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Abstract
InX-ray testing, the aim is to inspect those inner parts of an object that cannot be detected by the naked eye. Typical applications
are the detection of targets like blow holes in casting inspection, cracks in welding inspection, and prohibited objects in
baggage inspection. A straightforward solution today is the use of object detection methods based on deep learning models.
Nevertheless, this strategy is not effective when the number of available X-ray images for training is low. Unfortunately, the
databases in X-ray testing are rather limited. To overcome this problem, we propose a strategy for deep learning training that
is performed with a low number of target-free X-ray images with superimposition of many simulated targets. The simulation
is based on the Beer–Lambert law that allows to superimpose different layers. Using this method it is very simple to generate
training data. The proposed method was used to train known object detection models (e.g. YOLO, RetinaNet, EfficientDet
and SSD) in casting inspection, welding inspection and baggage inspection. The learned models were tested on real X-ray
images. In our experiments, we show that the proposed solution is simple (the implementation of the training can be done
with a few lines of code using open source libraries), effective (average precision was 0.91, 0.60 and 0.88 for casting, welding
and baggage inspection respectively), and fast (training was done in a couple of hours, and testing can be performed in 11ms
per image). We believe that this strategy makes a contribution to the implementation of practical solutions to the problem of
target detection in X-ray testing.

Keywords X-ray testing · X-ray simulation · Object detection · Casting inspection · Welding inspection · X-ray baggage
security

1 Introduction

InX-ray testing, there are certain applications inwhichwe
have to identify—non-destructively—a target located inside
an object [1] as illustrated in Fig. 1. In general, automated
visual inspection problems have been tackled recently using
computer vision methods based on deep learning models
(see for example the product quality control of pelletization
process [2], detection of defects [3–5], and inspection of opti-
cal components [6]). Moreover, object detection approaches
based on deep learning [7] have established themselves as
state-of-art in computer vision applications that require the
identification and the location of a target. They have been
used in many applications such as remote sensing [8] and
gear pitting detection [9] among others. In this paper, we
deal with the target detection problem in X-ray testing giving
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examples on three application fields: detection of disconti-
nuities in casting and welding inspection, and recognition of
prohibited items in baggage inspection.

Casting inspection is used in the production of light alu-
minum alloys (e.g. wheels for the automotive industry),
where cracks or voids can be formed inside the workpiece. In
the last years, automated methods based on classic computer
vision [10,11], multiple views [12], computed tomography
[13] and deep learning [14–17] have been proposed.

Welding inspection is used used for detecting those defects
in the petroleum, chemical, nuclear, naval, aeronautics and
civil construction industries, among others. A mandatory
inspection using X-ray testing is required in order to detect
defects like porosity, inclusion, lack of fusion, lack of pene-
tration and cracks. Semi-automatedmethods based on classic
computer vision [18,19] and deep learning [20–22] have been
reported.

Baggage inspection is used as a security check to protect
public entrances (e.g. government buildings, airports, etc.)
where all baggage are scanned to detect prohibited items like
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Fig. 1 Examples of real X-ray images used in our experiments. Top:
Casting inspection: Detection of defects using YOLOv5s is shown in
cyan, and ground truth in red. Middle: Welding inspection: Detection
using YOLOv3-Tiny is shown in orange (ground truth is evident). Bot-
tom: Baggage inspection. Detection using SSD (ground truth is evident)

handguns or explosives [23]. Recently, methods based on
classic computer vision and deep learning have been pro-
posed. In single views using mono-energy and dual-energy
images, we can mention [24–31] respectively. Besides, there
are some contributions based on GAN’s (Generative Adver-
sarial Networks) [32] to generate synthetic X-ray images that
can be used as data augmentation in the training stage [33,34].

From the literature review, we can see that although many
computer vision algorithms have been developed in the last
decades, the performance of them is far from perfect, and
visual inspection is still required in certain cases. In recent

years, we have witnessed how methods based on deep learn-
ing have significantly boosted the performance in several
areas of computer vision such as object detection. Object
detection can be used in the mentioned applications of X-ray
testing to detect targets (such as defects or prohibited items).
In object detection, more than one object can be recognized
in an image, and the location of each recognized object is
given by a bounding box that encloses the detected object
[7]. The most representative methods in object detection are
those based on a single convolutional neural network (CNN)
[35], i.e. a deep neural network with several layers, that are
trained to both location and classification, i.e. prediction of
bounding boxes, and estimation of the class probabilities of
the detected bounding boxes. This group of approaches cor-
responds to the state of the art in detection methods, because
they are very effective and very fast. They are the best per-
forming as stated in [36], where the most well known are:
YOLO [37–41],1 EfficientDet [42], RetinaNet [43] and SSD
[44].

