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Abstract
Structural damage detection methods relying on laser-measured vibration shapes have become a research focus in the past 
decade. For damage in a beam/bar with reduced cross-sectional dimensions, such as a notch, it causes changes in both its 
bending stiffness and axial stiffness in the damage region. Such stiffness changes can induce discontinuities in derivatives of 
flexural and longitudinal vibration shapes, whereby the damage can be detected and located. Derivatives of flexural vibration 
shapes have been widely used for structural damage detection, whereas derivatives of longitudinal vibration shapes were 
recently proposed for structural damage detection and have attracted much less attention. Although it is difficult to excite 
and measure longitudinal vibration, it can be useful for detecting damage in such a structure as a cable, since flexural vibra-
tion of the cable is mainly governed by its tension and not its bending stiffness. In this study, capabilities of derivatives of 
laser-measured flexural and longitudinal vibration shapes in structural damage detection are comprehensively compared. In 
particular, to overcome their common deficiency of being susceptible to environmental noise interference, the multiscale 
analysis based on wavelet transform is integrated into derivatives of vibration shapes to enhance their robustness against 
noise interference. Analytical and experimental validation shows that compared with commonly used derivatives of flexural 
vibration shapes, derivatives of longitudinal vibration shapes have the same capability in detecting damage in beam/bar-type 
structural components.

Keywords Structural damage detection · Derivative of vibration shape · Flexural vibration · Longitudinal vibration · 
Multiscale analysis · Laser scanning measurement

1 Introduction

Beam/bar-type structural components are important ele-
ments in the fields of mechanical, aerospace, and civil engi-
neering. It is of significance to detect damage in beam/bar-
type structural components to ensure the integrity and safety 
of these structures. Structural damage detection methods 
relying on vibration has attracted increasing attention dur-
ing the recent decades [1]. Structural vibration shapes (VSs), 
including mode shapes (MSs) and steady-state response 
shapes under harmonic excitation (SRSHEs), have been 
increasingly used for damage detection and localization of 
structural components [2–6].

For damage in a beam/bar with reduced cross-sectional 
dimensions, such as a notch, it reduces both its bending 
stiffness and axial stiffness in the damage region, leading to 
discontinuities in derivatives of its flexural and longitudi-
nal VSs, respectively. Thereby, the damage can be detected 
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and located by local discontinuities in derivatives of VSs 
[7, 8]. For flexural vibration of beams, derivatives of their 
flexural VSs have been commonly utilized for damage detec-
tion because flexural VSs of beams can be easily measured 
using conventional sensors such as accelerometers and PZT 
sensors. In contrast, it is much more difficult to measure 
torsional and longitudinal VSs of beams/bars using conven-
tional sensors. Therefore, most VS-based damage detec-
tion methods rely on flexural VSs, such as curvature mode 
shape (CMS)- [8–16], strain energy- [17–19], pseudo force- 
[20–22], and wavelet transform-based [23–26] methods. In 
particular, CMSs, which are the second-order derivatives 
of flexural MSs, have been widely used for damage detec-
tion and localization of beams in the past two decades [8]. 
Extended from the concept of CMS, a general concept of 
curvature vibration shape (CVS) can be defined as the sec-
ond-order derivative of a flexural VS, which can be a MS 
or a SRSHE. Flexural vibration of beams can be measured 
through non-contact laser scanning measurement using a 
scanning laser vibrometer (SLV), whereby flexural VSs with 
densely distributed measurement points can be obtained. For 
longitudinal vibration of a beam/bar, the concept of slope 
vibration shape (SVS), which is the first-order derivatives 
of a longitudinal VS of the beam/bar, was recently proposed 
for damage detection and localization of the beam/bar [7]. 
To measure longitudinal VSs of a beam/bar with densely 
distributed measurement points, a three-dimensional (3D) 
SLV with three scanning heads is required to measure its 
longitudinal vibration. For torsional vibration of a beam, 
although it can be sensitive to damage [27], it is difficult to 
excite its torsional vibration and measure its VSs.

For a beam/bar that bears a notch damage, the damage 
can be detected by its CVSs and SVSs with distinct physical 
senses. For flexural vibration of a beam, due to the damage-
caused change in its bending stiffness, the second-order deriva-
tives of its flexural VSs, i.e., CVSs, become discontinuous at 
damage edges to balance continuity conditions of bending 
moments, whereby the damage can be indicated and located 
by discontinuities in CVSs. For longitudinal vibration of a 
beam/bar, due to the damage-caused change in its axial stiff-
ness, the first-order derivatives of its longitudinal VSs, i.e., 
SVSs, become discontinuous at damage edges to balance con-
tinuity conditions of axial forces, whereby the damage can be 
indicated and located by discontinuities in SVSs. Structural 
damage detection methods relying on CVSs have been widely 
developed, whereas the method relying on SVSs was recently 
proposed [7] and has attracted much less attention. While it is 
much more difficult to excite and measure longitudinal vibra-
tion of a beam/bar, and a 3D SLV is required to measure its 
longitudinal VSs, a longitudinal VS can be useful for detecting 
damage in such a structure as a cable, since flexural vibration 
of the cable is mainly governed by its tension and not its bend-
ing stiffness. In these cases, SVSs instead of CVSs are suitable 

to detect damage that causes reduction in elastic modulus and 
cross-sectional dimensions. By addressing this issue, this com-
parative study aims to provide a comprehensive comparison 
between capabilities of methods based on CVSs and SVSs in 
detecting damage in a beam/bar in aspects of physical senses, 
analytical formulation, and numerical evaluation. Conclusions 
from this study can instruct engineers in choosing and using 
derivatives of flexural and longitudinal VSs for damage detec-
tion of beam/bar-type structural components through laser 
scanning measurement.

It is noteworthy that susceptibility to environmental noise 
interference is the common deficiency of CVSs and SVSs from 
densely sampled laser-measured VSs [19]. With this concern, 
the multiscale analysis based on wavelet transform (WT) is 
introduced into the CVSs and SVSs in this study, by which 
novel concepts of multiscale curvature of VS (MCVS) and 
multiscale slope of VS (MSVS) are formulated to enhance 
the robustness of the CVSs and SVSs against environmental 
noise interference.

