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Abstract
More than 20 years of research progress regarding the nondestructive testing method of metal magnetic memory is reviewed 
and summarized in detail. Consequently, this overview is selective, covering what we feel are the most important trends 
of experimental phenomena, mechanism explanations, quantitative theories, simulations, testing, evaluation and applica-
tion. From analyzing the current state of research on the method of metal magnetic memory, some key problems and future 
developmental trends are proposed. Although the research on magnetic memory method has made great progress, the prac-
tical application still faces problems such as complex influencing factors and less quantitative research. In the future, for 
magnetic memory method, it is necessary to strengthen the microscopic observations of magnetic domains, experiments of 
magnetomechanical constitutive, establishment of quantitative models, modeling of complex influencing factors, and the 
study of identification, inversion and criteria. In addition, the combination of other non-destructive testing methods can 
greatly improve the practical application of the magnetic memory method.
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1 Introduction

Ferromagnetic materials represented by steel have good 
mechanical properties, and engineering structures made 
from them are used widely in aerospace, railways, pipelines, 
pressure vessels, and the petrochemical industry. However, 
because of either the level of preparation process or fatigue 
during use, the damage that forms in ferromagnetic materi-
als has a direct effect on the service safety of engineering 
structures and can even cause catastrophic accidents. In 
engineering applications, the location and degree of damage 

in an engineering structure must be determined in a timely 
manner, whereupon measures such as grinding, welding, and 
replacement must be taken to avoid an accident due to mate-
rial damage. Nondestructive testing refers to the detection of 
damage without affecting the performance of the structure or 
material, and for many industries the nondestructive testing 
of ferromagnetic materials is very important both theoreti-
cally and practically [1–5].

The relationship between the magnetic properties of fer-
romagnetic materials and the stress and damage therein has 
long been a research focus. Experimental studies have shown 
that the residual magnetization at welds in ferromagnetic 
materials is closely related to the magnitude of the residual 
stress [6]. Furthermore, Atherton et al. [7, 8] showed that 
changes in the magnetic field around a buried pipeline can 
reflect changes in the stress state of the pipeline. This means 
that the distribution of the magnetic signal is related to the 
stress state of the material, thereby making it possible to 
evaluate the stress state of a ferromagnetic material by using 
its magnetic signal [9]. It is worth pointing out that for the 
earlier studies [7, 8] mentioned above, the magnetic signal 
was measured with a relatively large lift-off distance.

The method of evaluating material stress and dam-
age based on the self-magnetization field measured near 
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the surface is called the metal magnetic memory (MMM) 
method proposed by Doubov [10]. If the magnetic signal is 
measured near the material surface with small lift-off under 
the geomagnetic environment, the measured signal can be 
used to evaluate the stress concentration state and damage 
degree of the specimen near the measurement position. For 
example, the magnetic domain in the stress concentration 
zone can be regularly oriented because of the high load and 
geomagnetic field, and the self-magnetization field measured 
near the surface can be reserved even if the load is released. 
The MMM signal has some basic characteristics. As shown 
in Fig. 1 [11], the MMM signal near the defect or stress 
concentration has obvious non-linear characteristics. The 
tangential component Hx has a maximum value near the 
position of the stress concentration or defect zone, where 
the normal component Hy is usually equal to 0. Therefore, 
the location of the stress concentration or defect zone can 
be identified using the position of the maximum value of the 
tangential component Hx and the zero-value characteristic of 
the normal component Hy. In addition, the signal character-
istics such as the peak-to-valley interval of the normal com-
ponent Hy and the peak value of the tangential component 
Hx are related to the size of defect or stress concentration. 
This means that the measurement of the signal characteris-
tics can theoretically quantify the size of the damage.

The MMM method is regarded as being a new nonde-
structive testing technology and is considered to be an effec-
tive NDT method for detecting early damage of ferromag-
netic materials. The research to date on the mechanism and 
theory of the MMM method has involved the magnetome-
chanical coupling effect of ferromagnetic materials [11, 12], 
the basic characteristics of MMM signals induced by stress 
concentration and defects, and other basic issues related to 
the weak magnetic field and external forces. This series of 

studies helped to clarify the magnetomechanical behavior of 
ferromagnetic materials and enable quantitative evaluation 
of stress and damage based on the MMM method. In that 
way, the development of fatigue damage in ferromagnetic 
materials or structures in engineering applications can be 
monitored effectively. Research related to the MMM method 
is important both scientifically and for engineering applica-
tions. Such studies aid understanding of the damage phe-
nomena and laws of ferromagnetic materials and contribute 
to the scientific determination of damage detection. Related 
research will also help resolve common scientific problems 
in the disciplines of mechanics and other sciences, such as 
multi-field coupling behavior and its applications.

The MMM method was proposed more than 20 years 
ago. Since then, there have been many studies and develop-
ments regarding the MMM method, but few comprehen-
sive reviews [13–16]. The present paper introduces in detail 
the research progress that has been made since the MMM 
method was proposed, and it identifies some key issues to 
be addressed according to the current state of research. It 
is hoped that this review will allow more researchers to 
understand and enter this research field, thereby enabling 
the MMM method to better serve engineering applications 
and promoting the development of applied physics, ferro-
magnetics, mechanics, and nondestructive testing.

2  Basic Principle and Signal Characteristics

2.1  Basic Principle of Magnetomechanical Effect

Since 1997, Doubov and his colleagues proposed the NDT 
method known as the metal magnetic memory (MMM) 
method to detect stress concentrations and defects in fer-
romagnetic structures such as pipes [16–19]. The metal 
magnetic memory method is mainly applicable to soft fer-
romagnetic materials such as medium carbon steel com-
monly used in engineering. The basic principle is that a 
ferromagnetic material exhibits a force-magnetic coupling 
effect in which mechanical energy and magnetic energy are 
mutually converted as shown in Fig. 2 [20]. The basic theory 
of ferromagnetism suggests that the length of ferromagnetic 
materials placed in an external magnetic field changes due 
to variations in its magnetization state, as shown in Fig. 2a. 
That is, ferromagnetic materials have magnetostrictive prop-
erty, which is also known as the Joule effect [21]. As shown 
in Fig. 2b, the applied stress changes the orientations of the 
magnetic domains inside the ferromagnetic material, which 
alters its magnetic properties. Thus, ferromagnetic materials 
have an inverse magnetostrictive effect, also known as the 
Villaiy effect [22] or the magnetomechanical effect [12]. The 
magnetostrictive and inverse magnetostrictive effects reflect 

Fig. 1  Schematic diagram of metal magnetic memory (MMM) signal 
caused by stress concentration zone (SCZ) [11], Copyright@2016, 
nondestructive testing and evaluation
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a mutual conversion between the stress and magnetism in 
ferromagnetic materials [23].

The principle of the MMM method is shown schemati-
cally in Fig. 3 [24]. Based on the Villaiy effect [22] or the 
magnetomechanical effect [12], the MMM method can 
evaluate the residual stress state inside of the ferromagnetic 
specimen. When a ferromagnetic material in a geomagnetic 
environment is subjected to an external force, its magnetic 
properties change because of the magnetomechanical effect 
of the material. Any defect or stress concentration affects 
the magnetomechanical effect, which in turn generates an 
MMM signal measured near the surface. By measuring the 
MMM signal near the surface of the specimen, the location 
and degree of the stress concentration zone or defect can be 
determined, allowing early diagnosis of the ferromagnetic 
material and its structural damage [25].

In 1970, Craik and Wood [26] performed the experimen-
tal measurement of magneto-mechanical curves with vary-
ing applied stress under the constant weak magnetic fields 
(the magnetic fields were 26.4 A/m, 80 A/m, and 132 A/m) 
for the polycrystalline ferromagnetic materials. Figure 4 
shows the experimental results of changes in the magnetiza-
tion with the varying stress under a weak constant magnetic 

field environment. It can be seen from the experimental 
results that: (i) with the increasing of stress, the magnetiza-
tion increases at first, then drops, much slower for tension 
than for compression; (ii) on removing the tensile stress, 
the magnetization does not change along the original way, 
but increases at first and then drops; (iii) for the compres-
sion case, the magnetization always increases on the stress 

Fig. 2  Schematic diagram 
of force-magnetic coupling 
phenomenon for ferromagnetic 
materials a magnetostrictive 
effect; b inverse magneto-
strictive effects [20], Copy-
right@2017, Xidian University

Fig. 3  Schematic diagram of basic principle for the metal magnetic memory method [24], Copyright@2013, Acta Phys Sin
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removing and reaches its maximum value when the com-
pressive is released opportunely. The experimental results 
prove that under a weak magnetic field environment such as 
the geomagnetic field, the change in stress causes change in 
the magnetization of the material. The magnetomechanical 
coupling effect is considered to be the basic principle of 
magnetic memory signal formation.

2.2  MMM Signal Characteristics

In Fig. 1, some non-linear characteristics of MMM signals 
near the stress concentration zone have been introduced. 
Researchers have been seeking various features of MMM 
signals to characterize the type and degree of damage. 

Figure 5 shows schematics of the main feature quantities of 
MMM signals [20], and the characteristic parameters of the 
MMM signals that can reflect the stress concentration zone 
or damage mainly include the peak-valley interval and peak-
valley value of the MMM signal component and its gradient.

