable level of multi-tenancy while at the

same time decreasing the number of different instances that must be provisioned.

7.2 Impact of the Model Constraints

We will now determine the impact of various constraints that are defined in the

model on the maximum amount of quality that can be achieved by the optimization

algorithm. Compared to our earlier work [7], three additional constraints have been

added: (1) resource limits, expressing the limited amount of resources that can be

used by single application instances, (2) the cascading failure of features, which

expresses that parent features, upon which the feature relies for its correct execution,

need to be correctly provisioned for the feature to be allocated, and (3) the

consideration of server usage costs. Each of these additional constraints will have an

impact on the complexity of the problem, and on the minimal achievable cost.

We consider three variants of the ILP formulation:

– The first formulation, ILP Simple (ILPs) represents a simple variant of the ILP

formulation, where no resource limits, energy requirements or cascading failure

are taken into account.

– ILP Requires Parent (ILPrp) is a variant of the ILP formulation that adds the

cascading failure of applications, but not the energy requirement of servers nor

the resource limitations.

– ILP Requires Parent Limited (ILPrpl) is a variant of the ILP formulation,

considering both resource limitations and cascading failure of features.

We will now evaluate the impact of these requirements on the quality of the

resulting feature instance allocations using a load-based evaluation using randomly

generated problem models. We will do this by comparing the algorithms using the

two evaluation functions, NRD and NRDs. The results of these evaluations are

shown in Fig. 8a, b.

In Fig. 8a we show the performance of the three variations of the ILP solution

with respect to NRDs metric. The addition of the different constraints increases the

number of applications that fail. Introducing the cascading failure of features greatly

increases the cost of placing applications. This is to be expected, as constraints are

added to the ILP formulation that complicate placement, but that are not taken into

account by the NRDs evaluation function. Adding resource limitations further

increases the cost, as more instances are required to meet the required demand.

When we add the effect of cascading failure in the evaluation, and measure the

performance using NRD, the performance of the different ILP formulation changes

drastically, as shown in Fig. 8b. Here, the ILP solution performs badly, which is

again to be expected as it allocates features with a high cost of failure, without

548 J Netw Syst Manage (2014) 22:517–558

123

taking into account whether the parent features are correctly allocated. The

performance of both ILPrp and ILPrpl remains identical for both evaluation

mechanisms, as no new failed features are introduces.

From this evaluation we can conclude that the use of cascading failure and

resource limitations comes at a cost, making it more difficult to find a satisfactory

placement on given infrastructure as more requirements are taken into account. This

disadvantage is in addition to the increased computational cost incurred by these

constraints. If, however, the constraints are required for an accurate representation

of the application, they must be considered during placement, as these results show

that otherwise the quality of the eventual placement result will be significantly

worse.

 0

 500

 1000

 1500

 2000

 2500

 0 0.5 1 1.5 2 2.5 3

N
R

D
 S

im
pl

e
(N

R
D

s)

Problem Model Load

ILPs
ILPrp
ILPrpl

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 0.5 1 1.5 2 2.5 3

C
os

t o
f n

on
-r

ea
liz

ed
 d

em
an

d
(N

R
D

)

Problem Model Load

ILPs
ILPrp
ILPrpl

(b)

Fig. 8 Performance of ILPs, ILPrp and ILPrpl using different quality evaluation metrics using the VC
scenario. a Performance of ILPs, ILPrp and ILPrpl using the NRDs metric. b Performance of ILPs, ILPrp
and ILPrpl using the NRD metric

J Netw Syst Manage (2014) 22:517–558 549

123

7.3 Placement Quality

We evaluate the placement quality using both the load-based approach as discussed

in the previous section, and the CUSTOMSS model.

7.3.1 Generated Problem Models

We use the load-based evaluation with generated problem models for the different

scenarios which we defined in Table 5, and evaluate the performance of the

algorithms using the total cost evaluation function (Full) defined earlier. Figure 9a

shows that in the Varying Costs (VC) scenario with varying costs, the IB_appli-
cation and CB_application algorithms perform significantly better than the

IB_feature and CB_feature algorithms. This indicates that an application-based

feature grouping strategy performs well in practice. In both cases, the IB server

ordering strategy performs slightly better than the CB approaches, but these

differences are less significant.