The rest of this paper is organized as follows. Section 2 
introduces fundamentals of the CVSs and SVSs for damage 
detection of a beam/bar, and reveals mechanisms of generat-
ing damage-induced discontinuities of the CVSs and SVSs 
in respective physical senses. The MCVSs and MSVSs are 
formulated in Sect. 3 by integrating the WT-based multiscale 
analysis into the CVSs and SVSs, respectively. Section 4 
compares capabilities of the MCVSs and MSVSs in damage 
detection using flexural and longitudinal VSs of a beam/bar 
with a two-sided notch, respectively. Experimental validation 
is conducted in Sect. 5 using a 3D SLV to measure flexural 
and longitudinal VSs of an aluminum beam with a two-sided 
notch. Section 6 gives comparison and conclusions of damage 
detection methods using derivatives of laser-measured flexural 
and longitudinal VSs.

2  Damage Detection Using Derivatives 
of Flexural and Longitudinal VSs

2.1  Damage Detection Using CVSs

The bending moment M(x, t) in a beam can be expressed as 
[28]

where w(x, t) is the flexural displacement of the beam with 
x being the spatial coordinate and t  being time, E(x) is the 
elastic modulus, and I(x) is the area moment of inertia of 
a cross-section. The continuity condition of the bending 
moment at a position x = � can be written as

(1)M(x, t) = E(x)I(x)
�2w(x, t)

�x2
,
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F o r  a n  u n d a m p e d  b e a m ,  by  a s s u m i n g 
w(x, t) = WM(x) sin(�nt) with �n denoting an undamped 
flexural natural frequency, the displacement w(x, t) can 
be expressed as the product of the flexural MS WM(x) 
and sin(�nt) . Also, the displacement can be assumed as 
w(x, t) = WS(x) sin(�t) with � denoting an excitation fre-
quency that excludes an undamped flexural natural fre-
quency and WS(x) being the corresponding flexural SRSHE 
[28]. Substituting the w(x, t)  expression in either case into 
Eq. (2) yields

where W(x) is the flexural VS that can be either the flexural 
MS WM(x) or the flexural SRSHE WS(x).

Based on Eq. (3), damage-caused changes in material 
and/or geometrical parameters E(x) and/or I(x) between 
x = �− and x = �+ can cause a discontinuity in d

2W(x)

dx2
 between 

x = �− and x = �+ , which indicates occurrence of damage 
in the beam. The curvature of W(x) , denoted as CVS(x) , is 
written as

whose discrete form by the second-order central differentia-
tion is

where k = 2, 3, 4, …, xk denotes the kth spatial sampling 
point, and h is the sampling interval. In a physical sense, 
CVS(x) can be a measure of change in the bending stiffness 
E(x)I(x) : by Eq. (3), M(x) is continuous along the beam 
regardless of damage, and damage-caused change in E(x)I(x) 
can lead to a discontinuity in CVS(x) at the damage location 
to balance Eq. (3). Thereby, CVS(x) can be used for indicat-
ing and locating damage in the beam.

2.2  Damage Detection Using SVSs

An axial force F(x, t) in a beam/bar can be expressed as [28]

where u(x, t) is the longitudinal displacement of the beam/
bar and A(x) is the cross-sectional area. The continuity con-
dition of the axial force at a position x = � can be written as

(2)E(x)I(x)
�2w(x, t)

�x2

|||||x=�−
= E(x)I(x)

�2w(x, t)

�x2

|||||x=�+
.

(3)E(x)I(x)
d
2W(x)

dx2

|||||x=�−
= E(x)I(x)

d
2W(x)

dx2

|||||x=�+
,

(4)CVS(x) =
d
2W(x)

dx2
,

(5)CVS(xk) =
W(xk+1) − 2W(xk) +W(xk−1)

h2
,

(6)F(x, t) = E(x)A(x)
�u(x, t)

�x
,

By assuming that the beam/bar is undamped, its longi-
tudinal MSs, denoted as UM(x) , can be obtained by assum-
ing u(x, t) = UM(x) sin(�nt) , where �n is an undamped 
longitudinal natural frequency. One can also assume 
u(x, t) = US(x) sin(�t) , where US(x) denotes the longitudi-
nal SRSHE at an excitation frequency � that excludes an 
undamped longitudinal natural frequency [28]. Substituting 
the u(x, t)  expression in either case into Eq. (7) yields

where U(x) is the longitudinal VS that can be either the lon-
gitudinal MS UM(x) or the longitudinal SRSHE US(x).

Based on Eq. (8), damage-caused changes in material 
and/or geometrical parameters E(x) and/or A(x) between 
x = �− and x = �+ can cause a discontinuity in dU(x)

dx
 between 

x = �− and x = �+ , which indicates occurrence of damage 
in the beam/bar. The slope of U(x) , denoted as SVS(x) , is 
written as

whose discrete form by the first-order central differentia-
tion is

In a physical sense, SVS(x) can be a measure of change in the 
axial stiffness E(x)A(x) : by Eq. (8), F(x) is continuous along 
the beam/bar regardless of damage, and damage-caused 
change in E(x)A(x) can lead to a discontinuity in SVS(x) at 
the damage location to balance Eq. (8). Thereby, SVS(x) can 
be used for indicating and locating damage in the beam/bar.

It is noteworthy that both the damage detection methods 
using the CVSs and SVSs are baseline free. Although flex-
ural and longitudinal VSs depend on boundary conditions, 
material and geometrical parameters, amplitudes of exci-
tations, etc., prior knowledge of these information can be 
absent in damage detection.

3  Multiscale Derivatives of Flexural 
and Longitudinal VSs

As environmental noise can be inevitably involved in 
laser-measured VSs with dense spatial sampling, noise 
components in flexural and longitudinal VSs can be 
largely amplified by differentiation operations in Eqs. (4) 
and (9), respectively. As a result, actual damage-induced 

(7)E(x)A(x)
�u(x, t)

�x

||||x=�−
= E(x)A(x)

�u(x, t)

�x

||||x=�+
.

