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Abstract
There is a growing interest in using permanently installed sensors to monitor for defects in engineering components; the 
ability to collect real-time measurements is valuable when evaluating the structural integrity of the monitored component. 
However, a challenge in evaluating the detection capabilities of a permanently installed sensor arises from its fixed location 
and finite field-of-view, combined with the uncertainty in damage location. A probabilistic framework for evaluating the 
detection capabilities of a permanently installed sensor is thus proposed. By combining the spatial maps of sensor sensitivity 
obtained from model-assisted methods and probability of defect location obtained from structural mechanics, the expec-
tation and confidence in the probability of detection (POD) can be estimated. The framework is demonstrated with four 
sensor-component combinations, and the results show the ability of the framework to characterise the detection capability of 
permanently installed sensors and quantify its performance with metrics such as the a

90|95 value (the defect size where there 
is 95% confidence of obtaining at least 90% POD), which is valuable for structural integrity assessments as a metric for the 
largest defect that may be present and undetected. The framework is thus valuable for optimising and qualifying monitoring 
system designs in real-life engineering applications.

Keywords  Probability of detection · Weakest-link theory · Structural health monitoring · Permanently installed monitoring 
systems · Probabilistic analysis

1  Introduction

In order to design and qualify Non-destructive Evaluation 
(NDE) procedures it is necessary to evaluate the expected 
detection capabilities. Ultimately, the value of undertaking 
NDE is determined by the confidence in detecting defects 
and the resulting structural integrity assurance that may be 
inferred. Over the last decades, significant research effort has 
been invested in developing evaluation methodologies for 
manual inspection procedures [1–3], in particular to evaluate 
the probability of detection (POD) and probability of false 
alarm (PFA) of candidate defects through receiver operating 
characteristic (ROC) analysis.

Recently, there is a growing interest in using permanently 
installed sensors to monitor defects in engineering compo-
nents. A major advantage of using permanently installed 
sensors as opposed to inspections arises from the ability 
to collect continuous, real-time measurements, which can 
provide valuable in-service information about the monitored 
component.

There are fundamental differences between the measure-
ment modalities of conventional manual NDE inspections 
and permanently installed sensors, and consequently fun-
damental differences between the evaluation of detection 
capabilities. These differences may be categorised as either 
temporal or spatial. The majority of existing literature is 
related to the temporal aspect, which will not be considered 
in detail in this paper. The temporal element relates to the 
ability to collect near-continuous measurements and there-
fore defect detection should be considered as a time-domain 
problem. Examples of this include the statistical dependence 
of the measurements being collected [4, 5], compensation 
for fluctuating environmental conditions [6, 7] and the effect 
of degradation on permanently installed sensors [8, 9]. In 
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this paper measurements will be interpreted in isolation, 
relative to a defect free measurement.

This paper focuses on the spatial aspect of the detection 
capabilities of permanently installed sensors. While many 
manual NDE inspection techniques rely on the ability to 
manipulate the sensor position and pseudo-optimise sen-
sor location to possible defects (e.g. manoeuvre sensor into 
a position of maximum signal amplitude), permanently 
installed sensors may be positioned in a sub-optimum loca-
tion with respect to the sought defect. The detection capabil-
ities will be determined by the location-specific sensitivity 
of the measurement to the defect at the given location, but 
the location of the emerging damage is unlikely to be known 
precisely or be predicted deterministically and so it is neces-
sary to use a probabilistic approach. The anticipated location 
of damage may be predicted from past experience or surveys 
or predicted based on structural considerations such as dis-
tributions of stresses. Such a probabilistic approach is con-
sistent with the aim of estimating a probability of detection.

The effect of defect location on the detection capability of 
a permanently installed sensor has been studied in previous 
literature [10], and is similarly studied as an optimisation 
problem for sensor network placement in structural health 
monitoring [11, 12]. A recent study has also been conducted 
to adapt the POD assessment procedure of NDE inspection 
techniques for permanently installed sensors using model-
assisted methods [13]. However, to the knowledge of the 
authors, an approach that combines this information with 
structural integrity information on the probability of defect 
location has yet to be developed. This paper proposes a gen-
erally applicable framework which aims to produce, for a 
specific sensor-component combination, standardised visu-
alisations and metrics that characterise the detection capabil-
ity of a permanently installed sensor.

The proposed framework is composed of three main 
stages:

(1)	 Evaluating the spatial distribution of probability of 
detection (POD map);

(2)	 Evaluating the spatial probability of defect location 
(PDL map);

(3)	 Combining the steps 1 and 2 to evaluate the overall 
anticipated detection capabilities.

The framework will be demonstrated on illustrative 
numerical studies of sensor and component combinations. 
In structural health monitoring, there is a well-recognised 
compromise between area coverage and sensitivity. Sensors 
may interrogate either a small inspection volume and there-
fore have high sensitivity to any changes within that volume, 
or interrogate a larger volume which inevitably leads to a 
reduction in sensitivity. The choice of design point within 
this compromise is clearly dependent on the confidence in 

defect location and in turn the required area coverage. The 
illustrative examples are chosen as they show how the frame-
work may be used to quantify the detection capabilities of 
a sensor-component combination and how to address the 
well-recognised compromise between area coverage and 
sensitivity.

The paper will be structured as follows. Section  2 
describes the example problems used to illustrate the pro-
posed framework. Sects. 3 and 4 describes how spatial POD 
maps and PDL maps are obtained respectively. Section 5 
describes the proposed methods of combining the two maps 
to evaluate the overall detection capabilities. Section 6 pre-
sents the results of the example problems when analysed 
with the proposed framework; the results are subsequently 
discussed in Sect. 7. Finally, Sect. 8 provides a summary of 
findings.

