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Abstract
Functionally gradient material (FGM) in service often experience temperature variations that can affect the propagation
characteristics of guided waves. This investigation aims to study the propagation of thermoelastic guided waves in the FGM
plate. A computational method for the state vector and Legendre polynomials hybrid approach, which is proposed based
on the Green–Nagdhi theory of thermoelasticity. The heat conduction equation is introduced into the governing equations,
and optimized using univariate nonlinear regression for arbitrary gradient distributions of the material components. To study
their dispersion characteristics, a non-hierarchical calculation for the dispersion curves of FGM plates versus temperature
is realized. In addition, a frequency domain simulation model is developed and compared with theoretical data to evaluate
the accuracy and feasibility of the proposed theory. Then, the influence of Legendre orthogonal polynomial cut-off order on
dispersion curve convergence is investigated. Subsequently, the shift of the gradient index and temperature variation on the
fundamental mode in dispersion curve is analyzed. The results indicate that changes in both gradient index and temperature
lead to a systematic shift in the phase velocity of fundamental modes in the low frequency range. Meanwhile, anti-symmetric
modes exhibit higher sensitivity. On this basis, the study can provide theoretical support for the acoustic non-destructive
characterization of FGM plates versus temperature.

Keywords Functionally gradient material · Thermoelastic guided wave ·Green–Naghdi theory of thermoelasticity · Legendre
polynomial · Dispersion curves

1 Introduction

FGMs are applied widespread in additive manufacturing,
aerospace, and medical therapy [1–3] due to their remark-
able adhesion and plasticity. However, FGM is susceptible
to defects such as voids and micro-cracks over long periods
of service. Therefore, the accurate detection and evaluation
of the internal condition of FGM is a significant challenge.
Acoustic waves have emerged as indispensable tools for
conveying critical information about materials [4, 5], driv-
ing continuous advances in materials inspection. However,
the complex operating environments of FGM [6–8] coupled
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with temperature variations have the potential to bias non-
destructive testing. To accurately detect internal defects of
FGM, a comprehensive understanding of the propagation
characteristics of waveguides at different thermal conditions
has become essential.

Many researchers have conducted extensive investigations
on the propagation of acoustic waves in thermoelastic FGM
plate. For example, Fan et al. [9] studied the reflection phe-
nomenon of plane harmonic waves in functionally gradient
thermoelastic media using the generalized thermoelasticity
theory. Li et al. [10] developed a fractional order control
equation to analyze coupled thermoelasticwave propagation,
and investigated the effects of micro-structural parameters
and fractional order on the propagation and attenuation of
thermoelastic waves. Manthena et al. [11] obtained analyti-
cal solutions in the heat conduction equations and studied
the stress and displacement distributions in a rectangular
FGM plate using integral transform technique in detail. Dai
et al. [12] carried out a comparative analysis of different
volume fraction functions and temperature variations, and
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investigated the wave transmission and nanofluidic trans-
port through nanotubes in FGM. Sheokand et al. [13] used
the positive modal technique to derive comprehensive ana-
lytical expressions for displacement components, stress and
temperature fields. Their research focused on the study of
thermoelastic interactions in FGM under the two-phase hys-
teresis model. Seyed et al. [14] used strain-gradient elasticity
and Green–Naghdi theory to study the effects of length
parameters, microlength inertia, and thermal parameters on
thermal wave propagation in higher-order materials. Liu
et al. [15] investigated the influence of thermal damping
velocity coefficients of epoxy functional gradient layers on
temperature and longitudinal displacements. Kapil et al. [16]
developed a theoretical model for a thermoelastic plane wave
and studied the reflection of thermoelastic waves in a fibre-
reinforced medium with variable thermal conductivity. It is
important to note that the above studies primarily focused on
the propagation characteristics of bulk waves in thermoelas-
tic FGM.

In addition, the ultrasonic guided wave has emerged as a
novel and efficient non-destructive testing method in recent
years. It offers advantages such as extended detection range
and precision tomography. This method has found wide
applications in defect detection and mechanical property
characterization. It has attracted the interest of researchers in
the thermoelastic material detection and evaluation. Sharma
et al. [17] investigated the effects of anisotropy and temper-
ature on guided wave propagation in composite substrates.
UsingKirchhoff theory andMoore-Gibson-Thomson (MGT)
theory of thermoelasticity, Kumari et al. [18] investigated the
propagation characteristics of bending edge waves in porous
FGM plates in a thermal environment. She et al. [19] stud-
ied the dispersion relation of thermoelastic waves in porous
FGM plates based on the Galyokin method. Wang et al.
[20] introduced an advanced Legendre polynomial series
approach to analyze circumferential thermoelastic Lamb
waves in fractional order orthogonal anisotropic cylindri-
cal plates. They further extended their research to include
thermoelastic longitudinal guidedwaves in non-uniform hol-
low cylinders [21] and thermoelastic circumferential Lamb
waves in nonlocal nano-hollow cylinders composed of FGM
[22]. Yu et al. [23, 24] used the Green–Naghdi general-
ized thermoelasticity theory to study circumferential guided
thermoelastic waves in orthotropic anisotropic cylindrical
bending plates under stress-free isothermal boundary con-
ditions, as well as the propagation of thermoelastic guided
waves in orthogonal anisotropic plates under stress-free
isothermal boundary conditions. However, as the cut-off
order of the Legendre polynomials increases, the dimension
of the eigen-matrix of the conventional Legendre polyno-
mial method also increases. This is accompanied by more
complicated integration operations. Additionally, the semi-
analytical finite element method (SAFEM) is an effective

