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Abstract
For defense applications, rapid X-ray inspection of propellant samples is essential for the identification and assessment
of defects. Automation of this process using artificial intelligence is possible by properly training a neural network model.
ConvolutionNeural Networks (CNNs) have recently demonstrated excellent success in both the tasks of image recognition and
localisation using an adequate amount of data. In real-world, it’s not an easy task to produce the correct amount of experimental
data required for the deep neural network to operate. In this work, we propose a method for producing synthetic radiographic
data that is supported by ray tracing based radiographic simulations for the deep learning algorithms to automatically detect
anomaly in X-ray images. The simulation results, which are then supplemented by noise extracted from the experimental data,
show a good comparison with the measurements. This Simulation assisted Automatic Defect Recognition (Sim-ADR) system
simultaneously perform defect detection and defect instance segmentation. The accuracy of the defect detection system is
more than 87% on a testing set included 416 images.
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1 Introduction

Solid propellant is a type of high-energymaterial widely used
in the aerospace and military sectors. The solid propellant is
formulated in a special structure/shape to meet the neces-
sary ballistic output and is known as propellant grains [1,2].
Owing to the inherent complexities, the propellant grain pro-
duced goes through rigorous quality assurance processes. To
examine the effects and reasons for the defects, identifica-
tion and characterization of the defects present in propellant
grain in terms of their position and size is important. X-

This document is the results of the research project funded by
Armaments Research Board (ARMREB) in collaboration with the
High Energy Material Research Laboratory (HEMRL).

B Dhruv Gamdha
dhruvgamdha@gmail.com

1 Center for Non-destructive Evaluation, Indian Institute of
Technology Madras, Chennai, India

2 Dhvani Research, Chennai, India

3 High Energy Material Research Laboratory, Pune, India

ray radiography [3] is the commonly used non-destructive
measurement tool for assuring propellant grain quality [4].
Till recent past, the conventional film radiography was dom-
inating the process in which the components used to be
manually placed within the X-ray field and placement of the
film loaded cassette to capture the transmitted X-ray radia-
tion. The process used to be time consuming and the quality
assurance requires expert human analysis of the X-ray defect
features. For long, this process used to be the bottleneck for
the higher throughput of production. After advent of digital
radiography systems [5–7], which involves either an off-line
or an on-line process, where components are still manually
placed within the X-ray field of view (FOV) but the digital
image of the transmitted X-rays is obtained with very less
exposure time. These digital radiographs are also visually
evaluated/interpreted, the visual evaluation is not only very
much tedious due to the voluminous work but also less reli-
able because of fatigue of human interpreter [8]. Hence the
automation of the process is critical to achieve high reliability
and speed of inspection.

Several researchers explored the identification of defects
from radiographic images using different techniques and
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approaches [9–14]. Artificial intelligence and computer
vision methods can be used to aid in analyzing the X-rays
and provide an indication of the examined material’s diag-
nosis. There has been a lot of effort to build and construct
computational tools focused on image processing, com-
puter vision, artificial intelligence and other related fields
with the aim of encouraging radiograph analysis and thus
improving the robustness, accuracy and speed of the inspec-
tion process [15–23]. Owing to the exponential increase in
processing algorithms and computing power, Image classi-
fication, object detection, and image segmentation fields are
advancing significantly. The development of deep Convolu-
tion Neural Networks (CNN) has led to major improvements
in several tasks related to image processing. Ferguson et.
al. [24] demonstrated the defect detection system exceeds
state-of-the-art performance for defect detection on the
GDXray [25] casting dataset using transfer learning tech-
nique on MaskRCNN deep learning model. In this work, we
present the accomplishment of an automated defect recog-
nition (ADR) system that uses deep learning algorithms to
improve the effectiveness of the automated data analysis. The
defect detection system used in this work is based on Mask
Region-based CNN [26] that simultaneously perform object
detection and image segmentation.