(8)E(x)A(x)
dU(x)

dx

||||x=�−
= E(x)A(x)

dU(x)

dx

||||x=�+
,

(9)SVS(x) =
dU(x)

dx
,

(10)SVS(xk) =
U(xk+1) − U(xk−1)

2h
.
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discontinuities in CVSs and SVSs can be masked by intense 
noise interference. By addressing this problem, the WT-
based multiscale analysis is introduced and integrated into 
the CVSs and SVSs to formulate the MCVSs and MSVSs for 
damage detection of beams/bars, respectively.

3.1  Continuous WT

A continuous mother wavelet �(x) with a zero mean is 
defined as [29]

and satisfies the admissibility condition

where �̂�(𝜔) is the Fourier counterpart of �(x) ; �(x) is usu-
ally normalized in energy:

By translating and scaling the mother wavelet �(x) , a wave-
let function �v,s(x) is generated [29]:

Accordingly, the continuous WT of a function f (x) can be 
written as

where ⊗ denotes convolution, � s(x) =
1√
s
�

�
−x

s

�
 , v is the 

translation parameter that describes the location of the win-
dow of � s sliding along the coordinate x , and s is the scale 
parameter that describes the width of the window of � s . 
Note that Wf (v, s) is a wavelet transform coefficient for given 
v and s . The continuous WT divides a signal f (x) into con-
tinuous levels by the scale parameter s . When scale param-
eters increase to satisficing levels, noise components can be 
eliminated; meanwhile damage-induced discontinuities in 
the MCVSs and MSVSs can be retained [29].

(11)∫
∞

−∞

�(x)dx = 0,

(12)∫
∞

−∞

|�̂�(𝜔)|2

𝜔
d𝜔 < ∞,

(13)∫
∞

−∞

�2(x)dx = 1.

(14)�v,s(x) =
1
√
s
�

�
x − v

s

�
.

(15)

Wf (v, s) = ∫
∞

−∞

f (x)𝜓v,s(x)dx

=
1
√
s ∫

∞

−∞

f (x)𝜓
�
x − v

s

�
dx

= f ⊗𝜓 s(v),

3.2  Novel Concepts of MCVS and MSVS

A family of continuous mother wavelets can be expressed as 
the nth-order derivative of a function �(x) [29]:

As n specifies that the mother wavelet �n(x) has the nth-
order vanishing moment, the WT can be implemented to 
calculate derivatives of VSs for any given scale parameter. 
Due to the merits of the Gaussian function g(x) in mathemat-
ics, including smoothness, differentiability, localization in 
the spatial domain, explicit mathematical expressions, and 
flexibility in manipulation [29], it is used as the function 
�(x) to generate the Gaussian wavelet family in this study:

For the CVSs and SVSs, g2(x) is an appropriate mother 
wavelet because of its proper vanishing moment and prop-
erty of symmetry:

where g2,s = g2(
−x

s
) , and MCVS(v, s) and MSVS(v, s) repre-

sent the MCVS and MSVS scaled by s at the location of 
x = v , respectively.

By the theorem of convolution differentiation [29], 
MCVS(v, s) and MSVS(v, s) can be written as

By Eqs. (21) and (22), MCVS(v, s) and MSVS(v, s) are further 
written as

(16)�n(x) = (−1)n
d
n�(x)

dxn
.

(17)�(x) = g(x) = (2∕�)1∕4e−x
2

,

(18)gn(x) = (−1)n
d
ng(x)

dxn
.

(19)

MCVS(v, s) =
1
√
s ∫

+∞

−∞

CVS(x)g2(
x − v

s
)dx =

1
√
s
W �� ⊗ g2,s(v),

(20)

MSVS(v, s) =
1
√
s ∫

+∞

−∞

SVS(x)g2(
x − v

s
)dx =

1
√
s
U� ⊗ g2,s(v),

(21)MCVS(v, s) =
1
√
s
W �� ⊗ g2,s(v) =

1
√
s
W ⊗ g

��

2,s
(v),

(22)MSVS(v, s) =
1
√
s
U� ⊗ g2,s(v) =

1
√
s
U ⊗ g

�

2,s
(v).

(23)

MCVS(v, s) =
1
√
s
W ⊗ g

��

2,s
(v) =

1

s5∕2 ∫
+∞

−∞

W(x)g4(
x − v

s
)dx,

(24)

MSVS(v, s) =
1
√
s
U ⊗ g

�

2,s
(v) = −

1

s3∕2 ∫
+∞

−∞

U(x)g3(
x − v

s
)dx,
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where g3(x) =
1√
15
(2∕�)1∕4(12x − 8x3)e−x

2 is the third-order 
G a u s s i a n  w a v e l e t  a n d 
g4(x) =

1√
105

(2∕�)1∕4(12 − 48x2 + 16x4)e−x
2 is the fourth-

order Gaussian wavelet.
Equations (23) and (24) produce novel concepts of MCVS 

and MSVS, respectively, which exhibit the intrinsic multiscale 
property of WT. The merits of the multiscale analysis integrated 
into the CVSs and SVSs are twofold. By gradually increasing the 
scale parameters to satisficing levels, noise components in the 
MCVSs and MSVSs can be gradually eliminated; meanwhile 
the damage-induced discontinuities can be retained for indicat-
ing and locating the damage. On the other hand, the physical 
senses of the CVSs and SVSs are retained in the MCVSs and 
MSVSs, respectively. As the MCVSs and MSVSs are developed 
from the CVSs and SVSs, respectively, naturally, their respective 
mechanisms of generating damage-induced discontinuities are 
retained, as expressed in Eqs. (3) and (8).

4  Analytical Investigation

4.1  Analytical Formulation of Flexural 
and Longitudinal VSs

Consider an undamped beam/bar of length L , which con-
tains a notch along its length. The beam/bar is divided into 
three segments by edges of the notch section with lengths Lj 
( j = 1, 2, 3 ). Two intact segments are joined by the notch seg-
ment with reduced cross-sectional dimensions. Let xj be the 
abscissa of the jth change in the cross-section and lj = xj∕L 
be the dimensionless abscissa of xj . The elastic modulus and 
material density of the beam/bar are denoted as E and � , 
respectively. The cross-sectional area and area moment of 
inertia of the jth segment are Aj and Ij , respectively. It is note-
worthy that although numerical methods such as the finite 
element method can be used to model the damaged beam/bar 
and calculate its VSs, analytical formulation of the VSs is in 
accord with the physical senses of the CVSs and SVSs in Eqs. 
(3) and (8), respectively, in its damage detection.

