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Abstract
The uniaxial compressive strength (UCS) is considered as a significant parameter related to rock material in design of
geotechnical structures connected to the rock mass. Determining UCS values in laboratory is costly and time consuming,
hence, its indirect determination through use of rock index tests is of a great interest and advantage. This study presents a
prediction process of the UCS values through the use of three non-destructive tests i.e., p-wave velocity, Schmidt hammer
and density. This process was done by developing an intelligent predictive technique namely the group method of data
handling (GMDH). Before constructing intelligence system, a series of experimental equations were proposed using three
non-destructive tests. The results showed that there is a need to propose new model with taking advantages of all three non-
destructive tests results. Then, several GMDH models were built through the use of various parametric studies on the most
effective GMDH factors. For comparison purposes, an artificial neural network (ANN) was also modelled to predict rock
strength. The obtained results of the ANN and GMDH were assessed based on system error and coefficient of determination
values. The results confirmed that the proposed GMDH model is an applicable, powerful, and practical intelligence system
that is able to provide an acceptable accuracy level for predicting rock strength.

Keywords Rock strength · Non-destructive tests · GMDH · ANN · Predictive intelligence system

1 Introduction

Strength and deformation of rock materials are identi-
fied as the most important parameters in any construction
project connected to the rock mass. The International Soci-
ety for RockMechanics (ISRM) has proposed the unconfined
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compression test (UCT) standardized to measure the rock
elasticity (Young’s modulus, E), and rock strength (uniax-
ial compressive strength, UCS) [1]. This test is difficult,
time consuming, and costly to determine the laboratory-
based characteristics [2, 3]. Due to these imitations, indirect
tests and methods are of a great importance and interest in
literature.Many scholars (e.g., [4–6]) tried to establish a rela-
tionship between UCS/E and other rock index tests such as
p-wave velocity, Schmidt hammer, physical-based and point
load which are easy, simple and cheap to conduct compared
to the UCT test.

Literature is consisted of many studies investigating how
to relate the rock strength and deformation with the other
rock index tests which can be conducted in laboratory. These
studies are normally carried out by collecting block samples
from the sites or projects, transferring them to laboratory
and conducting relevant tests in laboratory. Then, prepar-
ing a database comprising of simple tests values together
with UCS or E values and making empirical relationships
for predicting UCS and E using simple tests results. Many
researchers proposed empirical equations for predicting rock
strength and deformation using single rock index tests such
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as p-wave velocity, Schmidt hammer, and porosity [5, 7–18].
A side from prediction of UCS and E using single rock index
tests, several investigations have been conducted to establish
a multiple regression equation for predicting UCS or E using
more than one rock index test (at least a combination of two
tests) [19–24]. However, as reported by Beiki et al. [11] and
Armaghani et al. [3], these empirical and multiple regression
equations are not able to provide an acceptable level of accu-
racywhere a high actuary level for prediction of rock strength
and deformation is required for real geotechnical engineer-
ing projects. In addition, the mentioned equations cannot be
practically used for the same rock type in other projects [11].
Therefore, the application of empirical and multiple regres-
sion equations is not reliable enough when a new available
database is different from the original one. This is due to the
fact that there is a need to update the equations based on new
available database [7, 20]. It seems that some new computa-
tional techniques are needed to adapt a high level of accuracy
for estimating rock strength and deformation.