The key technology in this work is the development of
advanced Simulation assisted Automated Defect Recogni-
tion (SimADR) algorithms for flaw detection, classification
and characterizations of different types of propellant grains
and rocket motors. These propellants are likely to develop
flaws at the interfaces and in the grains due to perturbations
in the process variables and consequently its manifestation
in the final products are inherent in a mass manufacturing

environment due to several reasons. Several forms of simula-
tion software have been developed over the past few years for
radiological applications [27–30]. In this work, themethod is
based on creating a radiograph database with different poten-
tial defect characteristics using a simulation model based on
ray casting and using this to train a deep learning algorithm.

2 Materials andMethods

The Sim-ADR system is proposed to identify the defects
from the propellant grain X-ray images. Figure 1 presents
the Sim-ADR development flowchart. The proposed system
consists of three main stages; a pre-processor, Simulation
engine for X-ray images (Sim-Xray) and Artificial Neural
Network basedAutomaticDefect Recognition (ANN-ADR).
Each stage consists of a variety of processes and communi-
cate correctly with the input of the next stage before the final
identification report is obtained. In the following subsections,
the functionality of each stage is described in more detail.

2.1 Pre-processor and Annotation Tool Box

The Pre-processor unit prepares the radiographic image for
the annotation task by enhancing the defect features in the
image. Figure 2 presents the different steps and the respec-
tive tasks associated with Pre-Processor and annotation tool
box. The 16-bit X-ray image input first goes through a
normalization step. Algorithms to enhance the images are
implemented using a combination of many Image process-
ing filters like Sharpening filters, Contrast Limited Adaptive
Histogram Equalization (CLAHE) and FFT-Low Pass filters,

Fig. 1 SimADR system Development Flowchart
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Fig. 2 Work flow chart from
Pre-processor unit to annotation
tool box for image enhancement
and annotation process

such that the defects are clearly seen for the annotation. In the
Annotation tool box, the defects aremarked using the built-in
annotation features like magicwand, contour and circulation
and the annotated data are stored in a suitable format to train
the Neural network. This is followed by an automatic seg-
mentation of defect region and annotation using the defined
rules. On the successful verification of the annotations by
the Radiography Expert, the annotated images are sent to the
ANN-ADR module.

2.2 Sim-XRAY

Within this section, we present the specifics of the algo-
rithms used to generate each simulated X-ray image and
ultimately generate a simulated data set for deep learning.
Figure 3 displays the various sections of the Sim-Xray sim-
ulation algorithm in detail. In the object section involves the
preparation of the CAD model of both component geome-
try and the desired artificial defects. The CAD model is then
placed in between the virtual X-ray source and detector using
necessary transformations. The source and detector section
describes the source and detector-related parameters such as
Voltage (kV), Current (mA), and exposure time. The loca-
tion of the defects, the location of the source and detector,
the translation and rotation associated with each measure-
ment are included in the Registration section. The material
section defines the material properties associated with the
component and defects such as the attenuation coefficients
and energy values. Sim-XRAY has an extensive collection of
materials in its library. Further, computer graphics based Ray
Casting Technique is used to generate the simulated X-Ray
images using the information like Source-to-Detector dis-
tance, Source-to-Object distance, Voltage and Current value
used in the measurements. Further, computer graphics based
ray casting technique is used to perform the calculation of
the distance traveled by the X-ray inside the component
and defects separately. Using the distance values, attenua-
tion coefficient, and energy values we calculate the X-ray
intensity falling on the detector to finally generate the sim-
ulated X-ray image. The following subsections discuss each
aspect of the procedure.

Fig. 3 SimXRAY: Simulating X-ray images

2.2.1 Preparation of the Component

The user has to prepare the CAD model of the component
using any CAD software of which the X-ray is to be pro-
duced. Figure 4 shows the CAD model used in SimXRAY
software. To mimic the measured X-Ray image, the sample
is positioned and oriented in a way identical to the one in the
experiment.