Table 1 gives the relationship between each feature quan-
tity and the defect size, lift-off value, and stress state [20]. 
Here, the three-dimensional volume defect with length, 
width and depth is discussed, and the lift-off value refers 
to the distance from the magnetic memory testing probe to 
the specimen surface. Researchers have proposed various 
characteristics to evaluate damage, stress, and defects of the 
materials. For example, Jian et al. [27] found that the gra-
dient coefficient of the MMM signal can be used to judge 

Fig. 5  Schematic of charac-
teristic parameters for MMM 
signals: a wave width Δx and 
peak-valley value ΔHx for tan-
gential component; b peak-val-
ley interval Δy and peak-valley 
value ΔHy for normal compo-
nent; c peak-valley interval Δx 
and peak-valley value ΔGrad 
Hx for gradient of tangential 
component; d wave width Δy 
and peak-valley value ΔGrad 
Hy for gradient of normal com-
ponent [20], Copyright@2017, 
Xidian University

(a) (b)

(d)(c)

Table 1  Correlation of 
MMM signal characteristics 
with defects and stress [20], 
Copyright@2017, Xidian 
University

+, −, and ~ indicate positive correlation, negative correlation, and little influence, respectively

Signal characteristics Defect size Other factors

Length Width Depth Lift off Stress

Peak-valley spacing of tangential components + ~ + + +
Peak-valley difference of tangential components + + + − +
Peak-valley spacing of normal components + + + + +
Peak-valley difference of normal components + ~ ~ − ~
Peak-valley spacing of tangential gradient + ~ ~ ~ ~
Peak-valley difference of tangential gradient + + + − +
Peak-valley spacing of normal gradient + − + + +
Peak-valley difference of normal gradient + ~ + − +
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the critical state of materials. As shown in Fig. 6a, when 
a ferromagnetic material exhibits necking, the gradient of 
the MMM signal at the necking position appears nonlinear. 
Long et al. [28] showed the MMM method is effective for 
evaluating the effect of tempering and judging the degree of 
damage in each stage of the tempering process of tempered 
steel. Shui et al. [29] showed experimentally that the gradi-
ent of the MMM signal is effective for characterizing the 
stress–strain state of a ferromagnetic material during elastic 
deformation. Chen et al. [30] proposed a multi-lift method 
for accurate defects detection. To improve the reliability of 
the MMM method, Chen et al. [31] proposed the magnetic 
gradient tensor measurement and some analysis methods. Xu 
et al. [32] used the tangential component of the MMM signal 
to characterize the location and extent of buried cracks. Su 
et al. [33] proposed the difference of magnetic induction to 
reflect the fatigue state of the specimen by bending fatigue 
test of 45# steel as shown in Fig. 6b.

It should be noted that there are three magnetic vectors, 
magnetic field H, magnetization M, and magnetic induc-
tion B. There is some confusion in the literature over units. 
Confusion prevails because there are two ways that magne-
tostatics is presented. One is fictitious magnetic poles using 
the CGS (centimeter, gram, second) units, and the other is 
the current sources using the SI (International System) units. 
One can transform the physical quantity from one unit sys-
tem into the other one according to the Table 2. Therefore, 
the magnetic induction strength in the air satisfies B = μ0H,  
μ0 where is the magnetic permeability of air, and the value 
is often taken as vacuum permeability 4π × 10−7.

3  Methods Proposal and Experimental 
Observations

3.1  Methods Proposal and Validation

Doubov and colleagues examined the normal MMM sig-
nal measured near the surface of a ferromagnetic material 
under the combined action of tensile stress and magnetic 
field. The results showed that the position where the fer-
romagnetic material would eventually break was close to 
the zero point of the normal MMM signal, which meant 
that the characteristics of MMM signals could be used 
to determine the location of early damage in a ferromag-
netic material. Based on this experimental phenomenon, 
Doubov and colleagues proposed the MMM method [10].

Immediately afterwards, Lin et al. [35] used the EMS-
2000 intelligent MMM diagnostic equipment to detect 
welds in power-plant reheat pipes. By comparing the 
MMM results with those from ultrasonic testing, they con-
firmed that the MMM method could solve the problem of 
early damage diagnosis that conventional nondestructive 
testing methods could not. Huang et al. [36] compared the 
MMM method with the blind-hole method and acoustic 
emission technology. As shown in Fig. 7a, the test results 
showed that the magnetic induction intensity of the ferro-
magnetic material and the stress distribution therein var-
ied in the same manner, thereby showing the feasibility 
of the MMM method for detecting the stress distribution 
in a weld zone. Zhang et al. [37] conducted preliminary 

Fig. 6  Change of magnetic 
induction intensity with number 
of cycle in the bending fatigue: 
a magnetic gradient under dif-
ferent applied force [27] Copy-
right@ 2009 Journal of Magnet-
ism and Magnetic Materials; b 
difference of magnetic induction 
under different numbers of 
cycles [33]. Copyright@ 2016 
Int J Appl Electromagn Mech
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Table 2  Conversions between 
CGS and SI units [34]

A Ampere, cm centimeter, emu electromagnetic unit, m meter

Magnetic term Symbol SI unit CGS unit Conversion factor

Magnetic induction B Tesla (T) Gauss (G) 1 T = 104 G
Magnetic field H A/m Oersted (Oe) 1 A/m = 4π/103 Oe
Magnetization M A/m emu/cm3 1 A/m = 10–3 emu/cm3
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discussions on the MMM phenomenon of high-strength 
steel such as gun steel and elastic steel, and their experi-
mental results (see Fig. 7b) showed that the MMM method 
allowed the residual stress state to be analyzed quanti-
tatively. Furthermore, Wilson et al. [38] confirmed the 
feasibility of evaluating the internal stress state of a mate-
rial through the residual magnetic field measured near its 
surface in the absence of an external excitation magnetic 
field. Those early studies verified the feasibility of the 
MMM method and helped in its development.

Subsequently, researchers have tried to explain how the 
MMM signal is formed from macroscopic magnetomechani-
cal effects and microscopic magnetic domains. Doubov [39] 
noted that when a ferromagnetic material is subjected to 
cyclic loading in a geomagnetic environment, the mate-
rial generates a spontaneous magnetization and forms a 

spontaneous MMM signal measured near its surface. Ren 
et al. [40] observed how the internal magnetic domains 
of alloy-20 stainless steel varied under stress, as shown in 
Fig. 8a. The results showed that the magnetic domains in a 
region of stress concentration in a ferromagnetic specimen 
change under the action of stress. When the stress is not con-
centrated or the stress concentration is small, the magnetic 
domains in the grains are mainly sheet-like domains, and the 
domain walls in the same crystal grain are parallel to each 
other. As the degree of stress concentration increases, the 
length and spacing of the domain walls change and laby-
rinth domains appear. Furthermore, as the number of laby-
rinth domains increases, the magnetization at the position 
of stress concentration becomes large, and a spontaneous 
leakage magnetic field forms near the surface. Qiu et al. [41, 
42] investigated the characterization of applied tensile stress 

Fig. 7  Correlation between 
stress and magnetic induction 
in a ferromagnetic material: a 
normalized results for stress and 
magnetic induction [36] Copy-
right @ 2002 Nondestructive 
Testing; b relationship between 
residual stress and magnetic 
parameters [37]. Copyright 
@2005 Acta Armamentarii
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with in-situ magnetic domain imaging and their dynamic 
behaviors by using magneto-optical Kerr effect microscopy. 
The experimental results show a good correlation between 
the microscopic magnetic domain structure and the applied 
tensile stress, as shown in Fig. 8b. These results indicate to 
some extent that the microscopic mechanism of MMM sig-
nal generation is the change of magnetic domains inside the 
material caused by the magnetomechanical effect.

3.2  Basic Morphology of MMM Signals

The mentioned researches show that the MMM method is 
effective for detecting stress concentration and early dam-
age in ferromagnetic materials. Since then, there have been 
many experimental observations of MMM signals from non-
defective and defective ferromagnetic materials under differ-
ent working conditions [43–47]. The basic characteristics of 
MMM signals under different working conditions are shown 
in Table 3. As shown in Table 3, the normal component of 
magnetic memory signals for non-defective specimens is 
always almost linear change, and the tangential component is 
closer to a constant function under the action of elastic load 
[43]. When local plastic deformation of the material occurs, 
non-linear abrupt changes occur in the magnetic memory 
signals near the location of the plastic zone [44]. For fer-
romagnetic materials with defects, the normal component 
of magnetic memory signals exhibits a non-linear change 
near the defect, with maximum and minimum values appear-
ing at the edge of the defect, and the absolute value of the 
tangential component reaches the minimum value near the 
defect location [45]. Compared with the circular hole defect, 
the non-linear change of the magnetic memory signal at the 
crack position is more obvious [46], and the signal change of 
the small defect such as the notch is the most obvious [47].

3.3  Experimental Observations of MMM Method

3.3.1  MMM Signals of Non‑defective Materials

Many researchers have studied how MMM signals from non-
defective ferromagnetic materials vary under the combined 
effects of stress and magnetic field [48–53]. Figure 9 shows 
measured MMM signals from non-defective plate specimens 
under static loading with different stress levels [43], where 
Fig. 9a shows the normal component of the MMM signal 
and Fig. 9b shows the tangential component. The normal 
MMM signal from a non-defective test piece is always 
almost linear, the tangential MMM signal is close to a flat 
line, and (i) the slope and absolute values of the normal 
component and (ii) the tangential component of the MMM 
signal all increase with stress.

Figure 10 shows experimental results for non-defective 
specimens of different materials under static loading con-
ditions [54]. For different ferromagnetic materials, how 
the MMM signal varies with stress remains essentially 
unchanged. For non-defective specimens of different fer-
romagnetic materials, the absolute value of the slope of the 
normal component of the MMM signal increases with stress. 
However, because the materials, dimensions, and experi-
mental environments differ, so do the experimental values 
of the slope of the normal component of the MMM signal 
for different materials. Ren et al. [55] studied the magnetic 
induction intensity measured near the surface of no. 45 cold-
rolled steel during stress loading and unloading.