2 � Description of Example Problems

In order to demonstrate the use of the evaluation framework, 
two structural problems are presented, together with two 
separate sample permanently installed sensors, giving a total 
of four sensor-component combinations. The two structural 
examples are a rectangular beam undergoing three-point and 
four-point fatigue bending; these provide examples with high 
and low confidence in the location of damage respectively. A 
bulk-wave ultrasonic sensor is suggested as an example with 
high sensitivity but low area coverage, and a potential-drop 
sensor is suggested as an example with lower sensitivity but 
higher area coverage.

The examples described here are hypothetical and are 
chosen to best illustrate the value of the proposed framework 
for quantifying the performance of a permanently installed 
sensor for different operating conditions. More realistic 
models of monitored components and sensors may be sub-
stituted. This section describes these examples in more detail 
to further elucidate the challenge, before the framework is 
described in the following section.

2.1 � Description of Example Structural Problems

Two beams, each with dimensions shown in Fig. 1, are to be 
exposed to either three- or four-point fatigue bending with 
equal maximum stress amplitude and load ratio, R = 0 , 
meaning that the top surface is always in axial-compression 
while the bottom surface is always in axial tension. The sur-
face axial stress distributions along the length of the beams 
are shown schematically in Fig. 2. The triangular stress 
amplitude distribution of the three-point bending example 
indicates that the maximum stress amplitude is experienced 
only at the centre of the beam, whereas the trapezoidal stress 
distribution of the four-point bending example indicates the 
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maximum stress amplitude is nominally uniform between 
the two loading points. The two cases therefore represent 
scenarios where the area over which damage is expected to 
initiate is small and large respectively. Assuming that the 
defect will occur on the surface of the component experi-
encing tension, we can expect the damage to initiate close 
to the centre line of the component in the three-point bend-
ing case, whereas we can expect the damage to initiate any-
where in the uniformly stressed section between the two 
loading points in the four-point bending case. The distribu-
tion of probability of damage location will be quantitatively 
assessed in Sect. 4.

2.2 � Description of Exemplary Permanently Installed 
Sensors

Two simulated permanently installed sensors are considered: 
a bulk-wave ultrasonic sensor and a potential-drop sensor. 
The ultrasonic sensor is schematically illustrated in Fig. 3. 
A 45° ultrasonic shear-vertical wave is created by coupling 
a 25 mm diameter transducer to a 36° Perspex wedge which 
is fluid-coupled to the monitored component. The wedge is 
directed so the ultrasonic beam projects parallel to the xz
-plane and is positioned so the centre of the ultrasonic beam 
is coincident with the centre of the bottom surface of the 
component. The excitation signal was a 5-cycle Hanning-
windowed toneburst at a centre frequency of 1 MHz. The 

presence of a defect would reflect the signal back to the 
transducer, the amplitude of the reflected signal is dependent 
on the size and location of the defect and is used to indicate 
the presence of a defect. In finite element simulations, the 
signal excitation is modelled as phased out-of-plane point 
forces on the top surface of the block to simulate the angled 
ultrasonic beam from the wedge. The reflected signal is 
evaluated by summing the phased surface displacements at 
the same points where the signal is excited.

The potential-drop sensor is schematically illustrated in 
Fig. 4. Current injection and sensing electrodes are placed at 
the two ends of the component. By monitoring the injected 
current and resulting voltage the transfer resistance can be 
calculated. The presence of a defect would deflect current 
flow in the component, resulting in an increase in resistance. 
The expected increase in resistance is again dependent on 
the size and location of the defect and is used as an indica-
tion of whether a defect is present.

Fig. 1   Geometry of the monitored beam. All dimensions in mm

Fig. 2   Loading conditions and 
a schematic stress amplitude 
distribution of the bottom 
surface of the beam under a 
three-point fatigue bending, and 
b four-point fatigue bending. 
All dimensions in mm

Fig. 3   Schematic of the permanently installed bulk-wave ultrasonic 
sensor evaluated for monitoring

Fig. 4   Schematic of the permanently installed potential-drop senor 
evaluated for monitoring.
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The ultrasonic and potential-drop sensors are chosen to 
represent sensors of high sensitivity and low area cover-
age, and a sensor of low sensitivity and high area coverage 
respectively. One could imagine the ultrasonic sensor would 
be very sensitive to defects at the centre of the component 
where the ultrasound is interrogating, while having negli-
gible sensitivity to defects near the sides and ends of the 
component. Whereas the potential-drop sensor would have 
a reasonably uniform sensitivity across the whole surface of 
the component. This will be demonstrated and quantified in 
the following section.

3 � Spatial Probability of Detection (POD) 
Map of Permanently Installed Sensors

The methodology of obtaining the spatial POD map outlined 
in this section closely resembles that of model-assisted prob-
ability of detection (MAPOD) as implemented in the CIVA 
software [14, 15], and is also similar to the adaptation for 
permanently installed sensors proposed recently by Tschöke 
et al. [13]. An aim of MAPOD is to evaluate the anticipated 
probability of detection, including uncertainty, of a measure-
ment procedure by considering various sources of variabil-
ity. The use of model-assisted methods is necessary since it 
would be impractical to conduct the large number of destruc-
tive tests required for a probabilistic analysis, especially as 
each would require samples with PIMS installed on them.

There is a wide variety of parameters that may contribute 
to the uncertainties in the signal output of a permanently 
installed sensor, and this has been studied in a wide range 
of literature [16–19]. Some examples of these parameters 
include defect characteristics (location, orientation, mor-
phology), sensor characteristics (size, frequency, position, 
noise) and sensor-component interaction (lift-off, coupling). 
A statistical distribution may be assigned to each of these 
parameters, and by sampling these parameters accordingly, 
the anticipated distribution of signal output of the sensor 
may be evaluated.

The distinction in the present study is that the influence of 
the defect location will be studied separately. The anticipated 
sensor response is evaluated for a defect occurring at each 
discretised spatial location to populate a POD map, which 
can then be combined with the spatial probability of defect 
location to refine the overall detection capabilities.

