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Abstract
Fuzzy measure entropy (FuzzyMEn) is a recently improved non-linear dynamic parameter for evaluating the signals’ com-
plexity. In comparison with fuzzy entropy (FuzzyEn), which only emphasizes the local characteristics of the signal but 
neglects its global trend, FuzzyMEn can reflect not only the local but also the global characteristics of the signal. Therefore, 
by calculating the FuzzyMEn values in different scales, the multi-scale fuzzy measure entropy (MFME) method is put forward 
in this paper and used for extracting the fault features from vibration signals of rolling bearing. After the feature extraction, 
the newly developed infinite feature selection (Inf-FS) method is employed to choose the most representative features from 
the original ones of high dimension. Finally, a new rolling bearing fault diagnosis approach is presented based on MFME, 
Inf-FS and support vector machine (SVM). The experimental analysis indicates that the presented approach can realize the 
rolling bearing fault diagnosis effectively.
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1  Introduction

To guarantee safe operation in production and reduce eco-
nomic losses resulted from equipment failure, fault diag-
nosis for the rotary machines are becoming more and more 
important. Rolling bearing has been extensively used in the 
rotatory machineries, and bearing failure is one of most fre-
quent fault sources. This vital component needs working 
highly reliably to reduce failure occurrences and unexpected 
machine breakdowns [1, 2]. Hence, it is significant to effec-
tively inspect the occurrence of bearing fault. The vibration 
signal analysis method has been widely utilized to inspect 
and diagnose bearing faults because the vibration signals 
contain rich information for comprehending phenomenon 
associated with the working conditions of rolling bearing 
[3–5].

However, the measured vibrational signals are considered 
as nonlinear and non-stationary [6–8], which makes the fault 

feature extraction from these complicated signals a chal-
lenge. In view of the characteristics of nonlinearity and non-
stationarity, nonlinear parameter estimation methods have 
been applied to extract state-related information buried in the 
bearing vibrations. Therein, appropriate entropy (ApEn) [9] 
was introduced by Yan and Gao [10] for the health monitor-
ing of rolling bearing because of containing rich time-related 
information and efficient computation. Unfortunately, the 
calculation of ApEn is effected heavily by length of the data 
and the corresponding estimated value is uniformly lower 
than the expected one [11, 15]. To address the limitations 
of ApEn, Richman and Moorman [11] put forward sample 
entropy (SampEn), which can obtain a better performance 
than ApEn. Nevertheless, Heaviside function was utilized to 
define the similarity degree of vectors in both SampEn and 
ApEn, which has a rigid and discontinuous boundary [12]. 
Consequently, Chen et al. [12, 13] developed fuzzy entropy 
(FuzzyEn) by substituting the exponential function for the 
Heaviside function. Compared with SampEn, FuzzyEn has 
a better statistical stability and is more suitable to measure 
the signal complexity because of continuous boundaries 
of fuzzy functions. Hence, Zheng et al. [14] and Zhu et al. 
[15] used it to assess the bearing vibration signals’ com-
plexity. However, FuzzyEn only emphasizes the local char-
acteristics of the signal and neglects its global fluctuation 
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[16]. Therefore, Liu et al. [16] proposed the fuzzy measure 
entropy (FuzzyMEn) algorithm, which can reflect not only 
the local but also the global characteristics of the signal. 
Compared with FuzzyEn, FuzzyMEn achieved better dis-
crimination ability and was successfully utilized to analyze 
the heart rate variability [16]. Considering the advantage of 
FuzzyMEn over FuzzyEn, we introduce FuzzyMEn to the 
field of bearing fault diagnosis.

Nevertheless, SampEn, FuzzyMn and FuzzyMEn are all 
designed to measure the signal complexity in one single 
scale. In order to analyze the signal complexity on multiple 
time scales rather than on only one scale, the multi-scale 
analysis method was proposed by Costa et al. [17, 18]. The 
multi-scale entropy approach was then used for the fault 
diagnosis of rolling bearing [19, 20]. Similarly, the multi-
scale fuzzy entropy (MFE) was developed by Zheng et al. 
[21]. Based on MFE, Li et al. [22] proposed an improved 
MFE method for extracting bearing fault features. In this 
paper, combining the merits of both FuzzyMEn and multi-
scale analysis, we presented a multi-scale fuzzy measure 
entropy (MFME) method to acquire condition-related infor-
mation buried in the bearing vibration signals.