There has also been much experimental research into 
how MMM signals change under other loads. Zhang et al. 
[56] studied how the MMM signals of the elastoplastic 
state of A3 steel varied under torsion. As shown in Fig. 11, 
the MMM signal at the center of the specimen remained 
basically constant with increasing torque, while those on 
either side had opposite trends with increasing torque. In 
addition, the signal strength of the elastic state of the test 
piece increased with torque, whereas that of the plastic 
state decreased. Xing et al. [57] studied how the MMM 

Table 3  Basic morphology of 
MMM signals

Copyright @ 2015 Strain; 2014 Beijing Jiaotong University; 2008 NDT and E International; 2017 J Press 
Vess Technol; 2010 Chinese Journal of Mechanical Engineering

Non-defective materials Defective materials

Elastic [43] Plastic [44] Hole [45] Crack [46] Notch [47]

Normal signal

Tangential signal
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signal from Q235B varied under three-point bending and 
complex stress. The results showed that the MMM signals 
of the tensile and compressive layers of a ferromagnetic 
material are opposite and that the MMM signal is effec-
tive for evaluating the three-point bending deformation 
state of the material. Roskosz et al. [58–60] studied the 
relationship between the MMM signal distribution and 
the stress distribution of ferromagnetic materials in static 
tensile tests. Comparing the distributions in Fig. 12 shows 
that the correlation between the gradient of the MMM sig-
nal and the stress is better than that between the surface 
MMM signal and the stress. Hu and Yu [61] analyzed the 
variations in magnetic induction intensity with the surface 
residual compressive stress of 304 stainless steel speci-
mens. Yao et al. [62] measured the relationship between 
the contact damage of no. 45 steel and its surface MMM 
signal under the action of ferromagnetic and nonferro-
magnetic indenters. And they proposed that the gradient 

eigenvalue of the MMM signal can be used as a parameter 
for early contact-damage evaluation.

In addition, some studies have been conducted on 
how the MMM signal from a ferromagnetic material var-
ies under plastic deformation. Li et al. [63] studied how 
the MMM signals of non-defective 1045 and A3 steel 
specimens varied under different plastic deformations; 
the results in Fig. 13 show that the slope of the normal 
component of the MMM signal decreased gradually with 
increasing plastic deformation. Li et al. [64] studied the 
MMM signal from AISI 1045 steel under tensile load and 
analyzed the loading influence on the MMM signal in the 
elastoplastic state through the magnetomechanical effect 
and the magnetoplastic model. Leng et al. [65] studied 
the MMM signals of Q235 steel under different deforma-
tion states; the results showed that the MMM signals dif-
fered greatly under elastic and plastic deformation and that 
small plastic deformation could decrease the MMM signal 
dramatically. Guo et al. [66] studied the MMM signal from 
35CrMo steel under tensile load. The results showed that 
when the stress was less than the yield strength, the normal 
component of the MMM signal and its slope increased 
gradually with the stress, and when the stress approached 
the yield strength, the maximum value of the MMM sig-
nal was reached. Upon increasing the stress further, the 
normal component of the MMM signal and its slope both 
decreased drastically. Usarek et al. [67] also studied how 
plastic deformation affected the MMM signal. Qiu et al. 
[68] studied the MMM signal of Q235 steel entering yield 
failure from a lossless state; the results showed that the 
gradient of the normal component of the MMM signal 
could be used to determine whether the material had 
reached yield failure.
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3.3.2  MMM Signals of Defective Materials

The basic characteristics of the MMM signals measured 
near the surfaces of defective ferromagnetic materials have 
also been observed, as shown in Fig. 14. The experimen-
tal results in Fig. 14b [69] show that the MMM signal on 
a defect-induced measurement line exhibits a typical non-
linear change: (i) the normal component of the MMM sig-
nal appears to increase first and then decrease; (ii) near 
the defect center, the tangential component of the MMM 
signal reaches its maximum value and the normal compo-
nent crosses the zero point; (iii) the degree of the nonlinear 
change of the MMM signal increases with the size of the 
defect. Furthermore, the experimental results in Fig. 14c 
show how the peak-to-valley characteristics of the normal 
component of the MMM signal vary because of a defect; 
the experimental results show that the peak-to-valley values 
of the normal component of the MMM signal increase with 
stress [70]. Yao et al. [71] studied how the MMM signal 
measured near the surface of Q235 steel specimens with 
circular hole defects varies under compressive stress; the 
results show that the slope of the normal component of the 
MMM signal increases with the compressive stress, and the 
MMM signal exhibits nonlinear behavior near the defect. In 
addition, Bao et al. [43, 72] studied how the MMM signals 

in U75V steel and Q345 steel with hole defects vary under 
static stress, and Li et al. [73] studied the MMM signals of 
Q235 steel with hole defects under tensile stress.

The above experiments all gave the distribution of the 
MMM signal on a certain measurement line but could not 
give the two-dimensional (2D) appearance of the MMM sig-
nal near a defect. Roskosz and Gawrilenko [45] measured 
experimentally the morphology of the MMM signal near a 
round hole defect in a plate, as shown in Fig. 15. The distri-
bution of the MMM signal near the defect has the following 
characteristics: (i) the axial component of the MMM signal 
reaches its maximum value at the center of the defect, and 
there is a notched changing area either side of the defect; 
(ii) the tangential component of the MMM signal has four 
extreme points and 180° rotational symmetry; (iii) the tan-
gential component of the MMM signal remains constant on 
the lines x = 0 or y = 0; (iv) the normal component of the 
MMM signal has two positive and negative extreme values, 
is symmetric about y = 0, and the plus and minus extreme 
value reaches maximum on y = 0; (v) in addition, the posi-
tion of the peak or valley extreme value of normal com-
ponent coincides roughly with the edge of the round hole 
defect.

As well as the MMM signal induced by a circular hole 
defect as discussed above, researchers have also made 

Fig. 11  Variation of MMM 
signal with torque at different 
positions near the surface of 
Q235 steel [56] Copyright@ 
2005 Journal of Beijing Institute 
of Technology
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experimental measurements of the MMM signals induced 
by secant, groove, and welding defects. Leng et al. [47] 
studied how the MMM signals induced by V-shaped 
defects varied under static tension and explained them 
through a magnetic-dipole theoretical model, as shown 
in Fig. 16a. Ren et al. [74] studied the variation of the 

MMM signal induced by line cutting defects, as shown 
in Fig. 16b. Yu et al. [75] studied the variation of the 
MMM signal measured near the surface of an aluminum 
alloy sheet containing grooves. Li et  al. [76] studied 
how the surface MMM signal from an alloy steel with 
groove defects varied under tensile stress and analyzed the 

Fig. 12  Comparison of MMM memory signal and stress distribution 
near the surface of Q345R steel: residual stresses σX and σY and a 
tangential component  HT,Y, b normal component  HN,Z, c tangential-

component gradient  dHT,Y/dx, and d normal-component gradient 
 dHN,Z/dx [58]. Copyright @ 2012 NDT&E International

Fig. 13  Variation of MMM 
signal with plastic deforma-
tion: a AISI 1045 steel; b A3 
steel [63]. Copyright @ 2012 
Meccanica

0 10 20 30 40 50 60
-60

-40

-20

0

20

40

60

80

100

H
py

(A
/m

)

Position(mm)

 0%   plastic strain
 5%   plastic strain
 10% plastic strain
 15% plastic strain

0 10 20 30 40 50 60

-40

-20

0

20

40

60

80

H
py

(A
/m

)

Position(mm)

 0%   plastic strain
 5%   plastic strain
 10% plastic strain
 15% plastic strain

(a) (b)



Journal of Nondestructive Evaluation (2020) 39:43 

1 3

Page 11 of 37 43

influence of multiple loading on the signal, as shown in 
Fig. 16c. Kolokolnikov et al. [77] studied the variation of 
MMM signals near welded joints in ferromagnetic materi-
als. Li et al. [78] studied how the MMM signal from L80 
steel with semi-cylindrical notches varied under static ten-
sion. Roskosz [79] studied the variation of the MMM sig-
nal at a weld in austenitic steel and concluded that defects 
could be detected accurately based on the MMM method 
in a service pipeline. Bao et al. [80] studied MMM signals 
measured near the surface of Q235 steel specimens with 
rectangular defects, analyzed the relationship between the 
signals and the degree of stress concentration, and studied 

how the tangential component of the MMM signal changed 
with the stress state of the surface of a welding defect [81].

4  Qualitative Interpretation and Simulation

Through many MMM experiments, researchers have learned 
some basic rules regarding MMM signals and have tried to 
explain the underlying mechanisms. In this section, the exist-
ing work on the qualitative interpretation and simulation of 
MMM signals is summarized.

Fig. 14  MMM signal measured 
near the surface of test piece 
containing defects: a sketch 
of specimen; b magnetic field 
distribution for specimens with 
holes of different radius a under 
a load of 14 kN; [69] Copyright 
@2013 Physics Examination 
and Testing; c peak-to-valley 
values of MMM magnetic field 
[70]; Copyright @2013 IEEE 
Trans Magn
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4.1  Interpretation of MMM Signal Law

Some magnetomechanical models are commonly used to 
link mechanical and magnetic physical quantities. For exam-
ple, based on magnetic-domain theory and magnetic-domain 
wall shift, the Jiles model [23], Zheng–Liu model [82] and 
Shi et al.’s model [83] are often used in the qualitative inter-
pretation of MMM signals because of their clear physical 
mechanism.