A part from empirical and multiple regression equa-
tions/models, the successful and efficient application of
machine learning (ML) and artificial intelligent (AI) tech-
niques has been reported by some other researchers to fore-
cast rock strength and deformation parameters [10, 25–30].
Furthermore, these techniques (MLandAI) have beenwidely
used and applied in other fields related to civil and min-
ing engineering [31–48]. To predict UCS, Meulenkamp and
Grima [49] utilized artificial neural network (ANN) using
194 datasets of different types of rock, including limestone,
sandstone, and dolomitic stone. The inputs to their model
were set to be the Equotip hardness readings, rock type,
porosity, density, and grain size. Their findings showed that
the developed ANN is a successful tool in estimating UCS.
In another project, Gokceoglu and Zorlu [2] attempted to
estimate rock strength and deformation in problematic rocks
adopting a fuzzy logic method together with the regression
techniques. Their input parameters were tensile strength,
point load index, p-wave velocity, and block punch index of
82 specimens. They concluded that their fuzzy logic model
is more reliable compared to regression analysis. To predict
rock strength and deformation, Dehghan et al. [19] applied a
feed forwardANNand regression analysis to 30 specimens of
travertine. The input of their model were porosity, point load
index, Schmidt hammer, and p-wave velocity. Their results
also confirmed the high capacity of ANN in doing the predic-
tive tasks defined in their study. In another study, an adoptive
neuro-fuzzy inference system (ANFIS) predictivemodel was
used and proposed by Singh et al. [50] for the purpose of
predicting rock deformation values and their authors showed
that their ANFIS model is a better model compared to ANN
and fuzzy logic. A regression tree (RT) predictive technique
was developed by Liang et al. [51] to evaluate and estimate
strength of sedimentary rock type with low UCS results and

successfully indicated that their regression tree model is a
good predictor for this type of rock. Table 1 shows some
of the previous studies of UCS and E prediction using sim-
ple regression, multiple regression and ML/AI models. In
this table, model inputs, predictive models, and prediction
accuracy (based on coefficient of determination, R2) of the
models are presented. According to this table, R2 ranges of
(0.39–0.78), (0.58–0.77) and (0.66–0.91) are reported in pre-
vious studies for simple regression, multiple regression and
ML/AI predictive models, respectively in predicting strength
and deformation of rock material. Table 1 confirm better pre-
diction capacity of multiple regression over simple ones and
better prediction capacity of ML/AI models over multiple
regression predictive models.

With respect to above discussion, this study is aimed to
develop a prediction process of UCS through experimental
equations as well as AI/ML techniques. First, an experimen-
tal database with three non-destructive tests i.e., Schmidt
hammer, density and p-wave velocity and one destructive
test i.e., UCT is provided and established. Then, based on
different relationships of these tests results with UCS val-
ues, three empirical equations are introduced. Afterwards,
AI/ML techniques namely ANN and group method of data
handling (GMDH) are applied and proposed to predict rock
strength values and finally, their results will be compared to
each other for selecting the best AI/ML model in this study.

2 Materials andMethods

2.1 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) refers to a computational
system simulating the principles of the human beings’ neural
system in a way to configure an artificial system. The ANN-
based models typically make use of input training patterns
for the purpose of developing accurate predictions regarding
the automatic relationships between input and output data,
which makes a big difference between this system and any
other system working in this field [33]. In an attempt to imi-
tate a biological brain, an ANN utilizes the artificial neurons
as fundamental units in a way to process data in a parallel
behavior. As a pioneering study making attempt to model
the neural network, McCulloch and Walter [62] constructed
a binary decision unit and succeeded to model effectively
the artificial neurons’ behaviors. In their system, any artifi-
cial node was assigned with the total weight of input signals;
then, activation function was applied to these signals. This
way, they could obtain an output of a higher accuracy level.
ANN was described by Ch and Mathur [63] as a network
of interlocked nodes that exist in extraordinarily paralleled
layers of computational systems. Based on their findings, the
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Table 1 Some of previously
published studies in field of rock
strength and deformation

References Predictive model Model input/predictor Model output R2

Kahraman [52] Simple power regression Vp UCS 0.69

Entwisle et al. [15] Simple exponential regression Vp UCS 0.53

Moradian and Behnia
[53]

Simple exponential regression Vp UCS 0.70

Armaghani et al. [54] Simple linear regression Vp UCS 0.47

Sachpazis [55] Simple linear regression Rn E 0.78

Beiki et al. [11] Simple power regression Vp E 0.39

Yilmaz and Yuksek [7] Simple linear regression Is50 E 0.56

Yilmaz and Yuksek [7] Simple linear regression Is50 UCS 0.57

Cobanglu and Celik [56] Simple linear regression Vp UCS 0.67

Lashkaripour [57] Simple exponential regression n E 0.68

Armaghani et al. [58] Simple power regression Rn E 0.62

Bejarbaneh et al. [59] Simple power regression Rn E 0.50

Bejarbaneh et al. [59] Simple logarithmic regression Is50 E 0.45

Armaghani et al. [3] Simple linear regression Rn UCS 0.49

Liang et al. [51] Simple linear regression DD UCS 0.51

Armaghani et al. [20] Multiple regression Vp, Rn, and Is50 UCS 0.62

Armaghani et al. [20] ANN Vp, Rn, and Is50 UCS 0.83

Dehghan et al. [19] Multiple regression Vp, Rn, n and Is50 UCS 0.64

Yesiloglu-Gultekin et al.
[60]