The process of producing a spatial POD map of a perma-
nently installed sensor may be summarised according to the 
following process, which will be discussed in more detail in 
the remainder of this section:

(1)	 Define a nominal measurement configuration to estab-
lish the model.

(2)	 For each possible defect position, evaluate the response 
of the sensor to both defect-free and defective cases and 
populate a map of nominal sensitivity.

(3)	 Identify parameters that influence the response of the 
sensor and estimate statistical distributions for those 
parameters. By appropriate sampling of the parameters 
evaluate the resulting uncertainty on the nominal sen-
sor outputs.

(4)	 For each possible defect position evaluate the POD with 
conventional receiver operating characteristic (ROC) 
analysis to populate a POD map.

Repeating the above process for a range of defect sizes 
would then allow the evaluation of the detection charac-
teristics of a permanently installed sensor as a function of 
defect extent. The detailed process of producing the spatial 
POD map for a crack-like defect for the two permanently 
installed sensors considered will be demonstrated in the 
following subsections.

3.1 � Defining a Nominal Measurement Configuration

There are multiple ways to evaluate the anticipated signal 
output of the permanently installed sensor as a function 
of the relative position between the sensor and the defect. 
This may be approximated with analytical or empirically-
derived ad hoc approximations, an example being the use 
of distance-gain-size (DGS) scales to estimate the sensi-
tivity of an ultrasonic sensor as a function of the distance 
between the sensor and the defect [20]. In the present 
study a finite element approach is used.

A “nominal configuration” will have to be defined and 
modelled. In this study, this is defined as a smooth, square 
crack-like notch having zero axial extent with sides of 
length, a , that is normal to the length of the beam. The 
location of the defect is defined as the midpoint of the 
bottom edge of the square. A schematic illustration of this 
is shown in Fig. 5. The nominal sensor configuration was 
described earlier in Sect. 2.2.

Fig. 5   Schematic of the cross-section of the beam and the candidate 
defect modelled in this study
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For illustration purposes, a length of a = 6 mm will be 
used in this section, and the effect of varying the length of 
the defect will be discussed later in Sect. 6.2.

3.2 � Evaluating the Map of Nominal Sensitivity

In the present study, sensitivity is defined as the signal aris-
ing from the presence of a defect relative to the signal from 
a defect free case. This is not to be confused with the sen-
sitivity–specificity definition found in some literature [10]. 
By running multiple simulations where the candidate defect 

is moved to different positions, the expected signal ampli-
tude may be estimated, populating the sensitivity map. The 
simulations for the ultrasonic sensor were conducted using 
the finite element software ABAQUS® [21]; the simulations 
for the potential drop sensor were conducted using the finite 
element software COMSOL Multiphysics® [22].

The outputs, X , of the two sensors considered are defined 
as follows. For the ultrasonic sensor, this would be the 
maximum amplitude of the reflected signal obtained with 
the Hilbert transform and normalized to the amplitude of 
a corner-echo reflection; an example signal is illustrated in 
Fig. 6. For the potential-drop sensor, the resistance measured 
is normalized to the resistance measured when the compo-
nent is defect-free; the signal output is thus the normalized 
resistance minus one.

The resulting sensitivity map of the ultrasonic and poten-
tial-drop sensor are shown in Fig. 7. Again, as mentioned in 
Sect. 2.1, only defects initiating from the bottom of the beam 
are considered in this analysis. The choice of simulated 
defect positions are shown as red crosses in Fig. 7. These 
simulations points are chosen to provide a general trend of 
the sensor sensitivity with candidate defects at different loca-
tions. Clearly an increased number of points would provide a 
more accurate sensitivity map at the expense of greater com-
putation time. This is especially significant for the fully 3D, 
time domain ultrasonic simulations, with simulation time for 
each point in the order of hours compared to seconds for the 
potential drop sensor. To reduce the number of simulations 

Fig. 6   Plot of an example signal obtained from the Finite Element 
model of an ultrasonic sensor reflected from the modelled defect. The 
amplitude is normalised to the maximum amplitude from a corner 
reflection. The dotted line shows the Hilbert transform of the signal. 
The sensor output, X, is the maximum amplitude of the signal

Fig. 7   Maps showing a the nominal signal amplitude of the ultrasonic sensor, and b the nominal change in normalised resistance of the poten-
tial-drop sensor for a 6 × 6 mm defect. The red crosses indicate points where FE simulations are conducted (Color figure online)
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required, points outside the field of view of the sensor are 
assumed to have an output of zero amplitude.

3.3 � Evaluating the Uncertainty in Sensor Output

The influence of the defect location is the focus of this study 
and has been considered separately in Sect. 3.2. It is useful 
to separate the effect of systematic parametric uncertainty 
and spurious random noise. In the present examples a non-
exhaustive list of parameters that may result in a systematic 
uncertainty in the sensor response may be: defect orienta-
tion, defect shape, defect roughness, uncertainty in sensor 
location and uncertainty in the quality of sensor-component 
coupling. Random noise may be evaluated as the variation 
in signals arising from identical measurement scenarios (i.e. 
repeat readings of the same defect). It is possible to map the 
spatial variation in uncertainty, such as through distance-
dependent degradation in temperature compensation of 
guided waves [23], though in many situations, including the 
present examples, the uncertainty may be assumed to be 
spatially uniform.

For simplicity and clarity of focus, only the variation in 
signal output as a result of defect location and random noise 
will be incorporated. The effect of multiple parameters other 
than defect location and random noise would likely need to 
be studied in practice. The choice of parameters for each 
specific engineering application can be determined with 
parameter sensitivity analysis methods as reviewed in [24].