4.1.1  Inversion Phenomenon of MMM Signal

Yang et al. [84] used the expression for the effective field in 
the Jiles magnetomechanical model to explain the inversion 
phenomenon of the MMM signal from the defect surface as 

the stress increases as shown in Fig. 17a. Based on the Jiles 
model, the effective field  Heff can be described as [23]

where H is the magnetic field, M is the magnetization, α 
is the strength of the coupling of the individual magnetic 
moments to the magnetization M, σ is the applied stress, μ0 
is the vacuum permeability, λ is the bulk magnetostriction, 
θ is the angle between the axis of the applied stress and 
the axis of the magnetic field, and ν is Poisson’s ratio. An 
empirical model can be used to describe the bulk magneto-
striction [23], namely
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Fig. 16  MMM signals induced by different types of defect: a V shaped notch [47]; Copyright @ 2010 Chinese Journal of Mechanical Engineer-
ing; b secant [74]; Copyright @2005 Nondestructive Testing; c semi-cylindrical notch [76]; Copyright @ 2017 NDT&E International

Fig. 17  Variation of MMM signal measured near surface of ferro-
magnetic material with load: a variation of surface magnetic field by 
application of tension force under geomagnetic field; b anhysteretic 
magnetization varies along change of stress and initial magnetization, 

where abscissa presents initial magnetization, ordinate presents stress 
[84]. Copyright @ 2007 Journal of Magnetism and Magnetic Materi-
als
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where γi are coefficients related to the material. In their 
experiment, θ=26.5° [84]. Then, using the magnetostriction 
data, the additional effective field can be given.

By studying the physical meaning of the above equation, 
Fig. 17b was plotted by giving the relationship among initial 
magnetization, stress, and resultant magnetization [84]. The 
above formula shows that when the initial magnetization 
is lower than 1.54 × 106 A/m, applying a tensile stress of 
70 MPa or more and applying all the compressive stress 
can decrease the magnetization. Only a tensile stress of less 
than 70 MPa leads to an increase in the magnetization. This 
is consistent with the experimental results.

4.1.2  Influence of Initial Magnetization State

Guo et al. [85] analyzed how the initial magnetization affects 
MMM signals by comparing the effects of initial magneti-
zation and stress magnetization. As shown in the two sets 
of experimental results in Fig. 18a, b, stress influences the 
magnetic signal differently depending on the initial magneti-
zation. In one experiment, the absolute value of the MMM 
signal first decreased and then increased with the stress. 
And MMM signal increases monotonically with increas-
ing stress in another experiment. Guo et al. [85] explained 
this phenomenon as shown in Fig. 18c. Because the man-
ner in which the surface magnetic field intensity changes is 

consistent with the material magnetization, only the law for 
how the material magnetization changes needs to be ana-
lyzed. Here, Mi is the initial magnetization and Mθ is the 
stress-induced magnetization. If Mi is as weak as the non-
hysteretic magnetized Man, then the former has little effect 
on the surface magnetization, and the surface magnetization 
increases with the stress. However, if Mi is strong and Mθ 
is weaker than Mi because of low stress, then the surface 
magnetization decreases initially. As the difference due to 
M0 becomes smaller, the demagnetization state is reached 
when Mθ is equal to Mi. Moreover, if the stress increases, 
then Mθ predominates and the amount of surface magneti-
zation reverses. Leng et al. [86] discussed how the initial 
magnetization influences the MMM signal by experimenting 
on 45# steel, and they explained the experimental phenom-
ena qualitatively through the Jiles model. Ren et al. [87] 
measured surface MMM signals under static tension and 
explained the effects of different initial magnetization states 
using the magnetization model.

4.1.3  Local Equilibrium Under Cyclic Loading

Xu et al. [88] introduced the concept of local equilibrium to 
explain how the MMM signal from a ferromagnetic mate-
rial varies with the number of stress cycles. By observing a 
rotating bending fatigue specimen, they found that the MMM 
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signal in Fig. 19 gradually approached a local equilibrium state 
as the number of stress cycles increased. The MMM signal 
along the measurement line presented a stable loop within 
cyclic loading as shown. Xu et al. [88] explained this phenom-
enon by considering the local equilibrium state M0 based on 
the Jiles model. The relationship between the local equilibrium 
state M0 and the ideal magnetization state Man is

(3)
(
Man −M0

)
�0dHeff = �k1dM0,

where δ is the symbol parameter and k1 is the pinning coef-
ficient for the local equilibrium state M0.

4.1.4  Plastic Deformation Effects

Li et al. [89] made a plastic correction to the Jiles model 
so that as the plastic deformation increases, the MMM sig-
nal first decreases rapidly and then stabilizes, as shown in 
Fig. 20. They improved the expression of the effective field 
in the Jiles model to
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Fig. 20  Variation of MMM 
signal with plastic deformation: 
a curves of magnetization vs. 
plastic strain under an applied 
magnetic field; b values of Hp 
vs. plastic strain measured at 
different points [89]. Copyright 
@ 2012 Journal of Applied 
Physics
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where M is the magnetization; �r is the stress; �p is the plas-
tic deformation; � represents magnetostriction; k′ denotes the 
average density of pinning points per unit volume.

Leng et al. [90] used a similar approach to discuss how 
plastic deformation affects the MMM signal or magnetiza-
tion effects. Yao et al. [91] showed how plastic deformation 
affects the magnetic properties of ferromagnetic materials 
through coercive force and magnetic permeability. Com-
bined with ANSYS software, they analyzed how the size 
and location of the plastic zone, the lift-off value, and the 
detection direction influence the MMM signal. However, 
in the model of Li et al. [89] the magnetization is infinite 
at zero plastic strain and negative with increasing plastic 
strain; these features are obviously inconsistent with the 
common-sense view of how plasticity affects the magneti-
zation. Shi et al. [92] further developed the magnetization 
model to achieve an accurate description of the effects of 
plastic deformation.

4.1.5  Effect of Stress on Magnetization

Roskosz et al. [58] used the Jiles model to explain some 
of the laws of MMM signals. Ren et al. [55] designed an 
MMM experiment to study the law governing stress mag-
netization during the loading and unloading of materials, 
and they used the Jiles model for experimental interpreta-
tion. Zeng et al. [93] used the magneto-optical method to 
observe and analyze the change of magnetic domain pattern 
of high permeability oriented electrical steel under different 
stress conditions. Results show that domain wall displace-
ment is repeatable and stable both under cyclic stress round 
and during relaxation time after release of stress.

(4)H�

eff
= H + ��M + H�r + H�p,

(5)H�r =
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�Ep

�M
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|||�p
|||

4.1.6  Magneto‑elastoplastic Coupling Effect

Shi et al. [94] introduced an experimental progress of the 
magneto- elastoplastic coupling phenomenon on MMM 
signal for ferromagnetic materials. The MMM signal was 
measured near the surface of medium carbon steel under the 
combined action of elastic load and plastic deformation. The 
experimental results show the magneto-elastoplastic cou-
pling phenomenon as shown in Fig. 21a. The MMM signal 
increases with the increase of the elastic load, and the MMM 
signal increases first and then decreases with the increase 
of plastic deformation. As the elastic load increases, the 
effect of plastic deformation on the MMM signal gradually 
increases. They proposed an analytical theoretical expres-
sion of magnetization as [94]

where M is the magnetization; H is the environmental 
magnetic field; Ms is the saturation magnetization; �s is the 
saturation magnetostriction; m is used to describe the non-
linear relationship between pinning density and plasticity; 
�e is the applied elastic stress; �p is the plastic strain; E is 
the Young’s modulus of the material; a and � are a magneti-
zation parameter; k is the conversion ratio of plastic strain 
energy; k′ denotes the average density of pinning points per 
unit volume.

Equation 6 is an analytical theoretical expression of 
magnetization. When the magnitude of the external mag-
netic field and the elastoplastic conditions on the material 
are known, the theoretical value of the magnetization of the 
ferromagnetic material can be directly obtained through this 
expression. Figure 21b shows the theoretical result of the 
magnetization of the ferromagnetic material with the applied 
stress under constant plastic deformation. The variation 
of the magnetization with the elastoplastic state shown in 
Fig. 21b can well explain the magneto-elastoplastic coupling 
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Fig. 21  Magneto-elastoplastic 
coupling effect a Experimental 
results of the slope variation 
of magnetic signal with stress 
and plastic deformation; b 
Model prediction of magneti-
zation with stress and plastic 
deformation; [94] Copyright @ 
2020 Journal of Magnetism and 
Magnetic Materials
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effect in the measurement result of MMM signal shown in 
Fig. 21a.

4.2  Simulation Work

Section 4.1 gives only a preliminary explanation of the 
experimental rules of MMM. Some researchers have also 
tried to simulate MMM signals using methods such as mag-
netic charge and magnetic dipole.

4.2.1  Magnetic Dipole Model

Based on the magnetic dipole model, Shi [95] obtained 
analytical expressions of MMM signals caused by four dif-
ferent surface defects, and discussed the effect of the com-
plex shape of the defects on the strength and distribution of 
MMM signals near the surface. Huang et al. [96] studied 
MMM signals induced by cracks by referring to the pro-
cessing method of magnetic flux leakage. Assuming a con-
stant distribution of magnetic charge density measured near 

the crack surface, the MMM signal was analyzed using the 
dipole method. Leng et al. [47] studied the characteristics 
of the MMM signal from a V-groove through experiments, 
as shown in Fig. 22; the results show that the MMM signal 
becomes nonlinear near the groove, and this nonlinearity 
increases with the load. Comparing the graphs in Fig. 22 
shows that the simulation and the experiment give signals 
with similar morphologies. Recently, Shi et al. [94] present 
an analytical expression based the magnetic dipole theory 
to explain the abrupt phenomenon of MMM signal when 
ferromagnetic materials break.