Multiple regression Vp, and BTS UCS 0.58

Monjezi et al. [61] Multiple regression Rn, DD, and n UCS 0.77

Gokceoglu and Zorlu [2] FIS Vp, BTS, BPI and Is50 E 0.79

Singh et al. [50] ANFIS DD, WA and Is50 E 0.66

Bejarbaneh et al. [59] ANN Vp, Rn, and Is50 E 0.81

Beiki et al. [11] GA Vp, DD, and n E 0.67

Liang et al. [51] RT DD, Is50 and Rn UCS 0.84

Beiki et al. [11] GA Vp, DD, and n UCS 0.83

Armaghani et al. [3] ICA-ANN Vp, Rn, n and Is50 E 0.71

Armaghani et al. [3] ICA-ANN Vp, Rn, n and Is50 UCS 0.91

Fang et al. [29] GP Vp, Rn, n and Is50 UCS 0.91

Fang et al. [29] ABC-ANN Vp, Rn, n and Is50 UCS 0.90

n porosity,BTS Brazilian tensile strength,Vp p-wave velocity,Rn Schmidt hammer rebound number,UCS uniaxial
compressive strength, E Young’s modulus, FIS fuzzy inference system, GA genetic algorithm, BPI block punch
index, ICA imperialism competitive algorithm, GP genetic programming,WA water absorption, ANFIS adaptive
neuro-fuzzy inference system, ABC artificial bee colony, Is50: point load index, ANN artificial neural network,
DD dry density, RT regression tree

neurons connection patterns affect the behaviors and class of
these networks.

From a structural perspective, the ANN functions fall into
two main groups: feed-forward and feedback. Among the
feed-forward multilayer networks with highest popularity,
multilayer perceptron (MLP) is the one that processes the
available data through the use of activation functions within
consecutive layers [64]. In addition, back-propagation (BP),
which is known as a learning algorithm, was introduced
by Simpson [65]. BP makes use of a learning procedure-
based gradient in order to help the network to learn. BP

that is consisted of a twofold training cycle (a forward and a
backward stage) is capable of delivering acceptable results,
especially for those nets that contain feed-forwardmultilayer
[66]. Other scholars in more complementary investigations
have given more explanations in regard to the operation of
each stage [67, 68]. As demonstrated by these researchers,
during one stage, input signals move forwards and transmit
error signal for each node that exists in the output layer; after
that, the resultant error rates are moved backwards. This way,
the weights and biases of network are modified. In general,
each neuron’s output is generated through applying a num-
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Fig. 1 A schematic diagram for an artificial node j

ber of activation functions to inputs. Then, the outputs will be
transmitted to the neurons existing within subsequent layer
as inputs. Principally, the activation function type is deter-
mined depending on complexity of the problem in hand. For
that reason, in case of nonlinear problems, sigmoid transfer
functions such as log or tangent sigmoid can be effectively
used. A mathematical model of an artificial neuron is shown
in Fig. 1.

2.2 GroupMethod of Data Handling (GMDH)

In the GMDH algorithm, some sets of neurons are planned
in various layers in each of which a quadratic polynomial
connects various neuron pairs to each other so that they can
produce new neurons in the next layer. This way, inputs
can be mapped to outputs. As generally define, the iden-
tification problem discusses how to explore a function f̂
approximately applicable in place of the actual function, f, in
order to estimate the output ŷ for a certain input vector X �
(x1, x2, x3, . . . , xn)which is very close to its actual output y.
Therefore, givenM number ofmulti-inputs and single-output
data pairs:

yi � f (xi1, xi2, xi3, . . . , xin) (i � 1, 2, . . . ,M) (1)