In X-ray testing, however, object detection is only pos-
sible when the number of X-ray images is high enough to
train a model. Unfortunately, the annotated datasets in X-ray
testing are rather limited, and the number of available X-
ray images is low. To overcome this problem, we propose a
strategy based on simulation of very realistic targets to build
the training dataset. Thus, training is performed with a low
number of target-free X-ray images with superimposition of
simulated targets. Whereas, testing is performed on real X-
ray images ensuring an evaluation in real scenarios.

Our contributions to the detection of targets in X-ray test-
ing is fourfold:

(i) We develop a simple, effective, and fast deep learning
strategy that can be used in the detection of targets in
X-ray testing (see some results in Fig. 1).

(ii) Due to the low number of available real targets, we pro-
pose a very useful training/testing strategy, in which only
simulated targets are used in training, andonly real targets
in testing (see Fig. 2). This practice avoids overfitting.
The training stage requires a low number of real X-ray
images and no manual annotations because a simula-
tion model is used to superimpose targets onto the X-ray
images.

(iii) There are some simulation models that have been specif-
ically used to simulated defects in castings [45], in
weldings [46] and threat objects in baggage inspection
[31,47], however, in our work, we propose a unified algo-
rithm (see Algorithm 1) for simulation that can be used
in X-ray testing that superimposes two X-ray images in
general. Besides, a new simulation approach is presented

1 YOLOv5 was released in June 2020. The GitHub repository is avail-
able on https://github.com/ultralytics/yolov5.
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Fig. 2 Block diagram of proposed method. See examples of images X1, X2, Y, and bb in Fig. 3

that generates very realistic defects (see stick example in
Fig. 3)

(iv) The implementation of training methods is based on
well-established deep object detection libraries avoiding
practical settings in training or testing stages. The code
and thedatasets used in this paper are available on apublic
repository.2 We believe that this practice, which is very
common in other fields of computer vision, should be
more common in X-ray testing. Thus, anyone can repro-
duce the results reported in this paper, or re-use the code
in other inspection tasks. Moreover, training and testing
can be executed in Python in any browser with no intri-
cate configuration and free access to GPUs using Google
Colab.3

2 ProposedMethod

The general overview of our proposed method is presented
in Fig. 2. As usual, the recognition approach has two stages:
training and testing. In our method, training is performed
using real X-ray images with simulated targets only (see Fig.
3). Thus, no real image with targets is used for training pur-
poses, because in this kind of problem the amount of real

2 URL of the repository will be available after publication.
3 See http://domingomery.ing.uc.cl/material.

targets is very low. On the other hand, testing is carried out
using real X-ray images with real targets. Thus, the reported
performance on the testing dataset corresponds to a real sce-
nario. In this section, we explain the simulators we use (Sect.
2.1), and the training and testing processes (Sect. 2.2).

2.1 Simulators

For the simulation of X-ray images, used later to build the
training dataset, we used the superimposition idea presented
in [45,47], in which a simulated X-ray image is created by
combining two X-ray images.4 In this section, we present a
unified approach for the superimposition and a new simula-
tion approach of defects based on a strategy using ‘sticks’
that are located randomly.

2.1.1 Unified Model

The unified model is a unique simulation approach that can
be used to simulateX-ray images (for training purposes). The
central idea of the method is to generate a simulated X-ray
image (Y) from two X-ray images: an image (X1) with no
target, and an image (X2) with the target, as illustrated in

4 Simulators based on GAN have been proposed (see for example [16])
however, we don’t use them in the experiments, because the superim-
position of ellipsoidal defects achieved higher performance.
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Fig. 3 Simulation of targets for baggage inspection (target = handgun),
for casting inspection (target = hole using ellipsoidal model), and for
welding inspection (target = crack using stickmodel):X1 OriginalX-ray
image with no target. X2 Simulated targets or X-ray image of isolated
target. Y X-ray image with simulated target (superimposition of target

onto the original X-ray image). bb Bounding boxes of the simulated
targets. Using this method it is very simple to generate training data,
i.e. X-ray images with (simulated) targets and location of the targets,
where the bounding boxes are obtained with no manual annotation. The
red arrows show the simulated targets

Fig. 4 Beer–Lambert Law in n Materials

Fig. 2. In our approach,X1 is a real X-ray image, andX2 can
be whether a real X-ray image of the isolated target (with
no background), or a simulated X-ray image of the target.
Thus, we can locate the target image in any position of the
real X-ray image to obtain as many images as we need for
training.