method for solving dispersion characteristic of complex
structures with arbitrary cross sections [25, 26]. Yang et al.
[27, 28] utilized acoustoelastic theory in combination with
the semi-analytical finite element method (AE-SAFEM) to
study the impact of axial stress on the acoustoelastic guided
wave propagation characteristic of arbitrary cross-section.
Based on this, they proposed a thermo-acoustoelastic the-
ory combined with the semi-analytical finite element method
(TAE-SAFEM) to investigate the effects of uniform and
non-uniform thermal effects on the acoustoelastic guided
wave propagation. However, while SAFEM improves com-
putational efficiency compared to the finite element method
(FEM) that discretizes the entire waveguide structure, the
numerical accuracy is more affected by finite element mesh
accuracy. The theoretical modeling related to the thermo-
elastic guided wave propagation problem mainly focuses on
elastic plate structures, tube structures and shaped structures.
There are fewer related reports on functionally gradientmate-
rial structures.

In our research, we propose the state vector and Legendre
polynomial methods to avoid complex integral calculations.
It can solve high-frequency wave propagation problems in
complex waveguide structures. We rewritten the wave equa-
tions and geometrical equations by using the state vectors,
and transform the relevant parameter matrices into upper
triangular and symmetric matrices forms. Additionally, the
dispersion equation can be solved by utilizing the orthogonal
completeness and recursive property of the Legendre poly-
nomial. The proposed approach converts the problem into
an eigenvalue problem, which overcomes the issue of cal-
culating the high cut-off term of the conventional Legendre
polynomial method. Meanwhile, it can also solve the leaky
andmissing root problems of the conventionalmatrixmethod
due to the numerical instability. Using the unique orthogonal
completeness and recursive properties of the Legendre poly-
nomial, analytic expressions for different recursive operators
can be derived. It greatly improves the computational effi-
ciency under the premise of ensuring the correctness of the
operation. An alternative and effective method is provided
to extract the dispersion curve of the waveguided struc-
tures. Previously, we investigated wave propagation in FGM
plates [29] and pipes [30] with varying gradients. Our find-
ings indicate that computational efficiency is significantly
improved compared to the global matrix method. In this
study, the Green–Naghdi theory [31–33] has been incorpo-
rated and extended to numerically analyze the propagation
characteristics of thermoelastic guided waves in FGM plates
versus temperature. Furthermore, the accuracy of the pro-
posed non-hierarchical theoretical solution method has been
validated through frequency domain simulations of an FGM
plate versus temperature. The meaning of “hierarchical” is to
discretize the functionally gradient material plate into multi-
layered plates with the same layer thickness. Each layer has
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independent mechanical parameters. The meaning of “non-
hierarchical” is that the functionally gradient material plate
is regarded as an independent media. Themechanical param-
eters vary continuously along the thickness direction and
satisfy the specific functional distribution form. In addition,
the effect of different Legendre polynomial cut-off orders on
the convergence of the dispersion curve solutions was inves-
tigated. Finally, the effects of gradient index and temperature
on guided wave propagation characteristics in FGM plate are
analyzed.

2 Problem Formulation

In the global coordinate system (x1,x2,x3), consider an FGM
plate with material properties (density ρ and elastic con-
stants CIJ , where I and J range from 1 to 6) varying with
the thickness L (0 ≤ x2 ≤ L), which is infinite in the x1 and
x3 direction but finite in the x2 direction, as shown in Fig. 1.
Also, we assume that the guided wave propagates along the
x1 direction.

2.1 Wave Equations

In this study, we assume that the top material of the FGM
is A, the bottom material is B, and the internal material
parameters gradually evolve from A to B according to the
corresponding functional relationship. And the material at
any thickness position can be expressed as ρ(x2) andCIJ (x2).
Subsequently, based on the small deformation assumption,
the generalized constitutive relationship, the displacemen-
t–strain relationship and the wave equation can be expressed
as:

⎧
⎪⎪⎨

⎪⎪⎩

σi j � ci jkl(x2)εkl i , j , k, l ∈ {1, 2}
εkl � 1

2

(
uk, l + uk, l

)
k, l ∈ {1, 2}

σi j , j � ρ(x2)
∂2ui
∂t2

i , j ∈ {1, 2}
(1)

where σ ij, εij and ui denote the stress tensor, strain tensor and
displacement component in the Cartesian coordinate system,
respectively. And cijkl(x2) denotes the elastic constant along
the thickness direction. Meanwhile, in order to describe the
propagation of ultrasonic guidedwaves in the FGMplate ver-
sus temperature, the control equation can be rewritten using
Green–Naghdi (G–N) theory as:

KiTj , j − T0β
(
ü j , j + Ü j , j

) � ρCeT̈ i , j ∈ {1, 2} (2)

Since the influence of the temperature on the theoreti-
cal model is taken into account, the temperature-dependent
characteristic parameters include the theoretical material

constants, volumeexpansion coefficients, constant strain spe-
cific heats, homogeneous reference temperatures, and the
temperature parameters, which are defined as Ki, β i, Ce, T0,
and T , respectively.

For a free harmonic propagating in the x1 direction, the
stress and displacement solution versus temperature can be
expressed as:

u �
[

u1 u2

]
e− j[κx1−ωt]

τ i �
[

σi1 σi2

]
e− j[κx1−ωt]

T � T e− j[κx1−ωt]

ϒ �
[
u
T

]

e− j[κx1−ωt]

�i �
[

τ i
T

]

e− j[κx1−ωt] (3)

where κ and ω are the wave number and angular frequency.
Subsequently, substituting Eq. (3) into the wave equation in
Eq. (1) yields Eq. (4):

∂

∂x2
�2 � −ρ(x2)ω

2ϒ− ∂

∂x1
�1 (4)

Similarly, substituting Eq. (3) into Eq. (1) and simplifying
using the auxiliary variables (�,ϒ), the constitutive relation-
ships in the FGM plate can be obtained:

�1 � [D11]
∂ϒ

∂x1
+ [D12]

∂ϒ

∂x2
+ [D14]ϒ

�2 � [D21]
∂ϒ

∂x1
+ [D22]

∂ϒ

∂x2
+ [D24]ϒ (5)

where [Dij] is a matrix of coefficients consisting of elastic
constants. Clearly Eq. (5) can be further aligned along the x1
direction:

�1 � [D11]
∂ϒ

∂x1
+ [D12][D22]

−1

(

�2 − [D21]
∂ϒ

∂x1
− [D24]ϒ

)

+ [D14]ϒ (6)

Similarly, Eq. (6) can be written in the corresponding vec-
tor form:

�1 �
[

[D12][D22]
−1 − [D12][D22]

−1
(

∂

∂x1
[D21] + [D24]

)

+
∂

∂x1
[D11] + [D14]

](
�2
ϒ

)

(7)
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Fig. 1 Geometry of the FGM
plate

Bringing Eq. (7) into Eq. (4):

∂

∂x2
�2 �

[
jκ [D12][D22]−1 − ρ(x2)ω2[I ] − κ2

[
[D12][D22]−1[D21] − [D11]

]
+ jκ

[
[D14] − [D12][D22]−1[D24]

] ]
(

�2
ϒ

)

(8)

The constitutive relationship in Eq. (5) along the thickness
direction can also be simplified into vector form:

∂

∂x2
ϒ �

[

[D22]−1 jκ[D22]−1[D21] − [D22]−1[D24]
]
(

�2
ϒ

)

(9)

The following matrix can be obtained by associating Eqs.
(8) and (9):

∂

∂x2

(
�2
ϒ

)

�
[
jκ[D12][D22]−1 −ρ(x2)ω

2[I ] − κ2
[
[D12][D22]−1[D21] − [D11]

]
+ jκ

[
[D14] − [D12][D22]−1[D24]

]

[D22]−1 jκ[D22]−1[D21] − [D22]−1[D24]

] (
�2
ϒ

)

(10)

Note that [D2i] contains functional relations in the x2
direction. Subsequently, the simplified dispersion equation
can be obtained by substituting the constitutive equation in
the x2 direction in Eq. (5) and the rewritten constitutive equa-
tion in the x1 direction in Eq. (6) into the wave equation in
Eq. (4).

κ2[D11]ϒ + jκ([D12] + [D21])
∂ϒ

∂x2

− ρ(x2)ω
2ϒ − [D22]

∂2ϒ

∂x22

+ jκ[D14]ϒ − [D24]
∂ϒ

∂x2
+ jκ

∂[D21]

∂x2
ϒ

− ∂[D22]

∂x2

∂ϒ

∂x2
− ∂[D24]

∂x2
ϒ � 0 (11)

Here, it can be seen that there are two unknown quanti-
ties in the dispersion equation, the wave number κ and the
displacement component ϒ. In order to improve the com-
putational efficiency and reduce the computational volume,
introducing the unit elastic constant C0, the unit density
ρ0, and the relative wave number κ0 � ω

√
ρ0/C0, where

χ � κ/κ0.
[
Di j

]′ is the first-order differentiation of the elas-

tic constant along the direction of the thickness, and Eq. (11)
can be written after simplification:

χ2[D11]
ϒ

C0
+ jχ

([D12] + [D21])