Naturally, after feature extraction using MFME, an intel-
ligent classifier is required to complete the fault recognition 
based on the extracted features. The classification perfor-
mance is highly dependent on the quality of the used fea-
tures which are input to the classifier. The fault feature set 
obtained from the bearing signals using MFME method is 
of high dimension and it contains irrelevant or redundant 
features, which makes the recognition process time-con-
suming and decrease the identification rate. Therefore, it is 
critical to select the most informative features to improve 
the classification efficiency as well as recognition accuracy 
[23]. Recently, an effective approach called infinite feature 
selection (Inf-FS) [24] was proposed to select the best fea-
tures according to their importance. The most appealing 
characteristic of Inf-FS is that it evaluates the importance 
of a given feature while considering all the possible subsets 
of features [24]. For this reason, in this study, the Inf-FS 
method is adopted to choose the most representative features 
from the MFME features of bearing vibration signals.

Finally, after feature selection using the Inf-FS method, 
a multi-class classifier is exploited to automatically identify 
different bearing working conditions. Over the past dec-
ades, a variety of classification techniques have been used 
in mechanical fault diagnosis field. Among them, support 
vector machine (SVM) [25, 26] is the most extensively used 
ones. On the basis of statistical learning theory, SVM is suit-
able to deal with situations with small-quantity samples. At 
the same time, SVM has good generalization ability and can 
ensure the local and global optimal solution exactly the same 
[27]. Because it has high accuracy and good generalization 

ability for a small number of samples [15, 27], SVM is 
adopted to fulfill the fault diagnosis of rolling bearing.

To sum up, a new fault diagnosis method for rolling bear-
ing is proposed based on MFME, Inf-FS and SVM in this 
paper. First, the MFME values of vibration signals of rolling 
bearing in various scales are calculated and treated as the 
original fault features. Then Inf-FS is employed to choose 
the most informative features from the original ones and the 
selected features are fed into the multi-class SVM classi-
fier. Subsequently, the different working conditions of roll-
ing bearings are identified by means of the outputs of the 
trained classifier.

2 � Multi‑scale Fuzzy Measure Entropy

2.1 � Fuzzy Entropy

The calculation steps of FuzzyEn are as follows [12, 15].

(1)	 For a time series with length N{u(i) ∶ 1 ≤ i ≤ N}, con-
struct the m-dimensional vectors Xm

i
 as

where Xm
j
 stands for a new time series, being general-

ized by subtracting the average of the m consecutive 
u values

(2)	 The distance between Xm
i
 and Xm

j
 is designated as

(3)	 The similarity degree Dm
ij

 can be obtained by using a 
fuzzy function

(4)	 Denote �m
i
(r) as

(5)	 The function �m(r) is defined as 

(1)X
m

i
= {u(i), u(i + 1),… , u(i + m − 1)} − u0(i) 1 ≤ i ≤ N − m + 1

(2)u0(i) = m−1

m−1∑
j=0

u(i + j)

(3)
dm
ij
= d

[
Xm
i
,Xm

j

]
= max

k∈[0,m−1]

|||
(
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)
−

(
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)|||

(4)Dm
ij
= �

(
dm
ij
, r
)

(5)�m
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(r) = (N − m − 1)−1

N−m∑
j=1,j≠i

Dm
ij

(6)�m(r) = (N − m)−1
N−m∑
i=1

�m
i
(r)
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(6)	 Similarly, the �m+1(r) is obtained by repeating the 
above procedures 

(7)	 Then define FuzzyEn of the sequence as 

(8)	 Finally, for a N with finite length, FuzzyEn can be com-
puted by 

The fuzzy function used in FuzzyEn was designated as

2.2 � Fuzzy Measure Entropy

FuzzyEn subtracts the mean of the original sequence seg-
ment, which causes it to neglect the global fluctuation in 
the signal. The FuzzyMEn uses both the fuzzy local and 
global measure entropy to assess the signal complexity and 
thus has better discrimination ability [16]. Considering this 
advantage, FuzzyMEn is introduced to evaluate the bear-
ing vibration signals’ complexity in this paper. The origi-
nal FuzzyEn is named as the fuzzy local measure entropy 
(FuzzyLEn). The difference between fuzzy global measure 
entropy (FuzzyGEn) and FuzzyLEn is the constitution of the 
vectors of m dimension [16], which is defined as

where ū0(i) is the average of the entire sequence

The other calculation steps of FuzzyGEn are the same as 
FuzzyLEn. Then, the FuzzyMEn of the sequence is defined 
as

2.3 � Multi‑scale Fuzzy Measure Entropy

The multi-scale fuzzy measure entropy (MFME) method 
was proposed in this paper. The steps of MFME method are 
listed as follows.