The unifiedmodel is based on the use of theBeer–Lambert
law [48] that characterizes the distribution of X-rays through
matter as shown in Fig. 4:

ϕ = ϕ0 exp

(
−

n∑
i=1

μi xi

)
, (1)

with μi the absorption coefficient of matter i with thickness
xi , ϕ0 the incident energy flux density, and ϕ the energy flux
density at the output. In general, we know that a grayscale
X-ray image Y is followed by the linear model:

Y = a · ϕ + b, (2)

where a and b are constant parameters of the capture model.
With the Beer–Lambert law and the linear scaling, we can
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Algorithm 1 – Superimposition of X-ray images
Input:
X1 : X-ray image of the object
X2 : X-ray image of the target
(i1, j1) : location (left corner up) of the target
(b, c) : linear parameters of the model (see (5))
——————————————————————–
Y ← X1 � initialization of output image
(n2,m2) ← size of image X2
(i2, j2) ← (i1 + n2 − 1, j1 + m2 − 1)
X′
1 ← X1(i1 · · · i2, j1 · · · j2) � location of the target

X̄′
1 = (X′

1 − b)/c � normalization
X̄2 = (X2 − b)/c � normalization
bb ← [ j1 i1 j2 i2] � bounding box (x1, y1, x2, y2)
Y(i1 · · · i2, j1 · · · j2) = cX̄′

1X̄2 + b � superimposition
——————————————————————–
Output:
(Y,bb) � output X-ray image and bounding box

model the image Xi of matter i only with ϕi = ϕ0e−μi xi as:

Xi = a · ϕi + b = ce−μi xi + b, (3)

where c = aϕ0. It is clear, from (1), (2), and (3) that output
image Y can be rewritten as a contribution of n layers:

Y = c
n∏

i=1

X̄i + b with X̄i = Xi − b

c
. (4)

Parameters b and c can be estimated as follows: Themaxi-
mal grayvalue, gmax, typically 255, can be achieved when no
object is present, i.e. x = 0. That means, gmax = c + b. On
the other hand, the minimal grayvalue, gmin, typically 0, can
be achieved when the thickness of the object to be irradiated
is maximal, i.e., x = xmax. That means, gmin = cγ + b, with
γ = e−μxmax for a known absorption coefficient μ. Using
gmin = 0 and gmax = 255, we obtain:

b = 255

1 − 1/γ
and c = 255

1 − γ
. (5)

Now,we can use (4) to compute output imageY from input
X-ray images X1 and X2, that means for n = 2. Algorithm
1 shows the implementation of this approach. The simplicity
of the proposed method is evident. In following sections, we
will see how to use this method in practice.

It is worthwhile to mention that Bremsstrahlung effect
[48] is not considered in the model of equation (1). The rea-
son of this is because in the simulation process—when using
the superimposition of the proposed model onto the orig-
inal image produced with real X-rays, the Bremsstrahlung
spectrum is part of the real X-rays with which the original
image was produced. Although this is indeed a simplification
of the problem, we believe that the results obtained do not
significantly affect the appearance of the simulated defects.

2.1.2 Simulation in Baggage Inspection

This strategy was presented in [47] for baggage inspection,
where X1, the X-ray image of a luggage with no threat
object,5 andX2, the X-ray image of an isolated threat object,
are defined. For this end, we use the images of GDXray
dataset [49] that contains X-ray images of isolated threat
objects (like handguns, razor blades and knifes) located
inside a sphere of expanded polystyrene (EPS) with a very
low absorption coefficient. An example for baggage inspec-
tion is shown in Fig. 3 (see first row). In this example, X2

is a real X-ray image of a handgun in an EPS sphere. The
superimposition of both images is achieved by Algorithm 1
that uses (4).

2.1.3 Simulation of Ellipsoidal Defects

This simulation model was originally presented in [45] and
evaluated in the detection of defects in aluminum castings
using object detection methods in [17]. For the sake of com-
pleteness, we include this section a summary of this strategy.