χ0C0

∂ϒ

∂x2

− ρ(x2)

ρ0
ϒ − [D22]

χ2
0C0

∂2ϒ

∂x22
+ jχ

[D14]

χ0C0
ϒ

− [D24]

χ2
0C0

∂ϒ

∂x2
+ jχ

([D21])′

χ0C0
ϒ

− ([D22])′

χ2
0C0

∂ϒ

∂x2
− ([D24])′

χ2
0C0

ϒ � 0 (12)
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2.2 Legendre Polynomial Expansions

In order to obtain the numerical solution of the dispersion
equationϒ, a superposition of the displacement and the tem-
perature is fitted using Legendre polynomials as shown in
Eq. (13):

ϒ �
N−1∑

n�0

�l
n Pn(ι) (13)

where

�l
n �

[

�1
un �2

un �3
Tn

]′

Here, �l
n is the displacement and temperature magnitude

matrix. The subscript u represents the displacement magni-
tude term and T represents the temperature magnitude term.
Pn(ι) is the nth-order Legendre polynomial on ι ∈ [−1, 1], l
represents the different directions with values in the range [1,
2, 3], andN is the cut-off order of the selected Legendre poly-
nomial. Meanwhile, considering the effective action interval
of Legendre polynomial, the coordinate x2 must be converted
to coordinate ι, so the following treatment is carried out:

ι � �

(

x2 − h

2

)

, � � 2/
h (14)

The new dispersion equation can be obtained by substi-
tuting Eqs. (13) and (14) into Eq. (12):

χ2
N−1∑

n�0

∫ 1

−1

[D11]

C0
�l
n Pn(ι)Pm(ι)dι

+ jχ�

N−1∑

n�0

∫ 1

−1

([D12] + [D21])

χ0C0
�l
n
∂Pn(ι)

∂ι
Pm(ι)dι

−
N−1∑

n�0

∫ 1

−1

ρ(x2)

ρ0
�l
n Pn(ι)Pm(ι)dι

− �2
N−1∑

n�0

∫ 1

−1

[D22]

χ2
0C0

�l
n
∂2Pn(ι)

∂ι2
Pm(ι)dι

+ jχ
N−1∑

n�0

∫ 1

−1

[D14]

χ0C0
�l
n Pn(ι)Pm(ι)dι

− �

N−1∑

n�0

∫ 1

−1

[D24]

χ2
0C0

�l
n
∂Pn(ι)

∂ι
Pm(ι)dι

+ jχ
N−1∑

n�0

∫ 1

−1

([D21])′

χ0C0
�l
n Pn(ι)Pm(ι)dι

− �

N−1∑

n�0

∫ 1

−1

([D22])′

χ2
0C0

�l
n
∂Pn(ι)

∂ι
Pm(ι)dι

−
N−1∑

n�0

∫ 1

−1

([D24])′

χ2
0C0

�l
n Pn(ι)Pm(ι)dι � 0 (15)

The material properties of FGM plates can be described
as [34]:

CI J (x2) � C2
I J + (C1

I J − C2
I J )V1(x2)

ρ(x2) � ρ2 + (ρ1 − ρ2)V1(x2)

V1(x2) + V2(x2) � 1 (16)

whereV1(x2) is the gradient volume fraction at the surface of
the FGM plate and V2(x2) is the gradient volume fraction at
the bottom of the FGM plate, while the gradient exponential
function of Eq. (17) was chosen:

V1 �
(
1 − x2

h

)p
(0 ≤ x2 ≤ h, 0.2 ≤ p ≤ 2) (17)

Thus, the corresponding material parameters can be
obtained from different gradient volume fractions:

CI J (ι) � C2
I J+

(
C1
I J − C2

I J

)(
1

2
− ι

2

)p

ρ(x2) � ρ2+
(
ρ1 − ρ2

)(
1 − x2

h

)p

C ′
I J (ι) � − p

h

(
C1
I J − C2

I J

) 1

2p−1 (1 − ι)p−1 (18)

The power function in Eq. (18) has a high complexity to be
solved by direct substitution, so it can be fitted by univariate
nonlinear fitting as [35]:

(
1

2
− ι

2

)p

� S1ι
8 + S2ι

7 + S3ι
6 + S4ι

5 + S5ι
4 + S6ι

3

+ S7ι
2 + S8ι

1 + S9,
(
1

2
− ι

2

)p−1

� Q1ι
8 + Q2ι

7 + Q3ι
6 + Q4ι

5 + Q5ι
4

+ Q6ι
3 + Q7ι

2 + Q8ι
1 + Q9; (19)

Equation (20) can be obtained by substituting Eqs. (18)
and (19) into Eq. (15):
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χ2

[
D2
11

]

C0

N−1∑

n�0

∫ 1

−1
�l
n Pn(ι)Pm(ι)dι + jχ�

([
D2
12

]
+

[
D2
21

])