4.2.2  Two‑Dimensional Signal Simulation Based 
on Magnetic‑Charge Model

By assuming a linearly distributed magnetic charge density 
in the surface stress concentration region of the material, 
Wang et al. [97, 98] used the dipole method to establish a 
theoretical model for the MMM signal near the stress con-
centration region. First, by the aforementioned assumption, 

Fig. 22  Characteristics of MMM signal induced by groove defects: a, b experimental values; c simulated values [47]. Copyright @ 2010 Chi-
nese Journal of Mechanical Engineering
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they established a theoretical model of a one-dimensional 
(1D) stress concentration line using the dipole method. They 
also extended the 1D model to a 2D stress concentration 
model in further work, as shown in Fig. 23. Figure 24 shows 
the results of simulating the MMM signal in a 2D stress con-
centration zone [98]. The simulation results reflect qualita-
tively the nonlinear characteristics of the surface MMM sig-
nal near the stress concentration area. It is worth pointing out 
that there are some errors in the analytical expression of 1D 
stress concentration line [97]. Shi and Zheng [11] proposed 
a new analytical solution for the 1D stress concentration line 
problem, and confirmed the correctness of the new analytical 
solution by comparing it with the numerical solution.

4.2.3  Three‑Dimensional Signal Simulation Based 
on Magnetic‑Charge Model

In engineering practice, the actual geometry of the stress 
concentration zone usually has width. To cope with the 
shortcomings of the existing 2D stress concentration models, 
Shi and Zheng [11] proposed a three-dimensional (3D) stress 
concentration model of magnetic charge to advance and cor-
rect the previous 1D and 2D stress concentration models. 
As shown in Fig. 25, the plastic deformation is assumed 
to reach a maximum (resp. zero) on the axis of the stress 

concentration zone and decrease (resp. increase) linearly to 
zero (resp. maximum). By assuming a linear relationship 
between magnetic charge density and stress or plastic defor-
mation, the 3D MMM Hm signal  can be expressed as

Fig. 23  Schematic of magnetic-
charge model in stress-concen-
tration area: a one-dimensional 
(1D) stress-concentration 
area; [97] Copyright @ 2010 
NDT&E International; b two-
dimensional (2D) stress concen-
tration area [98]. Copyright @ 
2010 NDT&E International b b
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Fig. 24  Simulation results for 
MMM signal based on model 
with 2D stress-concentration 
area: a tangential component; 
b normal component [98]. 
Copyright @ 2010 NDT&E 
International
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where � = −∇ ⋅M and the magnetization M under stress and 
magnetic field can be calculated by various magnetization 
constitutive relations.

As shown in Fig. 26a, the magnetic-charge model in the 
stress concentration area is compared with experimental 
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results [11]. The simulation results obtained using the 
magnetic-charge model are consistent with the experi-
mental results, thereby confirming the effectiveness of the 
magnetic-charge model for simulating stress concentration 
and other damage. Figure 26b compares the new analyti-
cal solution [11], the previous analytical solution [97], and 
the results of numerical integration, indicating that there 
are problems with the analytical expressions in the existing 
literature [97].

Furthermore, theoretical results for the MMM sig-
nals measured near the surfaces of materials with long 

Fig. 26  Comparison of simula-
tion and experimental results for 
MMM signal [11]. Copyright 
@2016 Nondestructive Testing 
and Evaluation
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elliptical defects were obtained by using the magnetic-
charge model. Figure 27 shows that the theoretical results 
for the MMM signal given by the magnetic-charge model 
agree well with the experimental results of Roskosz et al. 
[99]. Su et al. [100] used the magnetic-charge model pro-
posed by Shi and Zheng [11] to reveal the effect of stress 
on MMM signals around defect by a tension tests of steel 
wire.

4.2.4  First‑Principles Method

Yang et al. [101] used a first-principles method to elabo-
rate the mechanism for the magnetization of materials 
from a microscopic perspective. They used the first-prin-
ciples plane-wave pseudopotential algorithm to establish 
the first-principles model. Then, by calculating the rela-
tionship among the lattice structure, atomic magnetic 
moment, and system energy and force, they studied how 
force influences the magnetic properties of materials 
and the relationship between atomic magnetic moment 
and pressure. Wang et al. [102] used the first-principles 
method to analyze theoretically the MMM signal from 
X52 pipe steel under stress. Liu et al. [103–106] studied 
the quantitative relationship between stress concentration 
and MMM signals by first-principles means and analyzed 
how material doping influences MMM signals. Figure 28 
shows that the theoretical simulation results based on first 
principles reflect qualitatively the phenomenon whereby 
the MMM signal decreases with stress, but the theoreti-
cally predicted reduction of atomic magnetic moment is 
less than 1%, which is quite different from the experi-
mental results. Therefore, this method requires further 
development to achieve a theoretical description of the 
law governing the MMM signal measured near the surface 
of a structure.

5  Quantitative Theory, Fatigue Process, 
and Natural Magnetization

5.1  Quantitative Theory

5.1.1  Magnetostrictive and Inverse Magnetostrictive 
Effects

Because of the mutual transformation between stress and 
magnetism, the ferromagnetic materials have a typical non-
linear magneto-elastic coupling effect including the magne-
tostrictive and inverse properties. Researchers have carried 
out a lot of theoretical researches on the magnetostrictive 
constitutive model for ferromagnetic materials, and the non-
linear constitutive model based on thermodynamic model 
has been widely concerned. For instance, Carman et al. [107] 
proposed a standard square model based on the internal 
energy expansion and thermodynamic relationship of ferro-
magnetic materials. Wan et al. [108] proposed a hyperbolic 
tangent model by modifying the standard square model. 
Based on the assumption that the magnetostrictive strain is 
proportional to the square of the magnetization, a model is 
proposed by Duenas and Hsu [109]. In addition, Zheng and 
Liu [82] established a nonlinear constitutive model of fer-
romagnetic materials based on the macroscopic thermody-
namic relationship and the microscopic physical mechanism. 
The Zheng-Liu model can accurately reflect the magnetic, 
magnetostrictive and elastic nonlinear characteristics of fer-
romagnetic materials, such as magnetization and magneto-
striction saturation, and the prestress effects on magnetiza-
tion and magnetostriction. Based on the Zheng-Liu model, 
subsequently, Zheng and her research team proposed a one-
dimensional coupled hysteresis model of ferromagnetic 
materials considering temperature effects [110–112]. The 
one-dimensional coupled hysteresis model can well describe 
the effect of prestress on magnetization and magnetostric-
tion of ferromagnetic materials at a given temperature. Jin 
et al. [113] established a magneto-thermo-elastic coupled 

Fig. 28  The phenomenon of 
MMM signal decreases with 
stress a Variation of atomic 
magnetic moment with pres-
sure. b MMM signal distribu-
tion [104]. Copyright @ 2015 
Nondestructive Testing and 
Evaluation
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hysteretic constitutive model of ferromagnetic materials by 
considering the reaction of the magnetization to magnetic 
field and the hysteresis effect. Further, Jin et al. [114] estab-
lished a nonlinear structural dynamic model of ferromag-
netic materials under dynamic magnetic field loading which 
can reflect the effect of excitation frequency.

The model mentioned above considers the magnetostric-
tive effect. Based on the Villaiy effect [22] or the magneto-
mechanical effect [23], the MMM method can evaluate the 
residual stress state inside of the ferromagnetic specimen. As 
early as 1900, Ewing, a professor of Cambridge University, 
have published the monograph "Magnetic induction in iron, 
and other metals", which also included experimental results 
of magnetomechanical behavior of ferromagnetic materials 
in a constant magnetic field [115]. The study of magnetome-
chanical behavior under a constant weak environmental mag-
netic field plays an important role in quantitatively revealing 
the correspondence between MMM signals and damage in 
MMM method. To establish the relationship among stress, 
defects, and MMM signals more effectively, researchers 
have conducted forward modeling of MMM methods based 
on magnetomechanical relationships. Using the principle 
of energy conservation, a theoretical magnetomechanical 
formula for ferromagnetic materials was obtained [116]. 
Based on either this formula or similar empirical formulae 
for permeability [116], researchers have simulated MMM 
signals measured near the surfaces of various types of defect 
[116–120]. Li and Xu [121] considered the asymmetry of 
magnetomechanical behavior under tensile and compressive 
loads and proposed a modified Jiles–Atherton–Sablik model. 
Li et al. [70] analyzed theoretically the MMM signals caused 
by circular hole defects based on the Jiles model and the 
finite element method; the theoretical results and experi-
mental data were well matched. Based on the Jiles model, 
Wang et al. [122] and Yao et al. [123] enhanced the effec-
tive field with that due to plastic deformation, established 

a magnetic–elastic–plastic coupling model, simulated the 
MMM signal using the remanence variation caused by plas-
tic deformation, and studied the MMM signal generated by 
the plastic deformation of ferromagnetic material. Bai et al. 
[124] also explained the MMM signal using the concept 
of remanence based on the Jiles hysteresis model. Avakian 
et al. [125] extended the magnetomechanical coupling model 
to multiaxial loading and analyzed how the loading direction 
affects the magnetization of the material. Moonesan et al. 
[126] analyzed how the initial magnetization of the material 
influences the magnetic signal through the magnetomechani-
cal coupling model.

