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Abstract
Robot welding is a basic but indispensable technology for many industries in modern manufacturing. However, many welding
parameters affect welding quality. During the real welding process, welding defects are inevitably generated that affect the
structural strengths and comprehensive performances of different welding products. Therefore, an accurate welding defect
recognition algorithm is necessary for automatic robot welding to assess the effects of defects on structural properties
and system maintenance. Much work has been devoted to welding defect recognition. It can be mainly divided into two
categories: feature-based and deep learning-based methods. The detection performances of feature-based methods rely on
effective image features and strong classifiers. However, faced with weak-textured and weak-contrast welding images, the
realization of strong image feature expression still faces a certain challenge. Deep learning-based methods can provide end-
to-end detection schemes for welding robots. Nevertheless, an effective deep network model relies on much training data that
are not easily collected during real manufacturing. To address the above issues regarding defect detection, a novel welding
defect recognition algorithm is proposed based on multi-feature fusion for accurate defect detection based on X-ray images.
To improve network training, an effective data augmentation process is proposed to construct the dataset. Combined with
transfer learning, the multi-scale features of welding images are acquired for effective feature expression with the pre-trained
AlexNet network. On this basis, based on multi-feature fusion, a welding defect recognition algorithm fused to a support
vector machine with Dempster–Shafer evidence theory is proposed for multi-scale defect detection. Experiments show that
the proposed method achieves a better recognition performance in terms of detecting welding defects than those of other
related recognition algorithms.
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1 Introduction

Currently, intelligent manufacturing is an important exten-
sion of manufacturing automation, and many countries have
proposed different future policies to improve the efficiency
and autonomy of modern manufacturing; these include
“Industry 4.0” by Germany and “Intelligent manufacturing
2025” by China. Robot welding is a typical representative
of intelligent manufacturing that has broad applications in
many areas. However, robot welding is a relatively complex
manufacturing process due to many factors, such as weld-
ing voltage, welding current, welding speed, welding gun
height, etc. Welding defects that affect welding quality do
not inevitably appear in welding workpieces. Different weld-
ing defects have different impacts on the structural strengths
and comprehensive performances of welding objects. There-
fore, an effective and accurate defect recognition system is a
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key element of intelligent welding robots that can effectively
help with the assessment of structural properties and system
maintenance [1].

For welding defect detection, a suitable sensor system is
the key component of the detection system. Until now, dif-
ferent sensors, such as vision sensors [2], infrared sensors
[3], ultrasonic sensors [1], and X-ray sensors [4], have been
applied in industrial inspection applications. Compared with
other sensors, nondestructive X-ray detection sensors can
acquire the internal structure and defects effectively, and this
can help to evaluate the effects of defects on the structural
strengths and the comprehensive performances of different
objects. Duan et al. proposed an automatic inspectionmethod
for detecting welding defects with X-ray images [5]. Roy et
al. proposed a welding defect identification method for fric-
tion stir welding by usingX-raymicro-CT scans [6]. Inspired
by theseworks, the X-ray inspection is proposed in this paper
for welding defect recognition.

With the X-ray inspection, faced with weak-textured and
weak-contrast welding images, a novelwelding defect recog-
nition algorithm is proposed based on multi-feature fusion
to assist with assessing structural properties and perform-
ing system maintenance. It is evaluated and verified on a
public dataset (GDXray set) through a comprehensive exper-
imental analysis and comparison. The main contributions of
this paper can be summarized as follows: (1) To address the
training issue of recognition networks, an effective data aug-
mentation algorithm is proposed to enlarge and construct the
dataset. (2) Combined with transfer learning, with the pre-
trained AlexNet network model, a novel feature extraction
method is proposed for multi-scale feature extraction of X-
ray welding images to acquire abstract and effective image
features. (3) To ensure the detection precision of the proposed
approach, based on multi-feature fusion, a welding defect
recognition algorithm that fuses an SVM classifier with DS
evidence theory is proposed to realize accurate defect detec-
tion.

The rest of this paper is organized as follows. Section 2
gives the detailed related work. Section 3 shows the system
framework of the proposed method. Section 4 describes the
data augmentation algorithm for welding images. Section
5 describes the feature extraction methods used. Section 5
explains the proposed defect recognition algorithm. Section
6 presents detailed experiments and discussions. Finally, the
conclusions and future prospects of this paper are described.