As shown in Fig. 9b, the application-based approach works remarkably well

when both features and applications impact the cost of placing features, as we do in

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 0.5 1 1.5 2 2.5 3

To
ta

l C
os

t (
F

ul
l)

Problem Model Load

ILP
IB_Application

IB_Feature
CB_Application

CB_Feature

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.5 1 1.5 2 2.5 3

To
ta

l C
os

t (
F

ul
l)

Problem Model Load

ILP
IB_Application

IB_Feature
CB_Application

CB_Feature

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.5 1 1.5 2 2.5 3

To
ta

l C
os

t (
F

ul
l)

Problem Model Load

ILP
IB_Application

IB_Feature
CB_Application

CB_Feature

(c)

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5 3

To
ta

l C
os

t (
F

ul
l)

Problem Model Load

ILP
IB_Application

IB_Feature
CB_Application

CB_Feature

(d)

Fig. 9 Performance of the heuristics and the ILP algorithm for the different scenarios. a Varying Costs
(VC). b Identical Costs (IC). c Application Costs (AC). d Feature Costs (FC)

550 J Netw Syst Manage (2014) 22:517–558

123

the IC scenario, even if these costs are kept constant, yielding significant

improvements when compared to a purely feature-based approach.

The results for the AC scenario are shown in Fig. 9c. In this scenario, the

different algorithm variations all perform more or less the same, and significantly

worse than the ILP results. While this may seem counterintuitive, considering the

feature placement focuses on applications in their entirety, this is not unexpected:

this phenomenon is caused by the homogeneous nature of the different applications,

which makes each application equally important in the placement, making it

difficult to decide on which applications to exclude.

Even when no costs for application failure are taken into account, as in the FC

scenario, an application-based approach again performs best, as we show in Fig. 9d.

It is however to be noted that the combination of a purely CB approach for servers,

combined with an application-based approach for grouping, can sometimes result in

bad performance, as seen in the [1, 1.2] region of the plot.

As explained previously, these evaluations make use of randomly generated

problem models. While a load-based approach groups elements according to their

difficulty, variations in feature models can still cause large differences in the

eventual quality of the placement. We show the percentiles for the VC scenario in

Fig. 10. Figure 10a shows the percentiles for the entire test set, with loads between

0 and 3. Figure 10b shows the percentiles for the problem entries with loads in [1,

Fig. 10 Percentiles for the performance of the heuristic and ILP algorithms for the VC scenario. a Using
all datapoints. b Using datapoints with load between 1 and 1.4

J Netw Syst Manage (2014) 22:517–558 551

123

1.4], an interesting region as it represents a situation that could potentially occur

when application demand spikes. In both charts, the tendencies explained previously

reoccur: an application-based approach performs better than a feature-based

approach, and an instance based order for servers performs better than a purely cost

based approach. On average, the application-based approach performs ±25 %

better than a feature-based approach, in the [1, 1.4] region, while when all results

are considered, this difference increases to ±42 %. Using a cost-based approach

rather than a feature-based approach also slightly increases placement quality,

by ±12 in the [1, 1.4] range, but only by a negligable ±1 % when all evaluation

results are included.

It is noticeable that, globally, the instance-based approach has a similar worst-

case performance as the cost-based approach, but its occurs less often. In an

overload situation, the difference between both approaches is only noticeable in the

99th percentile. It is of note that, for loads in the [0.5, 1] range, not shown here, the

different algorithms often perform slightly better than the ILP-based algorithm due

to the assignment of non-integer values to integer variables that occurs in CPLEX.

The results in this section demonstrate that an application-based approach to

feature placement, where the algorithm tries to place all of the features of

applications at once, performs significantly better compared to a feature-based

approach, where the features are considered separately. Note that in both cases, the

placed feature instances are multi-tenant services and shared between applications,

as discussed previously. When servers are selected, it is best to take into account

how well applications fit on the server, as it is done with the with the IB approach,

but the improvements of this choice compared to a purely cost-based approach are

limited, and this change only impacts problem models in the 98th and 99th

percentiles.