5.1.2  Magnetomechanical Coupling Forward Model 
for MMM Method

In 2017, Shi et al. [54] established a nonlinear magneto-
mechanical coupling forward model. The finite element 
method was used to achieve the forward analysis of the 
MMM method, which describes quantitatively how surface 
MMM signals vary because of stress concentration and 
defects. Table 4 compares the prediction of MMM signals 
for several existing classical forward models. Comparing 
with the experimental data for the non-defective U75V test 
specimens of Bao et al. [43], it is found that the new mag-
netomechanical forward model established by Shi et al. [54] 
has an advantage in quantitative analysis of MMM signals. 
The theoretical model is good at predicting how the MMM 
signal varies with the stress measured near the surface of an 
non-defective specimen during the elastic phase, as shown 
in Table 4. The theoretical results from the energy conserva-
tion model, the mean value of tangential component and the 
slope of normal component of magnetic memory signals do 
not vary with the stress. The theoretical results from residual 
magnetization model and Jiles magnetomechanical model 
can both reflect the variation trend of characteristic value 

Table 4  Abilities of several forward models to predict MMM signals for non-defective specimens (points: experiment; line: theoretical predic-
tion) [54]. Copyright @ 2017 International Journal of Mechanical Sciences
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with the increasing stress, but there has a significant differ-
ence between the theoretical results and the experimental 
data for the low stress state. Compared with other classical 
models, the new calculated results agree quantitatively well 
with experimental data, and the MMM signals are described 
quantitatively well.

In addition, combining with the finite element method, 
the theoretical analysis of magnetic memory method can 
be obtained for ferromagnetic specimens with defects. The 
results from the proposed magnetomechanical model [54] 
were more coincident with the experimental data for dif-
ferent size of defects as shown in Fig. 29a. The validity of 
proposed magnetomechanical model to different load case 
was performed as shown in Fig. 29b. Comparison with the 
previous Jiles model shows that proposed magnetomechani-
cal model is quite coincident with the experimental data for 
different stress states [54]. Figure 30 also showed the com-
parison of the theoretical prediction and the experimental 
results for slope change behavior of magnetic memory sig-
nal normal component for various ferromagnetic materials, 
which shows that the proposed magnetomechanical model 
is applicable for various ferromagnetic materials.

The new nonlinear forward model can reflects accu-
rately how the MMM signals of ferromagnetic materials 
vary under various operating conditions. This is because 
the magnetomechanical constitutive relationship that the 
established reflects accurately how the magnetization of 
ferromagnetic materials varies under the combined action 

Fig. 29  Comparison between 
predicted results and experi-
mental data for MMM signals 
measured near surface of ferro-
magnetic material with circular 
hole defects: a MMM signals; b 
P-P value of MMM signals [54]. 
Copyright @ 2017 International 
Journal of Mechanical Sciences
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of magnetic field and stress [83]. Starting from the Gibbs 
free energy of ferromagnetic materials and combined with 
the magnetization of ferromagnetic materials and Rayleigh’s 
law, Shi et al. [83] proposed a magnetomechanical constitu-
tive relation for weak magnetic fields. Comparing with the 
classic experiments by Craik and Wood [26] shows that the 
new constitutive relation agrees well with experiment and 
reflects accurately the magnetization behavior of ferromag-
netic materials under compressive stress. Figure 31 com-
pares the predictions of the new constitutive relation with 
Craik and Wood’s experimental results [26] and with the 
predictions of other theoretical models. Compared with the 
Jiles constitutive relation, the theoretical results of the new 
constitutive relation are more consistent with the experimen-
tal results, especially under compressive stress. In addition, 
the new constitutive relationship reflects more accurately 
how the magnetization varies with stress in a weak magnetic 
field. In Fig. 32, the magnetomechanical curves of ferromag-
netic materials under different initial magnetization states 
predicted by the newly constructed constitutive relation are 
compared with experimental data. It can be seen that this 
model reflects well how different initial magnetization states 
influence the magnetomechanical curve of ferromagnetic 
materials and agrees well with the experimental results.

Based on the magnetomechanical constitutive relation 
[83] and nonlinear forward model [54], Wu et al. [127] per-
formed a theoretical analysis to perfectly explain the influ-
ence of stress distributions on 3D MMM signals for a wide 
plate tensile specimens without and with a defect. Shi et al. 
[92] further established a magnetomechanical constitutive 
relation for ferromagnetic materials considering the effects 
of temperature, elastoplastic state, and a weak magnetic 
environment. Using this constitutive relation, they estab-
lished a nonlinear thermal–magnetic–elastic–plastic cou-
pling forward model for MMM detection. Comparison with 
experimental data confirmed that the theoretical model is 

accurate in describing how thermal–magnetic–elastic–plas-
tic coupling factors influence the MMM signal in a com-
plex environment. Recently, Zhang et al. [128] extended the 
magnetomechanical model to be applicable to magnetocrys-
talline anisotropy to study the angle effect on the MMM 
method.

5.2  Fatigue Process

The MMM method faces some new challenges in practical 
applications. For example, the components in actual situa-
tions are often subjected to long-term cyclic loading, and 
MMM signals often change with the number of cycles. This 
means that the selection of feature quantities for damage 
determination and the formulation of quantitative schemes 
must also consider the effect of the number of cycles. There-
fore, it is necessary to study how MMM signals evolve under 
cyclic loading.

5.2.1  MMM Signals in Fatigue Tests of Non‑defective 
Specimens

First, the results of measuring MMM signals in fatigue tests 
of non-defective specimens are introduced. Yuan et al. [129] 
conducted dynamic tensile tests on Q235 steel specimens 
and found that the number of cycles of elastic loading had no 
significant effect on the MMM signal; when the load ampli-
tude was increased to produce plasticity, how the MMM sig-
nal varied with stress was opposite to that of elastic loading. 
Yan et al. [130] studied how the MMM signal from 20G pipe 
steel varied in a tensile fatigue test; the results showed that 
the MMM method was effective at determining the location 
of stress concentration in the material. Duan et al. [131] 
performed repeated loading–unloading tensile tests on round 
bar specimens made of 40Cr steel to determine the relation-
ship between the MMM signal and tensile stress, and they 
found a magnetomechanical reversal when a specimen was 
subjected to a force that exceeded the yield strength. Shi 
et al. [132] studied the law governing the variation of the 
MMM signal from the surface of an 18CrNi4A specimen 
based on a tensile fatigue test, as shown in Fig. 33; for an 
non-defective test piece, the slope of the normal component 
of the MMM signal increased gradually with the number 
of loadings.

5.2.2  MMM Signals in Fatigue Tests of Defective Specimens

Here, the results of measuring MMM signals in fatigue 
experiments with defective specimens are introduced. 
Wang et al. [133] measured and analyzed how the MMM 
signal from no. 45 steel varied during the propagation of 
fatigue cracks. Wang et al. [134] investigated the mecha-
nism for the generation and accumulation of MMM signals 

Fig. 32  Comparison between theoretical prediction and experimental 
data for magnetomechanical behavior under different initial magneti-
zations [83]. Copyright @ 2016 Journal of Applied Physics
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based on cyclic-loading experiments on Q235 specimens. 
Dong et al. [135] studied (i) how the MMM signal from 
low-carbon steel varied under cyclic stress and (ii) how 
that from a defective 18CrNiWA specimen varied during 
the entire defect expansion [136]. Shi et al. [137] studied 
how the normal component of the MMM signal varied 
under tensile fatigue for defective 18CrNi4A specimens. 
Chen et al. [138] conducted tensile fatigue tests on no. 45 
steel with dents. They found that the MMM signal first 
increased gradually with the number of cycles, then sta-
bilized, and finally increased rapidly until fracture. Leng 
et al. [139] studied how the MMM signal varied during 
tension fatigue for no. 45 steel with V-groove defects; the 
results showed that local shaping strain or microscopic 
damage could cause nonlinear changes in the MMM 

signal. Xing et al. [140] conducted fatigue tests on Q235 
steel with rectangular defects; the results showed that 
the gradient tensor of the MMM signal was effective for 
characterizing the degree of damage in the ferromagnetic 
material. Huang et al. [141–144] measured the MMM sig-
nal from Q345 steel during crack propagation under cyclic 
compressive stress. Li et al. [145] studied how the MMM 
signal from the surface of no. 45 steel with penetrating 
flaws varied during fatigue loading, as shown in Fig. 34. 
The MMM signal increased gradually with the number 
of loadings and turned over when the specimen break. 
Kolarik et  al. [146] combined the MMM method and 
the magnetic Barkhausen method to examine the fatigue 
behavior of S355J2G3 steel with rectangular grooves. Li 

Fig. 33  Change of MMM signal 
measured near surface of mate-
rial with loading time: a speci-
men shape and measured path; 
b gradient |k| of magnetic signal 
at different cycles of specimen 
[132]. Copyright @ 2010 NDT 
& E International
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et al. [147] conducted an experimental study of the MMM 
signals from X80 pipe steel during fatigue.

5.2.3  Fatigue Tests Under Other Loading and Signals 
Evolution

The above experiments were focused mainly on fatigue 
under tension and compression. However, researchers have 
also conducted fatigue tests under bending and torque. Hu 
et al. [148] studied how the MMM signals from specimens 
with grooves varied during bending fatigue. Huang et al. 
[149, 150] measured and analyzed the MMM signal from 
structural steel undergoing dynamic bending during the 
propagation of fatigue cracks. Leng et al. [151] measured the 
MMM signal from the surface of an non-defective specimen 
of no. 45 steel in a bending fatigue test, and the results are 
shown in Fig. 35. It can be seen that the amplitude and slope 
of the normal component of the MMM signal decreased 
gradually and then increased with the number of bending 
loadings. Subsequently, Xu et al. [152, 153] also studied 
how the MMM signal from specimens of no. 45 steel with 
flaws varied with the number of bending loadings and how 
the MMM signals from non-defective Q235 steel speci-
mens varied under tensile fatigue. Li et al. [154] studied the 
MMM signal from 1045 steel under rotational torque, and 
Hu et al. [155] studied the MMM signal from 35CrMo steel 
during four-point bending fatigue. Qian et al. [156] estab-
lished an interface force-magnetic constitutive model based 
on Timoshenko beam theory and the Jiles magnetization 
constitutive relation, and they explained the MMM signal 
caused by an interfacial crack under a three-point bending 
load. Moreover, Qian and Huang [157] further established a 
fatigue cohesive zone-magnetomechanical coupling model 
to evaluate the interfacial crack. The model confirms that 
the interfacial crack propagation length a and the maximum 
magnetic field intensity Hmax both increase with increasing 
loading cycles.

