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Abstract
Health status prediction is of great significance for a motor system’s safe operation and lifecycle management. The object of
this work is to achieve better information fusion performance for information obtained from X-, Y-, and Z-axial and existed
in the multi-feature parameter, and therefore gain more comprehensively and effectively prediction results of health status.
First, a UAV power motor is chosen as the test item to obtain the original vibration data. Then, the multi-feature parameters
are fused and chosen based on quality and quantity method considering the diagnosis results and degradation path descriptive
ability. Next, the health status prediction is achieved with Bayesian updating algorithm. Finally, a DS theory and information
entropy weight-based granulation fusion method of multi-source health status information for the electric motor is proposed.
The method can achieve the fusion of multiple prediction results obtained from multi-feature parameters to gain the optimal
health status prediction result for the motor. The result is compared with actual data and also verified by information entropy.
Meanwhile, according to the prediction results, its application in risk assessment and maintenance planning were discussed.

Keywords Health status · Prediction · Motor · Multi-sensor · Multi-feature parameters

1 Introduction

With the development of industrial technology, motor prod-
ucts have been widely applied in emerging and traditional
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areas. To reduce the harm of motor faults, increase the
system’s safe operation, economic efficiency, and lifecycle
operational capability, it is increasingly urgent to accurately
acquire and anticipate a motor’s health status. For bulleted
lists.

The key solution of the foregoing problems is to
accurately extract health-related features from the signal
of motor. Vibration signals are the most effective one
due to the extensive and mature information it contains
[1]. So, it has considerable applications, including time-
domain-analysis-based methods (involving parameters such
as mean, variance, mean–variance, peak value, skewness,
kurtosis, and waveform [2], frequency-domain-analysis-
based methods (involving parameters such as gravity
frequency, mean-square frequency, and frequency vari-
ance [2], as well as the Hilbert–Huang transform (HHT)
based on time–frequency-domain analysis [2, 3]. Different
feature-extraction methods reflect product health status
from different aspects, which both intersect and comple-
ment with each other. The fusion of information from
different feature-extraction methods can be realized using
principal component analysis (PCA) [4], kernel PCA [5],
neighborhood components analysis (NCA) [6], and linear
discriminant analysis (LDA) [7], etc. However, multi-feature
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Fig. 1 Flowchart
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parameters usually exist while fusing information without
sacrificing useful ones. Meanwhile, the existing health status
prediction methods mainly include physical models [8], the
nonlinear degradation model [9, 10], Neural Network and
Bayesian network model [11]. Predicting the health status
of the motor, most researchers are based on uniaxial infor-
mation [12, 13] or reduce a multiaxial status to an equivalent
uniaxial one [14]. While a motor’s vibration signal obtained
from the X, Y, and Z axes are somewhat different, but also
displays intersectionality and complementarity. Ignoring
such information may cause accuracy loss of prediction
results. Therefore, information extracted from X-, Y -, and
Z-axial and the effective utilization of multi-feature param-
eters information are both considered in this paper to obtain
more accurate and more useful health-related information
of motor. The technical flowchart is shown in Fig. 1

First, we design a lifetime test on an electric motor to
obtain the original vibration data gained from X-, Y -, and
Z-axial. Second, we conducted feature-extraction methods
on the original data and fused the multi-feature information
based on quality and quantity method considering the diag-
nosis results and degradation path descriptive ability to obtain
the feature parameters of X-, Y -, and Z-axial for health state
prediction. Third, health status predictionmodel is built using

Bayesian updating algorithm based on the obtained parame-
ters and prediction results are got accordingly. Next, known
from the ability to fuse information from multiple sources of
DS theory [15, 16], a health status information granulation
fusion method for the electric motor is proposed by combin-
ing DS theory, Fuzzy theory and Information entropy. The
proposed method considers the information from X-, Y -, and
Z-axial and can achieve the fusion of multiple prediction
results which obtained frommulti-feature parameters to gain
the optimal health status prediction result for the motor.

The rest of the paper is structured as follows: the test
motor, experimental process, and data are introduced in
Sect. 2. The multi-feature information is fused in Sect. 3.
The prediction model and multi-sensor information fusion
method are described in Sect. 4. In Sect. 5, examples of the
application of predicted results in risk assessment and main-
tenance planning are given. Section 6 concludes the paper.