2 RelatedWork

To improve the recognition efficiency and precision of detec-
tion methods, a considerable amount of literature has been
published on welding defect recognition. These studies can
mainly be divided into three categories: image-based meth-

ods [7], feature-based methods [8] and deep learning-based
methods [9].

2.1 Image-BasedMethods

Image-basedmethods are conventional image analysis meth-
ods for different detection tasks based on the principles of
image morphology [10].

Due to the of good robustness and high precision of
laser structured light, Chu et al. proposed an automatic post-
welding quality detectionmethod [11]. Laser structured light
acted as the robot sensor to acquire the 3D profile of weld
beads. On this basis, the detailed parameters of the weld
beads and welding defects were extracted. To improve the
measurement efficiency of laser structured light, some opti-
mized laser structured light sensors have been designed for
welding robots. Zhang et al. proposed a weld bead inspec-
tion method based on cross-structured light [12]. Jia et al.
proposed an inspection method for weld beads based on grid
laser structured light sensors [13]. However, structured light
sensors are local sensors, and they can only acquire lim-
ited measurement data for each measurement. To address
the above issues, some researchers have proposed different
inspection methods based on passive light vision that can
acquire additional measurement information and large mea-
surement ranges. Combined with monocular vision, Du et al.
proposed an inspection method for weld beads based on the
shape from shading (SFS) algorithm [14]. Chen et al. devel-
oped a defect detection algorithm based on X-ray welding
images [15]. Combinedwith optimized image smoothing and
the information fusionmethod, Du et al. proposed a real-time
defect inspection method based on X-ray welding images
[16].

For welding defect recognition, image-based methods
always involvemany links, such as image filtering, edge anal-
ysis, and image postprocessing.However, a complexwelding
environment has a certain effect on the robustness of such
algorithms. Therefore, based on a priori knowledge, image-
based methods are mainly designed for specific objects or
application scenes.

2.2 Feature-BasedMethods

Due to their good detection performance on small-scale
samples, fusion with feature vectors, and different classi-
fiers,many researchers have proposed different feature-based
recognition methods for detecting welding defects [17].

In our previous work, a welding defect inspection algo-
rithm was proposed based on a SVM classifier [18]. Com-
bined with monocular vision, the 3D profiles of weld beads
were acquired based on the SFS algorithm. On this basis,
a defect recognition algorithm was proposed based on the
3D curvature features and SVM classifier. Kasban et al. pro-
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posed a new welding defect detection approach based on
radiography images [19]. The discrete wavelet transform
(DWT), discrete cosine transform (DCT), and discrete sine
transform (DST) were proposed for effective feature extrac-
tion, and an artificial neural network (ANN) was built for
defect detection. Duan et al. proposed an automatic weld-
ing defect detection method based on X-ray welding images
[5]. It could be mainly divided into three steps: defect extrac-
tion, detection and recognition. Defect extractionwas used to
detect potential defects. On this basis, defect detection and
recognition were solved by the adaptive cascade boosting
(AdaBoost) classifier. Das et al. proposed a welding qual-
ity evaluation method based on an ANN model [20]. The
wavelet packet transformation was proposed for the feature
extraction of friction stir welding. The ANNmodel was built
for accurate quality evaluation.

Feature-based detection methods provide a fast and accu-
rate detection scheme for different small-scale samples.
However, the detection performance relies on effective fea-
ture selection and design.How to realize strong image feature
expression against complexwelding environment still faces a
certain challenges, such as handling backgrounds and mate-
rials.

2.3 Deep Learning-BasedMethods

With the strong support of hardware platforms and big data,
deep learning methods have been greatly developed that can
process raw data well and provide an end-to-end detection
scheme. Based on the strong feature expression abilities of
deep learningmodels, many researchers have sought to apply
deep learningmethods inwelding robots to realize intelligent
detection schemes [21–23].

