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Design and Analysis of Techniques for Detection
of Malicious Activities in Database Systems

Yi Hu1 and Brajendra Panda1,2

Existing host-based Intrusion Detection Systems use the operating system log or the
application log to detect misuse or anomaly activities. These methods are not sufficient
for detecting intrusion in the database systems. In this paper, we describe a method
for detecting malicious activities in a database management system by using data
dependency relationships. Typically, before a data item is updated in the database,
some other data items are read or written. And after the update, other data items
may also be written. These data items read or written in the course of update of a
data item construct the read set, prewrite set, and the postwrite set for this data item.
The proposed method identifies malicious transactions by comparing these sets with
data items read or written in user transactions. We have provided mechanisms for
finding data dependency relationships among transactions and use Petri-Nets to model
normal data update patterns at user task level. Using this method, we ascertain more
hidden anomalies in the database log. Our simulation on synthetic data reveals that the
proposed model can achieve desirable performance when both transaction and user task
level intrusion detection methods are employed.

KEY WORDS: Malicious transactions; intrusion detection; anomaly detection; data
dependency.

1. INTRODUCTION

A secure information system has three important features: prevention, detection,
and recovery [1]. Intrusion Detection is employed to detect the malicious activi-
ties in case the system prevention mechanism fails. Almost all current host-based
anomaly detection approaches are based on the data generated by auditing mech-
anism of the operating system or application. But these data do not sufficiently
reflect what special data items in the system are modified, e.g., what particular
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attributes in the database are read or written, and whether it is legal to modify
these data items at that time.

Our database intrusion detection system tries to find malicious database trans-
actions submitted to the Database Management System (DBMS) by an intruder
masqueraded as a normal user. The malicious transactions identified in this work
can be used later by damage evaluation and recovery procedures [2–4]. In our
approach, we concentrate on analyzing the dependencies among the data items in
the database. By data dependency, we refer to the data access correlations between
two or more data items. That is, which data items must be read or written before a
data item gets updated and which others are written after the update. Two semantic
analyzers are proposed in this work to deduce the data dependencies among data
items accessed by transactions in the database application program. By checking
whether each update operation in the user transaction conforms to the data de-
pendencies, generalized anomalous activities at the transaction level are detected.
We also propose a method for finding anomalies at the user task level by using
Petri-Nets to model normal data update sequences in user tasks. This is especially
useful for finding hidden malicious activities that consist of several transactions,
each of which appears as a normal transaction.

The following section describes past efforts related to our research. Section 3
outlines the model. Static and dynamic semantic analyzers are discussed in Sec-
tion 4. The notion of data dependency at user task level is described in Section 5
and an implementation approach using Petri-Nets is presented in Section 6. Sec-
tion 7 provides the simulation model and performance results. Section 8 presents
the conclusions.

2. RELATED WORK

Currently, most research on intrusion detection concentrates on anomaly
detection in computer systems. The method used by IDES [5, 6] tries to construct
user profiles statistically based on different categories of system parameters. These
different parameters are weighted and combined together to generate a vector to
reflect normal user behavior. By comparing it with current user profile created
from history data, anomaly activities could be found. Other techniques [7, 8]
attempt to profile normal program behavior. They try to find the normal system
call sequences and save these sequences as normal program access patterns in the
database. Later these patterns are used to check with program activities to find
any anomalous activities. The method developed by Lane and Brodley [9] creates
normal user command sequence. It’s based on the observation that users generally
make use of fixed set of UNIX commands, and different users have different ways
of using these commands.

Since generating normal user or program profiles is a gradual training process,
learning the profile through the process can be considered as a machine learning



Detection of Malicious Activities in Database Systems 271

procedure. So, artificial intelligence application in intrusion detection is employed
by some researchers [10]. Data mining [11–13] and neural network are used to
make the IDS more intelligent.

Very limited research has been conducted in the field of database intrusion
detection. Lee et al. [14] have used time signatures in discovering database intru-
sions. Their approach is to tag the time signature to data items. A security alarm is
raised when a transaction attempts to write a temporal data object that has already
been updated within a certain period. Another method presented by Chung et al.
[15] identifies data items frequently referenced together and saves this information
for later comparison. If the system observes substantial incidents of data items
that are referenced together, but not in normal patterns as established before, an
anomaly is signalled.