2 Experiment and Original Data

To obtain the vibration signal from three axials during the life
cycle of electricmotor, a set of test system is established.AT-
MOTOR U8 brushless DC motor (which used in multi-rotor
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Fig. 2 Experimental equipment

Fig. 3 Motor running status

UAVs)was chosen as the test object. The test system is shown
in Fig. 2. The control program of the upper computer was
realized by LabVIEW (2014) software, and the control of the
electronic governor by the lower computerwas accomplished
using aPulseWidthModulation (PWM)signal. Thevibration
signals ofX,Y, andZaxeswere collectedby an accelerometer
and transmitted to the computer for monitoring and storage.

The degeneration test lasted for 1062 h. The sample
ran stable for 0–1017 h. Characteristic quantity during
1018–1062 h exhibited a sudden change in amplitude (as
shown in Fig. 3), which continued to occur without any ten-
dency to decrease or disappear. Bearing wear andmotor fault
were proved after sample testing as shown in Fig. 4 [17].

3 Feature Extraction and Fusion

3.1 Feature Extraction

The objective of feature extraction is to obtain a motor’s sta-
tus feature information hidden in the vibration signals for
status diagnosis, and, thereafter, to carry out the status pre-
diction accordingly. Common feature-extractionmethods are
based on time-domain analysis, frequency-domain analysis,

and time–frequency-domain analysis, each of which focuses
on different aspects.

In this section, 9 methods based on time-domain analy-
sis(include mean, variance, root mean square, peak value,
skewness, kurtosis, pulse, margin, and waveform) [2], 3
methods based on frequency-domain-analysis(include grav-
ity frequency, mean-square frequency, and frequency vari-
ance) [2], and 1 method based on time–frequency-domain
analysis (HHT), are selected to extract the original data of
the motor degeneration experiment in Sect. 2 to obtain the
corresponding status feature parameter. Taking the kurto-
sis, gravity frequency, and HHT method as examples, the
extracted status feature parameters are shown in Fig. 5.

According to the data, a motor’s general condition, to a
certain extent, can be described by the status feature param-
eters obtained using different feature-extraction methods.
However, the details embodied in the information are slightly
different, and the status of the motor is explained from only
one aspect.

3.2 Multiple Feature Information Fusion

Currently, the methods of multi-feature information fusion
commonly applied tomotors or similar products are PCA [4],
kernel PCA [5], NCA [6], andLDA [7],which have been usu-
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Fig. 4 Sample test results
captured by scanning electron
microscope: a inner side of
outer race and b bearing ball

Fig. 5 Feature parameters
obtained using kurtosis, gravity
frequency, and HHT of each axis

ally used for motor fault diagnosis. However, selecting the
method of motor status prediction is slightly different from
that of fault diagnosis. The method should effectively distin-
guish the states of motor degeneration and well describe the
degeneration process. Therefore, PCA, kernel PCA, NCA,
and LDAmethodswere applied to the feature fusion of actual
data and the first and second principal components derived
from each method are chosen. Then, the results of which
were analysed to select the most suitable method.

Since theX- andY -axial data are similar,mainly theX- and
Z-axial data are described. In this paper, the first two feature
parameters fused using PCA, kernel PCA, NCA, and LDA
methodswere studied, since themain feature information can
be covered with 2 feature parameters obtained by the fusion

of multi-feature information. The results are shown in Figs. 6
and 7.

It can be seen from Fig. 6a, the health-fault status of motor
can be effectively distinguished by PCA, Kernel PCA, LDA
method for X-axial data. As for Z-axial data PCA, Kernel
PCA, NCA methods are proved useful (see Fig. 7a). Then,
Cluster evaluation index D is introduced to make a quantita-
tive evaluation of the above methods and utilize the effective
one to further conduct multi-feature information fusion. The
Cluster evaluation index D can be written as:

D � tr
(
Sw1

)
+ tr

(
Sw2

)

tr(Sb)
(1)
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Fig. 6 Results of X-axial feature fusion
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Fig. 7 Results of Z-axial feature fusion
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Table 1 The Cluster evaluation
indexes of health-fault status

PCA Kernel
PCA

LDA

X-axial

1.3766 1.5432 0.7773

Z-axial

0.8765 0.8133 0.5386

Where Sw1 and Sw2 is the within-class scatter matrix of
the sample of health and fault status [18], respectively, which
denotes the dispersion of the mean of the sample points in
each state. tr