The method defines an ellipsoidal cavity in 3D space.
Here, we reformulated it using our unified model presented
in Sect. 2.1.1 and Fig. 4, where the X-ray imaging process
can be modeled using μ1 = μ (the absorption coefficient)
and x1 (the thickness) of the aluminum casting, and for the
cavity we can use μ2 = μ1 and x2 = −d to obtain

ϕ = ϕ0e
−μ(x1−d). (6)

where d is the thickness of the cavity.
The definition of the ellipsoidal cavity includes orienta-

tion and size of each axis. The modeled ellipsoid is projected
onto a real X-ray image X1 as follows: (i) for each pixel of
the X-ray image we estimate the X-ray beam that goes from
the X-ray source to the pixel, and (ii) we compute d, the
length intersection of the X-ray beam with the ellipsoid, i.e.
distance between the two intersection points of the surface of
the ellipsoid. That means, for each pixel (i, j) of image X1

we have the corresponding thickness of the ellipsoidal cav-
ity d(i, j). Thus, the simulated X-ray image for the project
ellipsoidal defect can be computed from (3) by:

X2 = ceμd + b, (7)

where d is a matrix of the same size of X1 that contains the
values d for each pixel. If d(i, j) = 0, that means when there
is no intersection, then X2(i, j) = c + b. Therefore, from
(4), X̄2(i, j) = 1, and Y (i, j) = X1(i, j), which means in
those pixels that there is no intersection with the ellipsoid,

5 In this case, μ1x1 represents
∑

j μ j x j including all cluttered objects
j that lie on the X-ray beam [47].
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Fig. 5 Simulation of defects using the proposed stick approach. For the visualization, the grayvalues of all images are linearly scaled between the
lowest value in black and the highest value in white. See Algorithm 2 for an explanation of each variable

the output X-ray image is the original real image Y = X1.
In other words, this approach modifies only those pixels in
which the ellipsoid is projected.

An example of thismethod usingAlgorithm1 is illustrated
in Fig. 3 for a casting. All details of the computation of the
projection of the ellipsoid are given in [45].

2.1.4 Simulation of Defects Using ‘Sticks’

In previous section, we simulated a defect in 3D space that
is projected onto the X-ray image. For the projection, we
compute the thickness d (the length of the intersection of the
X-ray beam with the simulated 3D defect) in every pixel of
the X-ray image, and the simulated image is obtained using
(7). In this section, we present a new method for simulation
of realistic defects. Rather than simulating a 3D shape for the
defect and computing its projected thickness d onto theX-ray
image, we simulate the projected thickness d directly. Thus,
we obtain the 2Dmatrix d that contains the required values d
to simulate the output imageX2 according to (7). Thekey idea
of our approach is to superimpose a set of connected ‘sticks’
(binary images of lines in random orientations) processed by
a low-pass filter. An overview of this idea is shown in Fig.
5, where the first column shows the ‘sticks’ and the third
column shows the low-pass filtered image that corresponds
to thickness matrix d. Here, the method is presented in more
detail.

Themethod consists of an iterative approach.At the begin-
ning, an empty binary image I0 with a seed pixel is defined.
Additionally, an empty image Z0 of the same size is created.
In iteration t , we add a segment �t of n pixels, that we call a
stick, in a random direction that touches one of the last pixels
of It using a Boolean operation ‘or’ ⊕:

It+1 = It ⊕ �t . (8)

At the same time, matrix Z is updated as follows:

Zt+1 = (1 + α · rand)Zt + It+1, (9)

where α is a latency factor. After tmax iterations, Z is
smoothed using aGaussianmask,6 and reoriented to a desired
direction Finally, the grayvalues are non-linearly scaled
between 0 and dmax, where dmax is the maximal allowed
thickness of the simulated defect.

6 Gaussian filtering is used to blur the sticks. This blurriness does not
depend on the sharpness of the X-ray image. The Gaussian filtering
eliminates the high frequencies of the perfect lines of the sticks (see
image Z in Fig. 5). Thus, the tiny lines are replaced by thicker and
blurred regions (see image d in Fig. 5), whose appearance is similar
to the real defects. Parameter σ of the Gaussian mask is set manu-
ally according to the thickness of the defect we want to simulate. For
instance, for small defects σ can be a low number (e.g. 2.9 pixels as
shown in third row of Fig. 5). On the other, for thicker defects, v can be
larger (e.g., 6.7 pixels as shown in fourth row of Fig. 5).
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Fig. 6 Some simulated X-ray images used in the training subset of baggage inspection as validation images. The bounding boxes and confidence
score were computed by method YOLOv5s

The algorithm of the simulation approach is presented in
Algorithm 2. An implementation is given in our webpage2.
Some examples in castings and welds with these simulated
defects are given in Fig. 5. Theywere generated byAlgorithm
1. It is worthwhile tomention that for dmax > 0 (or dmax < 0)
the defects are brighter (or darker) than the background. We
can observe that the defects are very realistic, and indeed
they are more lifelike than the perfect ellipsoids of previous
approach.