In addition, Bao et al. [158–162] studied how the mag-
netic induction intensity measured near the surface of steel 

varies under strain control fatigue loading, as shown in 
Fig. 36. Bao et al. [163] measured the magnetic induction 
during the fatigue loading of specimens, as shown in Fig. 37. 
The results showed that the curve of strain (stress) versus 
magnetic induction strength at any point near the material 
surface was a loop during any cyclic loading. With more 
cyclic loadings, the magnetic induction intensity at any point 
increased rapidly and then stabilized. As such, the magnetic 
induction characterizes well the three stages of cyclic fatigue 
of ferromagnetic materials.

5.3  Natural Magnetization Method

In 1997, a research team at the Japan Nuclear Energy 
Research and Development Agency found that after intro-
ducing fatigue cracks in SUS304 austenitic stainless steel, 
no artificial magnetic field was applied to the external mag-
netic field and a significant change in magnetic field was 
detected near the crack. That is, magnetization induced by 
fatigue damage occurred in the material [164]. Chen et al. 
[164–167] conducted theoretical and experimental research 

Fig. 35  Changes in MMM 
signal with number of bending 
cycles under a bending moment 
of a 17.4 Nm and b 20.4 Nm 
[151]. Copyright @ 2009 NDT 
& E International
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into this magnetization induced by damage in austenitic 
stainless steel. They applied different plastic deformations 
and fatigue damage to specimens of no. 304 austenitic stain-
less steel and used ultra-small fluxgate sensors to measure 
how the leakage magnetic field changed in the vicinity of the 
specimen after loading/unloading. The results showed that 
for large plastic deformation, a local austenite–martensite 
(magnetic) phase transition occurred at the cross-slip point 
in SUS304 stainless steel, which may have been the induce-
ment of magnetization by austenitic stainless-steel damage. 
Based on the method of magnetic-charge-distribution inver-
sion, the correlation among damage distribution, damage 
degree, and magnetic-charge distribution and amplitude was 
studied.

The mechanisms whereby magnetization is induced by 
damage in austenitic stainless steel and ordinary carbon 
steel may be quite different. Li et al. [166] studied the rela-
tionship between the induced magnetic field and different 
forms and degrees of damage. They analyzed by various 
means how plastic deformation affected the damage-induced 

magnetization, and investigated how the magnetic environ-
ment influenced the damage-induced magnetic field. In 
particular, they established the relationship between plastic 
deformation and the ferromagnetic martensitic phase content 
induced by deformation under experimental conditions, and 
found a linear correlation between the deformation-induced 
ferromagnetic martensite phase content and the damage-
induced magnetization amplitude as shown in Fig. 38. This 
work shows that the degree of damage to austenitic stainless-
steel materials can be detected and evaluated by detecting 
the strength of the natural-magnetization leakage magnetic 
field. They also proposed various nondestructive testing 
methods [168] for testing the mechanical damage in austen-
itic stainless-steel materials.

Fig. 37  Variation of magnetic induction intensity with number of stress loadings: a Q345 steel; b U75V steel [163]. Copyright @ 2016 Experi-
mental Mechanics

Fig. 38  Relationship between 
magnetic charge amplitude and 
a martensite content induced by 
damage and b local maximum 
deformation [166].Copyright @ 
2011 Journal of Applied Physics
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6  Problems and Research Trends

6.1  Influencing Factors

Many factors influence MMM signals, and there has also 
been experimental research into those factors. Yan et al. 
[169] designed an experiment to study how the detection 
time-interval and position influence the MMM signal; the 
results showed that while the detection time interval had 
no effect on the MMM signal, the signal different greatly 
according to the detection position. Zhong et al. [170] and 
Hu et al. [171] studied how environmental magnetic fields 
affect MMM signals; they concluded that the MMM sig-
nal from a ferromagnetic material under a given stress 
will invert as the environmental magnetic field gradually 
increases, as shown in Fig. 39a. Bao et al. [172, 173] found 
that the MMM signal from U75V steel depended on not 
only the existing damage state but also the plastic defor-
mation caused by the load history; as shown in Fig. 39b, 
they found that the loading speed also affected the MMM 
signal measured near the surface of the specimen. Li et al. 
[117] designed an experiment to study how the lift-off 
value affects the MMM signal, as shown in Fig. 39c; the 
amplitude of the MMM signal from the surface of the test 
piece decreases gradually with the lift-off value. Recently, 

Huang et al. [174] showed experimentally that temperature 
is another key factor affecting MMM signals, as shown 
in Fig. 39d. Xu et al. [175] studied experimentally how 
welding-defect depth, stress state, and heat-treatment type 
influence the MMM signal, and Singh et al. [176] showed 
that the deformation-induced MMM signal is influenced 
also by shot peening.

Therefore, a key aspect that is restricting further devel-
opment of the MMM method is how to avoid the interfer-
ence of external environmental factors and thereby obtain 
an MMM signal that reflects accurately the location and 
degree of the damage in ferromagnetic materials. In sum-
mary, although experiments have shown that many factors 
affect MMM signals, the current theoretical models of 
MMM signals are not effective at describing how tempera-
ture, initial magnetization, and loading speed affect MMM 
signals. Therefore, further study is necessary of multi-field 
coupling constitutive relation and quantitative theories of 
MMM signals in complex detection environments.

6.2  Quantitative Identification of Defects

It is necessary to determine whether a ferromagnetic struc-
ture contains defects, and the defect size and morphology 
must be given accurately to confirm whether the structure 

Fig. 39  Factors affecting MMM 
signals: a environment magnetic 
field; [170] Copyright @2010 
Nondestruct Test Evaluation; b 
loading speed; [172] Copyright 
@2015 Insight Nondestruct 
Test Condition Monitor; c lift-
off value; [117] Copyright @ 
2012 Nondestructive Testing d 
temperature [174]. Copyright 
@ 2016 IEEE Transactions on 
Magnetics
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is safe. A basic problem in quantitative MMM research is 
quantitative analysis of the location and size of defects based 
on MMM signals. Table 5 summarizes the progress that has 
been made in quantifying defects using electromagnetic non-
destructive testing methods.

The most direct method for determining defects quantita-
tively is linear mapping, but that method has been found to 
be unsuitable for the combined changes of multiple defect 
parameters [177]. This is because the linear relationship 
between defect parameters and signal characteristics is no 
longer satisfied when multiple defect parameters change 
together. When there are multiple defect parameters, the 
relationship between those parameters and the signal char-
acteristics becomes more complicated, in which case intel-
ligent algorithms such as neural networks [178] and machine 
learning [179, 180] are commonly used. Relevant research 
results show that when a neural network is used to construct 
the mapping relationships, the inversion accuracy depends 
on the level of neural network constructed strongly, and the 
signal noise that is inevitable in practice can seriously affect 
the inversion accuracy.

In addition, researchers often use optimization inver-
sion methods to determine defects quantitatively, as shown 
in Fig. 40. By using an optimization algorithm, the defect 
parameters can be adjusted to minimize the error between 
the theoretical signals and the prediction signals, where-
upon the defect parameters can be evaluated theoretically. 
Researchers have established various algorithms for solv-
ing the inverse problem of electromagnetic nondestructive 
testing methods such as the magnetic-flux-leakage testing 
method and the eddy-current testing method. The commonly 
used optimization inversion method is a stochastic optimiza-
tion algorithm such as a genetic algorithm [181], Bayesian 
estimation [182], particle swarm algorithm [183, 184], the 
Monte Carlo Markov-chain algorithm of Bayesian theory 
[185]. When these stochastic optimization algorithms per-
form inversion analysis on the defect parameters, the inver-
sion result depends on the search range and the search step 
length, and the amount of calculation increases exponen-
tially with the number of inversion parameters. In addition, 
other important methods for solving the inverse problem 
are based on the gradient optimization algorithm [186–191]. 
These inversion methods are compared in Table 5. Com-
pared with other algorithms, the gradient optimization 
algorithm has the advantages of (i) being suitable for multi-
parameter inversion, (ii) having fast convergence and high 
accuracy, (iii) undergoing small changes in computational 
complexity with more inversion parameters, and (iv) signal 
noise having a little influence on the inversion results.

Chen et al. used the conjugate-gradient iterative algorithm 
to study systematically the reconstruction of the complex 
defect topography encountered in eddy-current testing and 
magnetic-flux-leakage detection. The flow of this algorithm Ta
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is shown in Fig. 40. However, for the lack of quantitative 
quantification of MMM methods, it remains impossible 
to analyze quantitatively the extent, morphology, and size 
of stress-concentration areas or defects, which seriously 
restricts the application of MMM methods in engineering. 
Analyzing the gradient iterative algorithm proposed by Chen 
et al. [188] shows that it cannot guarantee that the search 
direction satisfies the conjugate feature, and the values of 
the iterative parameters in the defect topology estimation 
affect the convergence of the iterative algorithm. Shi et al. 
[25] established a method for reconstructing the identifi-
cation of stress and defects based on conjugate-gradient 
inversion and described the inversion problem of the MMM 
method in detail. The objective function to be optimized 
for the inversion problem was determined and an iterative 
algorithm for inversion was established. In combination with 

previous MMM experimental signal reconstruction analysis 
of defects, it was confirmed that a hole defect of 6 mm in 
radius could be effectively reconstructed using the MMM 
signal, as shown in Fig. 41. In particular, the feasibility of 
quantifying early damage using MMM signals was veri-
fied for the first time. To date, researchers have conducted 
only preliminary studies of the quantitative identification of 
stress and defects, and further relevant quantitative research 
is needed. Such researches will have important theoretical 
and practical significance for promoting the application of 
MMM methods.