κ0C0

N−1∑

n�0

∫ 1

−1
�l
n
∂Pn(ι)

∂ι
Pm(ι)dι − ρ2ω

2
N−1∑

n�0

∫ 1

−1
�l
n Pn(ι)Pm(ι)dι

−
[
D2
22

]

κ2
0C0

�2
N−1∑

n�0

∫ 1

−1
�l
n
∂2Pn(ι)

∂ι2
Pm(ι)dι + jχ

[D2
14]

κ0C0

N−1∑

n�0

∫ 1

−1
�l
n Pn(ι)Pm(ι)dι −

[
D2
24

]

κ2
0C0

�

N−1∑

n�0

∫ 1

−1
�l
n
∂Pn(ι)

∂ι
Pm(ι)dι

+ χ2

([
D1
11

] − [
D2
11

])

C0

N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)

Pn(ι)Pm(ι)dι

+ jχ�

(([
D1
12

] − [
D2
12

])
+

([
D1
21

] − [
D2
21

]))

κ0C0

N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)
∂Pn(ι)

∂ι
Pm(ι)dι

− ρ1 − ρ2

ρ0

N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)

Pn(ι)Pm(ι)dι

−
([
D1
22

] − [
D2
22

])

κ2
0C0

�2
N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)
∂2Pn(ι)

∂ι2
Pm(ι)dι

+ jχ

([
D1
14

] − [
D2
14

])

κ0C0

N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)

Pn(ι)Pm(ι)dι

−
([
D1
24

] − [
D2
24

])

κ2
0C0

�

N−1∑

n�0

∫ 1

−1
�l
n

(
S1ι

8 + S2ι
7 + S3ι

6 + S4ι
5 + S5ι

4

+S6ι
3 + S7ι

2 + S8ι
1 + S9

)
∂Pn(ι)

∂ι
Pm(ι)dι

− jχ

([
D1
21

] − [
D2
21

])

κ0C0

p

h

N−1∑

n�0

∫ 1

−1
�l
n

(
Q1ι

8 + Q2ι
7 + Q3ι

6 + Q4ι
5 + Q5ι

4

+Q6ι
3 + Q7ι

2 + Q8ι
1 + Q9

)

Pn(ι)Pm(ι)dι

+ �

([
D1
22

] − [
D2
22

])

κ2
0C0

p

h

N−1∑

n�0

∫ 1

−1
�l
n

(
Q1ι

8 + Q2ι
7 + Q3ι

6 + Q4ι
5 + Q5ι

4

+Q6ι
3 + Q7ι

2 + Q8ι
1 + Q9

)
∂Pn(ι)

∂ι
Pm(ι)dι

+

([
D1
24

] − [
D2
24

])

κ2
0C0

p

h

N−1∑

n�0

∫ 1

−1
�l
n

(
Q1ι

8 + Q2ι
7 + Q3ι

6 + Q4ι
5 + Q5ι

4

+Q6ι
3 + Q7ι

2 + Q8ι
1 + Q9

)

Pn(ι)Pm(ι)dι � 0 (20)

It is important to note that the linear operators for the Leg-
endre polynomials have been given in the literature [29], and
it is not difficult to observe that the limitations of the par-
tial differential terms in the dispersion equations make the
Legendre polynomials have a minimum effective range of
[0, N − 3], and thus provide only 2(N − 2) equations. How-

ever, this does not allow for the solution of 2N amplitude
and temperature quantities. Therefore, it is necessary to intro-
duce boundary conditions and combine themwith dispersion
equations to further supplement the unknown covariates that
need to be calculated. In this case, the free stress bound-
ary conditions at the upper and lower boundaries can be
expressed as:

⎧
⎪⎪⎨

⎪⎪⎩

∑N
n�0

([
D1
22

]

κ0
(−1)n+1� n(n+1)

2 +
(
[D1

24] − jχ
[
D1
21

])
(−1)n

)

�l
n � 0 (lower)

∑N
n�0

([
D2
22

]

κ0
�
n(n+1)

2 +
(
[D2

24] − jχ
[
D2
21

])
)

�l
n � 0 (upper)

(21)
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Fig. 2 Schematic diagram of the
FGM plate simulation model

Subsequently, the coupling Eq. (20) with Eq. (21) can be
obtained:

(22)

χ2�3N×3NE3N×1 + jχΨ 3N×3ND3N×1 + Z3N×3ND3N×1

� 0

where�,Ψ ,Z is the coefficientmatrix, andE is [ϒ i
0, ϒ

i
1, ϒ

i
2,

. . . , ϒ i
N−1]

T .Meanwhile, in order to transform the quadratic
eigenvalue problem into a linear eigenvalue problem, the unit
matrix I and auxiliary variables R � jχ�E are introduced
Eq. (22) is further rewritten:

([
Ψ 3N×3N −I3N×3N

−�3N×3N 0

]

− j

χ

[
Z3N×3N 0

0 I3N×3N

])

[
E3N×1

R3N×1

]

� 0 (23)

Finally, the eigenvalues and eigenvectors in Eq. (23) are
solved, which can directly realize the accurate plotting of the
dispersion curves versus temperature in FGM plates.