(1)	 Given the original sequence {u(i) ∶ 1 ≪ i ≪ N}, pre-
determine the embedding dimension m and the similar 

(7)�m+1(r) = (N − m)−1
N−m∑
i=1

�m+1
i

(r)

(8)FuzzyEn(m, r) = lim
N→∞

[
ln�m(r) − ln�m+1(r)

]

(9)FuzzyEn(m, r,N) = ln�m(r) − ln�m+1(r)

(10)�(d, r, n) = e−(d∕r)
n

(11)
Xm
i
= {u(i), u(i + 1),… , u(i + m − 1)} − ū0(i) 1 ≤ i ≤ N − m + 1

(12)ū0(i) = N−1

N−1∑
i=0

u(i)

(13)FuzzyMEn = FuzzyLEn + FuzzyGEn

tolerance r. Then, construct the consecutive coarse-
grained time series y(�)

j
 based on the equation

where τ represents the scale factor.
(2)	 For the same r, compute FuzzyMEn value for each 

coarse-grained time series. The FuzzyMEn values in 
different scales can be presented as the function of scale 
factors, and this process is called MFME analysis.

2.4 � Parameter Selection

Before the computation of MFME, five parameters need to 
be chosen, i.e., m, r, N, n, and τ, respectively. The detailed 
reconstruction of the dynamic process requires large embed-
ding dimension m. However, a too large m will result in 
information loss and it needs a very large N (10m–30m). Gen-
erally, m is set to 2. N is fixed to 2048 because the computa-
tion of entropy values is less dependent on data length. The 
width of the fuzzy function boundary is determined by the 
parameter r while the boundary gradient is determined by 
the parameter n. Based on the previous researches [9, 12], r 
is in the range of 0.1–0.25 multiplied by standard deviation 
(SD) and small integers be assigned to n. Here, r = 0.2SD is 
fixed while n = 2 is selected. Finally, set the max scale factor 
τ in MFME as 20.

3 � Infinite Feature Selection

In this study, the feature vectors are comprised of the fault 
features obtained using MFME in 20 scales. However, some 
of these extracted features may be relevant or redundant. 
Meanwhile, the high feature dimensionality will increase 
the time consumption and lower the classification accuracy. 
Hence, it is necessary to construct the low-dimensional 
feature vectors through selecting the most discriminating 
features. The merit of Inf-FS lies that it assesses the impor-
tance of a given feature while taking into account all pos-
sible subsets of the features [24]. Therefore, Inf-FS is used 
to complete the bearing fault feature selection.

Given a set of features F =
{
f (1),… , f (n)

}
, an graph G 

that is indirected fully connected can be built, in which each 
vertex corresponds to a feature and edges model pairwise 
relations among features. Let an adjacency matrix A repre-
senting G, the nature of the edges can be specified [24]: each 
element aij of A represents a pairwise energy term defined as

(14)y
(𝜏)

j
= 1∕𝜏

j𝜏∑
i=(j−1)𝜏+1

u(i), 1 ≪ j ≪
N

𝜏

(15)
aij = �max

(
�(i), �(j)

)
+ (1 − �)

(
1 −

|||Spearman
(
f (i), f (j)

)|||
)
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where α is a loading coefficient ∈ [0, 1], σ(i) is the standard 
deviation over the samples {x} ∈ f (i), and Spearman indi-
cates Spearman’s rank correlation coefficient [24]. A high 
pairwise energy shows that at least one feature among f(i) 
and f(j) is discriminative and there is a low correlation degree 
between them.