3. THE MODEL

The proposed model is designed to identify malicious transactions submitted
to the DBMS by an intruder masquerading as a normal user. In various different
ways, an intruder can gain access to a database system, such as obtaining the
password of a normal user. In such cases, the database system cannot distinguish
between an intruder and a normal user. Here normal user activity means a user
accessing data items through a DBMS by using database application program
instead of by submitting transactions to the DBMS manually and these activities
do not include system maintenance and administration activities. For example, the
accountants in a bank use the banking application to do daily customer transactions
such as deposit, withdrawal, account transfer, and loan. By entering information
to the program interface of the banking application, e.g. GUI of the application
program, the accountant can access and update account information of customers.

3.1. Database Model

This work is based on the relational database model [16]. A transaction is
a logical unit of database processing that includes one or more database access
operations. We only consider the transactions that do not contain conditional state-
ments, i.e., if. . .then. . .else statements, to simplify the process of data dependency
analysis. For the transaction that has conditional statements, multiple subtransac-
tions each of which only containing one sequential execution path are generated
and used for data dependency analysis. Our model requires that the database log
not only records the database access operations in each transaction, but also keeps
the identification information of the user submitting the transaction to the DBMS.
We also require that timestamps associated with each transaction indicating the
transaction start and end times are also kept in the database log.



272 Hu and Panda

The database log records not only the write operations but also the read
operations of each transaction. In case some log information hasn’t been stored
on the permanent storage devices before a transaction commits, our database
intrusion detection system can still access the contents of the log for uncommitted
transactions from the temporary log.

The user’s task in this research refers to a group of transactions that are always
submitted to the DBMS together to achieve a certain goal. For example, in order
to perform the account transfer in a banking application, several transactions may
be submitted to the database consecutively to fulfill the task.

3.2. Assumptions

We assume that the intruder has no access to the database application program
that a normal user has. So an intruder cannot submit malicious transactions to the
DBMS through the database application program at the normal user site. This is
the case when an intruder accesses the database from a remote site by submitting
transactions manually or through a different application. For example, the intruder
may have obtained the password of a legitimate database user account.

The total number of transactions a normal user can use is limited. They are
the transactions in the database application program. So in this case our database
intrusion detection system will raise alarm when the database administrator does
some legal modification to the database system that doesn’t conform to the data
dependencies observed. In this case, database administrator is responsible for
identifying whether the cause of the alarm is due to a normal database maintenance
work or due to the intruder masquerading as the database administrator performing
malicious activities.

4. SEMANTIC ANALYZERS

The static and dynamic semantic analyzers perform the analysis of the data
dependencies among data items in the database. The following definitions help in
understanding the concept.

Definition 1. The Read Set for one data item is a set of different data item
sets, each of which consists of zero or more ordered data items. Additionally, the
transaction must read all data items in one data item set of the read set before the
transaction updates this data item. The notation rs(x) is used to denote the read set
for data item x. The read set is used to calculate the new value of this data item for
updating purposes. For example, consider the following update statement.

Update Table1 set x = a + b + c where . . .

In this statement, before updating x, the values of a, b, and c must be read and
added together to get the new value of x. So {a, b, c} ∈ rs(x).
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Since when constructing the read set for x we only consider the data items
read and used for the purpose of calculating the new value of x, we don’t need to
consider the data items read in the where statements. That’s why the part in the
where statement is ignored.

Definition 2. The Prewrite Set for one data item is the set of different data item
sets, each of which consists of zero or more ordered data items. Furthermore, the
transaction must write all data items in the specified order in one data item set of
the prewrite set before the transaction updates this data item. The notation ws0(x)
is used to denote the prewrite set of data item x. The reason we define prewrite set
is that sometimes a data item is updated in the database after other data items are
updated. For example, we have three update statements in one transaction in the
following sequence. Note that one SQL statement doesn’t necessarily immediately
follow the other; there can be other nonupdating SQL statements between them.

Update Table1 set x = a + b + c where . . .

Update Table1 set y = x + u where . . .

Update Table1 set z = x + w + v where . . .

It must be noted that when x is updated, y and z are updated subsequently. Because
of the hard-coded sequence, the transaction always updates y before updating z.
So considering data item z, we observe that {x, y} belongs to its prewrite set, that
is {x, y} ∈ ws0(z).

Definition 3. The Postwrite Set for one data item is the set of different data
item sets, each of which consists of zero or more ordered data items. Moreover,
the transaction must write all data items in the specified order in one data item set
of the postwrite set after the transaction updates this data item. Using the above
example, it can be noted that {y, z} belongs to the postwrite set of data item x, that
is {y, z} ∈ ws1(x), where ws1 denote the postwrite set.