Combined with a three-way image acquisition system,
Zhang et al. proposed an online defect detection method
based on a convolutional neural network (CNN) [24]. Based
on transfer learning, Sassi et al. proposed a quality control
and assessment method for the inspection of welding defects
[25]. To realize the inspection of small-scale weld beads
in complex welding environments, Yang et al. proposed a
weld bead location method based on a deep convolutional
neural network (DCNN) [26]. Günther et al. proposed a rep-
resentation and prediction method for laser welding [27].
A deep auto-encoding neural network was proposed for
the feature expression of welding images. The temporal-
difference learning algorithm was adopted for automatic
predictions about the welding process. Combined with the
SqueezeNet-based CNN model, Yang et al. proposed a
machine vision-based surface defect detection method with
multi-scale and channel-compressed features [28]. Inspired
by feature fusion, Gao et al. proposed a vision-based defect
recognition method [29]. The Gaussian pyramid was pro-
posed to generate multiscale images of defects. On this basis,

a pretrained VGG16 CNN model was applied to multiscale
images to learn strong image features, and these outputs were
fused to improve the recognition precision of the model. By
incorporating fusion with a CNN model and a multilayer
perceptron (MLP), Makantasis et al. proposed a fully auto-
mated tunnel assessmentmethod [30]. Combinedwith a deep
semantic segmentation network, Zou et al. proposed an auto-
matic crack detection and location method [31]. Gong et al.
proposed a defect detection of aeronautics composite materi-
als with a deep transfer learning model which could be well
applied into inclusion defect detection form X-ray images
[32].

Although deep learning achieves good detection per-
formances in many application scenarios, it mainly relies
on labeled data for network training purposes. The man-
ual annotation of large datasets of welding images is a
time-consuming and laborious task. Furthermore, for real
welding production, it is not easy to collect many samples
under different welding situations for model training. More
importantly, when faced with a complex welding process,
differentwelding parameters cause differentwelding defects.
Unbalanced samples of welding defects will also affect the
detection performances of deep learning models.

3 System Framework

For different welding objects, based on the unique features
of X-ray detection, X-rays detection can acquire internal
defect information,which is the basis for accurately assessing
structural properties and performing systemmaintenance. To
effectively help with the quantitative assessment of welding
defects with respect to the comprehensive performances of
welding objects, combined with X-ray detection, a welding
defect recognition system is set up in this paper, as shown in
Fig. 1.

Nevertheless, X-ray welding images present some unique
characteristics that bring a certain challenges for accurate
welding defect recognition.

(1) Due to the materials of welding workpieces, X-ray
welding images exhibit weak-textured and weak-contrast
features, which affect the accuracy of feature expression.

(2) The welding defects are small-scale samples, and it
is not easy to collect sufficient training samples for model
training.

To address the above issues regarding welding defect
recognition, a novel welding defect recognition algorithm
is proposed, and some key links are needed to ensure the
performance of the algorithm on X-ray welding images as
follows.

(1) Data Acquisition: In addition to an X-ray detection
system, a suitable dataset needs to be set up, and this is the
basis of the welding defect recognition system.
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Fig. 1 The framework of the proposed method

Fig. 2 Samples of X-ray welding images

(2) Feature Expression: Faced with weak-textured and
weak-contrast X-ray welding images, the effective feature
expression of welding images is the core of the defect recog-
nition system.

(3) Defect Recognition: To ensure the detection per-
formance of the proposed method on small-scale welding
defects, a suitable recognition model is also a key compo-
nent of the defect recognition system.

4 Data Augmentation

4.1 Dataset

Combined with the X-ray sensor, a public X-ray image set
called GDXray is set up for research and educational pur-
poses only. It includes a subset of welding images (Welds) by
the BAM Federal Institute for Materials Research and Test-
ing, Berlin, Germany [33], and this set is composed of 78
welding images with a length of 4K. Figure 2 shows some
samples of X-ray welding images.

As shown in Fig. 2, the welding images present the weak-
textured and weak-contrast characteristic. And the cracks,
blow holes or solids randomly appear in the X-ray welding
images.

On the basis of the image set, a variety of differentwelding
defects exist in the welding images. Here, twomain flaws are

Fig. 3 Samples of welding defects. a, c Cracks. b, d Blow holes or
solids

considered in this paper for welding defect recognition [34]:
cracks and blow holes (or solids), as shown in Fig. 3.

4.2 Image Preprocessing

X-ray welding images are inevitably affected by image noise
during the process of image collection. To improve the image
quality, image preprocessing is proposed to reduce the noise.