Thismethod has been designed to simulate defects such as
porosity and cracks mainly. However, other kinds of defects,
like lack of fusion or lack of penetration in welds, could be
simulated as well using our method, because they show pat-
terns similar to those that can be achieved by superimposing
sticks.

2.2 Training and Testing

The detection model is trained using real X-ray images with
simulated targets only (see Figs. 2 and 3) as follows:

1. Representative X-ray images of the testing object with
no targets are selected.

2. In each representative X-ray, targets are simulated and
located in a random place, with a random orientation and
sometimes a random size. The idea is to superimpose
many targets onto the target-free X-ray images.

3. For each simulated target, a bounding box is defined as a
rectangle that encloses the target. Using these three steps,

it is very simple to generate training data. Now, we have
X-ray images with many (simulated) targets with their
locations, where the bounding boxes are obtained with
no manual annotation.

4. We split the X-ray images (with simulated targets) in a
set for training purposes and a set for validation purposes.

5. The detection model is trained using training and vali-
dation sets. Details of numbers of images and simulated
targets per image are given in Sect. 3.

The trained model is tested on X-ray images that may or
may not contain real targets. In our testing strategy, the idea
is to estimate the performance on a real scenario. Thus, in
testing dataset no simulated target is used. To build the test-
ing dataset, we need X-ray images of the same test object
type with real targets that are manually annotated by human
operators. In the testing stage, it is necessary to measure the
performance and the computational time as well.

3 Experimental Results

In this Section, we present the achieved results in casting
inspection (Sect. 3.1),welding inspection (Sect. 3.2) and bag-
gage inspection (Sect. 2.1.2). In our experiments, we used
GDXray dataset of X-ray images for non-destructive test-
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Algorithm 2 – Simulation of stick-defects
Input:
(N , M) : maximal size in pixels of the simulated image
(si , s j ): seed pixel of the simulation
n : size in pixels of the segment
θ : maximal angle of the segment
φ : final orientation of the simulated structure
σ : size in pixels of the Gaussian mask
α : latency factor
μ : absorption coefficient
tmax : maximal number of iterations
dmax : maximal size in mm of the defect
(b, c) : linear parameters of the model (see (5))
——————————————————————–
I ← zeros(N , M) � binary initialization
I(si , s j ) ← 1 � seed
Z ← zeros(N , M) � double initialization
for t ← 1, tmax do � iterations

θt ← random(0, θ) � angle of the segment
T ← zeros(n, n) + line(center,border-pixel at θt )
(i, j) ← pixels where I = 1
(i ′, j ′) ← one of the last pixels of arrays (i, j)
H ← zeros(N , M)

H(i ′, j ′) ← 1
H ← H ⊕ T � dilation
I ← I + H � logical or
Z ← (1 + α rand )Z + I � update of Z

G ← filtering(Z, Gaussian Mask(σ )) � smooth of Z
θZ ← orientation of Z
Gr ← rotate(G, φ − θZ ) � rotation
A ← √

Gr � non-linear scale
D ← dmax(A − Amin)/(Amax − Amin) � linear scale
d ← rectangular window where D > 0 � bounding box
X2 ← ceμd + b � simulation of X-ray process
——————————————————————–
Output:
X2 � simulated X-ray image

ing [49].7 In following sub-sections, we describe in further
details the datasets, the simulation process, the experiments
and the results. The performance is evaluated using the
average precision (AP) that is obtained by thresholding the
normalized area of intersection over union (IoU) at a IoU
threshold α [50].

3.1 Casting Inspection

In casting inspection, we follow the experimental protocol
suggested in [17] in which object detection methods were
tested using as training data simulated ellipsoidal defects. In
our experiments, we included the defects simulated by the
stick-model.