At present, a neural network designed based on GMDH
can be built to predict the output values ŷ for any given input
vector X � (xi1, xi2, xi3, . . . , xin), that is:

ŷi � f̂ (xi1, xi2, xi3, . . . , xin) (i � 1, 2, . . . ,M) (2)

One of the most important challenges in this process is to
identify a GMDH-type neural network with the capacity of
minimizing the square of difference between the estimated
output and the actual one, that is:

M∑

i�1

[
f̂ (xi1, xi2, xi3, . . . , xin) − yi

]2 → min (3)

With the help of a complex discrete form of the Volterra
functional series, the general connections between input fac-
tors and the output can be expressed as follows:

Fig. 2 A GMDH model with three input parameters X1, X2 and X3

(4)

y � a0 +
n∑

i�1

ai xi +
n∑

i�1

n∑

j�1

ai j xi x j

+
n∑

i�1

n∑

j�1

n∑

k�1

ai jk xi x j xk + · · ·

It is also possible to express this comprehensive form of
mathematical description:

ŷ � G
(
xi , x j

) � a0 + a1xi + a2x j + a3x
2
i + a4x

2
j + a5xi x j

(5)

In neural networks of the GMDH type, there are two
core concepts: the parametric and the structural identifica-
tion problems. A GMDHmodel with 3 input parameters X1,
X2 and X3 is shown in Fig. 2.

During designing GMDH, it is important to note that
all polynomials of the neurons existing within each layer
of the network are comparable and similar procedures are
needed in designing a network. In fact, the essential struc-
ture of the GMDH network is the second-order polynomial
that was first proposed by Ivakhnenko [69]. In general,
in designing the self-organized systems, various types of
polynomial, i.e., quadratic, tri-quadratic, bilinear, and the
3rd order, are employed. Compared to the quadratic type
of polynomial, more complicated networks are constructed
using the tri-quadratic and the 3rd order polynomial. A less
complex structure is produced by the bilinear polynomial.
The quadratic polynomial involves sixweighting coefficients
applicable effectively to solving various problems that may
arise in engineering fields [70]. As confirmed frequently in
literature, selecting a single polynomial fromamongdifferent
types greatly depends upon two parameters: the complexity
of the polynomial type and the minimum error of objective
function. In literature, many studies [71–73] have provided
more details regarding the GMDH technique.

123



Journal of Nondestructive Evaluation (2020) 39 :81 Page 5 of 14 81

Fig. 3 Water transfer tunnel location in Malaysia

2.3 Study Area and Laboratory Tests

In the present study, all rock samples were collected from a
tunnel constructed to transfer water from Pahang to Selangor
states, in Malaysia (Fig. 3). The tunnel has crossed beneath
themountain ranges between these two states, with the height
of 100–1400 m. The main rock type is granite with rock
strength ranging between 80 and 200MPa. The excavation of
three parts of the tunnel with 11.7 km, 11.7 km, and 11.3 km
lengths, was performed using three tunnel boring machines
(TBMs), TBM1,TBM2, andTBM3, respectively.Anumber
of 100 granite block samples were collected from different
TBMs to be applied to the development ofmodels for the pre-
diction of the UCS values. This is worth noting that through
coring and cutting, the end parts of the sampleswere flattened
to be perpendicular to the sample axis, while the sides were
softened and polished to be off-cracks, veins, fissures, and
other flaws in a way to prevent any unfavourable alteration
to real rock specimens.

After preparing the rock samples, three non-destructive
simple index tests i.e., Schmidt hammer, p-wave velocity
(or ultrasonic) and dry density were planned and conducted
on the samples. The Schmidt hammer test, also known as
rebound test was carried out to determine the surface hard-
ness of rock samples. This test is one of the most popular
non-destructive testing methods which is used as indicator
of the strength of the rock samples. It is because of its rela-
tively low cost and simple operating procedures. According
to ISRM [1], Schmidt hammer tests were conducted 10 times
and average of these 10 values were considered as Schmidt
hammer rebound (Rn) values. Since the Rn is affected by the
orientation of the hammer, therefore hammer position used

Fig. 4 A conducted test of Schmidt hammer on a sample collected from
face of TBM 2

Fig. 5 Equipment used to conduct Vp values in this study

is in vertically downward direction only. Figure 4 shows a
Schmidt hammer test conducted on a sample collected from
face of TBM 2.