4.1.1  Analytical Formulation of Flexural MSs

The equation of flexural motion of the jth segment of the 
undamped beam is expressed as [30]

where wj is the flexural displacement of the jth segment, 
whose solution can be assumed as

(25)EIj

�4wj

�x4
+ �Aj

�2wj

�t2
= 0, j = 1, 2, 3,

where WM,j
(x) is the jth segment of the flexural MS associ-

ated with the natural frequency �n . Substituting Eq. (26) into 
Eq. (25) yields

By introducing the dimensionless abscissa � = x∕L , the gen-
eral solution to Eq. (27) can be expressed as

where aM,j , bM,j , cM,j , and dM,j , in which j = 1,2,3, are con-
stants to be determined by boundary and continuity condi-
tions, and �M,j = L 4

√
�2
n
�Aj∕EIj is the dimensionless natural 

frequency of each beam segment. The slope of the transverse 
displacement, bending moment, and shear force are 
expressed as W �

M,j
(�) ,  EIW ��

M,j
(�) ,  and EIW ���

M,j
(�) , 

respectively.
By taking a cantilever beam as an example, its boundary 

conditions at its two ends are

Continuity conditions of the displacement, slope, bending 
moment, and shear force at two edges of the notch section, 
i.e., � = l1 and � = l2 , are

and

Substituting Eq. (28) into Eqs. (29)–(31) yields 12 homoge-
neous equations with 12 unknown constants aM,j , bM,j , cM,j , 
and dM,j . To obtain a nontrivial solution, the determinant 
of the coefficient matrix is set to zero, whereby the natural 
frequencies can be solved and aM,j , bM,j , cM,j , and dM,j can 
be solved by normalizing mode shapes with unit maximum 

(26)wj(x, t) = WM,j(x) sin(�nt),

(27)
d
4WM,j

dx
4

−
�Aj

EIj
�2

n
WM,j = 0.

(28)

WM,1(� ) = aM,1 cos �M,1� + bM,1 sin �M,1� + cM,1 cosh �M,1�

+ dM,1 sinh �M,1� , 0 ≤ � ≤ l1,

WM,2(� ) = aM,2 cos �M,2� + bM,2 sin �M,2� + cM,2 cosh �M,2�

+ dM,2 sinh �M,2� , l1 ≤ � ≤ l2,

WM,3(� ) = aM,3 cos �M,3� + bM,3 sin �M,3� + cM,3 cosh �M,3�

+ dM,3 sinh �M,3� , l2 ≤ � ≤ 1,

(29)

W
M,1(�)

|||�=0 = 0 , W
�
M,1

(�)
|||�=0 = 0 ,

W
��
M,3

(�)
|||�=1 = 0 , W

���
M,3

(�)
|||�=1 = 0 .

(30)

WM,1(�) = WM,2(�)
|||�=l1 , W

�
M,1

(�) = W �
M,2

(�)
|||�=l1 ,

EI1W
��
M,1

(�) = EI2W
��
M,2

(�)
|||�=l1 , EI1W

���
M,1

(�) = EI2W
���
M,2

(�)
|||�=l1 ;

(31)

WM,2(�) = WM,3(�)
|||�=l2 , W

�
M,2

(�) = W �
M,3

(�)
|||�=l2 ,

EI2W
��
M,2

(�) = EI3W
��
M,3

(�)
|||�=l2 , EI2W

���
M,2

(�) = EI3W
���
M,3

(�)
|||�=l2 .
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absolute values. Accordingly, Wj(�) can be obtained by 
Eq. (28).

4.1.2  Analytical Solution to Flexural SRSHEs

The equation of flexural motion of the jth segment of 
the undamped beam under the flexural harmonic excita-
tion f (x, t) at an excitation frequency � that excludes an 
umdamped flexural natural frequency is expressed as [30]

whose solution can be assumed as

where WS,j(x) is the jth segment of the flexural SRSHE asso-
ciated with the excitation frequency �.

Cons ider  a  poin twise  har monic  exc i t a t ion 
f (x, t) = F sin(�t)�(L − x) with the amplitude F applied at 
the free end ( x = L ) of the cantilever beam, where �(∙)
denotes the Dirac delta function. Since f (x, t) vanishes for 
x ∈ [0, L) , solutions to WS,j(x) for x ∈ [0, L) have the same 
forms as those in Eq. (28):

where aS,j , bS,j , cS,j , and dS,j , in which j = 1, 2, 3 , are con-
stants to be determined by boundary and continuity condi-
tions, and �S,j = L 4

√
�2�Aj∕EIj  is the dimensionless fre-

quency of each beam segment corresponding to the 
excitation frequency. The slope of the transverse displace-
ment, bending moment, and shear force are expressed as 
W �

S,j
(�) , EIW ��

S,j
(�) , and EIW ���

S,j
(�) , respectively.

Boundary conditions of the cantilever beam can be 
expressed as

Continuity conditions of the displacement, slope, bending 
moment, and shear force at two edges of the notch section, 
i.e., � = l1 and � = l2 , are

and

(32)EIj

�4wj

�x4
+ �Aj

�2wj

�t2
= f , j = 1, 2, 3,

(33)wj(x, t) = WS,j(x) sin(�t),

(34)
WS,1(𝜁) = aS,1 cos 𝜆S,1𝜁 + bS,1 sin 𝜆S,1𝜁 + cS,1 cosh 𝜆S,1𝜁 + dS,1 sinh 𝜆S,1𝜁 , 0 ≤ 𝜁 ≤ l1,

WS,2(𝜁) = aS,2 cos 𝜆S,2𝜁 + bS,2 sin 𝜆S,2𝜁 + cS,2 cosh 𝜆S,2𝜁 + dS,2 sinh 𝜆S,2𝜁 , l1 ≤ 𝜁 ≤ l2,

WS,3(𝜁) = aS,3 cos 𝜆S,3𝜁 + bS,3 sin 𝜆S,3𝜁 + cS,3 cosh 𝜆S,3𝜁 + dS,3 sinh 𝜆S,3𝜁 , l2 ≤ 𝜁 < 1,

(35)

W
S,1(�)

|||�=0 = 0 , W
�
S,1
(�)

|||�=0 = 0 ,

W
��
S,3
(�)

|||�=1 = 0 , W
���
S,3
(�)

||||�=1
= −

F

EI3

.