4.1. Static Semantic Analyzer

The static semantic analyzer is used to analyze the database application
program statically to decide the read set, the prewrite set, and the postwrite set.
Here the word static is used to describe that our method is based on the transaction
program, not based on the database log. First, we want to find out all the possible
transactions one user may use. These transactions can be identified by checking
the database application program. Then the static semantic analyzer is used to
check all statements that update data items in each transaction to find out the read,
prewrite, and postwrite sets for each data item that is updated in the transaction.
Other statements that are not for updating purpose are not checked.

Let’s look at an example to see how to construct the read, prewrite, and
postwrite sets by using the static semantic analyzer. Consider the following three
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Table I. Result of Static Semantic Analysis After T1 Is Analyzed

Read set Prewrite set Postwrite Set

X {{a, b, c}} {ø} {{y, z}}
Y {{x, u}} {{x}} {ø}
Z {{x, w, v}} {{x, y}} {ø}

SQL statements in the given sequence appearing in one transaction, say T1.

Update Table1 set x = a + b + c where . . .

Update Table1 set y = x + u where . . .

Update Table1 set z = x + w + v where . . .

In this example, x, y, z, etc., are used to represent attributes in a table instead
of explicitly listing the attribute names. The result of static semantic analysis is as
shown in Table I.

Suppose in another transaction, say T2, the following statements are used to
update x and w as follows:

Update Table1 set x = a + d where . . .

Update Table1 set w = x + c where . . .

The table constructed by the static semantic analyzer is used to check the
transactions in the database log to find out whether they conform to the data depen-
dency represented by the read, prewrite, and postwrite sets. Before a transaction
updates a data item, all data items in at least one data item set of its read set
must be read and all data items in at least one data item set of its prewrite set
must be written by the same transaction. Then, after a transaction updates a data
item, all data items in at least one data item set of its postwrite set also must be
written by the same transaction. Please note that we also consider the sequence of
the elements in the read, prewrite, and postwrite sets. By considering this kind of
sequence imposed by the transaction program, it will be easier to detect intrusions
in a stricter sense.

Now let’s go through an example to illustrate the use of Table II. Consider
the following transaction Ti , and each data item updated in this transaction has the

Table II. Result of Static Semantic Analysis After T2 Is Analyzed

Read set Prewrite set Postwrite set

x {{a, b, c}, {a, d}} {ø} {{y, z}, {w}}
y {{x, u}} {{x}} {ø}
z {{x, w, v}} {{x, y}} {ø}
w {{x, c}} {{x}} {ø}
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corresponding read, prewrite, and postwrite sets as shown in Table II.

Ti : r[y], r[a], r[q], r[b], r[c], w[x], r[x], r[w], r[v], w[z], r[x], r[u], w[y],

r[c], r[d], r[e].

First the transaction is scanned to see which data items were updated, then
the read set, prewrite, and postwrite sets are checked. For data item x, the read set
consists of two data item sets {a, b, c} and {a, d}. By checking the transaction
Ti it is found that before the operation w[x] this transaction read data items {a,
b, c} but not {a, d}. As long as all data items in at least one data item set of the
read set are read before updating one data item, the read set of this data item is
satisfied. So in this case, the read set of x is satisfied. Then the prewrite set for x
is checked. Since the prewrite set of x is {ø}, there is no need to check whether
any particular data item is updated before w[x]. Hence the prewrite set of x is
also satisfied. However, the postwrite set of x is not checked at this time, because
to do that one must scan the log to the end of the transaction and it may take
a long time if the transaction is large. Moreover, in order to do that one must
wait until the transaction is committed; in that case, it is not possible to stop a
malicious transaction before it’s committed. So z, the next data item updated, is
checked. The read set consists of one data item set {x, w, v}. Before the write
operation w[z] this transaction read data items {x, w, v}, therefore, the read set
of z is satisfied. The prewrite set of z consists of one data item set {x, y}. It is
found that before the operation w[z], x is updated but y is not. So the prewrite set
of z is not satisfied. After the transaction executes w[z], our database IDS could
detect an anomaly in this transaction and notify the site security officer. Thus,
the malicious transaction can be stopped by rolling back the transaction. In this
case, the modification has not been reflected in permanent storage, so no data are
damaged.