In the present study, the signal output of an ultrasonic 
sensor, XUT  , is assumed to follow the Rice probability 
distribution,

where XUT is the expected sensor output from simulations 
and �UT is the shape parameter of the distribution as a result 
of random noise, which is approximately 0.01 as evaluated 
from the results in [25]. What is used here is an approxima-
tion of the typical capabilities of ultrasonic measurement 
systems, and advanced signal processing and multiparamet-
ric techniques can be used to reduce uncertainty in measure-
ments. Nevertheless, this should be determined accordingly 
in practice with the actual monitoring system used under its 
operating conditions.

The measured change in normalized resistance of the 
potential-drop sensor, XPD , is assumed to follow the normal 
distribution,

where XPD is the expected sensor output from simulations 
and �PD is the standard deviation, assumed to be 2.8 × 10−4 . 
This is approximated from the anticipated resistance being 

(1)XUT ∼ Rice
(

XUT , �UT

)

(2)XPD ∼ Normal
(

XPD, �PD

)

of order 10�Ω in finite element simulations and a standard 
deviation of approximately 2.8 nΩ , which is the capability 
of a state-of-the-art potential-drop system [26].

3.4 � Evaluating the Spatial Map of the Probability 
of Detection

With the distributions of sensor output for both defect-free 
and defective cases defined, receiver operating characteristic 
analysis can be used to evaluate the probability of detection 
for an acceptable probability of false alarm. The process is 
illustrated in Fig. 8. The probability of detection, POD, is 
defined as the probability of the signal output of a sensor, X , 
being greater than a chosen threshold when a defect is pre-
sent. The corresponding probability of a false alarm, PFA , 
is defined as the probability of the signal being greater than 
the same chosen threshold when a defect is not present. In 
mathematical notations,

The threshold is typically chosen to meet a predefined 
requirement of a maximum allowable PFA. A PFA of 10−6 
is used in this study, which is significantly lower than what 
is typically used with NDE inspections. This is needed for 
permanently installed sensors since frequent measurements 
are made, resulting in more possibilities for a false alarm to 
occur. Note that for the ultrasonic sensor, the output contains 
a vector of p data points, and a false alarm is defined as any 
of the output data points greater than the threshold. Hence, 
by DeMorgan’s theorem [27], PFA of the ultrasonic sensor 
is given by,

where f  is the probability of a single data point being 
above the threshold given there is no defect.

By repeating the process for defects at different locations, 
the spatial POD map for the sensors can be produced. The 
results of the two sensors for a 6 × 6 mm square defect is 

(3)
POD = P(X > threshold|defect)PFA = P(X > threshold|no defect)

(4)PFA = 1 − (1 − f )p

Fig. 8   Schematic illustration of the distributions of signal output from 
a defect-free state, P(X|no defect) and the defective case P(X|defect) . 
With ROC analysis, a threshold is set for a given false alarm rate, 
PFA, and the subsequent probability of detection, POD, is evaluated
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shown in Fig. 9. As seen from the results, the ultrasonic sen-
sor has near perfect detection capabilities with POD close to 
unity at the centre of the beam where the ultrasonic beam is 
directed. However, the sensitivity quickly diminishes with 
defects located away from the limited area of ultrasonic 
interrogation. On the other hand, the potential-drop sensor 
has a relatively even coverage over the entire beam except 
for the ends of the beam where the electrical current has yet 
to spread out sufficiently.

4 � Probability of Damage Location (PDL) 
Maps

To quantify the detection capabilities of a sensor-compo-
nent combination, the spatial POD maps produced in Sect. 3 
would have to be evaluated in the context of the spatial prob-
ability of defect location. The aim here is to evaluate the 
probability of detection given a defect of a defined severity 
is present. It is possible that more than one defect will be 
present, but the analysis provided here only considers the 
influence of a single defect of the determined severity.

In real-life applications, the potential defect location 
on a component is generally not known deterministically. 
The defect location will be determined by a combination 
of the externally applied demand on the component result-
ing in distributions of stress, temperature or environmental 
conditions, together with the intrinsic material properties 
and condition of the component [28]. In the case of fatigue 
damage, the formation of fatigue cracks depends greatly 

on the stress and location of microstructural imperfections 
(e.g. dislocations) [29]. Given this uncertainty in where 
the “weakest link” of the component is, it is necessary 
to evaluate the location of a damage using a probabilistic 
approach.

The overall aim is to produce what is defined here as 
the probability of damage location (PDL) map, which is 
the map of where a defect is most likely to initiate given 
there is a defect somewhere on the component. This can 
be mathematically expressed as,

where Pf (i) is the probability of the defect being present at 
location i , and n is the total number of discretized locations 
considered in this analysis.

Several methods can be used to construct the PDL map, 
or in other words to obtain a map of Pf (i) for the moni-
tored component. Some of these include the use of finite 
element models, experiments, surveying from previous 
experiences, or simply the identified inspection zones that 
are often readily available in practice [3]. In this study, 
the probability of damage location is assumed to depend 
on the stress distribution of the component only, and the 
weakest-link theory by Weibull [30] is used to evaluate the 
PDL map. The theory was originally developed to evaluate 
the effect of specimen size on measured material strength. 
The method has since been applied to evaluating a range 
of damage mechanisms such as brittle fracture [31] and 

(5)PDL(i) =
Pf (i)

∑n

k=1
Pf (k)

Fig. 9   Spatial POD Map for 6 × 6 mm defects of a the ultrasonic sensor, and b the potential-drop sensor
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provide a non-local stress approach to fatigue assessment 
[32, 33] with commercially-available software based on 
the theory [34].