7.3.2 CUSTOMSS Problem Model

Using the CUSTOMSS model, we assessed the costs when the number of servers is

varied using the total cost evaluation function (Full) and using the CB_application
algorithm. Figure 11 shows the quality of placement considering varying applica-

tion and server counts. These graphs were generated by using the CUSTOMSS

feature model, and creating applications as described in Sect. 7. To generate the

problem for n applications, a single application is generated and added to the

problem generated using n - 1 applications. Because of this, the graph shows the

impact of iteratively adding applications and servers to a cloud.

We see that as applications are added, the cost for failed placement increases.

The plot consist of two intersecting planes. One plane is nearly flat, with only a

slight slope as application counts increase, as this ensures more servers that need to

execute applications, increasing the server use cost. The second plane shows a

steeper increase in costs, as in these points application failure occurs, incurring a

larger cost. The intersection of the planes shows the point at which too many

applications are allocated, and a cost of failure is incurred.

552 J Netw Syst Manage (2014) 22:517–558

123

7.4 Execution Speed Evaluation

We consider the execution speed of the algorithm for increasing application counts,

server counts and feature counts, using randomly generated problem models. In the

graphs, we separate the total execution time of the algorithms into two parts: a

preparation time and an execution time. Each data point is an average of 20

executions using randomly generated feature models with the parameters discussed

in the previous section. The preparation time is the part of the computation that can

be executed when an application is added, and is needed only once. This mainly

comprises of the time required to create feature model configurations using the

feature model conversion as discussed in Sect. 5.2.4. We only show the preparation

cost for the CB_application algorithm, but these costs are identical for the other

three algorithms. The execution time is the time required to execute feature

placement, provided the preparation step has been executed in advance. This step

must be executed when applications are actually running, to take changing

application demands and the addition of new applications into account.

As shown in Fig. 12a, increasing the number of applications increases the

execution duration of the algorithm in a more or less linear fashion. It is notable that

the application-based approach performs a bit worse than a feature-based approach,

as some applications will be considered twice by it, once in an application-based

fashion and once in a per-feature order, while the feature-based approach only

considers each feature once. Similarly, an IB approach to server ordering also

increases the execution duration w.r.t. a CB approach, as it requires an additional

sort operation. As the number of applications doubles, so does the preparation

duration, as this preparation runs for each application. Such a trend is noticeable in

the plot, but the preparation duration does vary significantly from problem model to

problem model.

In Fig. 12b, we show the performance of the algorithm in the face of varying

server counts. Once more, the high variability in preparation execution time is

demonstrated, as for each data point the same number of applications are

Fig. 11 The quality of feature placement as a function of the number of servers and applications

J Netw Syst Manage (2014) 22:517–558 553

123

(a)

(b)

(c)

554 J Netw Syst Manage (2014) 22:517–558

123

considered. We notice that the CB algorithms are largely independent from the

number of servers considered. This opposed to the IB approach, for which the

required computational time increases with the server count.

Figure 12c demonstrates the execution speed considering varying feature counts.

Here we notice a significant increase in preparation time as feature counts increase,

but only limited impact on the execution time of the algorithms. We again observe

that an application based approach requires more time to execute, as do the IB

algorithms.

Feature models become more complicated to manage as the number of features

increases, especially as within this article we only consider customization changes,

in which a change implies the use of a different code module that must be

maintained. Because of this, we do not expect the models to become prohibitively

large, ensuring the preparation duration will remain acceptable. Furthermore, this

has little impact on the execution time of the algorithm. We can conclude that the

CB algorithms scale well in terms of application and server counts, and that, due to

the possibility of preparing applications before execution, increasing feature counts

can be managed as well. The IB algorithms do not scale as well when server counts

increase as the CB approach. This implies that, while the IB algorithms perform

slightly better than the CB algorithms, it can be preferable to make use of the latter

in large server configurations to improve the speed with which placements can be

determined. The presented algorithms still make use of a centralized approach,

implying they could become a bottleneck as the size of the cloud increases. To

address this, techniques such as those we presented in [28] could be used to increase

the scalability of the algorithms in larger clouds, by reusing the centralized

algorithms within a hierarchically structured management infrastructure.