3 Numerical Validation

3.1 Frequency Domain Simulation

Based on the theoretical derivation described previously,
propagation characteristics of guided waves in an isotropic
FGM plate are computed under the influence of tempera-
ture. To validate the accuracy of our proposed theoretical

approach, we create an acoustic frequency domain simula-
tion model for a multilayer plate subjected to a temperature,
as shown in Fig. 2. The goal is to obtain a hierarchical solu-
tion for the FGM in solid mechanics module. In this case,
the first layer of the isotropic FGM plate consists of copper,
while the eleventh layer consists of steel. The performance
parameters are shown in Table 1. According to the Eq. (18),
the material parameters including density and elastic modu-
lus of the intermediate layers follow a functional distribution.
Each layer has a thickness of 0.1 mm, and the temperature is
maintained at 293 K.

During the modelling process, the heat transfer in solids
module is used to simulate the temperature distribution.
Thermal conductivity coefficients and constant pressure heat
capacity values are assigned to each material layer. Ther-
mal isolation conditions are implemented at the boundary
surfaces, while temperature boundaries are defined at the top
and bottom interfaces. In conjunction with the solid mechan-
ics module, mechanical parameters such as elastic modulus,
Poisson’s ratio, and density are assigned to each layer of
the linear elastic material. To account for the reflection and
refraction effects of sound waves along the longitudinal
direction, Floquet periodic boundaries are introduced on both
sides of the model, effectively extending the model infinitely
along the longitudinal direction [37]. In addition, triangular
fine meshing is used to improve simulation accuracy. Subse-
quently, the wave numbers in the frequency range can be
obtained by parametrically scanning the eigenfrequencies
and the guided wave dispersion curves of the FGM plates
accurately.
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Table 1 Steel–copper material
parameters [36] Materials ρ C11 C12 C44 Ce β i Ki

Steel 7.9 281.72 131.12 84.298 710 4.05 32.4

Copper 8.0 153.91 79.29 37.31 390 1.34 15.0

Unit: Cij (GPa), ρ (g/cm3), Ce (J kg deg m−1), β i (106 N deg−1 m−2), Ki (W/m K)

Fig. 3 Comparison of the proposed theoretical results and simulation
results at 293 K

3.2 Comparison

To verify the accuracy of the non-hierarchical numerical cal-
culations for the FGM plate, the dispersion curves of an
11-layer FGM plate are calculated by the proposed sim-
ulation model and shown in Fig. 3. It shows theoretical
calculation results as red circles, while the black solid line
represents guided wave dispersion curve derived from the
simulation model. A comparison shows that the results from
the hybrid theoretical method (State Vector and Legendre
Polynomial-GN hybrid method, SVLP-GN) and the fre-
quency domain simulation model are both reliable and stable
for frequency-thickness products below 2 MHz × 1.1 mm.

3.3 GuidedWave Propagation in FGM Plate

The volume fraction of a 1 mm isotropic steel–copper FGM
platewas then examined as an illustrative example. Themate-
rial parameters are shown in Table 1, with different assumed
values for the gradient index p � 0.2, 0.5, 1, and 2. It is
important to note that changing the gradient index directly
affects the mechanical properties of the FGM plates, which
leads to significant changes in the wave propagating char-
acteristics. As shown in Fig. 4a, the surface is rich in steel
at x2 � 0 and rich in copper at x2 � h. This results in an
obvious shift in the trend of the volume fraction distribu-
tion along the thickness. In addition, at arbitrary positions

along the thickness direction for different gradient indices,
the two mechanical parameters elastic modulus and density
were calculated. Figure 4b, c clearly show a positive correla-
tion between elastic modulus and volume fraction, while the
opposite is true for density.

3.4 Convergence Analysis

While traditional methods obtain dispersion curves by solv-
ing transcendental equations [38], in this method the solution
of dispersion equations is transformed into an eigenvalue
problem. When dealing with guided wave propagation prob-
lems versus temperature, it is usually necessary to consider
the displacement and temperature in the form of a general
solution and approximate the fit by Legendre polynomials
within the cut-off term M [39]. To observe the convergence
of the proposed method, the phase velocity dispersion curves
of steel–copper FGM plates with exponential gradient p � 2
are numerically calculated for different cut-off terms: M �
11, 12, 13 and 14 at a temperature of 293 K. As shown in
Fig. 5a, for M ≥ 11, the dispersion curves can be effectively
plotted in the range of 0–6 MHz. However, in the frequency
range near 8MHz, the calculation results do not agreewell for
M � 11. From the zoomed plot in Fig. 5b, it can be observed
that numerical instability occurs at M � 11, but as the cut-
off term increases, the different dispersion curves approach
eachother.AtM�13and14, the frequencydispersion curves
show better agreement. Therefore, it can be concluded that in
this case a convergent solution can be obtained with a cut-off
term of M > 13. It should be noted that setting a higher cut-
off term will result in more stable and accurate calculation
results, but will also increase the actual calculation time.