The valuable information contained in 2D X-ray images
is mainly concentrated in the low-frequency part. Otherwise,
the image noise belongs to high-frequency signals. On this
basis, a Gauss low-pass filter is applied to the 2D X-ray
images for image filtering.

However, the Gauss low-pass filter cannot completely
remove the image noise, and there is also a relatively large
amount of noise. The median filter provides a good means
for removing the large noise. Furthermore, it can effectively
retain the image details. Therefore, by combining the Gauss
low-pass filter and median filter, a preprocessing method for
2D X-ray images is proposed.
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(a) Blow holes or solids.

(b) Cracks.

(c) No defects.

Fig. 4 Samples of welding defects

4.3 Random Cropping

TheWelds subset in GDXray only includes 78 X-ray weld-
ing images that cannot be directly applied to model training
and testing. Due to the 4K length, random cropping is used
to process the raw images to obtain many image patches for
constructing the dataset.

As shown in Fig. 3, different image patches with different
sizes, such as 320*320 and240*240, are acquired from theX-
ray welding images to construct the dataset. The set includes
three types of samples: cracks, blow holes or solids and no
defects. Figure 4 shows some samples of different patches.

5 Feature Extraction

For the recognizing task of welding defects, the weak-
textured and weak-contrast X-ray images bring certain
challenges to feature expression for welding images. Fur-
thermore, multi-scale samples also have some impact on
defect recognition. To ensure the recognition precision of
the proposed approach for welding defects, an effective fea-
ture expression method is a core component of the defect
recognition algorithm.

5.1 Transfer Learning

For feature expression and description, many researchers
have proposed different handcrafted features, such as his-
tograms of oriented gradients (HOGs) [35] and local binary
patterns (LBPs) [36]. They can be used to extract low-level
image features, such as edges and textures. For weak-

Type Kernel Size/Sride Input Output
Conv_1 11*11/4 223*224*3 55*55*64

Max pooling_1 3*3/2 55*55*64 27*27*64
Conv_2 5*5/1 27*27*64 27*27*192

Max pooling_2 3*3/2 27*27*192 13*13*192
Conv_3 3*3/1 13*13*192 13*13*384
Conv_4 3*3/1 13*13*384 13*13*256
Conv_5 3*3/1 13*13*256 13*13*256

Max pooling_5 3*3/2 13*13*256 6*6*256
FC_1 9216 4096
FC_2 4096 4096
FC_3 4096 1000

ReLu

Fig. 5 The network structure of AlexNet

textured and weak-contrast X-ray welding images, these
handcrafted features have certain limitations with respect to
high-precision defect detection.

Transfer learning is a typical representative of multi-task
learning models that can transfer the learned information
from the source domain to the target domain. It does not
need a large training dataset regarding the target domain,
and this enables researchers to avoid a large amount of data
collection and annotation work. Throughmodel training on a
large-scale image dataset, transfer learning provides a good
detection scheme for a small-scale dataset. To acquire strong
features fromX-ray welding images, combined with transfer
learning, a pre-trained CNN network is adopted to act as a
feature extractor for X-ray welding images.

The AlexNet network is a typical CNN model that
achieves good detection performance on ImageNet [37]. Fig-
ure 5 shows the special structure of the AlexNet network. For
welding image defect recognition, a pre-trainedAlexNet net-
work on ImageNet is proposed for the feature expression of
welding images.

Specifically, as shown in Fig. 5, due to the 3 input channels
of the pre-trainedAlexNet network, the gray-scale images are
converted to RGB images to serve the feature extraction of
X-ray welding images.

5.2 Feature Selection

Generally, a single image feature has limited feature expres-
sion ability, and this results in certain limitations with respect
to recognition tasks with complex samples. The pre-trained
AlexNet network can generate many different feature maps
for the given images. Faced with these feature maps, a suit-
able feature selection scheme is a core part of the proposed
defect recognition algorithm.

For the pre-trained CNN network model, different net-
work layers can acquire different feature maps with different
spatial resolutions. To effectively demonstrate the feature
expression abilities of different network layers, with typical
samples, such as blow holes or solids, cracks and no defects,
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(a) Raw X-ray image patches (b) First convolution layer

(c) Second convolution layer (d) Third convolution layer

(e) Forth convolution layer (f) Fifth convolution layer

Fig. 6 Feature maps generated by the AlexNet network for different samples

Fig. 6 shows the feature maps generated from different net-
work layers.