It must be noted that our proposed method is not able to detect the malicious
transactions that are compliant to the data dependencies observed in normal user
transactions. In the case that a data item that is not dependent on any other data
items is updated by a malicious transaction, only employing data dependencies is
not enough for detecting it.

4.2. Dynamic Semantic Analyzer

After the analysis of the static semantic analyzer, there may be multiple data
item sets in the read set, prewrite set, or postwrite set for one data item. In the
practical use, some sets are more frequently used than others. This depends on
the execution path of the database application and the normal user access pattern of
the database. The access probability for these sets can be used to identify malicious
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transactions. The dynamic semantic analyzer can determine the use probability
for each of these sets. We define the use probability in both static and dynamic
analysis cases below.

� Static Use Probability, Ps , for one data item set in read, prewrite, or
postwrite set is defined as: Ps = 1/Ts, where Ts is the total number of
data item sets in the read, prewrite, or postwrite set. Ps implies that all
data item sets in the read, prewrite, or postwrite set will be equally likely
referred. For example, in Table II, data item x has two data item sets in
its read set, i.e., {a, b, c} and {a, d}. So Ts = 2, and Ps for {a, b, c} is
1/2 = 50%, and also the same for the set {a, d}.

� Dynamic Use Probability, Pd, for one data item set in read, prewrite, or
postwrite set is defined as: Pd = n/k, where n is the number of times each
data item set in the read, prewrite, or postwrite set is referred in the history
and k is the total number of times the data item is updated in the history.
For example, if data item x is updated 10 times in the history, then k = 10.
By checking all transactions in the history which updated x, we can find
how many times each data item set in the read, prewrite, or postwrite
set is used and get the number n. Then, the dynamic use probability for
x can be computed. It must be noted that the dynamic use probability
should be recalculated frequently to reflect the current characteristics of
data dependency.

The total use probability, Ptotal, for one data item set in read, prewrite, or
postwrite set will be Ptotal = Ps × weight + Pd × (1 − weight) where weight is a
number between 0 and 1 which is decided by the Site Security Officer.

The total use probability for one data item set can be used to identify some
infrequently used data item sets. The reason total use probability is the weighted
sum of static use probability and dynamic use probability is that sometimes the
history or training data may not be enough to reflect the real dynamic use prob-
ability of them. This can be achieved by specifing a threshold Pthreshold for the
total use probability. If Ptotal < Pthreshold, then this data item set will be tagged as
infrequently used set.

For example, in Table II, the read set of data item x contains two sets, S1:
{a, b, c} and S2: {a, d}. If the static semantic analyzer assumes they are equally
likely to have been used by the operation on the database, then for S1, we have
Ps = 50%. Suppose that in practicality S1 is never read. That means for S1 the
dynamic use probability Pd = 0%. If the weight is 30%, the total use probability
Ptotal = 50% × 30% + 0% × (1 − 30%) = 15%. If Pthreshold is set to 20%, then
Ptotal < Pthreshold, so we can identify the data item set {a, b, c} as infrequently
used data item set of the read set of data item x. In the case when a user transaction
reads the set {a, b, c} for updating x the system will indicate an anomaly.
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5. DATA DEPENDENCY AT THE USER TASK LEVEL

As we illustrated above, by checking the read, prewrite, and postwrite sets
for data items updated in one particular transaction, many anomalous activities
performed by the transaction can be detected. But it’s hard to find the anomalous
activity carried out by a group of transactions, each of which satisfies the read,
prewrite, and postwrite sets for the data items updated in the course of the activities.
We propose a method below to identify the anomaly based on data dependency
among transactions. The idea is that when a user executes some part of the database
application to fulfill the user task, generally not one but several transactions
are submitted to the DBMS. For instance, when a customer transfers money
from one account to another account, there may involve several transactions. One
transaction may be used for reducing the balance of one account by some amount
and increasing the balance of another account by the same amount. Another
transaction may be utilized to update some internal accounts only for the use of
the bank, e.g., some accounts used for statistical or audit purpose. The number
of transactions used for one user task is limited. Also, the possible execution
sequences of these transactions are decided by the database application. By using
a training procedure, we try to find out what data items are updated and also
determine their update sequence in a user task, e.g., a deposit task in a banking
application.