4 Numerical Results and Discussion

4.1 Effect of Gradient Index on GuidedWave
Propagation

To investigate the influence of the gradient index p on
the guided wave propagation characteristics, the SVLP-GN
method was used to calculate the phase velocity dispersion
curves of isotropic FGMplate at 293K for different values of
p (0.2, 0.5, 1, and 2) based on the volume fraction curvesmen-
tioned above. The dispersion curves are shown in Fig. 6. The
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Fig. 4 The FGM plate volume fraction and mechanical parameter curves

Fig. 5 Dispersion curves in steel–copper FGM plate at different cut-off orders M at 293 K

A0 mode is represented by the red solid line with red solid
star triangles, the S0 mode by the blue solid line with blue
solid dots, and the higher ordermodes by the black solid lines.
The dispersion curves of thermoelastic guided waves can be
plotted in the frequency range of 0–8 MHz, with the phase
velocity varyingwith the gradient indexwithin this frequency
range. In particular, the phase velocities of the symmetric
and antisymmetric modes decrease as the gradient index p
increases at 293 K. At the same time, the number of modes
within the same frequency range increases and the cut-off
frequency of the higher order modes decreases. In addition,
as indicated by the red dashed circle, theweak coupling effect
becomes more pronounced in the 0–8MHz range as adjacent
higher order modes gradually approach each other.

To fulfill the anisotropy characteristics of FGMinpractical
applications and extend the scope of the proposed compu-
tational approach, a theoretical model for anisotropic FGM
platewith different gradient indices p versus temperaturewas
developed. Using the material parameters listed in Table 2,
we performed numerical calculations of the phase velocity
dispersion curves for a 1 mm Si3N4-Zinc FGM plate with
different gradient indices (p � 0.2, 0.5, 1, and 2), and the
results are shown in Fig. 7.

The red solid lines represent the A0 mode, the blue solid
lines represent the S0 mode, and the remaining black solid
lines represent the higher order modes. It is evident that in
the frequency-thickness product range of 0–8 MHz mm, an
increase in the exponential gradient leads to a greater number
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Fig. 6 Dispersion curves of steel–copper FGM plate with different p at 293 K

Table 2 Si3N4-Zinc material parameters [40]

Materials ρ C11 C12 C44 C66 Ce β1 β2 Ki

Si3N4 3.2 574 127 433 108 670 3.22 2.71 96.1

Zinc 7.14 162.8 50.8 62.7 38.5 390 38.5 3.85 15.8

Unit: Cij (GPa), ρ (g/cm3), Ce (J kg deg m−1), β i (106 N deg−1 m−2), Ki (W/m K)

of modes at the same temperature. Furthermore, similar to
the isotropic FGMplate, the phase velocity of the anisotropic
FGMplate decreases as the gradient index increases. In addi-
tion, the phase velocity of the S0 mode exhibits a more
pronounced decay compared to the A0 mode at correspond-
ing frequencies. Interestingly, unlike the steel–copper FGM
plate, the Si3N4-Zinc FGM plate does not exhibit a signifi-
cant weak coupling effect between adjacent branches.

4.2 Effect of Temperature on the GuidedWave
Propagation in FGM Plate

Numerical calculations of the dispersion curves at differ-
ent temperatures, keeping the gradient index constant (p �
2), were performed to study the effect of temperature varia-
tions on the propagation characteristics of guided waves in
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Fig. 7 Dispersion curves of Si3N4-Zinc FGM plate with different p at 293 K

FGM plate. The SVLP-GN method was used for these cal-
culations. Furthermore, to study guided wave behaviour in
different types of typical FGM plate, we calculated disper-
sion curves for 1 mm isotropic steel–copper FGM plate and
anisotropic Si3N4-Zinc FGMplate.We paid special attention
to the interplay between temperature variations and disper-
sion characteristics. These modes represent the fundamental
modes in the lower frequency range and are preferred for
ultrasound detection because of their unique weak dispersion
and high resolving power. The results are shown in Fig. 8.

In Fig. 8, the dispersion curves are represented by blue
solid lineswith blue solid dots, triangles, and crosses for tem-
peratures of 283 K, 323 K, and 373 K, respectively. The red
solid lines with red solid diamonds, hexagons, and squares
correspond to temperatures of 423 K, 473 K, and 523 K,
respectively. In general, the changes in phase velocity caused
by temperature variations are relatively small compared to

the frequency-thickness product. However, a closer look at
the phase velocity dispersion curves near the 0.1 MHz fre-
quency range shows that both the A0 and S0 modes exhibit a
decrease in phase velocity with increasing temperature. It is
worth noting that the temperature-dependent phase velocity
changes are more pronounced for the A0 mode compared to
the S0 mode. Furthermore, while the phase velocity evolu-
tion pattern with temperature remains relatively consistent
in the isotropic FGM plate, some minor fluctuations in the
phase velocity of the S0mode are observed in the anisotropic
FGM plate.