2.2.2 Addition of Artificial Defects

In this paper we focus on void defects in the casting of pro-
pellant component. The library of CAD model of defects
is generated by closely observing the experimental X-Ray
images obtained from the industry. These defects are caused
by trapped gasses inside the composite slurry and appear
as a single large bubble or a set of smaller bubbles. These
defects are modelled as ellipsoid and spheroids with proper-
ties of air. The simulated radiographs are generated for the
object placed at different angles. Hence flaws in 3D even if
ellipsoid and spheroids will generate correct shapes on the
simulated radiographs based on their location and orienta-
tions. The ellipsoids and spheroids are considered mostly
because the real volumetric flaws closely replicate to ellip-
soids and spheroids due to inherent casting process of solid
propellant. A normal distribution is used to vary the major
and minor axis of the ellipsoid or the radius in case of the
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Fig. 4 CAD geometry of the propellant grain component.

sphere based on observation of the scale of the defects in
comparison to the size of the component. In the case of rep-
resenting the porosity as a series of bubbles, the number of
bubbles is randomly selected in a range of 1 to 8 bubbles
in addition to varying the radius of the spheres. Further, the
position of the bubbles are chosen based on a normal distri-
bution which penalised the bubbles being too close or too far
from each other.

The defects produced are then incorporated into the CAD
model of the component. The locations of the defect are
boundedwith in the component geometry. Figure 5 shows the
flow chart to explain the defect insertion process. The com-
ponent in this study is observed to have defects in the range

of 0 to 15 and follows the normal distribution. The position
and orientation of the defect with respect to the component is
randomly determined. The sampled position of the defect is
then checked to lie completely inside the component. If not,
then this process is repeated until the correct position is sam-
pled. The defect is then translated to it’s appropriate position.
Figure 6 shows components with defects placed between the
virtual x-ray source and detector. The defects alongwith their
positions are stored in a list to be used during the ray casting
process.

2.2.3 Ray Casting

The work by Tucker et al. [31,32] is used to perform the
calculation of x-ray spectra. Using their algorithm the target
x-ray intensity range is determined as a function of the energy
level. The target intensity is further attenuated depending on
the distance travelled by the ray inside the component. In this
section we discuss the method of calculating the distance
travelled by the ray inside component using the computer
graphics based ray cast technique. In 3D space a point i.e.
X-ray source and a plane i.e X-ray detector is defined as
shown in Figs. 6 and 7. The distances between the compo-
nent, detector and source is set by the user. To match the
measured X-ray image the distances should be the same as
that of the experimental setup. A simulation X-ray image of
size n × m pixels requires, the detector plane to be divided
into the same (n × m) number of square boxes. Where each
box on the detector corresponds to the pixel in the image. The
centre of these boxes on the detector acts as the targets of the
rays cast from the virtual x-ray source. Hence, for each box in
the detector a ray is cast from the source and the intersection
points of the rays with the component and the defects are cal-
culated. The intersection points are further used to calculate
the distance travelled by the rays inside the component and
defects.

Point of intersections between the rays and the component,
rays and defects are determined by separate consideration as

Fig. 5 The defect insertion
process flowchart
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Fig. 6 Propellant grains with
defects are placed in between
the virtual flat panel X-ray
detector (on left of component)
and x-ray source (on right of
component). The defects are
segmented using red color in the
image and few of them are
pointed using an arrows

Fig. 7 Separate ray casting of
the propellant grains and its
defects

shown in Fig. 7. First, the intersections with the component
is calculated by positioning it between the virtual source and
the detector. Then the component is replaced with defects
according to their predetermined locations and its intersec-
tions are calculated. For calculating these intersections the
Oriented Bounding Box Tree representation of the compo-
nent and defect CAD models is used.