In the training phase, a user task is executed extensively to make sure almost
all different cases for this user task are performed. Since these executions must
also satisfy the read, prewrite, and postwrite sets of data items updated, we check
which data item set in the read, prewrite, and postwrite sets is actually used in
the training phase. Then, we use the actual postwrite set and read set for creating
the data dependency among transactions. Based on the definition of postwrite set,
it’s natural to use postwrite set to construct the normal data update sequence. The
reason we use the read set besides using the postwrite set is as follows. Suppose
data item x is updated then data item x, y, z should be updated consequently. And
after data item y is updated, data item u and v also should be updated. The situation
is x, y, z, u, and v are not necessarily updated in the same transaction. It’s possible
that x, y, and z are updated in one transaction, and then u and v are updated in
another transaction. Even it is possible that x, y, and z are not updated in the
same transaction. For example, the following transactions T1 and T2 are executed
consecutively in a user task:

T1: update Table1 set x = 120% x where . . .

update Table2 set y = x + a where . . .

update Table3 set z = x + b where. . .

T2: update Table4 set u = y + c where. . .
update Table5 set v = y + d where. . .
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Table III. The Read, Prewrite, and Postwrite Sets for T1

Read set Prewrite set Postwrite set

x {{x}} {ø} {{y, z}}
y {{x, a}} {{x}} {ø}
z {{x, b}} {{x, y}} {ø}
u {{y, c}} {ø} {ø}
v {{y, d}} {ø} {ø}

The read, prewrite, and postwrite sets constructed based on these two transactions
are shown in Table III.

From Table III, it can be seen that the postwrite set for data item y is {ø};
that means after updating y no other data items need to be updated by the same
transaction. And since the prewrite set for u and v is {ø}, before the transaction
updates u and v, nothing needs to be written by the same transaction. However,
since T1 and T2 always execute consecutively, after y is updated, u and v must be
updated based on the new value of y. So at the higher level of the user task instead
of the transaction, we can find some new data dependencies.

5.1. Write-Chain

To help understand write-chain, the notions of active and passive data items
are defined as follows.

Definition 4. An active data item x is the data item that causes other data
item(s) to be updated when x itself is updated.

Definition 5. A passive data item is the data item that is updated as a result
of other data item(s) being updated.

Based on the above discussion, we define a term write-chain to capture this
kind of data dependency at the user task level. Write-chain is a sequence of data
items that are always updated together and have complete order among these data
items. The first data item of the write-chain is the active data item; other data items
are passive data items. It’s clear that some write-chains can be created directly
from the postwrite set of data items. For example, from Table III we can have
write-chain wc1 : x → y → z based on the postwrite set of x. Other write-chains
are deduced from the data dependencies among y, u, and v that are hidden in
several transactions.

The method for constructing write-chains deduced from several transactions
is as follows. Suppose there’s a write operation w[y] in one user task which includes
several transactions. Check the rs(y) to see if there is any data item xi , xi ∈ any
data item set in rs(y), updated before w[y] in this user task. And if there’s anyone,
create a write-chain wc: xi → y. Still using the above example, from T2 we get
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y, c ∈ rs(u). Moreover, y is updated in T1 before write operation w[u] in T2. So
the write-chain y → u can be deduced. Similarly, another write-chain y → ν can
also be obtained from the above example.

By considering the data update sequence in the transactions, we can combine
several write-chains into one. For example, in transaction T2, u is updated before
v and both of them are updated because y is updated. So we can come up with a
combined write-chain y → u → v.

5.2. Data Update Dependency Graph

After constructing write-chains for one user’s task from the read set and
postwrite set, it may be observed that there are some common data elements
among these write-chains. It will be useful to connect these write-chains to a
graph-like structure to reflect the data dependency among transactions. We call
this structure Data Update Dependency Graph (DUDG). For example, consider
the following five write-chains.

wc1 : x1 → x2 → x3 → x4
wc2 : x2 → x5 → x6
wc3 : x5 → x7
wc4 : x3 → x8
wc5 : x6 → x9 → x10

The first data item at each write-chain is the active data item. All other data
items following it are passive data items. This means all these passive data items
are updated in this user task because the active data item is updated. It is assumed
that a data item is updated only once in a user task. This assumption will make
it easier to find data dependencies among transactions. Although theoretically a
user task may update one data item more than once, this case is rare in practice.

The normal write sequence for one user task is decided by different execution
paths under different situations. One or several DUDGs can be constructed to
reflect all possible write-chains and their correlations for one user task. In Fig. 1,
we construct one DUDG to represent the above example. In Fig. 1, a solid arrow
from A to B represents A as the active node and B as the passive node meaning B
is updated because A is updated, i.e., B = f (A). Whereas a dashed arrow from A
to B represents that both A and B are passive nodes and B �= f (A). It is needed to
trace back from B to find the first solid arrow. The element at the tail of the solid
arrow is the active node, which causes B to be updated.