The theoretical analysis of the example problem in the 
present study using the weakest-link theory is summarized 
in the appendix; only the results are shown here. Overall, 
Pf (i) for fatigue damage is given by,

where

•	 N = number of loading cycles experienced by the com-
ponent

•	 S
�

(i) = stress amplitude with mean stress correction using 
the modified Goodman relationship [35] experienced by 
the component at location i

•	 C1 and C2 = material constants for the Basquin law [36]

(6)Pf (i) = 1 −

(

1 − Φ

(
ln(N) − C1 + C2ln

(
S

�

(i)
)

�

)) A(i)

Aref

•	 � = shape parameter of the lognormal distribution which 
describes the uncertainty in the Basquin law relationship 
between S�

(i) and N
•	 Φ(∙) = cumulative distribution function of the standard 

normal distribution
•	 A(i) = surface area of discretised location i
•	 Aref = surface area of the specimen used to determine C1 

and C2

The parameters used in analysing the sample problem in 
this paper are summarized in Table 1. Clearly the parameters 
selected here are rough estimates, but they provide an indica-
tion of the form of the results to expect from the analysis. 
Results from actual experimental data can be implemented 
when evaluating applications in real life.

The map of stress amplitude for the two loading cases is 
produced using 3-D finite element simulations. The maxi-
mum stress amplitude for the two cases were set to be equal 
at 110 MPa (see Fig. 10 for the stress distribution). This 
map of stress amplitude is then used to produce the cor-
responding PDL maps using Eq. (6) and values in Table 1. 
The results are shown in Fig. 11. As expected, the area over 
which a defect is likely to occur is much greater in the four-
point bending case compared to the three-point bending 
case, meaning that the area which the monitoring system 
needs to cover is much larger.

Note that in theory, the PDL map would vary with the 
number of loading cycles as Pf (i) is a function of the num-
ber of loading cycles. This variation is however found to 
be minimal and therefore insignificant to the analysis dem-
onstrated here; from Eq. (5), one could imagine that Pf (i) 

Table 1   Material parameters used in the analysis

Parameter Value Source and remarks

C
1

186 From properties of AISI 1015 in [37]
C
2

9.09

� 0.477 Estimated from NUREG/CR–6909 [35]
A(i) 1mm2 Surface area of an element in FE simulations
Aref 380mm2 Surface area of a uniform-gauge test speci-

men recommended in ASTM E-606 [38]

Fig. 10   Stress amplitude maps (in MPa) for a the three-point fatigue bending, and b the four-point fatigue bending case
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would steadily increase for all the elements as the number 
of loading cycles increase and so the normalized PDL(i) 
remains reasonably constant.

5 � Overall Probability of Detection—
Combining the Spatial POD and PDL Map

With both the spatial POD maps for the two permanently 
installed sensors and PDL maps for the two loading condi-
tions evaluated, they can now be combined to evaluate the 
detection capabilities of each of the four sensor-component 
combinations. The aim here is to quantify the expected POD 
and the confidence in its value for each sensor for a given 
PDL map.

5.1 � Weighted Statistical Analysis

For clarity, the weighted histogram analysis will be 
described generically using Fig. 12 before being applied to 
the context of the present paper. Consider the case where 
there are n possible mutually exclusive events ( n = 10 in 
the illustration in Fig. 12), each with an index, i , an associ-
ated event value, x(i) , and probability of occurrence, P(i) 
(Fig. 12a). We wish to evaluate the expected event value and 
the associated confidence.

The list of possible event values can be visualised with 
a histogram (Fig. 12b). For an unweighted histogram, each 
event will contribute to one of k bins according to the event 
value. The resulting height of each bin is simply the number 

Fig. 11   PDL maps for a the three-point fatigue bending, and b the four-point fatigue bending case

Fig. 12   Illustration of constructing a weighted histogram. An event 
space of i = 1,… , 10 events is constructed. a Each event has a cor-
responding event value and probability of occurrence. b A naïve, 
unweighted histogram is constructed based on the event values; their 
corresponding probability of occurrence is also shown, represented 
by the shaded area. c The final weighted histogram weighted accord-
ing to the corresponding probability of occurrence of each event
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of events in each bin category, nk ; the sum of heights of this 
histogram would therefore be n.

This histogram cannot be used to accurately evaluate the 
expected event value and its confidence as it does not include 
any information about the probability of each event occur-
ring; it would implicitly assume there is an equal probabil-
ity of the event occurring. To evaluate the expected event 
value, each contribution to the histogram should be weighted 
according to its corresponding probability of occurrence, 
producing what is known as a weighted histogram [39]. The 
height of each bin in the weighted histogram, wk , can be cal-
culated by summing the probability of occurrence associated 
with each individual contribution to the histogram,

where Pk(i) is the probability of event i in bin k (Fig. 12c). 
The sum of heights of this histogram is the sum of the prob-
ability of all events and therefore equals unity.

To evaluate the confidence intervals of the expected 
event value, a cumulative plot of the weighted results is also 
needed. This is produced by sorting the events in ascending 
order according to the event values and plotting the cumula-
tive weights (i.e. probability of occurrence) as a function of 
the event value.

In the context of this paper, the events would be a defect 
occurring at each discretised location, i , on the monitored 
component; the event value for each location is the corre-
sponding POD of the permanently installed sensor, POD(i) ; 
the probability of occurrence is the corresponding PDL from 
structural integrity information, PDL(i).

5.2 � Evaluating the Overall Detection Capabilities

The analysis above is applied to the results from the four 
sensor-component combinations evaluated in Sects. 3 and 4; 

(7)wk =

nk∑

i=1

Pk(i)

the case of using the ultrasonic sensor to monitor the three-
point bending beam to detect 6 × 6 mm defects is illustrated 
here. Results for all four sensor-component combinations 
and of different defect sizes will be discussed in Sect. 6.

Figure 13 shows (a) the unweighted histogram normal-
ised to the total number of discretised locations, and (b) 
the weighted histogram. The weighted cumulative plot is 
also shown here as the orange line. Compared with the 
unweighted histogram, the effect of weighting the his-
togram with the probability of damage location is most 
apparent from the disappearance of the peak at POD = 0 ; 
the POD = 0 bin of the histogram was populated by con-
tributions from outside of the region interrogated by ultra-
sound, but in the three-point bending example the PDL map 
provides the information that the defect is very unlikely to 
occur in these low-sensitivity regions and so should be given 
a low weighting accordingly.