Special cases such as the rays tangential to component
or defects are handled by approximating its corresponding
pixel value with the average value of surrounding pixels.
For the remaining targets the intersection points are used to
calculate the length of the ray travelled inside the component

and defects using the following formula,

Dcomponent/de f ect

=
N∑

0

distance(P2i , P2i+1), i = 0, 1, 2, . . . .., N/2 (1)

where N is the number of intersections of the ray with the
CAD model of component or defects and P is the ordered
list of intersection points.

The effective length travelled by the ray inside the compo-
nent will be the component lengthminus the defect length for
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Fig. 8 Two consecutive steps in
the kernel movement through
the image for noise mask
extraction from the experimental
x-ray image

Fig. 9 The Mask R-CNN
framework. The system consists
of four convolutional neural
networks, namely the ResNet-51
feature extractor, region
proposal network (RPN),
region-based detector and the
mask prediction network.
Reprinted from [24]

each detector target. The distance travelled by the ray inside
the component and defects are stored in their respective 2D
arrays each of n×m size. The two distance arrays are further
used to calculate the image pixel values through a series of
intensity calculations.

2.2.4 Calculation of Pixel Intensity

The distance traversed by the rays in the component and
defect is used to calculate the final attenuated intensity falling
on the detector pixel. The calculation is as follows,

Ip =
i=To∑

i=1

Io,i ∗

e(−µcomponent, i ∗ dcomponent − µdefect, i ∗ ddefect)

(2)

where Ip is the net intensity value of the pixel after attenu-
ation, I0,i is the unattenuated intensity at each energy level
falling on the pixel, T0 is energy value corresponding to cur-
rent and voltage value set in the x-ray source, µcomponent,i

and µde f ect,i are the component and defect material’s inten-
sity attenuation coefficient respectively for each energy level,
and dcomponent and dde f ect are the distance travelled by the
ray inside the component and defect respectively.

The intensity of the unattenuated ray fallingon thedetector
will be,

Op =
i=To∑

i=1

Io,i (3)

where Io,i is the source intensity value. As each target in
the detector grid represents a pixel, its pixel value is calcu-
lated by first taking square root of the ratio of Ip and Op and

123



Journal of Nondestructive Evaluation (2021) 40 :18 Page 7 of 13 18

then further normalizing it between 0 to 65535 to obtain a
16bit image.

2.3 Noise Modeling

For noise modelling we are proposing a unique technique
which involves extraction of noise mask from an experimen-
tally measured image using a sliding kernel approach which
separates the noise from the image and stores it in a array,
and is called a noise mask. The noise mask is then added
with the simulated image which brings measured image like
noise in it.

2.3.1 Extraction of Noise Mask

First we define the kernel size and the stride value for its
travel. In the example shown in Fig. 8 the kernel size is 3
and the stride is 1. This creates a 2D array of the size same
as that of the measured image which will store the extracted
noise. Make the kernel travel through the measured image
keeping the stride distance between consecutive steps. For
each kernel position on the image, the mean of the kernel
array is subtracted from each array value, this modified array
captures the noise in that image location and is stored at the
same location in the noise mask array. For the overlapping
regions of the kernel, the values in the noise masks are added
with the new kernel values. Once the kernel finishes its travel
in the measured image, the noise mask corresponding to the
entire measured image is obtained.

2.3.2 Application of Noise Mask on Simulated Image

The noise mask extracted from a measured image with a
particular orientation of the component will produce the best
effect when applied on a simulated imagewith a similar com-
ponent orientation. The noise mask array is directly added
to the simulated image array. Finally the array values lying
outside the 16 bit range (0 to 65535) are replaced with the
maximum or minimum value.