(36)

WS,1(�) = WS,2(�)
|||�=l1 , W

�
S,1
(�) = W �

S,2
(�)

|||�=l1 ,

EI1W
��
S,1
(�) = EI2W

��
S,2
(�)

|||�=l1 , EI1W
���
S,1
(�) = EI2W

���
S,2
(�)

|||�=l1 ;

Substituting Eq. (34) into Eqs. (35)–(37) yields 12 nonho-
mogeneous equations, from which 12 unknown constants 
aS,j , bS,j , cS,j , and dS,j can be solved by assuming that the 
force has a unit amplitude (1 N). Accordingly, uS,j(�) can 
be obtained from Eq. (34), which has the same shape sub-
ject to different force amplitudes under the linear vibration 
assumption.

4.1.3  Analytical Formulation of Longitudinal MSs

The equation of longitudinal motion of the undamped beam/
bar is expressed as [30]

where uj is the longitudinal displacement of the jth segment, 
whose solution can be assumed as

where UM,j(x) is the jth segment of the longitudinal MS asso-
ciated with the natural frequency �n . Substituting Eq. (39) 
into Eq. (38) yields

By introducing the dimensionless abscissa � = x∕L , the 
general solution to Eq. (40) can be expressed as

where eM,j and fM,j , in which j = 1, 2, 3 , are constants to be 
determined by boundary and continuity conditions, and 
�M,j = L�n

√
�j∕Ej is the dimensionless natural frequency of 

each beam/bar segment. The axial force in a beam/bar seg-
ment is EAjU

�
M,j

(�).
By taking a free-free beam/bar as an example, its bound-

ary conditions at its two ends are

(37)

WS,2(�) = WS,3(�)
|||�=l2 , W

�
S,2
(�) = W �

S,3
(�)

|||�=l2 ,

EI2W
��
S,2
(�) = EI3W

��
S,3
(�)

|||�=l2 , EI2W
���
S,2
(�) = EI3W

���
S,3
(�)

|||�=l2 .

(38)E
�2uj

�x2
− �

�2uj

�t2
= 0, j = 1, 2, 3,

(39)uj(x, t) = UM,j(x)sin(�nt), j = 1, 2, 3,

(40)
d
2Uj

dx2
−

�

E
�2

n
Uj = 0.

UM,1(�) = eM,1 cos �M,1� + fM,1 sin �M,1� , 0 ≤ � ≤ l1,

(41)UM,2(�) = eM,2 cos �M,2� + fM,2 sin �M,2� , l1 ≤ � ≤ l2,

UM,3(�) = eM,3 cos �M,3� + fM,3 sin �M,3� , l2 ≤ � ≤ 1,
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Continuity conditions of the displacement and axial force 
at two edges of the notch section, i.e., � = l1 and � = l2 , are

and

Substituting Eq. (41) into Eqs. (42)–(44) yields six homo-
geneous equations with six unknown constants eM,j and fM,j . 
To obtain a nontrivial solution, the determinant of the coef-
ficient matrix is set to zero, from which the natural frequen-
cies can be solved and eM,j and fM,j can be solved by nor-
malizing mode shapes with unit maximum absolute values. 
Accordingly, UM,j(�) can be obtained by Eq. (41).

4.1.4  Analytical Formulation of Longitudinal SRSHEs

The equation of longitudinal motion of the jth segment of the 
undamped beam/bar under the longitudinal harmonic excita-
tion force f (x, t) at the excitation frequency � that excludes 
an undamped longitudinal natural frequency can be assumed 
as [30]

whose solution can be assumed as

where US,j(x) is the jth segment of the longitudinal SRSHE 
associated with the excitation frequency �.

Consider  a  pointwise harmonic exci ta t ion 
f (x, t) = F sin(�t)�(L − x)  with the amplitude F applied 
at one free end ( x = L ) of the bar. Since f (x, t) vanishes for 
x ∈ [0, L) , solutions to US,j(x) for x ∈ [0, L) have the same 
forms as those in Eq. (41):

where eS,j and fS,j , in which j = 1, 2, 3 , are constants to be 
determined by boundary and continuity conditions, and 
�S,j = L�

√
�j∕Ej is the dimensionless frequency of each 

(42)U�
M,1

(�)
|||�=0 = 0 , U�

M,3
(�)

|||�=1 = 0

(43)
UM,1(�) = UM,2(�)

|||�=l1 , EA1U
�
M,1

(�) = EA2U
�
M,2

(�)
|||�=l1 ;

(44)
UM,2(�) = UM,3(�)

|||�=l2 , EA2U
�
M,2

(�) = EA3U
�
M,3

(�)
|||�=l2 .

(45)E
�2uj

�x2
− �

�4uj

�t2
= f , j = 1, 2, 3,

(46)uj(x, t) = US,j(x) sin(�t),

US,1(�) = eS,1 cos �S,1� + fS,1 sin �S,1� , 0 ≤ � ≤ l1,

(47)US,2(�) = eS,2 cos �S,2� + fS,2 sin �S,2� , l1 ≤ � ≤ l2,

US,3(𝜁) = eS,3 cos 𝜂S,3𝜁 + fS,3 sin 𝜂S,3𝜁 , l2 ≤ 𝜁 < 1,

beam/bar segment corresponding to the excitation frequency. 
The axial force in a beam/bar segment is EAjU

�
S,j
(�).

Boundary conditions of the free-free beam/bar are

Continuity conditions of the displacement and axial force 
at two edges of the notch section, i.e., � = l1 and � = l2 , are

and

Substituting Eq. (47) into Eqs. (48)–(50) yields six nonho-
mogeneous equations, from which six unknown constants 
eS,j and fS,j can be solved by assuming that the force has a 
unit amplitude (1 N). Accordingly, US,j(�) can be obtained by 
Eq. (47), which has the same shape subject to different force 
amplitudes under the linear vibration assumption.