• Datasets FromGDXray, we used series C0001 that con-
tains 72 X-ray images of a specific casting type with an

7
GDXray is a public dataset for X-ray testing with around 20.000 X-

ray images that can be used free of charge, for research and educational
purposes only.

annotated ground truth that includes real defects. In series
C0001, there is a unique casting piece that is radiographed
from different points of view. Defects on these castings
have a round shape with a diameter ∅ = 2.0–7.5 mm.
Many of them are in positions of the casting which were
known to be difficult to detect (for example at edges of
regular structures).

• Training and validation subsets To build the training
and validation subsets, we use the following procedure:
i) Pre-processing The size of the images of series C0001
is 572× 768 pixels.We resized them by a factor of two to
1144× 1536 pixels. ii) Selection Series C0001 has 72 X-
ray images. For each resized X-ray image, we randomly
select 100 windows of 640 × 640 pixels, where there are
no real defects. Some examples are given in Figs. 3 and
5. From the 100 images, 90 are selected for the training
subset and 10 for the validation subset. iii) Simulation: In
each selected window of the previous step, we simulate
defects using the ellipsoidal model (see Sect. 2.1.3) and
the stick model (see Sect. 2.1.4). For this purpose, we
use algorithms 1 and 2. For each X-ray image 20 defects
were simulated in average. The location, size and orienta-
tion of the defects was set randomly. In our experiments,
we set randomly the number of simulated defects per
image (from 2 to 20). The location of them were defined
randomly. For the ellipsoidal model, the size and orienta-
tion of the three axes of the ellipsoid were set randomly
from 1 to 9 mm and from 0 to 3600 respectively. For
the stick model we used the same parameters mentioned
in Fig. 5 in third row (due to the random nature of the
algorithm, each simulated stick-defect is different). The
parameters were manually defined to obtain simulated
defects similar to the real ones. Additionally, for each
simulated defect we store the coordinates of the bound-
ing box that encloses it. Summarizing, for series C0001,
we have 7200 X-ray images of 640 × 640 pixels with
around 80,000 simulated defects (with no real defects).

• Testing subset Similarly to training and validation sub-
sets, to define the testing subset we use the following
steps: i) Pre-processing: The size of the images of series
C0001 is 572 × 768 pixels. We resized them by a factor
of two to 1144× 1536 pixels. ii) Selection: Series C0001
has 72 X-ray images. For each resized X-ray image, we
randomly select 10 windows of 640 × 640 pixels, in
which there may be real defects. Summarizing, for series
C0001, we have 720 X-ray images of 640 × 640 pixels
with around 650 real defects. It is worthwhile to mention,
that in testing dataset there are no simulated defects.

• Experiments and Results In our experiments, we tested
methods based on YOLO, RetinaNet and EfficientDet,
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Table 1 AP in casting
inspection for different α∗
values

Method Sim∗∗ 0.1 0.2 0.25 0.33 0.5

YOLOv3-SPP E [17] 0.9253 0.9020 0.8735 0.7377 0.2564

S 0.9068 0.8667 0.8550 0.8073 0.6387

YOLOv3-Tiny E [17] 0.9258 0.9061 0.8753 0.7471 0.2496

S 0.9132 0.8698 0.8525 0.7969 0.6472

YOLOv5s E [17] 0.9212 0.8883 0.8825 0.7946 0.3140

S 0.9000 0.8775 0.8694 0.8333 0.6345

YOLOv5l E [17] 0.9148 0.8850 0.8724 0.7654 0.3291

S 0.8961 0.8672 0.8305 0.7660 0.5436

YOLOv5m E [17] 0.9142 0.8868 0.8716 0.7704 0.3039

S 0.8969 0.8589 0.8201 0.7641 0.5554

YOLOv5x E [17] 0.9151 0.8891 0.8741 0.7932 0.3210

S 0.8640 0.8361 0.7921 0.7264 0.5301

* α is the threshold used in intersection over union criterion simulation
** E for ellipsoidal and S for stick models

however, the last two ones achieved low performance8.
We included two experiments (see Table 1): in the first
one, reported in [17], the simulated defects used in the
training stage were based on ellipsoids (‘Sim=E’) out-
lined in Section 2.1.3, whereas in the second one, the
simulatds defects were based on sticks (‘Sim=S’) pre-
sented in Section 2.1.4. In both experiments, the testing
dataset was the same: only real X-ray images with no
simulated defects as explained above. See an example
in Fig. 1. The results are summarized in Table 1 for
α = 0.1, 0.2, 0.25, 0.33, 0.5. Since the defects are very
small (many of them are 20 × 20 pixels), and the resolu-
tion of the manual annotation is poor, a IoU threshold α =
0.25–0.33 is adequate. We conclude: i) the effectiveness
of the method is evident, and ii) the simulation strategy
based on sticks is better than the one based on ellipsoids.