The DUDG graph models the partial order in which data items are updated
in a user task. For example, in Fig. 1 if x1 is updated, all other data items must
be updated in this user task. Furthermore, all these data items should be updated
according to the partial order in this DUDG graph. The DUDG graph profiles
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Fig. 1. Data update dependency graph.

the normal data update sequence for a user task and can be used for detecting
anomalous transactions in the database system.

6. PETRI-NET IMPLEMENTATION OF THE DATA
DEPENDENCY MODEL

Petri-Net is a modeling tool to specify systems that are concurrent, distributed,
parallel, nondeterministic, and asynchronous. A Petri-Net is a bipartite directed
graph, which consists of two kinds of nodes, namely places and transitions. Places
are represented by circles and transitions are represented by bars. The edges
are between transitions and places, and they indicate the input or output to the
transitions. Each place can hold tokens and only when the input places for a
transition has required tokens, the transition can fire. Due to space constraint we
do not provide detailed information about Petri-Nets other than what is needed for
our implementation. Interested readers may study the article by Murata [17].

6.1. Petri-Net Implementation of DUDG

In this work, we use Petri-Nets to model data relationships, particularly
the DUDG. Some researchers have also used Petri-Nets for multisource attacks
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detection [18]. However, our model is different from theirs as can be observed
below. In Fig. 2, each place represents the write operation for one data item in the
DUDG. We use the name of the data item to represent each node. The transition
represents the end of the input operations and beginning of output operations.
An additional place named “end” is added to identify the normal write sequence.
Additionally, we use two colors for tokens, red and blue.

The tokens with different colors are used to guarantee that a transition occurs
only when the write sequence in the database log is in the required sequence. This
was different from the general transition rule of Petri-Nets. When a write operation
is found in the database log, a blue token is added to the place identified by the
name of the data item. When a transition fires, a red token is put to each output
place of the transition. Suppose a place xi is an output place of a transition tj . If a
place xi holds a blue token, then a transition tj fires which adds a red token to xi ,

that causes misfire. The newly added red token is removed from xi and the blue
token(s) from the input place(s) of tj are also removed. Whenever this happens, we
can infer that a write operation corresponding to the place xi is executed before the
execution of write operation(s) that caused the transition tj to fire. This indicates
that this write sequence doesn’t conform to normal update sequence.

6.2. Modeling Time Pattern of Transaction Execution Over the Petri-Net

A reasonable range in the database log needs to be decided to check the
Petri-Net model. If we can find out a method to group transactions in the database
log that are used collectively to perform one user task, then that user task can be
tested using the Petri-Net. The time pattern of transaction executions can be used
for this purpose.

In order to facilitate our discussion, we define the term gap, which is used
to describe the time difference between the two consecutive user tasks or two
consecutive transactions submitted by the same user in the database log. The gap
refers to time difference between the end of one task (transaction) and the begin-
ning of another task (transaction). In the following discussion, the gap between
two user tasks refers to the gap between two consecutive tasks submitted by the
same user. Similarly, the gap between two transactions refers to the gap between
two consecutive transactions submitted by the same user.

Generally, the gap between two user tasks is much bigger than the gap
between two transactions. For example, when the accountant in the bank serves
customers, there’s always a time interval from several seconds to several minutes
between serving two different customers. This time interval is the gap between two
user tasks. In the case the machine load is not very heavy, we can always assume
this interval is bigger than the interval between executions of two transactions in
a user task. By checking the distribution of the length of the gap between two
transactions, grouping transactions in the database log into user tasks becomes
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Fig. 2. Petri-Net implementation of DUDG.
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Fig. 3. Transaction and task gaps.

simple. The timestamps indicating the end of one transaction and beginning of
another can be used to calculate the length of the gap between the two transactions.

In Fig. 3, we illustrate the gap between two transactions of the same task
and the gap between two tasks. A threshold is used to decide the gap between
two tasks. Whenever any two transactions’ gap is larger than the threshold, we
consider the end of the first transaction as the end of a user task. That means the
next transaction after the gap does not belong to the same user task.