Ultrasonic velocity test is considered as a non-destructive
indirect test of the rock. The purpose of this test is to estimate
state of compactness of a rock sample. This test verifies prop-
agation velocity of primary wave through material texture of
the rock. According to ISRM [1], ultrasonic velocity tests
were carried out four times on rock samples in which their
ends were flat and perpendicular to the sample axis. Then,
their average values were considered as p-wave velocity (Vp)
values in our database. An equipment used to conductVp val-
ues is shown in Fig. 5.
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Fig. 6 The results of three non-destructive tests against their UCS values

Table 2 Statistical information of three non-destructive tests together
with their UCS information

Variable/unit Min Max Mean

Vp/m/s 4108 7943 5754.9

Rn 40 61 50.8

DD/g/cm3 2.4 2.77 2.58

UCS/MPa 50.2 211.9 125.7

In addition to Schmidt hammer and p-wave velocity tests,
a physical non-destructive test, i.e., density was conducted
on the samples. The density tests were carried out in order
to evaluate rock compactness degree of the obtained samples
and then, dry density (DD) values were recorded from each
conducted test. The last conducted test for establishing a good
database for analysis was UCT. This test is able to assess
compressive strength of rock under uniaxial loading. UCS
values of the rock samples were determined according to
ISRM [1] procedure.

2.4 Database

After doing all mentioned tests, 86 series of data samples
were established as our database to predict UCS values of
granitic rock samples. In this database, results of three non-
destructive tests i.e.,Rn,DD andVpwere set as input variable
while UCS results of the samples were fixed as output vari-
able. In otherword, based on themodels used in this research,
UCS is a function of three parameters i.e., Rn, DD and

Vp. The results of these non-destructive tests against their
UCS values are displayed in Fig. 6. Additionally, Table 2
shows some statistical information of the tests results in this
study. According to this table, different ranges of (4108-
7943 m/s), (40–61), (2.4–2.77 g/cm3) and (50.2–211.9MPa)
were achieved in laboratory for Vp, Rn, DD, and UCS tests,
respectively. The established database with 86 data samples
were used for modeling process of this study.

2.5 Study Framework

Figure 7 presents various steps of this study to propose
a GMDH predictive model from start to end. The present
study was started by reviewing available literature in field of
rock strength estimation. Afterwards, a suitable and relevant
geotechnical project (water transfer tunnel) was selected for
rock block sample collections. After sample collection, the
planned experimental programs were conducted on the sam-
ples and a proper database was prepared to do the required
analysis. In the analysis andmodeling part, first, through sim-
ple regression analysis, three experimental equations were
proposed to predict UCS using three non-destructive tests.
Then, two predictive models of ANN and GMDH were built
to forecast UCS values of rock samples using a combination
of all three input variables. Eventually, the built predictive
modelswere assessed using popular performance indices and
the best one among these two models was chosen for estima-
tion of the UCS values.
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Fig. 7 Study framework

3 Modeling of Rock Strength

As mentioned before, this section presents modeling proce-
dure of the granitic rock strength through the use of three
non-destructive tests i.e., DD, Vp and Rn. The first mod-
eling section is related to analyzing of simple regression.
In the second section, the ANN model is built to predict
rock strength usingmulti-input parameters (i.e., all three tests
results). In the last section, GMDH predictive model will be
constructed in details based on its effective factors to predict
rock strength.

3.1 Analysis of Simple Regression

In this research, to establish experimental relations between
predictors (Rn, Vp, andDD) and the rock strength values, the
simple regression analysis was employed. The relationship
between the independent variables and UCS of the samples
was analysed. After that, the simple regression was used

Table 3 Power, exponential, linear and logarithmic equations for esti-
mation of rock strength