8 Conclusions

In this article, an approach for managing highly customizable applications using

feature modeling and SPLE techniques was presented. We first presented the feature

placement problem, determining the different inputs, outputs and requirements,

which we subsequently formalized. Then, heuristics were developed and compared

to the optimal ILP-based algorithm. In this evaluation we used the feature models

from existing applications, ensuring the presented techniques are applicable to

realistic cases, and using generated feature models, ensuring the performance

remains similar for different cases.

For the considered cases, using feature instances rather than application instances

greatly increased the achievable level of multi-tenancy. In the former approach,

each instance can be shared between up to at least 150, while in the latter approach

some instances can only be used to serve ±5 tenants. We found that an application-

Fig. 12 The execution speed of the feature placement algorithm as a function of varying application
counts, server counts and feature counts. a Varying application counts, using |S| = 50 and |F| = 50.
b Varying server counts, using |F| = 50 and |A| = 50. c Varying feature counts, using |S| = 50 and
|A| = 50

b

J Netw Syst Manage (2014) 22:517–558 555

123

centric approach to feature placement, where the services corresponding to

application features are placed at once, performs 25–40 % better than a feature-

based approach, where the features are placed independently without taking their

relations into account. We also conclude that an approach where servers are chosen

based on a best fit approach performs best, albeit with a penalty to execution times.

For three out of four scenarios, the application-based approach to feature placement

performs close to the optimal algorithm, failing only when no differences between

applications occur. The presented heuristics scale well, with execution times

remaining under 10 s for the considered cases.

In future work we will extend the discussed approach to achieve dynamic

application placement, and we will incorporate the designed algorithms in a cloud

management platform as a proof-of-concept.

Acknowledgments Hendrik Moens is funded by the Institute for the Promotion of Innovation by

Science and Technology in Flanders (IWT). This research is partly funded by the iMinds CUSTOMSS [2]

project. This work was carried out using the Stevin Supercomputer Infrastructure at Ghent University.

References

1. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT

platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput.

Syst. 25(6), 599 (2009). doi:10.1016/j.future.2008.12.001

2. CUSTOMSS: CUSTOMization of Software Services in the cloud (2013) http://www.iminds.be/en/

projects/overview-projects/p/detail/customss. Accessed on 1/2013

3. Pohl, K., Böckle, G., Linden, F.: Software product line engineering: foundations, principles, and

techniques. Springer, New York (2005)

4. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: In: ICSE Workshop on Principles of Engineering

Service Oriented Systems, (IEEE, 2009), vol. 215483, pp. 18–25. doi:10.1109/PESOS.2009.5068815

5. Wuhib, F., Stadler, R., Spreitzer, M.: In: Proceedings of the 6th International Conference on Network

and Service Management (CNSM 2010), pp. 1–8 (2010)

6. Li, Y., Chen, F.H., Sun, X., Zhou, M.H., Jiao, W.P., Cao, D.G., Mei, H.: Self-adaptive resource

management for large-scale shared clusters. Sci. Technol. 25, 945 (2009). doi:10.1007/s11390-010-

1075-6

7. Moens, H., Truyen, E., Walraven, S., Joosen, W., Dhoedt, B., Turck, F.D.: In: Proceedings of the 13th

Network Operations and Management Symposium (NOMS 2012), pp. 17–24 (2012). doi:10.1109/

NOMS.2012.6211878

8. Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: In: Proceedings of the 16th international con-

ference on World Wide Web, pp. 331–340 (2007). doi:10.1145/1242572.1242618

9. Zhang, K., Zhang, X., Sun, W., Liang, H., Huang, Y., Zeng, L., Liu, X.: In: 9th IEEE International

Conference on E-Commerce Technology & The 4th IEEE International Conference on Enterprise