Using the weighted histogram and cumulative plot, two 
metrics of detection capabilities can be used to evaluate 
and quantify the performance of a sensor-component com-
bination. These are also illustrated in Fig. 13. First is the 
expected probability of detection, denoted as PODexp , plot-
ted as the dotted black line in Fig. 13b. This is defined as the 
probability-weighted average in probability theory, which 
is the sum of all the possible outcomes, which would be 
POD(i) , multiplied by the probability of occurrence of each 
respective outcome, which would be PDL(i).

The second metric is the POD with 95% statistical confi-
dence, denoted as POD95 . This is plotted as the dotted black 
line in Fig. 13b. In other words, this is the minimum prob-
ability of detection of the sensor for 95% of the cases when a 
defect is present. This is evaluated simply as the POD which 
the cumulative plot reaches 0.05 or 5%.

(8)PODexp =

n∑

i=1

POD(i) × PDL(i)

Fig. 13   Relative frequency 
histogram of PODi for the ultra-
sonic sensor—a unweighted, 
and b weighted by the probabil-
ity of damage location, PDLi
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6 � Results

Using the methods demonstrated in Sect. 5, the detection 
capabilities of each of the four sensor-component com-
binations can now be compared. The results for a single 
defect size ( 6 × 6 mm) will first be presented in Sect. 6.1, 
followed by the results for varying defect sizes in Sect. 6.2.

6.1 � Detection Capabilities for a Single Defect Size

The graphical results for 6 × 6 mm defects for all the four 
sensor-component combinations are shown in Fig. 14. 
A table of PODexp and POD95 at PFA = 10−6 is shown in 
Table 2.

The histograms for the potential-drop sensor are shown 
in Fig. 14b, d and f. Between the naïve unweighted case 
and the four-point bending case the few low-sensitiv-
ity locations at the extreme ends of the component are 
weighted to zero and the corresponding low POD bins 
in the histogram are suppressed. The sensitivity over the 
remainder of the component is relatively uniform, result-
ing in the cluster of results at around POD = 85-95% ; there 
is little consequence to increasing the confidence in dam-
age location within an already uniform sensitivity. As the 
sensitivity is relatively uniform, there is little uncertainty 
in the POD and therefore the PODexp and POD95 values are 
in reasonable agreement.

The histograms for the ultrasonic sensor are shown in 
Fig. 14a, c and e. Due to the bi-modal nature of the ultra-
sonic sensor histogram, there is a great deal of uncertainty 
in the POD; depending on the location of the damage the 
POD will either be near-zero or near-unity. As the region 
where a defect may be expected to occur gets succes-
sively smaller between the naïve, four-point and three-
point cases, increasingly many low-sensitivity locations 
are weighted to zero and the corresponding POD = 0 peak 
gets increasingly suppressed. Despite this, for both the 
three-point and four-point structural cases, there remains 
enough possibility that a defect will occur in a low-sen-
sitivity region that the POD95 value is poor; even in the 
three-point bending case there is a 5% chance that the POD 
will be less than 32.1%.

Results in Table 2 indicate the importance of evaluating 
the expectation and confidence in POD. For the three-point 
bending case, based on the expected value the ultrasonic 
sensor appears to outperform the potential-drop sensor. 
Conversely, the POD95 values indicate that for the ultra-
sonic sensor there is a significant possibility that a defect 
may occur in a poor sensitivity region and therefore may 
go undetected, whereas this is unlikely for the potential-
drop sensor due to the greater area coverage. The POD95 

results significantly penalise sensor-component combina-
tions where there is insufficient area coverage. This can be 
visualised by plotting the map of  [1 − POD(i)] × PDL(i) 
as shown in Fig. 15 for the case of monitoring the three-
point bending case with the ultrasonic sensor; this map 
highlights areas of insufficient POD with significant PDL. 
A wider ultrasonic sensor would reduce the problem of 
insufficient coverage at the edges as indicated, though the 
problem would remain for the four-point fatigue bending 
case.

It is also worth considering the impact of sensor mis-posi-
tioning. Optimal performance is achieved when the region 
where damage is likely to occur is well aligned with the field-
of-view of the sensor. If the field-of-view of the sensor was 
not aligned to the region where damage is likely to occur, the 
performance would naturally suffer; the high POD elements 
would be poorly weighted instead of the low POD elements.

The analysis presented here helps to identify the perfor-
mance limiting aspects of a permanently installed sensor. 
For the ultrasonic sensor, despite the very high sensitivity in 
the interrogated region, clearly the performance is limited by 
poor area coverage; increasing the sensitivity or reducing the 
measurement uncertainty (for example by improving the noise 
performance) is unlikely to cause significant improvement in 
performance. On the other hand, the potential-drop sensor has 
sufficient area coverage for both structural cases and increasing 
the area coverage still further will lead to negligible perfor-
mance increase; in this case the performance is limited by the 
sensitivity and/or measurement uncertainty.

6.2 � Detection Capabilities as a Function of Defect 
Size

The proposed methodology can be repeated to evaluate the 
detection capabilities of different sizes to produce a plot of 
POD against defect size. Square defects with side length a = 2 
to 8 mm is evaluated, and the results are shown in Fig. 16. 
The expected POD and its 5% and 95% bounds are plotted. 
It is common to quantify the detection capabilities of a sen-
sor as the defect size for which there is 95% confidence that 
a POD of at least 90% can be achieved by the sensor; this is 
often referred to as the a90|95 defect size [2, 40]. The a90|95 is 
recognised as being particularly valuable for structural integ-
rity assessments as a metric for the largest defect that may be 
reasonably assumed to be present and go undetected.

To evaluate the a90|95 defect size for each sensor-component 
configuration, the POD95 results are fitted to the logistic func-
tion [41],

where K1 and K2 are the fitting parameters of the logistic 
function. Subsequently, the estimated a90|95 defect size is the 

(9)POD95(a) =
[
1 + exp

(
K1 + K2a

)]−1
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defect size at which POD95 = 90% . The resulting a90|95 for 
each sensor-component configuration is shown in Table 3.