3.2 Welding Inspection

We use the same approach explained Sect. 3.1:

• Datasets From GDXray, we used series W0001 that
contains 10 X-ray images of welds with annotated real
defects. From them we test on following six images:
W0001_000X.png for X = 1, 2, 3, 5, 6, and 8.

• Training and validation subsets To build the training
and validation subsets, we use the following procedure:
i) Pre-processing Each image X, is resized by a factor
of two. ii) Simulation In each image X, we simulate 40
defects in places where there is no real defects using the
stickmodel (seeSect. 2.1.4). The location, size, shape and
orientation of the defects were set randomly. We repeat

8 For example, we obtained AP = 0.53 for RetinaNet and and AP =
0.46 for EfficientDet at α = 0.33 using ellipsoidal defects.

this step six times. The ellipsoidal model was not used
because it cannot simulate cracks. iii) Selection: For each
of the six times, we randomly select 500 windows of 320
× 320 pixels, where there are no real defects. Thatmeans,
for each image X we have 3000 windows of 320 × 320
pixels with simulated defects. They are resized again by
a factor of two to 640 × 640 pixels because object detec-
tion methods work better with this size. Some examples
are shown in Figs. 3 and 5. From them, 2700 images were
selected for training and 300 for validation. All simulated
defects were partitioned in small segments using water-
shed algorithm [51] to avoid large bounding boxes that
contain thin cracks in diagonal. Finally, for each simu-
lated defect we store the coordinates of the bounding box
that encloses it. Since theX-ray imagesXwere taken from
very different welding processes (very different welded
pipelines), in this step, we train onemodel for each image
X. Summarizing, for each image X of series W0001, we
have 3000 X-ray images of 640× 640 pixels with around
7100 simulated defects in average.

• Testing subset Similarly to training and validation sub-
sets, to define the testing subset we use the following
steps: i) Pre-processing For each image X, we resized
the images of seriesW0001 by a factor of four. ii) Selec-
tion For each resized X-ray image, we randomly select
1000 windows of 640 × 640 pixels, in which there may
be real defects. For the ground truth, we have a binary
image where the pixels are ‘1’ if they belong to a defect.
Summarizing, for each imageX of seriesW0001, we have
1000X-ray images of 640× 640 pixels with around 7600
real defects. It is worthwhile tomention that in the testing
dataset there are no simulated defects.

• Experiments and results In our experiments, we only
tested YOLOv3-Tiny and YOLOv5s detectors because
they achieved a good performance in the detection of
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Table 2 AP in welding
inspection

Method X=1 X=2 X=3 X=5 X=6 X=8

YOLOv5s 0.4663 0.5746 0.4899 0.5551 0.6932 0.6268

YOLOv3-Tiny 0.4902 0.6126 0.4320 0.6159 0.6430 0.7933

Train-defects 12,819 4549 6612 4710 4696 5336

Val-defects 1425 482 802 479 533 556

Test-defects 39,140 658 1423 2039 2353 90

defects in casting inspection as we reported in the
previous section. See some results in Fig. 1. For the com-
putation of precision-recall values, we count the pixels
that were correctly and wrongly detected because the
shape of the defects are so intricate that it is very dif-
ficult to determine where a defect starts and ends. The
effectiveness of the proposed method is shown in Table
2. In average (of the six images), YOLOv3-Tiny achieves
and average precision of 0.60.

3.3 Baggage Inspection

For baggage inspection,we use the approach outlined in Sect.
3.3 in which we superimpose X-ray images of isolated threat
objects onto real X-ray images of backpacks with no threat
objects. We follow the experimental protocol suggested in
[25]9 whose details we describe below.

• Datasets From GDXray, we used three groups of
series of X-ray images: G1) backpacks with no threat
objects (series B0085), G2) isolated target objects (series
B0049 for handguns, B0051 for razor blades, B0052 for
shuriken, B0076 for knifes, and B0082 for non-threat
objects) and G3) real X-ray images of backpacks with
threat objects (series B0046). The first two groups are
used to build the training/validation subset. The last group
is used as testing subset.