Computing, E-Commerce and E-Services (CEC-EEE) (IEEE, 2007), pp. 123–130. doi:10.1109/CEC-

EEE.2007.9

10. Sun, W., Zhang, X., Guo,C.J., Sun, P., Su, H.: In: IEEE Congress on Services Part II (services-2)

(IEEE, 2008), pp. 18–24. doi:10.1109/SERVICES-2.2008.29

11. Abu-Matar, M., Gomaa, H.: In: Proceedings of the 9th Working IEEE/IFIP Conference on Software

Architecture (WICSA 2011) (IEEE, 2011), pp. 302–309. doi:10.1109/WICSA.2011.47

12. Abu-Matar, M., Gomaa, H.: In: Proceedings of the 15th International Software Product Line Con-

ference (SPLC2011), pp. 110–119 (2011). doi:10.1109/SPLC.2011.26

13. Ruehl, S.T., Andelfinger, U.: In: Proceedings of the 15th International Software Product Line

Conference (SPLC 2011), pp. 16:1–16:4 (2011)

14. Alférez, G.H., Pelechano, V.: In: Proceedings of the 15th International Software Product Line

Conference (SPLC 2011), pp. 100–109 (2011). doi:10.1109/SPLC.2011.21

556 J Netw Syst Manage (2014) 22:517–558

123

http://dx.doi.org/10.1016/j.future.2008.12.001
http://www.iminds.be/en/projects/overview-projects/p/detail/customss
http://www.iminds.be/en/projects/overview-projects/p/detail/customss
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1007/s11390-010-1075-6
http://dx.doi.org/10.1007/s11390-010-1075-6
http://dx.doi.org/10.1109/NOMS.2012.6211878
http://dx.doi.org/10.1109/NOMS.2012.6211878
http://dx.doi.org/10.1145/1242572.1242618
http://dx.doi.org/10.1109/CEC-EEE.2007.9
http://dx.doi.org/10.1109/CEC-EEE.2007.9
http://dx.doi.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/10.1109/WICSA.2011.47
http://dx.doi.org/10.1109/SPLC.2011.26
http://dx.doi.org/10.1109/SPLC.2011.21

15. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A.: In: Proceedings of the 2010 ACM

Symposium on Applied Computing (SAC 2010), pp. 462–469. ACM Press, New York, New York,

USA (2010). doi:10.1145/1774088.1774185

16. Urgaonkar, B., Rosenberg, A.L., Shenoy, P.: Application placement on a cluster of servers. Int.

J. Found. Comput. Sci. 18(05), 1023 (2007). doi:10.1142/S012905410700511X

17. Adam, C., Stadler, R.: Service middleware for self-managing large-scale systems. IEEE Trans. Netw.

Serv. Manag. 4(3), 50 (2007). doi:10.1109/TNSM.2007.021103

18. Rolia, J., Andrzejak, A., Arlitt, M.: In: Self-Managing Distributed Systems: 14th IFIP/IEEE Inter-

national Workshop on Distributed Systems: Operations and Management (DSOM 2003) (Springer,

2004), pp. 118–129. doi:10.1007/978-3-540-39671-0_11

19. Whalley, I., Steinder, M.L: In: Proceedings of the 12th IFIP/IEEE International Symposium on

Integrated Network Management (IM 2012), pp. 169–176 (2011)

20. Breitgand, D., Epstein, A.: In: Proceedings of the 12th IFIP/IEEE International Symposium on

Integrated Network Management (IM 2011), pp. 161–168 (2011). doi:10.1109/INM.2011.5990687

21. Peoples, C., Parr, G., McClean, S.: In: 3rd IEEE/IFIP International Workshop on Management of the

Future Internet (ManFI), pp. 1246–1253 (2011). doi:10.1109/INM.2011.5990573

22. Xu, J., Fortes, J.A.B.: In: 2010 IEEE/ACM International Conference on Green Computing and

Communications & International Conference on Cyber, Physical and Social Computing (IEEE,