4.2  Damage Detection Results

An aluminum beam/bar of length 45 cm, width 2.5 cm, and 
thickness 0.6 cm is considered as a specimen, whose elastic 
modulus and density are 70 GPa and 2700 kg/m3, respectively. 
A two-sided notch with reduced cross-sectional dimensions is 
introduced by reducing 10% of thickness from both top and 
bottom surfaces of the specimen, spanning from x = 15 to 
20 cm, i.e., from � = 0.33 to 0.44 in the dimensionless coordi-
nate. It is noteworthy that for comparison of damage detection 
methods relying on MSs and SRSHEs, excitation frequencies 
are chosen to be close to natural frequencies, and the SRSHEs 
are close to the corresponding mode shapes [20].

4.2.1  Damage Detection Relying on Flexural VSs

For flexural vibration, the fifth flexural MS at 1330.4 Hz with 
a unit maximum absolute value is arbitrarily selected and 
obtained by Eq. (28), whose constants are solved as

By Eq. (34), the flexural SRSHE is produced by the flexural 
harmonic excitation at 1320 Hz with a unit excitation ampli-
tude, whose constants are solved as

(48)U�
S,3
(�)

|||�=0 = 0 , U�
S,3
(�)

||||�=1
= −

F

EA3

.

(49)
US,1(�) = US,2(�)

|||�=l1 , EA1U
�
S,1
(�) = EA2U

�
S,2
(�)

|||�=l1 ;

(50)
US,2(�) = US,3(�)

|||�=l2 , EA2U
�
S,2
(�) = EA3U

�
S,3
(�)

|||�=l2 .

(�M,1, �M,2, �M,3) = (13.8544, 15.4897, 13.8544),

(aM,1, bM,1, cM,1, dM,1) = (−0.4962, 0.4984, 0.4962,−0.4984),

(aM,2, bM,2, cM,2, dM,2) = (−0.7695, 0.2341,−1.1189, 1.1189),

(aM,3, bM,3, cM,3, dM,3) = (−0.3408, 0.6197,−51.2012, 51.2012).
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Both the flexural MS and SRSHE are discretized with 251 
uniformly distributed sampling points.

Figure  1a and b show the flexural MS and SRSHE, 
respectively. It can be seen from Fig. 1 that the MS and 
SRSHE have similar shapes because the natural frequency 
associated with the MS is close to the excitation frequency 
for the SRSHE. The CVSs for the MS and SRSHE are 
obtained by Eq. (5) and shown in Fig. 2a and b, respec-
tively. It can be seen that there are evident discontinuities at 
� = 0.33 and � = 0.44 , which correspond to the two edges 
of the notch. To simulate a noisy condition, white Gaussian 
noise of signal-to-noise ratio (SNR) of 70 dB is individu-
ally added to the flexural MS and SRSHE. It can be seen 
from Fig. 3a and b that noise interference dominates CVSs 
and masks the damage-induced discontinuities. To eliminate 
noise interference, MCVSs are obtained by Eq. (23) and 
shown in Figs. 4a and 5a. In either MCVS, amplitudes of 

(�S,1, �S,2, �S,3) = (13.7967, 15.4252, 13.7967),

(aS,1, bS,1, cS,1, dS,1) = (−0.8636, 0.8675, 0.8636,−0.8675) × 10
−4
,

(aS,2, bS,2, cS,2, dS,2) = (−1.3364, 0.4080,−2.6129, 2.6129) × 10
−4
,

(aS,3, bS,3, cS,3, dS,3) = (−0.5906, 1.0740,−87.2303, 87.2303) × 10
−4
.

two pairs of singularity peaks and valleys that increase with 
the scale parameter s clearly indicate locations of the two 
edges of the notch; either edge lies in the middle of a pair of 
neighboring peak and valley, reflecting the corresponding 
discontinuity in the CVS. In Figs. 4b and 5b, the top views 
of the MCVSs in the v-s plane clearly pinpoint the damage: 
the detected notch spans from � = 0.33 to 0.44, which cor-
responds to the actual location of the notch whose edges are 
marked by two dashed lines.

4.2.2  Damage Detection Relying on Longitudinal VSs

As longitudinal natural frequencies are much higher than 
flexural natural frequencies, the first longitudinal MS asso-
ciated with the first natural frequency of 5538.3 Hz is con-
sidered. The first longitudinal MS is obtained by Eq. (41) 
and normalized with a unit maximum absolute value, whose 
constants are solved as

(�M,1, �M,2, �M,3) = (3.0754, 3.0754, 3.0754),

(eM,1, fM,1) = (2.7244, 0.0000) × 10−6,

Fig. 1  Noise-free flexural a MS 
at 1330.4 Hz and b SRSHE at 
1320 Hz

Fig. 2  CVSs for the noise-free 
flexural a MS at 1330.4 Hz and 
b SRSHE at 1320 Hz
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(eM,2, fM,2) = (3.1423,−0.3316) × 10−6,

(eM,3, fM,3) = (2.5740,−0.1107) × 10−6.

By Eq. (47), the longitudinal SRSHE is produced by the 
longitudinal harmonic excitation at 4860 Hz with a unit exci-
tation amplitude, whose constants are solved as

(�S,1, �S,2, �S,3) = (2.7000, 2.7000, 2.7000),

Fig. 3  CVSs for the noisy 
flexural a MS at 1330.4 Hz and 
b SRSHE at 1320 Hz

Fig. 4  a MCVS for the flexural 
MS at 1330.4 Hz and b its top 
view

Fig. 5  a MCVS for the flexural 
SRSHE at 1320 Hz and b its 
top view
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The first longitudinal MS at 5538.3 Hz and longitudinal 
SRSHE at 4860 Hz are shown in Fig. 6a and b, respectively. 
SVSs for the MS and SRSHE are obtained by Eq. (10) and 
shown in Fig. 7a and b, respectively. Similar to CVSs in 
Fig. 2, it can be seen from Fig. 7 that there are evident dis-
continuities at � = 0.33 and � = 0.44 , which correspond to 
the two edges of the notch. For the noisy longitudinal MS 
and SRSHE with SNR of 70 dB, it can be seen from their 
respective SVSs in Fig. 8a and b that noise interference dom-
inates and masks the discontinuities induced by the damage. 
Corresponding MSVSs are obtained by Eq. (24) and shown 
in Figs. 9a and 10a, respectively; in either figure amplitudes 
of two pairs of singularity peaks and valleys that increase 
with the scale parameter s indicate locations of the two edges 
of the notch. To clearly show the location of the detected 
notch, the top views of MSVSs are demonstrated in Figs. 9b 