Let a finite path between vertices i and j be denoted as 
� =

{
v0 = i, v1,… , vl−1, vl = j

}
, which is simply a subset of 

the feature pairs along the path. Then, define the energy of 
γ as

 By expanding length of the path to infinity, the energy of 
the ith feature can be calculated

where V designates the vertices set, and Pl
i,j

 contains all the 
paths of length l between i and j [24]. However, the sum of 
infinite Al terms may lead to divergence. To guarantee the 
convergence of the infinite sum, a real-valued regularization 
factor is needed as follows

Consequently, by using the convergence property of the 
geometric power series of a matrix [24], š(i) can be effi-
ciently calculated

For each feature, the final energy scores can be obtained 
by marginalization of the quantity

It should be noted that the higher the final energy score, 
the more discriminative the feature, namely, the more impor-
tant the feature. Hence, a rank for the selected features can 
be obtained by sorting the š(i) energy scores in descending 
order. In this study, Inf-FS is utilized to choose the most 
significant features from the original feature set. The param-
eter α is initially set as 0.5 and its influence on the selection 
performance is investigated.

(16)�� =

l−1∏
k=0

avk ,vk+1

(17)s(i) =

∞�
l=1

�
j ∫ V

⎛
⎜⎜⎝
�
�∈Pl

i,j

��

⎞
⎟⎟⎠
=

∞�
l=1

�
j∈V

Al(i, j)

(18)š(i) =

∞∑
l=1

∑
j∈V

rlAl(i, j)

(19)Š = (I − rA)−1 − I

(20)š(i) = [Ŝe]i

4 � The Proposed Bearing Fault Diagnosis 
Approach

By combining the merits of MFME, Inf-FS and SVM, a new 
fault diagnosis approach for rolling bearing is proposed as 
follows.

(1)	 The vibration signals of rolling bearing under different 
running states are acquired by using an accelerometer.

(2)	 The MMFE values for each bearing vibration signal are 
calculated over 20 scales, and then the 20 features are 
used to form the original feature vector.

(3)	 Inf-FS is utilized to rank the primary 20 features based 
on their importance. The first few features are selected 
as the most discriminative features and treated as the 
new feature vector of low dimension.

(4)	 The new low-dimensional feature subsets are input into 
the multi-class SVM classifier and the rolling bearing 
fault diagnosis is fulfilled automatically.

5 � Experimental Verification

5.1 � Experimental Data

The vibration data obtaining from bearing data center of 
Case Western Reserve University [28] are used in this paper. 
The description of the data acquisition apparatus can be 
found in detail in the aforementioned literature. The bear-
ing vibration data under the 0 horsepower load with the cor-
responding speed of 1797 rpm were used for analysis. The 
data description is presented in detail in Table 1.

5.2 � Results and Analysis

To demonstrate the effectiveness of the proposed bearing 
fault diagnosis method, experimental analyses are carried 
out. In view of various fault types and fault diameters, the 

Table 1   Experimental data description

Fault type Fault 
severities 
(mm)

Number 
of training 
data

Number 
of testing 
data

Label of 
classifica-
tion

Normal 0 20 30 1
Inner race fault 0.1778 20 30 2

0.5334 20 30 3
Out race fault 0.1778 20 30 4

0.5334 20 30 5
Ball fault 0.1778 20 30 6

0.7112 20 30 7
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bearing fault diagnosis is actually a seven-class identification 
problem. The data set contains totally 350 data samples. 20 
samples for each bearing state, a total of 140 samples are 
selected randomly as training data while the rest 210 are 
treated as testing data.

The temporal waveforms of bearing vibration signals are 
given in Fig. 1. As can be seen, it is difficult to identify 
various bearing states accurately based only on the time 
domain waveform, so it is necessary to further process the 
raw vibration signals. Since MFE focused only on the sig-
nals’ local characteristics and neglected the global trend in 
it, it may exhibit its limitation in bearing fault feature extrac-
tion. Based on this consideration, the MFME is introduced 
to acquire more condition-related information from bearing 
vibration signals.

The MFME values over 20 scales corresponding to the 
vibration data illustrated in Fig. 1 are given in Fig. 2. It can 
be observed that, for most scales, the largest entropy val-
ues of vibration signals appear when the bearing runs under 
healthy state, which shows that the healthy signals are more 
complex than the faulty ones. This phenomenon could be 
interpreted in the following way [21]. The vibration over 

most scales has self-similarity, and is random and irregu-
lar when the rolling bearing runs under good state. On the 
contrary, the self-similarity and regularity of the vibration 
signals will arise when bearing runs with fault, leading to 
lower entropy values.