As shown in Fig. 6, for the experimental samples with
different categories, there are obvious differences between
these feature maps, and these could with defect recognition
for welding images. Furthermore, the shallow network layer
can acquire lower-level feature maps with higher spatial res-
olution, and these are suitable for small-scale objects. As
the number of network layers increases, the network could
acquire more higher-level and abstract feature maps that are
suitable for large-scale object detection or recognition.

However, with the increase of network layers, the fea-
tures for details or micro defects will lost which will affect
the detection precision on multi-scale samples. For welding
defects (see Fig. 4), there are large gaps in the image scales of
welding defects between different samples. And some micro
defects also exist in the welding images. Therefore, the sin-
gle feature map from the special network cannot meet the
detection demands of defect recognition.

To ensure the detection precision of the recognition
network with respect to multi-scale welding defects, multi-
feature fusion is proposed to enhance its detection perfor-
mance. Here, combined with the pre-trained AlexNet, the
featuremaps fromdifferent network layers are fused for high-
precision defect detection.

6 Defect Recognition

On the basis of data augmentation, this section focuses on
defect recognition algorithm inX-raywelding imagepatches.
To effectively solve the recognition issue regarding small-
scale welding defects, a novel welding defect recognition
algorithm is proposed based on the shallow learning method.
Therefore, detailed descriptions of feature fusion and defect
classification are provided in this section.

6.1 Defect Classification

For accurate defect recognition inwelding images, facedwith
small-scale samples, an effective classifier is also a key part
of the whole recognition system. To date, different classifiers
have been proposed for different recognition tasks related to
small-scale samples, such as ANNs [38], AdaBoost [39], K-
nearest neighbors (KNN) [40], and SVMs [41]. Based on
its excellent classification performances on small-scale sam-
ples, nonlinear problems, and high-dimensional spaces, the
SVM classifier is proposed for accurate defect recognition,
as shown in Fig. 7.

The image features are fed into the SVM classifier as the
network input. To solve high-dimensional and linearly non-
separable sample classification, the inner product function is
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Fig. 7 A diagram of the SVM classifier

applied to the SVM classifier for a nonlinear mapping trans-
formation. Due to its good nonlinear mapping capability, the
radial basis function (RBF) is proposed as the kernel function
to act as the inner product function, as shown in Eq. 1.

K (x, y) = exp(−g‖x − y‖2), (1)

where g denotes the parameters of the RBF function. The
optimal parameters of the SVM classifier are solved by a
grid search strategy and a cross-validation method.

6.2 Feature Fusion

The image feature maps of the pre-trained AlexNet model
have different feature lengths. To effectively fuse different
features, DS evidence theory is proposed for multi-feature

fusion. It is a typical fusionmethod that can realize the fusion
of multiple subjects, such as multichannel sensor data and
multiple classifiers. The special flow chart of multi-feature
fusion is shown in Fig. 8.

The image features fromdifferent network layers obtained
from pre-trained AlexNet model are fed into SVM classi-
fiers to obtain the prediction probabilities regarding theX-ray
welding images. The prediction probabilities are input into
the DS evidence theory module for feature fusion as follows.

m(W) = 1

K

∑

A1∩A2∩A3=W

m1(A1)·m2(A2)·m3(A3) (2)

K =
∑

A1∩A2∩A3 �=∅
m1(A1)·m2(A2)·m3(A3) (3)

wherem is the output probability andW are the statuses of the
welding images. Ai (i = 1, 2, 3) are the output probabilities
of different SVM classifiers.

To better illustrate the flow chart of the proposed method,
Algorithm 1 shows the pseudocode of the whole training
process.

7 Experiments and Discussions

To verify the effectiveness and superiority of the proposed
method, this section tests the model performance through a
comprehensive experimental analysis and comparison.