Mode Predictor Empirical equation R2

Power Rn UCS � 0.0029 Rn2.709 0.684

Vp UCS � 0.0002 Vp1.551 0.627

DD UCS � 0.148 DD7.058 0.641

Exponential Rn UCS � 7.877 e0.054 Rn 0.678

Vp UCS � 26.066 e0.0003 Vp 0.605

DD UCS � 0.103 e 2.733 DD 0.638

Linear Rn UCS � 6.311 Rn − 194.92 0.705

Vp UCS � 0.0315 Vp − 55.303 0.639

DD UCS � 318.41 DD − 696.89 0.648

Logarithmic Rn UCS � 315.99 ln (Rn) − 1113.9 0.697

Vp UCS � 181.58 ln (Vp) − 1443.9 0.643

DD UCS � 819.87 ln (DD) − 651.9 0.647

to suggest some linear, exponential, power, and logarithmic
equations (see Table 3). Therefore, these equation types were
examined in this study to introduce new empirical equations
for UCS prediction. The empirical equations were assessed
through making comparisons between R2 results. To calcu-
late R2, the following equation was used:

R2 � 1 −
∑

i

(
ximeas − xipred

)2
∑

i (ximeas − x)2
(6)

where ximeas and xipred stand for themeasured and predicted
values, respectively, and x signifies the averagemeasuredval-
ues. R2 in a perfect predictive model equals 1. The R2 value
ranging from 0.6 to 0.7 for the empirical equations shows
that there are a good relationships between non-destructive
tests and UCS values. More precisely, based on R2 values
presented in Table 3, linear, logarithmic, and linear were
obtained as the best models for Rn, Vp, andDD, respectively,
in the prediction of the UCS value. The introduced empirical
equations with the use of Rn, Vp, and DD, are expressed in
Eqs. (7–9), respectively.

UCS � 6.311Rn − 194.92 (7)

UCS � 181.58 ln(V p) − 1443.9 (8)

UCS � 318.41DD − 696.89 (9)

The correlations between Rn, Vp, DD, and UCS are dis-
played in Fig. 8. In case of these predictors, the R2 results of
0.705, 0.643, and 0.648, respectively, were obtained, which
are acceptable and meaningful. It gets more important when
considering that such results were achieved on the basis of
only a single predictor. According to Table 1, the results
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Fig. 8 Scatter plots of model predictors with UCS values, a Rn-UCS,
b Vp-UCS and c DD-UCS

obtaine by simple regression equations in this study are bet-
ter than many of previous investigations like Armaghani
et al. [54], Liang et al. [51], Entwisle et al. [15] and Bejar-
baneh et al. [59]. However, to estimate the rock strength with
higher precision, all of the model predictors can be applied to
the development of multi-inputs intelligent techniques, i.e.,
ANN and GMDH in the present paper.

3.2 ANNModeling

This section describe details regarding ANN model devel-
opment for prediction of the rock strength. As the initial
step of AI/MLmodeling process, the data was separated into
model development data samples or training data samples

and model assessment data samples or testing data samples.
According to previous investigations [33, 74], the authors
decided to use a combination of 80–20% for training and
testing purposes in this study. Caudill [75] maintained that
formapping any continuous problem, a networkwith I inputs
requires to be consisted of 2I + 1 hidden neurons (nodes) as
the maximum limit. In this study, the trial-and-error method
was used to determine the optimumnetwork geometry,where
the networks contain one hidden layer comprising 1 to 2I
+ 1 (or 7 in this study) hidden nodes. Therefore, different
ANNs were constructed using 1–7 hidden nodes, and they
were trained for 500 training epochs. In this trial-and-error
procedure, the training tasks were functioned with the use of
different variables of learning rates and momentum terms. In
addition, in this procedure, results ofR2 andRMSEwere con-
sidered and determined as assessment indices in both train
and test phases. After evaluating all ANNmodels, the lowest
system error and highest R2 received by an ANNmodel with
5 hiddennode66s.Meaning that the proposedANNmodel for
solving UCS problem, has a structure with 3 model inputs,
5 hidden nodes and one model output which is UCS. The
structure of the developed ANN is shown in Fig. 9. A com-
plete discussion regarding the obtained results of ANN will
be given later.