However, if all the MFME values of 20 scales are 
employed to form the feature vector, the redundant fault 
information will be inevitably contained in the high-dimen-
sional fault feature set. Meanwhile, features of high dimen-
sion will make the process of fault diagnosis time-consum-
ing. For this reason, in order for dimension reduction, Inf-FS 
is introduced to select the most representative features by 
ranking the original 20 MFME values. Based on Inf-FS, the 
rearranged order of the 20 features is: 4, 17, 3, 18, 16, 8, 7, 
5, 19, 15, 20, 14, 13, 2, 6, 11, 12, 9, 10 and 1. The new order 
of the features over different scales is presented in Fig. 3.

After the feature selection, the selected features of train-
ing samples are utilized to form the new feature vectors and 
train the multi-class SVM classifier, where the kernel of 
radial basis function (RBF) is adopted because of its merits 
[29]. The optimal parameters in RBF-SVM are obtained by 
means of the cross-validation approach. After training, the 

Fig. 1   Temporal waveforms of 
bearing vibration signals
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newly selected features of test data are fed into the trained 
classifier, and the recognition results of test data versus the 
number of selected features are given in Table 2. As is pre-
sented in Table 2, the classification accuracy can achieve 
100% when the first 5 to 20 features reordered by Inf-FS are 
used. In view of computational complexity and recognition 
performance, the first 5 rearranged features are treated as 
the discriminative features for the fault diagnosis of rolling 
bearing.

For comparison purpose, MFE is also used for fault fea-
ture extraction from the same vibration data and Inf-FS is 

Fig. 2   MFME of vibration sig-
nals over 20 scales under seven 
bearing conditions
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Fig. 3   New order of MFME 
features ranked by Inf-FS
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Table 2   Recognition results of testing data based on MFME and Inf-
FS versus different number of features

Method Selected features Number of 
misclassified 
samples

Identi-
fication 
rate (%)

MFME + Inf-
FS + SVM

First 1 19 90.95
First 2 17 91.90
First 3 2 99.05
First 4 1 99.52
First 5,…,20 0 100
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applied for feature selection. The new order of MFE accord-
ing to Inf-FS is: 4, 18, 17, 19, 20, 16, 15, 14, 8, 13, 5, 3, 7, 
12, 11, 6, 9, 10, 2 and 1. The classification results using 
MFE features are shown in Table 3. It can be observed that 
the identification rate achieves 100% when the number of 
features reaches 19. Compared with five features of MFME, 
this will increase the complexity of computation and make 
the training process time-consuming. If the same number 
of features (five features) as MFME is used for fault pat-
tern recognition, four samples are misclassified and the 
classification accuracy is 98.10%, which is below 100%. In 
order to show the comparison more clearly between MFE 
and MFME based methods, the accuracy comparison ver-
sus the number of selected features is illustrated in Fig. 4. 
This comparison indicates that classification performance 
of MFME is superior to that of MFE, which may mean that 

MFME can obtain more fault-related information from the 
vibration signals of rolling bearing than MFE.

The coefficient α in Inf-FS is a constant in the range of 0 
and 1. Generally, the selection of α values will have an effect 
on the identification performance. Therefore, the influence 
of various α values on the classification results is investi-
gated. First, the feature selection results (MFME and MFE) 
using Inf-FS with varying α values are described in Table 4. 
Then, classification results based on MFME and Inf-FS with 
different α values are presented in Table 5, from which we 
can see that the recognition rate can reach 100% using five 
sensitive features in most cases. The accuracy of 100% can 
be obtained using at most 10 features. Correspondingly, the 
identification results based on MFE and Inf-FS with various 
α values are shown in Table 6, from which we can see that 
for an identification rate of 100%, the least number of used 
features is 9 when α equals 0.2. The above analysis further 
indicates the superiority of MFME over MFE.