As anticipated, due to the relatively uniform sensitiv-
ity of the potential-drop sensor there is little uncertainty 
in the POD and therefore little discrepancy between the 
PODexp and POD95 values. The a90|95 achieved for both the 

three-point bending and four-point bending cases is the 
same at 6.0 mm. The potential-drop sensor is not limited by 
coverage and thus the increase in POD is in essence solely 
dependent on the defect size; the larger the defect, the more 
disruption in current flow is caused and the greater the 
change in resistance measurement.

Fig. 14   Weighted histograms of 
the POD for 6 × 6 mm defects 
of the ultrasonic sensor (a, c, e) 
and the potential-drop sensor 
(b, d, f) for the four-point (c, d) 
and three-point (e, f) bending 
case. The unweighted histo-
grams (a, b) are also plotted for 
comparison
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Conversely, there is significant uncertainty in the POD of 
the ultrasonic sensor and therefore a significant discrepancy 
between the PODexp and POD95 values. The POD95 values 
are poor as a result of the possibility that defects may occur 
in the regions with very poor sensitivity. For the four-point 
bending case the POD95 value never exceeds zero; if a defect 
occurs in a location with negligible sensitivity then it will 
not be detected regardless of its size. This conclusion is sub-
tly different for the three-point bending case, as indicated by 
Fig. 15 the locations with inadequate coverage are situated 
to the sides of the component. Consequently, when a defect 
increases in size it ‘grows’ into an area of high sensitivity 
and is therefore detected. Again, a wider sensor would over-
come the problem of insufficient coverage for the three-point 
bending case.

7 � Discussion

Quantitative assessment is necessary to optimise the selec-
tion and design of permanently installed sensors. It is 
proposed that the analysis described in this paper may be 
repeated for a range of different monitoring system design 
parameters in order to maximise the a90|95 value. As an 
example, the ultrasonic transducer diameter or frequency 
could be altered in order to achieve sufficient area coverage, 
without compromising too far on sensitivity.

In the examples used in this paper, finite element struc-
tural analysis and weakest link theory is used to provide a 
probability of damage location specific to each discretised 
spatial location. It is worth emphasising that on many occa-
sions such involved analysis is not required. As an example, 
a simplification of simply dividing the component into uni-
form domains of ‘likely’ and ‘unlikely’ areas for damage 
location would have little consequence on the conclusions in 
many cases; in the three-point bending case the ‘likely’ areas 
would correspond to an element wide strip down the centre 
of the component, while for the four-point bending case the 
‘likely’ area would be between the two central supports. The 
difference in the results of PODexp and POD95 for the simple 
case studied here would have been within 5% compared to 
the more comprehensive study using FE simulations and the 
weakest link theory.

This paper focuses on the spatial aspect of POD and uses 
model-assisted methods to study the systematic effect of 
uncertain defect location on sensor sensitivity. The use of a 
model-assisted approach was necessary since conducting a 
large number of destructive tests for a probabilistic analysis 
would be impractical. This is especially true in this case as 
permanently installed sensors would need to be installed in 
each of the destructively tested samples.

Systematic effects other than defect location, such as 
loading and environmental conditions, can also have an 
effect on the POD or PDL map. In practice, a sensitivity 
analysis would be required to identify and study the effects 
of key parameters affecting the detection capabilities of the 
sensor and the structural integrity of the component [42, 43]. 
Given the modular nature of the approach proposed, it can 
easily be adopted to incorporate such analyses as needed for 
specific industries and use cases in real life.

This paper does not exploit the ability of a perma-
nently installed sensor to collect frequent, real-time data, 
which may significantly improve its detection capabili-
ties; the analysis presented here is only based on isolated 
measurements. As mentioned previously, it is useful to 
divide sources of uncertainty into systematic parametric 

Table 2   PoDexp and PoD
95

 for all four of the sensor-component com-
binations for 6 × 6 mm defects

Ultrasonic sensor Potential-drop sensor

PODexp(%) POD
95

(%) PODexp(%) POD
95

(%)

Four-point 
fatigue 
bending

32.7 0 90.5 88.4

Three-point 
fatigue 
Bending

92.5 32.1 90.6 88.8

Fig. 15   Plot of [1 − POD(i)] × PDL(i) for monitoring the three-point bending case using the ultrasonic sensor, highlighting areas of insufficient 
sensitivity with significant probability of defect location
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uncertainty and incoherent random effects. For the pur-
pose of simple illustration, only the effect of random 
noise is considered in the present study. While repeated 
measurements have the effect of averaging out and sup-
pressing the influence of random incoherent noise, the 
detection capabilities may not improve ad infinitum due 
to environmental influence [44] and parametric uncer-
tainty [4]. In real-life applications, this would have to be 
further investigated for each individual case in order to 
accurately quantify the detection capabilities.

8 � Conclusions

A generally applicable, probabilistic framework for evalu-
ating the detection capabilities of permanently installed 
sensor is proposed in the present study. The spatial aspect 
of the detection capabilities of a permanently installed sen-
sor is addressed by combining a map of sensor sensitivity 
obtained using model-assisted methods with a map of prob-
ability of defect location obtained from structural integrity 
information.

The spatial map of probability of detection may be evalu-
ated using a model assisted approach. There are many meth-
ods for estimating the probability of defect location; these 
range from simple segmentation into ‘likely’ and ‘unlikely’ 
areas of defects arising, to more quantitative structural 
mechanics-based assessments. In this paper a finite element-
based weakest-link method was used.