2010), pp. 179–188. doi:10.1109/GreenCom-CPSCom.2010.137

23. Zhu, X., Santos, C., Beyer, D., Ward, J., Singhal, S.: Automated application component placement in

data centers using mathematical programming. Int. J. Netw. Manag. 18(6), 467 (2008)

24. Carrera, D., Steinder, M., Whalley, I., Torres, J., Ayguadé, E.: In: Proceedings of the 11th Network

Operations and Management Symposium (NOMS 2008) (IEEE, 2008), pp. 9–16. doi:10.1109/

NOMS.2008.4575111

25. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M., Tantawi, A.: In:

Proceedings of the 15th international conference on World Wide Web (ACM, 2006), pp. 595–604.

doi:10.1145/1135777.1135865

26. Low, C.: Decentralised application placement . Future Gener. Comput. Syst. 21(2), 281 (2005). doi:

10.1016/j.future.2003.10.003

27. Kimbrel, T., Steinder, M., Sviridenko, M., Tantawi, A.: In: Proceedings of the 4th international

conference on Experimental and Efficient Algorithms, pp. 391–402 (2005). doi:10.1007/

11427186_34

28. Moens, H., Famaey, J., Latré, S., Dhoedt, B., De Turck, F.: In: Proceedings of the 12th IFIP/IEEE

International Symposium on Integrated Network Management (IM 2011), pp. 137–144 (2011). doi:

10.1109/INM.2011.5990684

29. Rodero-Merino, L., Vaquero, L.M., Gil, V., Galán, F., Fontán, J., Montero, R.S., Llorente, I.M.: From

infrastructure delivery to service management in clouds. Future Gener. Comput. Syst. 26(8), 1226

(2010). doi:10.1016/j.future.2010.02.013

30. Chapman, C., Emmerich, W., Marquez, F.G., Clayman, S., Galis, A.: In: Proceedings of the 12th

IEEE/IFIP Network Operations and Management Symposium Workshops (NOMS 2010) (IEEE,

2010), pp. 327–334. doi:10.1109/NOMSW.2010.5486555

31. pure-systems GmbH, pure::variants User’s Guide, version 3.0 edn. http://www.pure-systems.com/

Documentation.116.0.html. Accessed on 12/2012

32. Guo, C.J., Sun, W., Huang, Y., Wang, Z.H., Gao, B.: In: Proceedings of the 9th IEEE International

Conference on E-Commerce and the 4th IEEE International Conference on Enterprise Computing,

E-Commerce, and E-Services, 2007. CEC/EEE 2007, pp. 551–558 (2007)

33. Cai, H., Wang, N., Zhou, M.J.: In: Proceedings of the 6th World Congress on Services (SERVICES-

1), 2010, pp. 40–47 (2010). doi:10.1109/SERVICES.2010.48

34. Hajjat, M., Sun, X., Sung, Y.W.E., Maltz, D., Rao, S., Sripanidkulchai, K., Tawarmalani, M.:

Cloudward bound: planning for the beneficial migration of enterprise applications to the cloud.

SIGCOMM Comput. Commun. Rev. 40(4), 243 (2010)

35. IBM ILOG CPLEX 12.2. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer

(2011)

36. SAT4J 2.2.2. http://www.sat4j.org (2011)

37. Leontiou, N., Dechouniotis, D., Denazis, S.: In: Proceedings of the 6th International Conference on

Network and Service Management (CNSM 2010), pp. 318–321 (2010). doi:10.1109/CNSM.