To further validate the effectiveness of Inf-FS, another 
feature selection method named Laplacian Score [30] is used 
for comparison, which was recently applied for bearing fault 
feature selection [21, 22]. For the same features obtained 
using MFME, new order of the features sorted by LS is: 
4, 19, 16, 14, 18, 17, 8, 3, 20, 7, 2, 15, 13, 12, 5, 11, 9, 1, 
10 and 6. Classification results based on LS and Inf-FS are 
both illustrated in Fig. 5. As can be seen, the Inf-FS based 
identification rates are higher than or equal to those based on 
LS in most cases except when the selected feature number is 
2. The LS based method can achieve an accuracy of 100% as 
the dimension of the selected features is 8, which is larger 
than 5 when using Inf-FS. The above analysis indicates that 

Table 3   Recognition results of testing data based on MFE and Inf-FS 
versus different number of features

Method Selected features Number of 
misclassified 
samples

Identi-
fication 
rate (%)

MFE + Inf-
FS + SVM

First 1 17 91.90
First 2 8 96.19
First 3 6 97.14
First 4,8,9 5 97.62
First 5,6 4 98.10
First 7,18 3 98.57
First 10,…,17 2 99.05
First 19,20 0 100

Fig. 4   Recognition rate com-
parison of MFE and MFME 
versus number of features
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in contrast with LS, the Inf-FS can select more discrimina-
tive features from the primary feature set, and the Inf-FS 
based bearing fault diagnosis method can acquire better rec-
ognition performance.

Furthermore, to further demonstrate the necessity of fea-
ture selection with Inf-FS, the randomly selected 5 features 
are used for fault pattern recognition. The two groups of 
features selected at random are MFME values at scales 4, 

8, 12, 15 and 18, and MFME values at scales 1, 3, 5, 7 and 
9. The corresponding classification accuracies are 97.14% 
and 99.52%, which are both lower than 100% when using 
Inf-FS for feature selection. This comparison results show 
the necessity and effectiveness of Inf-FS from another point 
of view.

Finally, in order to assess the effects of parameters N and 
m, the experimental analysis was carried out with the same 
data set. The effect of parameter N on the MFME values is 
shown in Tables 7, 8, 9, 10, 11, 12 and 13 (considering the 
space limitation, only the first eight scales of entropy val-
ues are presented), which correspond to the aforementioned 
seven bearing conditions, respectively. From Tables 7, 8, 9, 
10, 11, 12 and 13, it can be observed that the MFME values 
are stable for all the seven states with N = 1024, 2048, 4096 
and 8192, as indicated by the corresponding standard devia-
tions. Such results are consistent with the discussion given 
in [12, 13], which is that the calculation of fuzzy entropy 
values depend less on the data length.

Subsequently, the effect of parameter m on the experi-
mental results was investigated with N = 2048. Except for the 
above discussed result with m = 2 (Fig. 4), the classification 
results with m = 1, 3 and 4 are illustrated in Figs. 6, 7 and 8, 
respectively. From Figs. 6, 7 and 8, it can be seen that the 
MFME-based classification rates are higher than or equal 
to those based on MFE in most cases. These results further 
validate the ability of MFME for bearing feature extraction.

6 � Conclusion

A new fault diagnosis approach of rolling bearing is put 
forward by combining MFME, Inf-FS and SVM. The 
MFME algorithm is proposed for the fault feature extrac-
tion of rolling bearing, which is used to form the original 
feature vectors of high dimension. To reduce feature dimen-
sion and improve classification accuracy, the Inf-FS method 
is adopted to choose the most discriminative features. The 