3.3 GMDHModeling

To design a GMDHmodel for predicting rock strength based
on three non-destructive tests, there is a need for taking into
account the key parameters, i.e., the number of GMDH lay-
ers, the number of neurons, and the selection pressure. With
the help of the selection pressure, the system will be capable
of selecting the optimal fits at each step and transferring them
to subsequent layers. This process is repeated until the ter-
mination criteria, namely the achievement of desired system
error, is met. Therefore, a parametric research (through the
trial-and-error method) was conducted examining the effects
of this parameter. Based on the obtained results, the optimal
value for the selection pressure was 70%. In consequence,
for the rest of the modelling process, this value was used. To
design another efficient parameter i.e., the number of layers
in the GMDHmodel, there was a need for another parametric
investigation. To do this, considering the recommendations
given by a number of researchers in literature (e.g., [58, 72,
73]), possible numbers of layers were fixed at values between
2 and 10. Afterward, nine GMDH models were built for the
aim of estimating the rock strength values. Figure 10 presents
their results on the basis of the R2 of training, testing and all
(combination of train and test) datasets. Note that this para-
metric studywas conducted using 4 neurons and the selection
pressure was set as 70%. Ranges of train, test and all datasets
results are (R2 � 0.774 and R2 � 0.835), (R2 � 0.629 and
R2 � 0.871) and (R2 � 0.767 and R2 � 0.841), respectively.
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Fig. 9 The structure of the
developed ANN to forecast rock
strength
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Fig. 10 Train, test and all datasets results related to different number of
layers in predicting rock strength

Considering results of testing and all datasets, the GMDH
model holding 9 layers outperformed the other GMDHmod-
els. The results of 0.871 and 0.841 were attained in case of
the testing and all datasets, respectively.

At the last step of the GMDH modelling, it is necessary
to determine the number of neurons through another para-
metric study. Therefore, a review was done on the studies
carried out previously (e.g., [72, 73]); then, values between
2 and 20, with incremental step 2, were fixed as the neu-
ron number in the parametric investigation. The obtained
results of GMDH models based on R2 for the training, test-
ing and all phases are shown in Fig. 11. As can be seen in
this figure, the GMDH model comprising of 6 neurons, out-
performed the other models. The mentioned GMDH model
received better performance prediction regarding all phases
presented in Fig. 11. TheR2 results of 0.860, 0.877 and 0.863,
for training, testing and all phases of the proposed GMDH
model, respectively, showed that GMDH can be used as a
powerful and practical technique for predicting rock strength
(UCS). Hence, this model was selected as the best GMDH
model introducing in this study for forecasting rock strength.
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Fig. 11 Train, test and all datasets results related to different number of
neurons

Remember that in the developed GMDH model, the num-
ber of layers, number of neurons, and the selection pressure
were fixed at 9, 6, and 70%, respectively. In the following,
the selected GMDHmodel based on its performance is elab-
orated.

4 Model Assessment

After developing a predictive model, a typical action is to
assess the models on the basis of their performance. In this
study, a quantitative evaluation of the developed models has
been conducted through the implementation of several per-
formance indices including R2, RMSE, mean square error
(MSE), error mean and error StD. These indices have been
used for evaluation purposes of many intelligence relevant
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Table 4 Performance prediction results obtained by AI/ML models in
forecasting rock strength

Phase Performance Index Predictive Model

ANN GMDH

Train R2 0.820 0.860

RMSE 0.0976 0.0844

E-mean − 0.0017 − 0.0044

E-StD 0.0983 0.0849

MSE 0.0095 0.0071

Test R2 0.829 0.877

RMSE 0.1003 0.1074

E-mean − 0.0203 0.0406

E-StD 0.1013 0.1025

MSE 0.0100 0.0115

All R2 0.823 0.863

RMSE 0.0981 0.0894

E-mean − 0.0053 0.0045

E-StD 0.0985 0.0898

MSE 0.0096 0.008

studies [31, 76, 77]. The equations of MSE, RMSE, E-mean,
and E-StD are presented as follows:

MSE � 1

M

M∑

i�1

(yi(Model) − yi(Actual))
2 (10)

RMSE �
(∑M

i�1

(
yi(Model) − yi(Actual)

)2

M

)
(11)

E − Mean �
∑M

i�1(yi(Actual) − yi(Model)

M
(12)

E − StD �
√∑M

i�1

(
Ei(Model) − EModel

)