Illustrative examples have been used to demonstrate the 
value of the evaluation framework; in particular in address-
ing the well-recognised area-coverage sensitivity compro-
mise. Histograms of POD are suggested to be particularly 
valuable in evaluating the performance of the monitoring 

Fig. 16   Plot of POD against a for the four sensor-component combinations with confidence bounds and the estimated a
90|95

Table 3   a
90|95 for all four of the sensor-component combinations

Four-point bending 
(mm)

Three-point 
bending 
(mm)

Ultrasonic sensor ≫ 8 7.0

Potential-drop sensor 6.0 6.0
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system, and when coupled with the spatial maps of POD 
and PDL can help identify the performance limiting design 
aspects.

Key performance parameters such as PODexp , POD95 and 
a90|95 have been suggested and evaluated. The a90|95 is recog-
nised as being particularly valuable for structural integrity 
assessments as a metric for the largest defect that may be 
reasonable assumed to be present and go undetected. This 
paper demonstrates that the a90|95 is particularly sensitive 
to inadequate area coverage. Quantifying performance is 
necessary to be able to optimise monitoring system design, 
and tailor it to the specific needs of the structural integrity 
assessment.

Appendix: The Weakest‑Link Theory 
for Fatigue Damage

The weakest-link theory by Weibull [30] was originally 
developed to evaluate the effect of specimen size on meas-
ured material strength. The theory was subsequently applied 
to evaluate a range of damage mechanisms, including brit-
tle fracture [31] and provide a non-local stress approach 
to fatigue assessment [32, 33]. Commercially-available 
software based on the theory have also been developed for 
fatigue analysis [34].

The underlying concept of the weakest-link theory is that 
the larger the component, the more potential there is for the 
component to contain flaws or aberrant material where dam-
age are likely to initiate.

Consider a reference specimen of standardized dimen-
sion with surface area Aref  . The probability of survival (no 
life-limiting damage initiating) of the reference specimen is 
Ps,ref  . By dividing the surface of the reference specimen into 
elements of equal surface area, A(i) , Ps,ref  can be expressed 
as the probability of all the individual elements on the refer-
ence specimen surviving (no life-limiting damage initiating 
on any of the elements), Ps(i) . In mathematical terms,

Rearranging gives,

The probability of failure (a life-limiting damage initiat-
ing) of element i , Pf ,i , can therefore be defined as,

The significance of Eq. (12) is that it can be used to 
evaluate the probability of failure of an arbitrary surface 

(10)

Ps,ref = Ps(1) × Ps(2) ×⋯ × Ps

(
mi

)
=

mi∏

i=1

Ps,i =
(
Ps,i

) Aref

A(i) ,mi =
Aref

A(i)

(11)Ps(i) =
(
Ps,ref

) 1

mi

(12)Pf (i) = 1 − Ps(i) = 1 −
(
Ps,ref

) 1

mi = 1 −
(
1 − Pf ,ref

) 1

mi

using the results of a reference specimen. For instance, 
results from laboratory tests using standardized specimens 
can be applied to any component with stress field obtained 
from finite element results, and A(i) becomes the surface 
area of an element. This comes with the additional benefit 
of evaluating how likely is a life-limiting damage going to 
initiate for each of the element on the component.

For fatigue damage, the probability of failure is mainly 
dependent on the equivalent stress amplitude corrected for 
mean stress effects, S′

a
 , and the number of loading cycles, 

N  . By Basquin law [36], the expected number of cycles 
to failure, Nf  , is,

where C1 and C2 are material constants evaluated from the 
elastic modulus, the reduction in area in a tensile test, and 
the endurance limit of the material [35]. There is inevitably 
uncertainty in the actual cycles to failure, Nf  , of a compo-
nent. Assuming that Nf  is lognormally distributed, we can 
express Eq. (13) as,

where z ∼ Normal(0,1) and � is the shape parameter of the 
lognormal distribution. There is a range of literature discuss-
ing the most appropriate distribution type for fatigue dam-
age, such as lognormal [45], Weibull [46], or generalised 
extreme value distribution [47]. A lognormal distribution is 
used here as this is common practice and most applicable in 
engineering design with readily available data for common 
materials in standards [35, 45].

To evaluate the probability of failure for any given com-
bination of S′

a
 and number of loading cycles, N  , Eq. (14) 

can be rearranged to give,

Here, z can be seen as a generalised parameter which 
follows the standard normal distribution that define the 
contour lines of equal probability of failure in the S′

a
-N 

space as illustrated in Fig. 17. The cumulative probability 
of failure of a standard specimen, Pf ,ref  , is thus simply 
the cumulative distribution function of the standard nor-
mal distribution, denoted as Φ(z) . Substituting this into 
Eq. (15) gives,

With this, the probability of failure of an arbitrary sur-
face, i , can be evaluated with Eq. (16) if the following is 
known:

•	 Area of the surface, A(i)

(13)Nf = exp
[
C1 − C2ln

(
S

�

a

)]

(14)Nf = exp
[
C1 − C2ln

(
S

�

a

)
+ z�

]

(15)z =
1

�

[
ln(N) − C1 + C2ln

(
S

�

a

)]

(16)Pf (i) = 1 − (1 − Φ(z))
1

mi
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•	 Material constants, C1 and C2 for Eq. (13) evaluated with 
a specimen of standardized geometry with surface area, 
Aref

•	 Equivalent loading amplitude experienced by the surface, 
S

′

a

•	 Number of loading cycles experienced by the surface, N

Several assumptions are made when applying the weak-
est-link theory to fatigue damage in this analysis. Firstly, as 
stated above, it is assumed that fatigue damage manifests 
at the surface of a component. This is a valid assumption 
if no significant voids are present within the material. This 
assumption is especially valid in the case of bending fatigue 
as the maximum stress amplitude experienced by the beam 
is at its bottom surface. In the case of other damage mecha-
nisms, the volume of an element instead of surface area is 
usually considered [31]. It is also assumed that life-limiting 
damage initiating from the component does not interact. 
This is a valid assumption for high-cycle fatigue where the 
number of life-limiting damage is small and thus sparsely 
distributed [33].
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