2010.5691214

J Netw Syst Manage (2014) 22:517–558 557

123

http://dx.doi.org/10.1145/1774088.1774185
http://dx.doi.org/10.1142/S012905410700511X
http://dx.doi.org/10.1109/TNSM.2007.021103
http://dx.doi.org/10.1007/978-3-540-39671-0_11
http://dx.doi.org/10.1109/INM.2011.5990687
http://dx.doi.org/10.1109/INM.2011.5990573
http://dx.doi.org/10.1109/GreenCom-CPSCom.2010.137
http://dx.doi.org/10.1109/NOMS.2008.4575111
http://dx.doi.org/10.1109/NOMS.2008.4575111
http://dx.doi.org/10.1145/1135777.1135865
http://dx.doi.org/10.1016/j.future.2003.10.003
http://dx.doi.org/10.1007/11427186_34
http://dx.doi.org/10.1007/11427186_34
http://dx.doi.org/10.1109/INM.2011.5990684
http://dx.doi.org/10.1016/j.future.2010.02.013
http://dx.doi.org/10.1109/NOMSW.2010.5486555
http://www.pure-systems.com/Documentation.116.0.html
http://www.pure-systems.com/Documentation.116.0.html
http://dx.doi.org/10.1109/SERVICES.2010.48
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www.sat4j.org
http://dx.doi.org/10.1109/CNSM.2010.5691214
http://dx.doi.org/10.1109/CNSM.2010.5691214

Author Biographies

Hendrik Moens received a Masters degree in computer science from Ghent University in 2010. He is a

Ph.D. student in the Department of Information Technology of the Ghent University, and a member of the

network and service management research group. His research interests include the management of large

scale cloud computing environments and autonomic management systems.

Eddy Truyen is a postdoctoral researcher in the Department of Computer Science at the Katholieke

Universiteit Leuven. His research interests include aspect-oriented middleware, middleware for service-

based architectures, dynamic reconfiguration, and support for building reusable aspect frameworks.

Truyen received his Ph.D. in computer science from K.U. Leuven.

Stefan Walraven is a Ph.D. research student in the Department of Computer Science at the Katholieke

Universiteit Leuven. His research interests include adaptive middleware and middleware for cloud

computing. Walraven received his master’s degree in computer science from K.U. Leuven.

Wouter Joosen is a full professor in the Department of Computer Science at the Katholieke Universiteit

Leuven. His research interests are in aspect-oriented software development (focusing on software

architecture and middleware) and in security aspects of software, including security in component

frameworks and security architectures. Joosen has a PhD in computer science from K.U. Leuven.

Bart Dhoedt received a Masters degree in Electro-technical Engineering (1990) from Ghent University.

His research, addressing the use of micro-optics to realize parallel free space optical interconnects,

resulted in a Ph.D. degree in 1995. After a 2-year post-doc in opto-electronics, he became Professor at the

Department of Information Technology. His research interests include software engineering, distributed

systems, mobile and ubiquitous computing, smart clients, middleware, cloud computing and autonomic

systems.

Filip De Turck leads the network and service management research group at the Department of

Information Technology of the Ghent University, Belgium and the iMinds. He received his Ph.D. degree

from the Ghent University in 2002. He is a full-time professor since October 2006 in the area of

telecommunication and software engineering. His main research interests include scalable software

architectures for telecommunication network and service management, performance evaluation and

design of Cloud management systems.

558 J Netw Syst Manage (2014) 22:517–558

123

	Cost-Effective Feature Placement of Customizable Multi-Tenant Applications in the Cloud
	Abstract
	Introduction
	Related Work
	Software Product Line Engineering
	Application Placement

	Feature Placement Concepts
	Formal Problem Description
	Optimization Objective
	Input Variables
	Decision Variables
	Auxiliary Variables
	Constraint Details
	Feature-Based Constraints
	Application Resource Requirement Constraints
	Resource Constraints
	Application Provisioning Constraints
	Cascading Failure of Features
	Server Usage Constraints

	Solution Techniques
	Integer Linear Programming (ILP)
	Heuristic Algorithms
	Feature Ordering
	Grouping Strategies
	Feature Model Conversion
	Heuristic Algorithms

	Evaluation Setup Details
	CUSTOMSS Problem Model
	Generated Problem Models
	Evaluation Methodology
	Load-Based Evaluation
	Execution Time Evaluations
	Quality Evaluation Metrics

	Evaluation Results
	Degree of Multi-Tenancy
	Impact of the Model Constraints
	Placement Quality
	Generated Problem Models
	CUSTOMSS Problem Model

	Execution Speed Evaluation

	Conclusions
	Acknowledgments
	References