2.4 ANN-ADR

TheMask R-CNN [33] model is used for the defect detection
and segmentation purpose. Figure 9 shows the framework
of mask R-CNN model. The Mask R-CNN framework is
built on top of Faster R-CNN [26]. So, for a given image,
Mask R-CNN, in addition to the class label and bounding
box coordinates for each object, will also return the object
mask. The defect detection system is composed of four mod-
ules. The first module is a ResNet-51 feature extractor that
generates a high-level featurized representation of the input
image. The second module is a CNN that proposes regions
of interest (RoIs) in the image, based on the output of the

feature extractor module. The third module is a CNN that
attempts to classify the objects in each RoI. The fourth mod-
ule performs image segmentation,with the goal of generating
a binary mask for each region. Each module is described in
detail throughout the remainder of this section.

The first module in the ANN system transforms the image
pixels into a high-level featurized representation. The model
uses ResNet-51 [34] feature extractor which is a very deep
convolutional neural network with 51 trainable layers and
approximately 27 million parameters. Hence it is unlikely
that the network can be trained to extract meaningful fea-
tures from input images, using the relatively small measured
+ simulated dataset. One interesting property of CNN-based
feature extractors is that the features they generate often
transfer well across different image processing tasks. This
property is leveraged when training the proposed defect
detection system by using weights pretrained on MS COCO
dataset [35] for feature extractor then applying transfer learn-
ing technique to fine tuning the weights by further training
the model on our custom dataset.

The secondmodule is the region proposal network (RPN).
The RPN takes a feature map of any size as input and out-
puts a set of rectangular object proposals, each with a score
describing the likelihood that the region contains an object.
The RPN is a small CNN which convolves with the output
of the feature extractor. At a higher level the RPN output’s a
vector describing the bounding box coordinates and the like-
liness of object in it at the current sliding position. Transfer
learning has an important application in the training of RPN,
When training an object detection network on a large dataset
with many classes, the RPN learns to identify subsections of
the image that likely contain an object without discriminating
by object class.

The third module is the region based detector (RBD). Till
now theANNmodel is able to select afixednumber of regions
from the original image. The region based detector classify
the defects in each region, and fine-tune the bounding box
coordinates. The input to the RBD is cropped from the output
of ResNet-51 feature extractor, according to the shape of the
regressed bounding box. The size of the input is dependent
on the size of the bounding box. To address this issue, an
RoIAlign layer is used to convert the input to a fixed-length
feature vector. Each feature vector from the RoIAlign layer
is fed into a sequence of convolutional and fully connected
layers. The last fully connected layer produces two output
vectors: The first vector contains probability estimates for
each of theKobject classes plus a catch-all background class.
The second vector encodes refined bounding-box positions
for one of the K classes.

The fourth module is the mask prediction module which
performs the instance segmentation by predicting a segmen-
tation mask for each RoI. The prediction of segmentation
masks is performed using another CNN, referred to as the
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Fig. 10 The simulated image
and its annotation mask used for
the training of the ANN model
are shown. The annotation mask
is a binary image with black
background and white color
defects

instance segmentation network. The instance segmentation
network has a 28×28× K dimensional output for each RoI,
which encodes K binary masks of resolution 28 × 28, one
for each of the k classes. The reader is referred to [24] for a
more detailed description of the Mask R-CNN architecture.

We have used the mask R-CNN implementation from
the GitHub repository [36] and trained it on our data set.
We applied transfer learning on the model. The pretrained
weights are used corresponding toMSCOCOdataset and fur-
ther trained the final layers of the model on the dataset which
is a combination of experimental and simulated dataset. The
dataset contains in total 2674 training images, out of which
450 are the experimental images and 2224 are simulated
images. The image resolution of both the measured and sim-
ulated images are of similar size. Further to avoid the time
required to simulate all the 2224 images, which is around
30 minutes per image, data augmentation techniques is used
such as flipping and rotating of images and the annotation
masks to multiply our simulated images. The binary anno-
tation mask is also provided as output by the SIMXRAY
corresponding to each radiograph with defects marked as
white and the background is marked as black as shown in
Fig:10. The tight fitting bounding box for each defect is
extracted from these binary masks. The model is tested on
527 images of which 420 are simulated and 107 are experi-
mental images.