Table 4   Selection results using Inf-FS versus different α values

α value Features New order of the features ranked by inf-FS

α = 0.2 MFME 4,3,17,18,16,19,8,7,5,20,15,2,14,13,9,6,12,11
,10,1

MFE 4,18,17,19,20,3,16,15,1,14,8,2,13,7,5,12,9,11
,6,10

α = 0.3 MFME 4,3,17,18,16,8,19,7,5,20,15,14,2,13,9,6,12,11
,10,1

MFE 4,18,17,19,20,16,3,15,14,8,13,7,5,2,12,11,9,6
,10,1

α = 0.4 MFME 4,17,3,18,16,8,7,19,5,20,15,14,2,13,6,9,12,11
,10,1

MFE 4,18,17,19,20,16,15,3,14,8,13,7,5,12,11,6,2,9
,10,1

α = 0.5 MFME 4,17,3,18,16,8,7,5,19,15,20,14,13,2,6,11,12,9
,10,1

MFE 4,18,17,19,20,16,15,14,8,13,5,3,7,12,11,6,9,1
0,2,1

α = 0.6 MFME 4,17,18,16,3,7,8,5,19,15,14,20,13,6,11,12,2,9
,10,1

MFE 4,18,17,16,19,20,15,14,8,5,13,7,12,6,11,10,9
,3,2,1

α = 0.7 MFME 4,17,18,16,7,5,8,14,3,15,20,19,13,6,11,12,10
,9,2,1

MFE 4,18,17,16,20,19,14,15,5,8,13,6,7,12,11,10,9
,2,3,1

α = 0.8 MFME 4,17,16,18,5,7,8,14,15,6,13,11,12,20,19,10,9
,3,2,1

MFE 4,18,16,17,14,15,20,5,19,8,6,13,11,12,7,10,9
,2,3,1

Table 5   Classification results 
of testing data based on MFME 
and Inf-FS with different 
number of features and varying 
α values

Method Selected features Identification rate (%)

α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8

MFME + Inf-FS + SVM First 1 90.95 90.95 90.95 90.95 90.95 90.95 90.95
First 2 97.62 97.62 91.90 91.90 91.90 91.90 91.90
First 3 99.05 99.05 99.05 99.05 97.14 97.14 90.95
First 4 99.52 99.52 99.52 99.52 96.19 96.19 96.19
First 5 100 100 100 100 100 97.62 99.05
First 6 100 100 100 100 100 99.52 99.52
First 7 100 100 100 100 100 99.52 99.52
First 8 100 100 100 100 100 99.52 99.52
First 9 100 100 100 100 100 100 99.52
First 10…20 100 100 100 100 100 100 100
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selected features construct the low-dimensional feature 
vectors and then are applied for fault pattern recognition. 
For comparison purpose, MFE is also applied to the same 
vibration data, and the comparison results demonstrate that 
MFME can acquire more state-related information hidden 
in the vibration signals and achieve a better recognition 

performance. In addition, the necessity and effectiveness 
of Inf-FS is verified through experimental analysis, and the 
comparison with LS shows the superiority of Inf-FS for 
feature selection. Finally, the experimental analysis demon-
strates that the proposed diagnosis method can effectively 
identify different working conditions of rolling bearings.

Table 6   Classification results of 
testing data based on MFE and 
Inf-FS with different number of 
features and varying α values

Method Selected features Identification rate (%)

α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8

MFE + Inf-FS + SVM First 1 91.90 91.90 91.90 91.90 91.90 91.90 91.90
First 2 96.19 96.19 96.19 96.19 96.19 96.19 96.19
First 3 97.14 97.14 97.14 97.14 97.14 97.14 97.14
First 4 97.62 97.62 97.62 97.62 96.67 96.67 96.67
First 5 98.10 98.10 98.10 98.10 97.14 97.62 96.67
First 6 98.57 98.10 98.10 98.10 98.10 98.10 96.19
First 7 98.10 98.57 98.57 98.57 98.57 98.10 97.62
First 8 98.57 98.57 98.57 97.62 97.62 97.62 98.10
First 9 100 98.57 98.57 97.62 97.62 98.10 98.10
First 10 100 98.57 98.57 99.05 98.57 98.57 98.57
First 11 100 99.05 99.05 99.05 99.05 99.05 98.57
First 12 100 98.10 98.10 99.05 99.52 99.05 99.05
First 13 100 99.05 99.05 99.05 99.05 99.05 98.57
First 14 100 100 99.05 99.05 99.05 99.05 99.05
First 15 100 100 99.05 99.05 99.05 99.05 99.05
First 16 100 100 99.05 99.05 98.57 98.57 98.57
First 17 100 100 100 99.05 98.57 98.57 98.57
First 18 100 100 100 98.57 98.57 100 100
First 19,20 100 100 100 100 100 100 100

Fig. 5   Recognition results com-
parison of Inf-FS and LS versus 
number of features
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Table 7   The MFME values of 
first 8 scales with different N 
values under normal condition

N value Normal condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 1.9024 3.1887 3.8624 3.7663 3.1968 3.202 3.0528 3.0651
N = 2048 1.9136 3.1984 3.7895 3.7535 3.2382 3.002 3.0714 2.9908
N = 4096 1.8898 3.1763 3.7546 3.8238 3.211 2.953 3.1085 2.9387
N = 8192 1.8937 3.1688 3.7452 3.8081 3.1867 2.8715 3.0999 2.8998
Std 0.0106 0.0131 0.0532 0.0334 0.0224 0.1406 0.0257 0.0715