In Sect. 2, the eigenvalues and eigenvectors of the linear
equation system can be obtained simultaneously by solving
Eq. (23). At the same time, by substituting the eigenvectors
into the expressions of the displacements, the displacement
modal structure of any guided wave mode versus tempera-
ture can be reconstructed.Here, the displacement distribution
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Fig. 8 Dispersion curves of isotropic and anisotropic FGM plates at
283–523 K

curves of the S0 mode at 1 MHz are plotted for the steel—
copper functionally gradient material plate at 293–543 K, as
shown in Fig. 9. Among them, the red solid lines indicate
the displacement distribution curves along the x1 propaga-
tion direction versus temperature, and the blue dashed lines
indicate the displacement distribution curves along the x2
direction versus temperature, respectively. From Fig. 9b–e,
it can be seen that the changes in the displacement modal
structure are affected by temperature effects. Moreover, both
the u1 and u2 tend to increase as the temperature rises. In
addition, the displacement distribution curves show good
continuity along the thickness direction.

4.3 Temperature Sensitivity Analysis

To study the effect of temperature changes on the phase
velocity of fundamental modes at different frequencies,
steel–copper and Si3N4-Zinc FGM plates are selected with
gradient index p � 0.2, 0.5, 1, and 2 as examples. The phase
velocity temperature sensitivity curves of the fundamental
modes at various frequencies were derived by comparing
the dispersion curves obtained at 283 K and 523 K. The
results are shown in Figs. 10 and 11. Figure 10 shows that in
the 0–1 MHz frequency range, the phase velocity sensitiv-
ity values of the symmetric modes exhibit relatively smooth
variations. On the other hand, the phase velocity temperature
sensitivity of the antisymmetric modes shows consistently
negative values, with significantly larger absolute sensitivi-
ties than the symmetric modes, indicating strong dispersion
effects. Similarly, the anisotropic FGM plate follows a sim-
ilar pattern as shown in Fig. 11. Notably, in the isotropic
FGM plate, the phase velocity temperature sensitivity of the
A0 mode in the 0–0.2 MHz range increases with a higher
gradient index. In addition, we observe a pronounced phase
velocity temperature sensitivity at the zero frequency of the
A0 mode in both isotropic and anisotropic FGM plates. In
other words, the effect of temperature on the phase veloc-
ity can be better explored by utilizing the A0 modes of low
frequency guided waves.

5 Conclusion

This study is aimed at proposing an analytical method to
analyze the wave propagation problem of FGM plates versus
temperature. The specific findings of the study are as follows:

1. In the framework of Green–Naghdi theory, guided wave
dispersion equations along the thickness direction of
FGM plates versus temperature are constructed and
solved by state vector and Legendre polynomial hybrid
approach.

2. A frequency domain simulation model is constructed to
verify the effectiveness of the proposed method by sim-
ulating the multi-layered plate versus temperature using
the same material parameters.

3. The propagation characteristics of guided waves in both
isotropic steel–copper plate and anisotropic Si3N4-Zinc
FGM plate under different temperature and gradient dis-
tribution states are investigated. Some interesting and
important phenomena are discovered:

(a) The effect of cut-off order on the convergence of
the solution is analyzed for the phase velocity dis-
persion curve of isotropic steel–copper plate in the
frequency range 0–8 MHz. It is found that there is
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Fig. 9 S0 mode displacement
modal structure for steel–copper
FGM plate versus temperature

good convergence when the Legendre polynomials
have a cut-off order of M > 13.

(b) A significant influence of the gradient index varia-
tion on themechanical properties of the functionally
gradient material, with an increase in the gradient
index leading to a decrease in the phase velocity
values of the fundamental modes.

(c) The effects of different temperature conditions on
the dispersion characteristics are investigated. It is
found that for a given frequency-thickness prod-
uct, the phase velocity of both symmetric and
anti-symmetric modes decreases with increasing
temperature, with A0 mode having higher phase
velocity sensitivity at zero frequency.
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Fig. 10 Phase velocity sensitivity
curves for isotropic steel–copper
FGM plate

Fig. 11 Phase velocity sensitivity
curves for anisotropic Si3N4-zinc
FGM plate
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(d) The changes in the displacementmodal structure are
affected by temperature effects. Both the u1 and u2
tend to increase as the temperature rises.

When applying ultrasonic guided waves for structural
health monitoring of the object under test, the temperature
can lead to changes in wave propagation, which will affect
the accuracy of the monitoring results. This work establishes
a link between temperature, gradient distribution, and guided
wave dispersion in the FGMplate,which can be subsequently
utilized to realize the compensation of guided wave detec-
tion under ambient temperatures. It provides a theoretical
basis for improving the accuracy of guided wave structural
health monitoring technology in variable temperature envi-
ronments.
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