2.5 Experimental Data Collection

Acylindrical sleeve casted composite propellant grain having
a diameter of 168mmwas used for the experiment. The setup
contains a 450 kV X-ray source (Make-Seifert, Germany),
a flat panel detector (Make-Perkin Elmer), Digital Imaging
System (Make-X-Innovation, UK) and an object manipula-
tor having translational and rotational degree of freedom.
Although the 450 kV x-ray machine was used for radiogra-
phy of the solid propellant grain, but the actual energy used
for the radiographic exposure is about 160 kV.

3 Results and Discussion

The automatic defect recognition for X-ray images were
developed using a deep neural network based transfer learn-
ing technique. In order to overcome the small number of data
set available from experiments, we used physics based data
generation. Following are the results obtained from the sim-
ulation of X-ray images and the ANN based ADR system.

3.1 Simulation Results

Figure 11 presents the experimentally measured, simulated
with noise mask and without noise mask x-rays along with
their histograms for the front grain component. In Fig. 11a,
the bottom right corner of the sample has the supporting
structure present in the image. This is not modelled in the
simulation. Figure 11b shows the simulated image with ran-
domly added defects.

In radiography, histograms are an important metric to
determine the quality of the x-rays. The histogram plots are
plotted together with the experiment and simulated results.
The effect of noise mask is clearly visible in the simu-
lated x-ray and it’s histogram. The graininess and texture
in the measured image due to variety of reasons such as non-
uniformity of material, manufacturing processes, component
geometry, noise etc which is very difficult to match closely is
very well inherited by the simulated image with noise mask.
Noise mask increased the smoothness and improved the dis-
tribution of histogram. The kernel size and stride values used
were 7 and 3 respectively.

Similarly, Fig. 12 presents the simulation output for rear
grain of the propellant grain. The sample supporting material
is also present in the case experimental data at the bottom.

Our noise modelling technique implicitly accommodates
the effects of unsharpness and the scattered radiation mod-
elling into consideration as can be seen by the improvement
in the radiograph and it’s histogram quality after applying the
noisemask in b and c part of Figs. 11 and 12.We are verywell
able to match the contrast of the simulated image with the
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Fig. 11 Comparison of Experimental, Simulated and Noise added simulated X-ray image and histograms of rear propellant grain

experimental image and also their histograms. The contribu-
tion of our noise modelling technique to model the effects of
scattering and the unsharpness can be seen by comparing the
defects and the edges in the simulated images without noise
(b part) andwith noise (c part) in Figs. 11 and 12 respectively.

3.2 ANN-ADR Results

We configured the ANNmodel on our system and fine tuned
the training parameters such as input image size, batch size
and learning rate according to our data set and GPU capabil-
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Fig. 12 Comparison of Experimental, Simulated and Noise added simulated X-ray image and histograms of front propellant grain

ity. TheANN trainingwas carried out using 416 experimental
images and 1754 simulated images. To see the effect of the
simulated images on the ANN model accuracy we trained
5 ANN models with an increasing proportions of measured
vs simulated images as given in Table 1. The trial 1 was

performed using only the experimental images and no simu-
lated images were used. In trial 2, an almost equal number of
simulated images added as the experimental images into our
training dataset, and in the subsequent trails we kept increas-
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Table 1 ANN model runs Trials Experimental images Simulation images Total training images

Trial 1 416 0 416

Trial 2 416 426 842

Trial 3 416 770 1186

Trial 4 416 1198 1614

Trial 5 416 1754 2170
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tion accuracy is shown

0 50 100 150 200
0.2

0.3

0.4

0.5

0.6

0.7

Lo
ss

Epochs

Fig. 14 Loss of the Trial 5 ANN model vs Number of Epochs

ing the number of simulated images such that in trial 5 we
used all the simulated images for the training

Further, the performance of all the five trained models
were evaluated on a test dataset of 420 images. We used
mAP (mean Average Precision) metric at two IoU values of