Raw X-ray 
Image

SVM

SVM

SVM

DS
Theory

Feature
Fusion

Feature 
Extraction

Multi-scale
Feature Maps

AlexNet
Network

Features

Fig. 8 Diagram of multi-feature fusion
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Algorithm 1 Pseudocode of the whole training process.
Input: The X-ray welding image patches I;
1: I

′
= Image_filter(I);

2: Loading the pretrained AlexNet network, net = alexnet;
3: for the i_th network layer in net do
4: Generating the i_th feature map of each sample;
5: end for
6: for each of the i_ feature maps do
7: Training an SVM classifier;
8: Acquiring the prediction probabilities;
9: end for
10: Fusing the prediction probabilities using DS theory;

Table 1 Data augmentation based on random cropping

Index Name Values

1 Image patch 320*320, 240*240

2 Cracks 408

3 Blow holes or solids 349

4 No defects 350

First, the detailed experimental configuration is described.
Second, the effectiveness of different feature expression
methods is verified. Third, different multi-feature fusion
experiments are carried out on the constructedwelding image
dataset. Finally, the superiority of the proposed method
is tested through an experimental comparison with other
advanced methods.

7.1 Experimental Configuration

TheWelds subset of GDXray is divided into two partswith a
ratio of 55:45 (training set and test set). For model validation
purposes, these two sets are disjoint.

On this basis, due to the 4K length, to enlarge and construct
the dataset, some imagepatches are acquiredby randomcrop-
ping. They are labeled with different values for algorithm
verification. Furthermore, the numbers of samples belonging
to different categories are almost the same to avoid the issue
of imbalanced data. Detailed information about the dataset
is shown in Table 1.

The proposed defect detection method includes multiple
SVMclassifiers for feature fusion. Five-fold cross-validation
is utilized for these SVM classifiers to ensure the reliability
of the experimental results.

7.2 Feature Extraction

Different convolution layers of the AlexNet model have dif-
ferent feature expression abilities, and this leads to different
detection precisions. On the basis of the dataset, as shown
in Fig. 5, the feature expression abilities of typical network

Table 2 Identification results of transfer learning

Case Methods Accuracy (%)

1 Conv_2 84.31

2 Conv_3 94.37

3 Pooling_5 96.18

4 FC_2 96.78

Table 3 Identification results of handcrafted features

Case Methods Accuracy (%)

1 HOG 75.05

2 LBP 73.84

layers are tested. The special experimental results onwelding
images are shown in Table 2.

Table 2 shows that the different network layers result in
different identification precision rates due to their different
feature expression abilities. For the shallow network layer,
lower-level feature maps yield relatively lower identification
precision and vice versa.

Furthermore, to demonstrate the feature expression per-
formance of transfer learning, common handcrafted features,
such as HOG and LBP, are also set as comparison methods.
Based on the welding defect dataset, the classification results
of different handcrafted features are shown in Table 3.

As shown in Table 3, transfer learning can achieve excel-
lent recognition performance on X-ray welding images
compared with handcrafted features. It can be seen that
the pre-trained deep network models have stronger feature
expression abilities than the handcrafted features through
network training on the large-scale image set, so they can
acquire more effective image features.

7.3 Feature Fusion

To ensure the recognition performance of the proposed
method with respect to welding defects, multi-feature fusion
is used for accurate defect detection. Combined with a pre-
trained AlexNet network, to solve the classification problem
for multi-scale defect samples, low, middle and deep feature
maps are fused together to improve the detection precision
for welding defects.

For the AlexNet network, different network layers have
different feature expression abilities, and these have cer-
tain effects on feature fusion. Here, different combinations
of network layers are tested. Furthermore, to verify the
fusion performance of the network, a common feature fusion
method, score-level fusion [42], is set as a comparative
method. Table 4 shows the special classification results of
different fusion methods.
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Table 4 Classification results of
different features

Case Feature fusion Accuracy (%)

1 DS Theory (Conv_2 + Conv_3 +Pooling_5) 96.38

2 Score-level Fusion (Conv_2 + Conv_3 + Pooling_5) 91.15

3 DS Theory (Conv_3 + Pooling_5 + FC_2) 97.59

4 Score-level Fusion (Conv_3 + Pooling_5 + FC_2) 96.98

154

156

3

1

4 4 176

154

156

3

1

4 4 176

98.1%

99.4%

95.7%

98.1%

99.4%
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Blow holes or 
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Normal

Crack

Blow holes or 
solid Normal Crack Blow holes or 

solid Normal Crack

Fig. 9 The confusions matrix of proposed method

As shown in Table 4, combined with the single features,
feature fusion further improves the recognition performance
for welding defects. Because the Conv3 layer can acquire
more effective features than those of the Conv2 layer, the
feature fusion of the Conv_3, Pooling_5 and FC_2 layers
results in a higher classification precision. The score-level
fusionmethod also achieves the similar result as the proposed
method. Additionally, compared with the score-level fusion
method, the proposed method based on DS evidence theory
can achieve a higher recognition precision.