By using the method described above, the gap between two user tasks can
be determined. All the transactions between two of these consecutive gaps can be
grouped together and considered to be the part of the same user task. Although
the purpose of the user task is unknown, the Petri-Net modeled normal updated
sequence can be applied to this user task to check whether there are anomalies in
the task.

To do so, the data items that are updated in the transactions of the user
task are checked. The transactions of the user task are scanned and whenever a
write operation is found, all Petri-Nets are checked to see if any of them has a
place corresponding to the name of the data item updated. If there is one, a blue
token is put into that place. It is possible that several Petri-Nets may have a place
corresponding to the name of the data item updated. In that case, a blue token is
added to each of those places of those Petri-Nets. After the last write operation in
the user task is checked, the Petri-Nets are assessed to see if any of them have all
the transitions fired and there’s a red token in the “end” place. If there’s at least
one Petri-Net having a red token in the “end” place, this user task is considered to
be a normal user task. Otherwise, the user task is considered anomalous indicating
these transactions as malicious.

7. EXPERIMENT

A simulation model was developed in order to evaluate the performance of
the proposed database intrusion detection approach. We pursued experiments on
both transaction levels and user task level intrusion detections. The performance
of the proposed database intrusion detection model relies on several factors. The
first factor is to what extent the data in the database are dependent on each other.
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The stronger the dependency, the better the performance. The test result shows that
this model is especially useful in the environment where mathematical operations
are often involved in database transactions. The second factor is the setting of
operating parameters of the database intrusion detection system. For example, the
SSO needs to set the weight and threshold parameters for the dynamic semantic
analysis. The performance of the system will degrade if these parameters are
incorrectly set up.

7.1. Experimental Model

The modules of the simulation system can be roughly divided into three
main components: transaction level data dependency analysis, user task level
data dependency analysis, and detection. The transaction level data dependency
analysis is responsible for analyzing the source code of the normal database
transactions and database logs for generating read set, prewrite set, and post-
write set. The user task level data dependency analysis is exploited to generate
the write chain and Petri-Net. These structures are used to model the normal data
update pattern at the user task level. The detection part accepts the output of these
previous two components and generates alarms when any malicious transaction is
detected.

The detailed modules of each component and their relationships are illustrated
in Fig. 4. An arrow connecting two modules indicates the direction of information
flow.

7.2. Experiment Design

To evaluate the effectiveness of the proposed detection methods at different
levels, we employ three different experiment settings. The first one only uses the
results of static semantic analyzer to detect intrusion in the database log. The sec-
ond one utilizes both static semantic analyzer and the dynamic semantic analyzer’s
results to detect intrusions. The last one employs user task level intrusion detection
method as well as transaction level intrusion detection method. Performances of
these three experiments are compared to illustrate the effectiveness of each of
these methods.

It’s noted that there are a number of parameters that may affect the perfor-
mance of the model. In order to evaluate the sensitivity of the performance to some
parameters of the system, we adopt the following methods. First, a baseline setting
of system parameters is presented in Table IV. These parameters are observed to
be the typical setting of some normal user environment. Then, by varying one pa-
rameter at a time, we evaluate how the intrusion detection system responds to the
change of the parameter and whether the performance is sensitive to this change.
This also facilitates evaluating different detection methods proposed.
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Fig. 4. Model of the experiment.

Table IV. Parameters Used in Test Settings

Parameter Range Baseline

Transaction level parameters—normal user transaction
Average number of data items read in each update

statement

1–5 2

Average number of data items updated in each transaction 1–10 2
Number of transactions generated 100–1000 100
Average number of common data updated by test
transactions

10–20 10

Transaction level parameters—intruding transactions
Average number of data items read in each update

statement

1–10 2

Average number of data items updated in each transaction 1–20 2
Number of transactions generated 100–1000 100
Average number of data updated by test transactions 10–40 10

User task level parameters
Average number of transactions in each normal user task

1–10 10

Average number of transactions in each malicious user task 1–20 10
System parameters set by SSO

Weight used in dynamic semantic analysis
20% 20%

Threshold used in dynamic semantic analysis 15% 15%
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7.3. Performance Analysis

The experiment results on hit rate and miss rate of the detection are col-
lected for performance analysis. The hit rate consists of the true positive rate and
true negative rate. The miss rate consists of the false positive rate and false neg-
ative rate. The true positive rate and true negative rate show the percentage of
the correct identification of attacking and normal transactions, respectively. While
the false positive rate and false negative rate give the percentage of the incorrect
identification of attacking and normal transactions, respectively. We present each
simulation result and the explanation of it as follows. In each of the following
figures, we only show true positive rate and false positive rate for one test setting.
The false negative rate and true negative rate are not illustrated. The reason is that
the false negative rate is equal to 100% minus true positive rate and, similarly, true
negative rate is equal to 100% minus false positive rate.