50% and 75% which are the standard metrics for the object
detection and segmentation problems to measure the perfor-
mance of themodel. ThemAP values at IoU of 50% and 75%
of the trials are shown in Fig. 13. As withmany deep learning
models, it takes large amount of labelled data to train model
accurately. This exercise helps us see how the large simulated
data affects the performance. The performance improved sig-
nificantly in trial 2,whenwe doubled the training datasetwith
the help of simulated images. Following which the growth
rate decreased. This result suggests that the chosen maskR-
CNN model can learn the problem well with 842 examples
(Trial 2), with quite modest improvements seen with 2170
examples (Trial 5). The performance of the neural network
can continually improve as more and more data is provided
to the model, but the capacity of the model must be adjusted
to support the increase in data. Eventually, there will be a
point of diminishing returns where more data will not pro-
vide more insight into how to best model the problem. For
simpler problems, this point will be reached sooner than in
more complex problems. Similar observations can also be
seen in the study performed by Sun et al. [37] and Joulin et
al. [38].

The maximum mAP attained is 85.23% for a 50% IoU
and 41.75% for 75% IoU.

Figure 14 shows the loss calculated at each epoch and is
gradually decreases and stabilizes at higher epochs. A total
of 200 epochs were used. Figure 15 shows the examples of
the detection of the casting defects for three different com-
ponents corresponding to trial 5 ANN model. The images
on the left side shows the enhanced image and on the right
the ADR processed image. In all the three cases the model
is able to identify and segment the void defects with in the
allowed threshold limit and are marked as red pixels. Despite
the inherent grainy nature of the composite, the voids with
acceptable area are identified.

4 Conclusion and FutureWork

Radiography is a tool commonly used byNDT for evaluating
propellant casting components. Human experts are interpret-
ing a large number of radiographic images which can lead
to a subjective interpretation with the possible risk of miss-
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Fig. 15 Defect detection results
by Trial 5 ANN model on
experimental images. Images on
the left are the original images
and on the right are the output of
the ANN model with the
detected defects shown in red
segments

ing flaws. There are very few recorded attempts in the past to
automatically detect flaws on propellant casting components.
In this paper, an automatic defect recognition system for pro-
pellant casting components using transfer learning technique
is demonstrated. The method used Mask R-CNN to extract
the features of propellant radiographs. The limitation in the
data availability is handled using data generation using radio-
graphic simulation. A ray tracing based model is established
and carefully mapped the noise in the experimental data to
generate realistic radiographic images in large scale. Thevoid
type defects were inserted in the CAD geometry and gener-
ated the defect features in the radiographic images.

The ray tracing technique is used for the simulation of
the industrial digital X-ray imaging system. The noise in
the experimental images are extracted and incorporated in
the simulated images in order to use these images for the
ANN based ADR system. The simulated images are in good
agreement with the experimental results.

The experimental data combined with various amount of
simulated data is then used to train mask R-CNN model
which produces the masks of the defects in the image. Our
work shows that there is a significant improvement in the
ANN model accuracy when the model is trained with large
amount of simulated data combined with experimental data
compared to when the model is trained only on experimen-

tal data. We are able to achieve an improvement of 24%
in the mAP@50%I oU and an improvement of 30% in the
mAP@75%I oU metrics. This approach can be easily used
in the propellant manufacturing line for real time evaluation.

Our approach is capable of simulating radographs of pro-
pellant grainswith awider variety of defects, having different
material density such as cracks, slags, agglomerates and
inclusions which occurs during manufacturing. We are plan-
ning to do the classification problem as part of our future
work. In the future, we will extend the sample sets from both
experiments and simulation. The current generation time for
the X-ray images are high and we are planning to incorporate
GPU based acceleration for this process. The data generation
using Deep Convolutional Generative Adversarial Network
(DCGAN) is also planned as a future task.
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