Table 8   The MFME values of 
first 8 scales with different N 
values under IRF1 condition

N value IRF1 condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 3.3023 2.7833 2.363 2.1949 1.8121 1.424 1.3455 1.4091
N = 2048 3.2024 2.7023 2.217 2.0813 1.9149 1.4393 1.4457 1.3195
N = 4096 3.1899 2.6845 2.2034 2.0619 1.8908 1.4401 1.4249 1.2898
N = 8192 3.2207 2.7421 2.2082 2.0786 1.8735 1.478 1.4523 1.294
Std 0.0506 0.0440 0.0769 0.0611 0.0439 0.0230 0.0491 0.0556

Table 9   The MFME values of 
first 8 scales with different N 
values under IRF2 condition

N value IRF2 condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 2.7337 1.7318 1.7836 1.2233 1.507 1.3734 1.324 1.1209
N = 2048 2.7006 1.7594 1.7716 1.241 1.48 1.3855 1.2806 1.1377
N = 4096 2.6754 1.7279 1.7455 1.2219 1.441 1.4082 1.2644 1.1082
N = 8192 2.6732 1.7561 1.7742 1.24 1.4025 1.4323 1.2832 1.1236
Std 0.0282 0.0162 0.0163 0.0104 0.0457 0.0260 0.0254 0.0121

Table 10   The MFME values of 
first 8 scales with different N 
values under ORF1 condition

N value ORF1 condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 2.0213 1.074 0.9903 0.6038 0.877 0.8299 0.5136 0.5886
N = 2048 1.9556 1.1113 1.0058 0.6174 0.8588 0.8389 0.5466 0.6131
N = 4096 1.9277 1.0945 0.9644 0.5914 0.8369 0.8056 0.5411 0.5904
N = 8192 1.914 1.1259 0.9893 0.6038 0.8307 0.7946 0.5821 0.5707
Std 0.0477 0.0223 0.0171 0.0106 0.0212 0.0206 0.0281 0.0174

Table 11   The MFME values of 
first 8 scales with different N 
values under ORF2 condition

N value ORF2 Condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 1.568 1.2397 1.1665 1.1246 1.1669 1.0805 0.9149 0.9487
N = 2048 1.5683 1.3012 1.2174 1.1998 1.2259 1.1583 1.0011 1.0084
N = 4096 1.6084 1.3721 1.2454 1.2112 1.2165 1.1387 0.9904 0.968
N = 8192 1.5841 1.3155 1.1583 1.1245 1.1386 1.0399 0.9424 0.8758
Std 0.0190 0.0544 0.0416 0.0470 0.0414 0.0542 0.0406 0.0555
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Table 12   The MFME values of 
first 8 scales with different N 
values under BF1condition

N value BF1 condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 3.7483 2.6196 2.2804 1.7578 1.9475 1.9177 1.4875 1.4772
N = 2048 3.78 2.6437 2.3212 1.8149 2.0603 1.9326 1.542 1.51
N = 4096 3.7675 2.662 2.3037 1.7955 2.0381 1.8902 1.5414 1.4731
N = 8192 3.7864 2.7135 2.2778 1.8093 2.0343 1.93 1.5465 1.5145
Std 0.0168 0.0398 0.0206 0.0257 0.0497 0.0194 0.0280 0.0216

Table 13   The MFME values of 
first 8 scales with different N 
values under BF2 condition

N value BF2 condition

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8

N = 1024 2.8238 1.6314 1.7463 0.4577 1.0086 0.9885 0.8342 0.351
N = 2048 2.6641 1.4232 1.5703 0.4126 0.9514 0.8528 0.7626 0.3206
N = 4096 2.6647 1.5046 1.6631 0.4502 0.9654 0.9163 0.7948 0.3833
N = 8192 2.7292 1.592 1.7705 0.4716 0.9756 0.9895 0.8093 0.4365
Std 0.0754 0.0930 0.0907 0.0252 0.0243 0.0656 0.0299 0.0496

Fig. 6   Recognition rate compar-
ison of MFE and MFME versus 
number of features (m = 1)
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