(eS,1, fS,1) = (1.0000, 0.0000),

(eS,2, fS,2) = (1.1827,−0.1109),

(eS,3, fS,3) = (0.9514,−0.0631).

and 10b, in either of which amplitudes of two pairs of neigh-
boring peaks and valleys appear to reflect the corresponding 
discontinuities induced by the damage. Hereby, the damage 
can be clearly detected and located, spanning from � = 0.33 
to 0.44, which corresponds to the actual location of the notch 
indicated between two dashed lines.

4.2.3  Feasibility for Low Excitation Frequencies and Small 
Damage

In reality, fundamental MSs and SRSHEs at low excitation 
frequencies can be more easily obtained. To verify the fea-
sibility to use SRSHEs associated with low excitation fre-
quencies, especially those that are lower than fundamental 
natural frequencies, the flexural and longitudinal harmonic 
excitations are selected to be at half of the flexural and lon-
gitudinal fundamental natural frequencies, respectively. On 
the other hand, to verify the capability of the MCVSs and 
MSVSs in detecting damage with a smaller extent, only 5% 
thickness reduction from both top and bottom surfaces of 
the beam/bar is considered. Noisy flexural and longitudi-
nal SRSHEs associated with excitation frequencies that are 
half of the flexural and longitudinal fundamental natural 

Fig. 6  Noise-free longitudinal a 
MS at 5538.3 Hz and b SRSHE 
at 4860 Hz

Fig. 7  SVSs for the noise-free 
longitudinal a MS at 5538.3 Hz 
and b SRSHE at 4860 Hz
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frequencies are shown in Fig. 11a and b, respectively. By 
Eqs. (23) and (24), the corresponding MCVS and MSVS are 
obtained and shown in Fig. 12a and c, respectively, where 
the two edges of the notch with the smaller extent can still 

be evidently identified. In their top views shown in Fig. 12b 
and d, neighboring peaks and valleys clearly locate the two 
edges of the notch, which are in good agreement with the 
actual edges of the notch that are indicated by dashed lines.

Fig. 8  SVSs for the noisy longi-
tudinal a MS at 5538.3 Hz and 
b SRSHE at 4860 Hz

Fig. 9  a MSVS for the longitu-
dinal MS at 5538.3 Hz and b its 
top view

Fig. 10  a MSVS for the longitu-
dinal SRSHE at 4860 Hz and b 
its top view
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5  Experimental Validation

5.1  Experimental Set‑Up

The capabilities of the MCVSs and MSVSs in detect-
ing structural damage is experimentally validated on an 

aluminum beam specimen through laser scanning meas-
urement using a 3D SLV (Polytec PSV-500-3D), as shown 
in Fig. 13. The specimen is 47.5 cm long, 2.54 cm wide, 
and 0.635 cm thick. A two-sided notch with a length of 
5.5 cm is created in the specimen by milling 0.125 cm in 
thickness from both top and bottom surfaces.

Fig. 11  Noisy a flexural and b 
longitudinal SRSHEs at excita-
tion frequencies that are half 
of the flexural and longitudinal 
fundamental natural frequen-
cies, respectively

Fig. 12  a MCVS and c the 
MSVS, and b and d their 
respective top views
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To excite flexural vibration of the beam, it is clamped at 
one end and an MB Dynamics Modal 50A electromagnetic 
shaker is attached to it at a distance of 1.3 cm away from 
the free end, as shown in Fig. 14a. The distance between 
the clamped and free ends of the beam is 45.2 cm. In this 
case, the measurement line (indicated by dots in Fig. 14a to 
represent the laser spot moving along it) along one milled 
side of the beam is 41.15 cm in length, whose origin is 
2.25 cm away from the clamped end; the notch is 22.8 to 
28.3 cm away from the origin of the measurement line. The 
beam is excited by harmonic excitation generated by the 
shaker in the transverse direction. Excitation frequencies are 
selected to be the fifth flexural natural frequency of the beam 
at 1224.4 Hz and frequency of 1200 Hz that is close to it. 
Steady-state velocity responses of the beam are acquired 
by the 3D SLV from 255 uniformly distributed measure-
ment points along the measurement line. Flexural operating 
deflection shapes (ODSs) are extracted using LMS Test.Lab 
9b’s animation module by analyzing averaged cross-power 
spectra of the measurement points. The real part of the ODS 
at the fifth natural frequency of 1224.4 Hz approximates the 
fifth undamped MS of this lightly damped beam, since its 
magnitude is much larger than that of the imaginary part, 
which leads to a higher SNR [7] that benefits structural dam-
age detection. Similarly, the real part of the ODS at 1200 Hz 
is regarded as the corresponding undamped flexural SRSHE.

To excite longitudinal vibration of the beam, it is sus-
pended by four flexible strings that are glued to its four 
corners of the upper surface; the electromagnetic shaker is 
attached to the end farther away from the notch, as shown 
in Fig. 14b. In this case, the measurement line (indicated 
by dots in Fig. 14b to represent the laser spot moving 
along it) along one unmilled side of the beam is 45 cm in 
length, whose origin is 2.3 cm away from the excitation 
location; the notch is 25 to 30.5 cm away from the origin 

of the measurement line. As the maximum excitation fre-
quency of the shaker is 5000 Hz, and the first undamped 
longitudinal natural frequency of the beam is estimated 
to be 4968.6 Hz by the analytical solution in Sect. 4, the 
first longitudinal mode of the beam cannot be accurately 
acquired due to the limitation of the shaker. The shaker 
produces a harmonic force at 4900 Hz, which is close to 
the first undamped longitudinal natural frequency of the 
beam and within the excitation frequency range of the 
shaker, to excite the beam in the axial direction. Steady-
state velocity responses of the beam are acquired by the 
3D SLV from 255 uniformly distributed measurement 
points along the measurement line. The real part of the 
ODS at 4900 Hz is regarded as the longitudinal SRSHE 
for this lightly-damped beam. Consequently, only the lon-
gitudinal SRSHE is used in this section to validate the 
capability of MSVSs for damage detection of the beam.