First, the performance of detecting malicious transactions based only on static
semantic analysis is tested. The average number of write operations in a transaction
is varied from one to five. All other parameters in the system are kept intact. It can
be seen in Fig. 5 that when the average number of write operations in a transaction
is one, the true positive rate is as low as 44%. In this case, only the read set is
used for detecting intrusions. With the increasing number of write operations, it’s
noted that the detection rate climbs up very quickly. When the average number of
write operations is three, we can get satisfactory true positive rate, which is 89%.
The increased true positive rate is due to more data dependencies observed which
are modeled by the prewrite sets and postwrite sets.

Then, we test to what extent the increased number of read operations in a SQL
statement affects the performance of detection based on static semantic analysis.
The average number of read operations in an SQL statement is changed from one
to five in our test. In Fig. 6, the experiment result is presented. When on average
there’s only one data item read before an update SQL statement modifies a data

Fig. 5. Performance of detection based on static semantic analysis
with varied number of write operations in a transaction.
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Fig. 6. Performance of detection based on static semantic analysis
with varied number of read operations in a SQL statement.

item, the true positive rate is at 74%. The best performance is achieved at 88% true
positive rate when the average number of read operations in an SQL statement is
five. The difference between these two rates is 14%. Comparing this result with
Fig. 5, it’s observed that the true positive detection rate is more sensitive to the
average number of update statements in a transaction. That means if there are
more update statements per transaction, the detection rate may increase quickly
provided other parameters are kept intact.

Figure 7 presents a comparison of detection performances based on static
and dynamic semantic analyses on the same setting of test data. The threshold
for dynamic semantic analysis is set to 15%. It means that if the probability of
a data item set from the read set (or prewrite set, or postwrite set) being used is
less than 15%, it will be tagged as infrequently used set. So it’s discarded from

Fig. 7. Comparison of detection performances based on dynamic semantic analysis
and static semantic analysis.



288 Hu and Panda

Fig. 8. Comparison of false positive rate between dynamic semantic analysis and static
semantic analysis.

the corresponding read set (or prewrite set, or postwrite set). In our test settings,
the true positive rate of dynamic semantic analysis improved by almost 6–12%
compared to that in the static semantic analysis. It proves that when constructing
transaction level data dependencies by considering the normal data update pattern
in the history or training data, the detection becomes more accurate.

Figure 8 illustrates that when using the detection method based on the dy-
namic semantic analysis the false positive rate increases very little, i.e., by about
1.5–2.6%. Since the true positive rate increases by about 6–12% as illustrated
in Fig. 7, so the overall performance of dynamic semantic analysis achieves the
desired better performance.

Next, we illustrate the performance of the simulation system at detecting
malicious user task. Figure 9 shows the true positive rate for identifying malicious

Fig. 9. Comparison of true positive rates observed at different detection levels.
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Fig. 10. Comparison of false positive rate observed at different detection levels.

transactions in user tasks. It’s observed that at our test setting, the user task level
true positive rate is about 5–10% better than only using the transaction level
detection methods. By using detection methods at both levels, we can achieve
desirable performance that makes the true positive rate to be about 90–97%. The
test also shows that the false positive rate doesn’t increase much. It can be seen in
Fig. 10 that the false positive rate increases about 3–4% compared to the dynamic
semantic analysis. This is still acceptable and the overall performance is better
when the user task level intrusion detection method is used.

8. CONCLUSIONS

We have offered a database intrusion detection model that uses data depen-
dency relationships in user tasks or transactions. Dependencies are determined by
using the read, prewrite, and postwrite sets of data items, which are generated
by the static and dynamic semantic analyzers. User applications or database logs
can be checked to construct these sets. By finding the data dependencies among
transactions, we identify anomalies hidden at the user task level. A Petri-Net based
implementation concept has been offered to check these kind of data correlations
at user task level as opposed to the transaction level. Moreover, time pattern of
transaction executions is used to identify the range of database log for verifying
normal data update sequence in order to reduce false negatives. The simulation re-
sults illustrate that by combining the transaction level and user task level intrusion
detection methods better performance can be achieved.
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