• Training and validation subsets To build the subset for
training purpose, we superimpose the X-ray images of
group G2 onto the X-ray images of group G1 in random
positions using Algorithm 1. In this case, we have four
classes (‘Gun’, ‘Knife’, ‘Razor Blade’ and ‘Shuriken’).
Someexamples are given inFig. 6. In this dataset,wegen-
erate 9615 X-ray images, where there are around 6,000
threat objects for each class. From this dataset, we ran-
domly select 90% for training and 10% for validation.

• Testing subsetWeused the images of groupG3 as testing
subset. In this group, there were 210 guns, 24 knives, 78
razor blades, and 33 shuriken.

• Experiments and results In our experiments, we tested
SSD and YOLO detectors. The achieved results are sum-

9 Specifically, we conducted Experiment ‘A’ and Testing Subset 1 of
[25].

Table 3 AP in baggage inspection for α∗ = 0.5

Method Gun Knife Blade Shuriken mAP

SSD [25] 0.8857 0.0917 0.5037 0.6147 0.5239

YOLOv2 [25] 0.7893 0.6921 0.4151 0.7002 0.6492

YOLOv3 [25] 0.9517 0.9206 0.8156 0.8517 0.8849

YOLOv4 0.9957 0.9092 0.7145 0.9006 0.8800

YOLOv5s 0.9010 0.8390 0.1750 0.7570 0.6680

YOLOv5m 0.9210 0.8510 0.2030 0.7560 0.6830

YOLOv5l 0.9290 0.8750 0.1980 0.7690 0.6930

YOLOv5x 0.9250 0.8450 0.2250 0.7690 0.6910

α is the threshold used in intersection over union criterium

marized in Table 3. An example is shown in Fig. 1.
Similar results have been reported in [25] for the first
three methods. The last five methods (based on YOLOv4
andYOLOv5), however, correspond to new experiments.

3.4 Discussion

In our experiments, we implemented several object detectors
based on YOLO, SSD, RetinaNet and EfficientDet. In the
reported results, it is evident that the achieved performance
of YOLO-based detectors is very good. RetinaNet and Effi-
cientDet achieved a lowperformance in the detection of small
defects, probably because they have been designed for larger
objects. To overcome this problem, we could increase the
resolution of the training images, but that would increase the
training time considerably.

We believe that the proposed methodology could sat-
isfy the requirements in the industry due to the following
three attributes: i) Simplicity The construction of the training
dataset is very simple because we only need a low number of
target-free X-ray images and a simulation process for includ-
ing simulated targets in the dataset. That means, no manual
annotation is required. ii) Effectiveness The performance of
the methods was high enough. The average precision was
0.91, 0.60 and 0.88 for casting, welding and baggage inspec-
tion respectively. Probably, a better performance could have
been achieved in welding inspection if the simulation had
been able to simulate all possible shapes and sizes of defects.
It is known that the wide variety of possible defects in welds
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makes detection very challenging. iii) Speed The computa-
tional time in training and testing stage are very low:We need
a 1–3 h for training, and it can be used in real time inspection
to aid human operators (about 11 ms per image).

4 Conclusions

Our methodology provides an effective way to overcome
the data scarcity problem in X-ray testing. We proposed a
training strategy for target detection using target-free X-ray
images with superimposition of simulated targets. Thus, no
manual annotations are required because the locations of all
simulated targets are known. In addition, testing is carried
out using real X-ray images with real targets in the auto-
mated inspection of aluminum castings, welds, and baggage.
That means, the testing stage corresponds to real scenarios.
Besides, a new simulation approach is presented that gen-
erates very realistic defects (based on superimposition of
‘stick’-pattern located randomly). This model has been suc-
cessfully used in the detection of discontinuities in casting
and welding inspection.

For the detection of targets, we used well-established
object detection methods (YOLO, SSD, RetinaNet and Effi-
cientDet), all of them developed in the last 3 years with many
examples in public repositories that were adapted to our task.
The implemented strategies have been simple, effective, and
fast. The training stage requires a relatively small number of
X-ray images. In addition, on the testing dataset (with real
targets), the achieved performance was very high, and the
computational time is very low (the solution can be used in
real time).

The code and the datasets used in this paper are avail-
able on a public repository, so anyone can reproduce (and
improve) the reported results, or reuse the code in other
inspection tasks.
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