Fig. 13  3D SLV with three scanning heads and a controller

Fig. 14  Aluminum beam with a two-sided notch, which is excited 
by an electromagnetic shaker in a transverse and b axial directions, 
respectively
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5.2  Experimental Results

5.2.1  Damage Detection Using MCVSs

In the flexural vibration case of the damaged beam, Fig. 15a 
shows its fifth MS at 1224.24 Hz and Fig. 15b shows its flex-
ural SRSHE at 1200 Hz. By Eq. (5), CVSs for the flexural 

MS and SRSHE are obtained and shown in Fig. 16a and b, 
respectively. It can be seen from Fig. 16 that noise interfer-
ence is evident, leading to only one discontinuity in either 
CVS that corresponds to the right edge of the notch and 
a fake discontinuity in the undamaged region. To elimi-
nate noise interference, MCVSs for the flexural MS and 
SRSHE are obtained by Eq. (23) and shown in Figs. 17a 

Fig. 15  Flexural a MS at 
1224.4 Hz and b SRSHE at 
1200 Hz

Fig. 16  CVSs for the flexural a 
MS at 1224.4 Hz and b SRSHE 
at 1200 Hz

Fig. 17  a MCVS for the flexural 
MS at 1224.4 Hz and b its top 
view
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and 18a, respectively. In either figure, amplitudes of two 
pairs of singularity peaks and valleys that increase with the 
scale parameter s indicate locations of the two edges of the 
notch; the second peak is clear, whereas the first one is less 
pronounced but sufficiently clear for damage identification, 
because the first edge of the notch is close to one of nodes 
of the corresponding flexural MS and SRSHE of the beam, 
where the small vibration amplitudes lead to low SNRs. 
Consequently, the damage-induced discontinuities can be 
masked by noise interference. The damage location can be 
determined in top views of the MCVSs as shown in Figs. 17b 
and 18b, which spans from about x = 22.8 to 28.3 cm. The 
detected notch location corresponds to the actual location of 
the notch indicated by two dashed lines.

5.2.2  Damage Detection Using MSVSs

In the longitudinal vibration case of the damaged beam, 
Fig. 19a shows the longitudinal SRSHE at 4900 Hz, from 
which the SVS is obtained by Eq.  (10) and shown in 
Fig. 19b. It can be seen from Fig. 19b that damage-induced 

discontinuities in the SVS are masked by noise interference. 
The MSVS is obtained by Eq. (24) and shown in Fig. 20a, 
where amplitudes of two pairs of singularity peaks and val-
leys that increase with the scale parameter s clearly indicate 
occurrence of the damage. In the top view of the MSVS 
shown in Fig. 20b, edges that lie in the middle of the peaks 
and valleys pinpoint the notch that spans from about x = 25 
to 30.5 cm, which is in good agreement with the actual loca-
tion of the notch indicated by two dashed lines.

6  Comparison and Conclusions

Structural damage detection methods relying on laser-meas-
ured VSs have become a research focus in the past decade. In 
this comparative study, structural damage detection methods 
using derivatives of laser-measured flexural and longitudinal 
VSs of a beam/bar are compared and discussed in aspects 
of physical senses, analytical formulation, and numerical 
evaluation. The following conclusions can be drawn from 
their comparison:

Fig. 18  a MCVS for the flexural 
SRSHE at 1200 Hz and b its 
top view

Fig. 19  a Longitudinal SRSHE 
at 4900 Hz and b its SVS
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(1) Physical senses of damage detection principles using 
CVSs and SVSs for respective flexural and longitudinal 
VSs are distinct: damage such as a notch with reduced 
cross-sectional dimensions can cause changes in both 
bending and axial stiffnesses. For flexural vibration, 
due to the damage-caused change in the bending stiff-
ness, the second-order derivatives of flexural VSs, 
i.e., CVSs, become discontinuous at damage edges to 
balance continuity conditions of bending moments, 
whereby damage can be indicated and located by dis-
continuities in CVSs. For longitudinal vibration, due 
to the damage-caused change in the axial stiffness, the 
first-order derivatives of longitudinal VSs, i.e., SVSs, 
become discontinuous at damage edges to balance con-
tinuity conditions of axial forces, whereby damage can 
be indicated and located by discontinuities in SVSs. 
Analytical formulation of VSs in Sect. 4 is in accord 
with the physical senses of the CVSs and SVSs in dam-
age detection.

(2) Although derivatives of both flexural and longitudinal 
VSs can be used to detect damage in a beam/bar, com-
pared with flexural VSs commonly used for structural 
damage detection, it is much more difficult to excite 
and measure its longitudinal vibration. Longitudinal 
modes have much higher natural frequencies than flex-
ural modes. Although it is difficult to acquire longi-
tudinal vibration, longitudinal VSs can be useful for 
detecting damage in such a structure as a cable, since 
flexural vibration of a cable is mainly governed by its 
tension in it and not its bending stiffness. In these cases, 
SVSs instead of CVSs are suitable to detect damage 
that causes reduction in elastic modulus and cross-
sectional dimensions. Analytical and experimental 
validation show that compared with commonly used 
derivatives of flexural VSs, derivatives of longitudinal 
VSs have the same capability in detecting damage in a 
beam/bar.

(3) The common deficiency of CVSs and SVSs is their sus-
ceptibility to environmental noise interference because 
differential operations can largely amplify noise com-
ponents involved in laser-measured VSs with dense 
sampling. In this study, a scheme of integrating the 
WT-based multiscale analysis into the CVSs and SVSs 
is proposed, by which new concepts of MCVS and 
MSVS are formulated, respectively. The MCVSs and 
MSVSs are capable of enhancing the robustness of the 
CVSs and SVSs against noise interference. By gradu-
ally increasing scale parameters to satisficing levels, 
noise components in the MCVSs and MSVSs can be 
gradually eliminated while damage-induced disconti-
nuities can be retained for structural damage detection.
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