To better show the recognition performance of the pro-
posed method, the confusions matrix are given for better
experiment analysis, as shown in Fig. 9.

For the confusion matrix in Fig. 9, the proposed recog-
nition method shows a relatively poor precision on crack
defects. For the crack defects, some micro defects is a lit-
tle similar to the normal samples. Meanwhile, part areas of
large crack defects cause similar image features like blow
holes or solids. These factors affects the recognition preci-
sion of crack defects. In the whole, the proposed recognition
method acquires a better recognition performance on X-ray
welding images comparedwith single features or other fusion
methods.

7.4 Comparison with Other DetectionMethods

To better show the superiority of the proposed method, some
advanced pre-trained CNN network models, such as VGG16
[43], GoogleNet [44], MobilenetV2 [45], ResNet18 [46] and
InceptionV3 [47], are set as feature extraction comparison
methods.

Table 5 The classification results of different networks

Case Networks Accuracy (%)

1 VGG16 94.97

2 GoogleNet 95.57

3 Mobilenetv2 95.77

4 ResNet18 96.38

5 InceptionV3 97.18

6 Proposed method 97.59

As shown in Table 5, transfer learning can achieve higher
classification accuracy for welding defects than handcrafted
features due to its stronger feature expression ability.

Table 5 also indicates that the different pre-trained CNN
network models have different feature expression abilities,
leading to different classification accuracies for welding
defects. Compared with other pre-trained CNN network
models, the proposed fusion method results in a higher clas-
sification accuracy, indicating a better detection performance
on the X-ray welding images.

7.5 Time Analysis

For different defect recognitionmethods, running time is also
an important model evaluation indicator. Therefore, the run-
ning times of various methods are counted and discussed
in this section. For a typical defect recognition system, the
core links involve data loading time, model loading time,
feature extraction time and recognition time. Here, the indi-
vidual models and the proposed fusion method are tested
separately, and the related experiments are carried out on an
Intel i7-7700HQ CPU with 16 GB of memory. The special
experimental results are shown in Fig. 10.

From the above experiments in Fig. 10, the proposed
fusion method requires 2.35 s for defect recognition, so it
cannot meet the needs of fast defect detection. For the defect
recognition system, the model training and pre-loading pro-
cesses are always offline, and the model loading time can
be ignored in the model evaluation. Therefore, the running
time only takes 0.42 s, which is faster than the times of
other pre-trained network models, as shown in Table 6. Fur-
thermore, this running time could be further improved with
high-performance hardware, such as Nvidia Graphics Pro-
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Fig. 10 The average running times of different models

Table 6 The online average running times of different models

Case Networks Time (s)

1 VGG16 0.63

2 GoogleNet 0.57

3 Mobilenetv2 1.54

4 ResNet18 0.86

5 InceptionV3 3.79

6 Proposed method 0.42

cessing Unit (GPU) and Field Programmable Gate Array
(FPGA).

Through the above experiments and analysis, the proposed
fusion method does not only achieve higher detection preci-
sion on X-ray welding images than other methods but also
has a faster running speed. Therefore, the proposed method
provides a good detection scheme for detection issues related
to small-scale samples.

8 Conclusion

Faced with weak-textured and weak-contrast X-ray weld-
ing images, inspired by multi-feature fusion, a novel defect
recognition method is proposed based on transfer learning
and DS evidence theory for accurate defect recognition to
assist with the assessment of structural properties and sys-
tem maintenance. Combined with transfer learning, to solve
classification problems for multi-scale samples, with the
pre-trained AlexNet network, multi-scale feature extraction
is acquired for effective feature expression. The recog-
nition model is established based on the SVM classifier
and DS evidence theory to predict welding defects in X-
ray welding images online. It is evaluated and verified on
a public dataset (GDXray), and it can achieve a better
recognition performance than those of existing methods, as
seen through a comprehensive experimental analysis and
comparison.

In the future, we will be devoting ourselves to this work
and will perform more research to improve the recognition
precision of our approach with respect to welding defects.
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