Fig. 40  Inversion problem-
solving process. Copyright @ 
2018 IEEE Transactions on 
Magnetics

Fig. 41  Inversion analysis of 
size and location of circular 
hole defect: a inversion results 
and MMM experimental sig-
nals; b true, initial, and recon-
structed defect morphology 
[25]. Copyright @ 2018 IEEE 
Transactions on Magnetics
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6.3  MMM Applications

The method of MMM testing has been widely used as a 
strictly defect detection method focused on finding the exist-
ing material discontinuities, and has been used to define the 
areas in the component which are most prone to the poten-
tial development of discontinuities. The MMM method has 
been widely used in residual life assessment and engineer-
ing inspection of the power equipment, oil and gas pipeline, 
chemical industry; metal structures; mechanical engineering 
and other fields.

Dubov [192] presented a comprehensive examination of 
blade slots, disks, blade roots, and their attachment assem-
blies using the MMM method. As shown in Fig. 42a, the 
checking scheme according to disk rims and Fig. 42b given 
the typical distribution of the MMM field in the stress con-
centration zone revealed on the disk rim in the all forged part 
of a rotor. The experimental results confirmed the good effi-
ciency of using MMM methods. Dubov and his colleagues 
[193–195] considered the possibilities for the application of 
the MMM method for assessment of the stress–strain state 
and non-destructive testing of oilfield pipeline and gas pipe-
lines, as shown in Fig. 43. Li et al. [196] studied the calcu-
lation scheme of MMM signal for pipeline defect detection 

with a relatively large lift-off distance based on magnetic 
dipoles. By comparing the calculation results with the meas-
ured signals, the phenomenon of signal abruptness caused by 
defects was initially explained. Liu et al. [197–199] studied 
the application of MMM method in the internal stress dam-
age and axial crack in long-distance oil and gas pipelines.

Gear is the basic component of a mechanical transmission 
system. The detection of gear cracks is critical to ensuring 
the safety and reliability of the entire mechanical transmis-
sion system. Kang et al. [200] studied the application of 
MMM method in gear micro crack detection. Based on the 
static testing and dynamic detection with load, the detection 
position and load effect on detection results of micro crack 
on the side of an actual gear are analyzed. Roskosz and his 
colleagues [201–203] investigated how to use MMM method 
to find defects of the toothed gears in the early stages of 
the development. Figure 44 shows the actual toothed gears 
after failure and its MMM signal. Studies have shown that 
there are some correlations between the number of cycles 
of load change, the value of the load and the distribution on 
the tooth width, and the value of the magnetic field compo-
nent. And then, some symptoms of anticipated dental fatigue 
damage can be observed in the distribution of MMM signal.

Fig. 42  Disk rims detection and 
stress concentration induced 
MMM signal. a Schematic 
arrangement for checking disk 
rims. b Typical distribution of 
the residual magnetization field 
H along the disk rim [192]. 
Copyright@2010, Thermal 
Engineering

Fig. 43  Assessment of the 
material state and weld quality. 
a Execution of gas pipeline 
testing. b Weld inspection pro-
cedure [195] Copyright@2012, 
Welding in the World
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Welding technology is an indispensable processing 
technology in high-quality and high-efficiency manufac-
turing technology in modern industry. Non-destructive 
testing of welding quality based on MMM method has 
been applied to ensure the safe operation of welded struc-
tures. Dubov and Kolokolnikov [204, 205] carried out 
comprehensive MMM testing of base metal and welded 
joints of welded steel structures and steam turbine parts, 
as shown in Fig. 45. By comparing with the small hole 
stress testing method, Li et al. [206] demonstrated that the 

magnetic field abnormality near the ferromagnetic mate-
rial surface could be used for residual stress inspection 
of a welding seam in the tube specimen. Li et al. [207] 
introduced a method based on continuous wavelet trans-
form energy spectrum to analyze the locating of welding 
cracks. Yang et al. [208] carried out the fatigue tests for 
Q345B and Q345qC welding and non-welding specimens 
and tested the MMM signal. Qi et al. [209] used the MMM 
technique to locate the region with high residual stress, 
and tested the stress in a welded steel ship plate based on 

Fig. 44  The actual toothed gears after failure (a) and its MMM signal (b) [201], Copyright@2010, Journal of achievements in materials and 
manufacturing engineering

Fig. 45  Testing scheme of 
welded joint by using a special 
scanning device. a The three 
components measurement of 
the MMM signal, b special 
scanning device for testing of 
welded joints [204] Copy-
right@2014, Welding in the 
World

Fig. 46  Measurement of MMM 
signal for Civil steel struc-
ture (a) a steel beam testing 
[212], Copyright@2016, The 
Structural Design of Tall and 
Special Buildings (b) a inclined 
steel box girder testing [213], 
Copyright@2020, International 
Journal of Applied Electromag-
netics and Mechanics
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the magnetic Barkhausen Noise technique. Su et al. [210] 
measured the normal component of the MMM field for 
the defective and non-defective butt welded Q345 steel 
specimens.

The MMM method has been also applied to the non-
destructive testing of metal structures in mechanical and 
civil engineering and other fields. Agnieszka et al. [211] 
considered the continuous inspection of crane’s structure 
using the MMM method, and analyzed the influence of 
varying load and trolley position on the MMM signal com-
ponents. Wang et al. [212] measured the MMM signals of 
four-point flexural tests under different loads for a flange 
and web of a steel beam, as shown in Fig. 46a. As shown 
in Fig. 46b, Su et al. [213] carried out a four-point bending 
tests for a inclined steel box girder to distinguish the effect 
of normal stress and shear stress on MMM field. Dong et al. 
[214] carried out a bending fatigue bench tests to collect 
MMM signal during fatigue process, as shown in Fig. 47. In 
addition, Lesiak and Radziszewski [215, 216] discussed the 
application of the MMM method in rail transport.

7  Conclusions

As a nondestructive testing technology, the MMM method 
has been under development for over 20 years. It has shown 
excellent application prospects in early diagnosis and life 
prediction for ferromagnetic components, and it has been 
recognized widely by experts and researchers. To date, 
researchers from all over the world have made some progress 
in theoretical research, instrument and equipment research 
and development, experimental research, damage assess-
ment, and engineering inspection applications of the MMM 
method. However, the method still has many problems to 
be solved in the analysis of influencing factors, detection 
repeatability and reliability, and quantitative evaluation. (1) 
Systematic research is still needed on the theoretical sys-
tem of the MMM method, as does on the corresponding 

quantitative relationship between the MMM signal and the 
defect geometry for use in detection. (2) Experiments have 
shown that many factors affect MMM signals. To date, theo-
retical models of MMM signals cannot yet consider fully the 
combined effects of temperature, environmental magnetic 
field, initial magnetization, loading form, and other factors 
on the MMM signal. (3) Existing criteria for damage deter-
mination often fail in practical applications. One of the main 
reasons is that because the tested structure is often subjected 
to long-term cyclic loading in actual situations, the MMM 
signal and its characteristic quantity both change with the 
number of cycles.

Given the current research problems, follow-up stud-
ies are required. (1) There is an urgent need to establish 
a systematic and complete theoretical system for the 
MMM method, from magnetomechanical modeling based 
on microscopic phenomena to quantitative analysis of 
macroscopic MMM signals and finally to quantitative 
evaluation of residual stress/defects for inspection-ori-
ented applications. (2) More research is needed into the 
multi-field coupled constitutive relation and a quantitative 
theory of MMM signals in complex detection environ-
ments. Research is also needed into how temperature, the 
external magnetic environment, loading form and velocity, 
initial magnetization, elasto-plastic state, and other factors 
influence the MMM signal, as well as the physical mecha-
nism whereby these factors are coupled. (3) An in-depth 
quantitative theoretical study is required of how MMM 
signals evolve during fatigue, whereupon the MMM detec-
tion data obtained during a long fatigue process could be 
described quantitatively. In combination with the law for 
how MMM signals evolve and using the correlation of data 
in the fatigue process to predict how the damage devel-
ops, some new criterion of the MMM method for damage 
considering fatigue would be developed, and this would 
greatly improve the practical applicability of the method.

The MMM method is a nondestructive testing method 
that can detect early damage in a material, and it has wide 
application prospects. Continued pioneering in-depth 

Fig. 47  Life prediction of 
crankshaft remanufacturing 
core. a Photo of resonance 
bending fatigue test machine 
for Crankshaft. b Variations of 
peak value of Hx parameters 
of MMM signals with the 
cycles [214] Copyright@2013, 
Advances in Manufacturing
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studies are expected to make more breakthroughs in the 
detection mechanism of the MMM method, the establish-
ment and extraction of MMM signal features, and quanti-
tative evaluation and damage assessment. These advances 
will allow the MMM method to contribute fully to the 
early damage pre-diagnosis of ferromagnetic materials and 
enable the method to better serve engineering applications. 
In addition, taking this opportunity of studying the MMM 
method will promote the development of applied physics, 
ferromagnetics, mechanics, nondestructive testing, and 
other disciplines.
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