M − 1
(13)

in which yi(Model) denotes predicted UCS value for each
observation (i � 1, 2, ..,M), yi(Actual) is measured UCS
value, M is the number of observations, Ei(Model) indicates
the error value between the measured UCS value and pre-
dicted one for each data point and EModel is themean value of
Ei(Model). From theoretical perspective, a prediction model
is recognized as completely efficient if its obtained results

Fig. 12 Target and output values
of UCS together with errors
obtained by ANN model,
a training and b testing datasets
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Fig. 13 Target and output values
of UCS together with errors
obtained by GMDH model,
a training and b testing datasets
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show RMSE� 0, MSE� 0, R2 � 1, E-mean� 0, and E-StD
� 0.

Table 4 presents the obtained results of performance
indices for the developed ANN and GMDHmodels for train-
ing, testing and all datasets. Based on this table, all the
proposed models have done their defined predictive tasks
acceptably; though, the GMDH model shows a tangibly
higher precision compared to the developed ANN model
regarding the performance indexes. The R2 results of testing
datasets (or model evaluation) were obtained as 0.829 and
0.877 for ANN and GMDH predictive techniques in the rock
strength estimation. In addition, taking into consideration the
results of all datasets, it was found that the proposed GMDH
model can provide higher performance prediction regard-
ing all indexes. For example, E-StD, MSE and R2 values of
(0.0985, 0.0096 and 0.823) and (0.0898, 0.008 and 0.863)
which were obtained for ANN and GMDH, respectively,
confirmehigher accuracy level of theGMDHmodel. Further-
more, Figs. 12 and 13 showa comparison of themeasured and
predicted UCS results obtained by ANN and GMDHmodels
for training and testing datasets together with their system

error results, respectively. From these 2 figures, it was found
that the UCS values predicted by GMDH are closer to their
actual values compared to the predicted UCS values by ANN
predictive model. It is worth noting that the results obtained
in this study are better than the previous ML/AI predictive
models presented in Table 1. For example, GMDH results are
more accurate compared to FIS, ANFIS, ANN, GA, RT and
ICA-ANNmodels which were conducted by Gokceoglu and
Zorlu [2], Singh et al. [50], Bejarbaneh et al. [59], Beiki et al.
[11], Liang et al. [51], and Armaghani et al. [3], respectively.
Of course, some of studies in Table 1 are better than results of
GMDH predictive model proposed in this study such as Fang
et al. [29]. Probably, it is due to the fact that they used other
rock index tests which are destructive while the present study
utilized three non-destructive tests as model inputs. From the
above discussion, it can be concluded that the GMDHmodel
proposed in this study is an accurate, applicable and powerful
method in field of rock strength prediction.
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5 Conclusions

This study aimed to establish a database for UCS predic-
tion based on three non-destructive tests i.e., Rn, DD and
Vp. According to these non-destructive tests, three experi-
mental equations with suitable accuracy level were proposed
to predict rock strength. The results of these experimental
equations were in the range of 0.6–0.7 in terms of R2 which
revealed that there is a need to developmulti-inputsmodels in
order to take advantages of all tests results togetherwith pow-
erful prediction level of AI models i.e., ANN and GMDH.
Having plan of prediction of the UCS values with ANN
and GMDH models, the most important factors influenc-
ing these AI techniques were investigated. Then, ANN and
GMDHmodelswere constructed based on several parametric
investigations in order to get higher performance prediction
for rock strength estimation. The results of these AI tech-
niques showed that they are able to receive higher accuracy
level compared to experimental equations using single input.
Among these twoAImodels, it was found that by developing
a GMDH technique, we are able to get closer UCS values to
their measured ones in laboratory compared to UCS values
predicted by ANN technique. Considering results of all data
samples, MSE values of (0.0096, and 0.008) and R2 values
of (0.823 and 0.863) were obtained for the ANN and GMDH
models, respectively, which confirm that the GMDH model
can predict UCS values more accurately compared to other
implemented technique. The results of this study revealed
that the GMDH can be introduced and used as a power-
ful, applicable and practical predictive model in estimating
rock strength values for the design of relevant geotechnical
projects with similar rock conditions.
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