(
Sw1

)
and tr

(
Sw2

)
are the trace of the scat-

ter matrix which denotes the aggregation of the sample (the
smaller the better). Sb is the between-class scatter matrix of
the sample of health and fault status which denote the distri-
bution of each state sample in space. It can be given as:

Sb �
c∑

i�1

P(i)( �Mi − �M0)( �Mi − �M0)
T (2)

Where P(i) and �Mi are the prior probabilities and the
Mean vector of the sample of class i state, respectively.
�M0 is the overall mean vector of all C class state samples(

�M0�
c∑

i�1
P(i) �Mi

)
. tr (Sb) is the trace of scattering matrix

between two class state samples which denotes the distribu-
tion of each state sample (the bigger the better). Therefore,
the smaller the Cluster evaluation indexD of the health-fault
state is, the better distinguish performance the dimensional-
ity reduction method can achieve over the health-fault status
of the motor. The Cluster evaluation indexes of Figs. 6a and
7a are shown in Table 1.

Known from Table 1, LDA method achieves the best dis-
tinguish performance in quantity. And as one can see in
Fig. 6b, LDA methods can better describe the degeneration
trajectory and have less volatility compare to PCA and ker-
nel PCA methods. Hence, the LDA method was used for X-
and Y -axial data, and similarly the NCA method for Z-axial
data, thus realizing the fusion of multi-feature information.
The obtained feature parameters were then used to predict
the motor’s health status.

4 Health Status Prediction Through
Multi-sensors

4.1 Prediction Method Based on Bayesian Updating
Method

The status degeneration models mainly include regression-
based [19], random process-based [20, 21], machine-
learning-based [22], and failure physics-based models [23],

which were used to construct the degeneration model of fea-
ture parameters in accordance with the product’s actual con-
dition. In this paper, the Wiener process model is utilized to
build the degradation model which can be expressed as [24]:

Y (t) � σ B(t) + d(s) · t + y0 (3)

where Y (t) denotes the degeneration process of feature
parameters; B(t) denotes the standard Brownian motion,
B(t)–N(0, t); σ denotes the diffusion coefficient; y0 denotes
the initial value of feature-parameter degeneration; and d(s)
denotes the drift coefficient, which is a function of stress
and reflects the product’s degeneration rate. If l is the failure
threshold of the feature parameters, the product will cease to
be effective when y(t) − l<0. The time (t) that y(t) passes
through l for the first time is subject to inverse Gaussian dis-
tribution, so the distribution of health status probability is as
follows:

H (t) � Φ

[
l − y0 − d(s)t

σ
√
t

]

− exp

(
2d(s)(l − y0)

σ 2

)
Φ

[
− l − y0 + d(s)t

σ
√
t

]
(4)

In the prediction model, accuracy drops with increasing
distance. Therefore, Bayesian theory was applied to the
reconstruction of the prediction process, as well as the update
and fusion of historical data and new data, so that the model
can be updated in real time with the actual data, thereby
ensuring a high prediction accuracy (as shown in Fig. 8, the
prediction accuracykeeps on ahigher level due to the update).

Three kinds of information are included in Bayesian the-
ory, namely the general, sample, and prior information.
According to the nature of the Wiener process, the degen-
eration increment �y in unit time �t is subject to normal
distribution with the mean value of d(s)�t and the variance
of σ 2�t; that is,

�y ∼ N
(
d(s)�t, σ 2�t

)
(5)

Therefore, formula (5) is the general information, p(θ ),
where θ is the parameter of the model, i.e., d(s) and σ . If the
number of data is n in total, the latest m data can be defined
as the sample information y2, and the former n− m data as
the prior information. The corresponding Bayesian formula
of y1 is as follows:

p(θ |y1) ∝ p(θ )l(θ |y1) (6)

As the sample information y2 is obtained, it can be inferred
that

p(θ |y2, y1) ∝ p(θ )l(θ |y1)l(θ |y2) ∝ p(θ |y1)l(θ |y2) (7)
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Fig. 8 Variation of predictive accuracy over time

Fig. 9 Updating process

This means that the posterior distribution of θ under y1
plays the role of the prior distribution of θ under y2. If the
expression of d(s) is d(s) � exp[A− B/s], the posterior dis-
tribution of formula (1) can be expressed as follows:

π (Θ|D) � π
(
A, B, σ 2|�y1, s,�t

)
∝

m∏

i�1

(
1

σ 2�ti

)1/2

exp

(
− (�y1i − exp(A + B/si )�ti )2

2 · σ 2�ti

)

· π
(
A, B, σ 2|�y2

)
(8)

Where A and B are the twomodel parameters in the model
d(s), their values can be obtained by the motor degradation
data. For the posterior distribution model, the Markov Chain
Monte Carlo (MCMC) method was used to infer the param-
eters to obtain the assessed value of parameters d(s) and σ .
Then, the health status of product at each time was predicted
using formula (4). The specific update process is shown in

Fig. 9. Next, based on the above method, the modeling of
each axial parameter and each feature parameter was carried
out. Finally, using all the characteristics in chapter 3.2, the
health status probability is calculated and demonstrated in
Fig. 10.

4.2 Multi Sensor Health State Information
Granulation FusionMethod Based
on Information EntropyWeight

According to Sect. 4, a motor’s future health status can be
predicted based on the feature parameters of the X, Y, and
Z axes extracted and fused in Sect. 3. The prediction results
given by different information sources provide evidence for a
motor’s future status from different perspectives, but it is not
able to describe the entire picture of the incident, as there are
some limitations in the above evidence. How to effectively
fuse the above evidence is the key to making an effective pre-
diction and the obtaining accurate prediction results. In this
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respect, DS theory is an effective solution to the uncertainty
caused by randomness and ambiguity, so it was used for the
fusion of three-axial information.

DS theory has twomain characteristics. First, it provides a
more flexible approach to describe uncertainty than probabil-

ity theory (basic belief assignment function). Second, it also
provides a combination rule for combining different items of
evidence.

4.2.1 Basic Belief Assignment Function and Combination
Rule

� is set as a finite non-empty set of elements that aremutually
exclusive and exhaustive, which is called as a recognition
framework. Any proposition A belongs to the set 2�. In 2�,
the basic belief assignment function m (mass function) can
be defined as 2� → [0,1], which satisfies

{ ∑

A⊆Θ

m(A) � 1

m(φ) � 0
(9)

m(A) is recognized as the basic belief assignment function
of eventA. Here,φ is an empty set.m(A) represents the degree

Fig. 10 Health status probability of single-feature parameter

of full support for proposition A, and can also be referred to
as the degree of precise belief of proposition A.

For the same recognition framework �, if the evidence of
the basic belief assignment functions m1, m2, …, mn from n
different information sources is E1, E2, …, En, respectively,
it can be inferred that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m(φ) � 0

m(D) � (m1 ⊕ m2 ⊕ · · · ⊕ mn)(D) �
∑

∩ni�1Ei�A

m1(E1)m2(E2)···mn (En )

1−K ∀D ⊆ Θ, D �� φ

(10)

where

K �
∑

∩n
i�1Ei�φ

m1(E1)m2(E2) · · ·mn(En) > 0 (11)

K can be used as a measure of the contradiction degree
among the data sources. The larger K is, the more intensive
the contradiction of evidence. The coefficient 1/ (1− K) is
called the regularization factor, the function of which is to
avoid assigning non-zero trust to the empty set F during
synthesis.

4.2.2 Fuzzy Granulated Description of Health State

To effectively describe the status of the motor, three propo-
sitions A, B, and C existing in the recognition framework �

are defined, among which A represents that the motor is in
good status, B a recession status, and C a near-failure status.
Fuzzy theory is adopted to define the basic belief assignment
function. By selecting appropriate fuzzy numbers, the entire
decreasing process of health status is divided. In addition,
the corresponding fuzzy membership functions are given,
including the common fuzzy numbers, such as triangular,
trapezoidal, bell-shaped fuzzy numbers, etc. The triangular
fuzzy numbers are adopted in this study to define the basic
belief assignment function under each status. If there are n
feature parameters y1, y2,…, yn in the three axes of themotor,
the probability models of their health status areH1(t),H2(t),
…,Hn(t), respectively.With the health statusHb as an exam-
ple, the membership degree of the motor in proposition B is
μ̃B(H) � 1. As H(t) gradually changes towards Ha or Hc,
the probability of belonging to this status is reduced to zero
and its corresponding membership function is

μ̃B(Hi ) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Hi − Ha

Hb − Ha
(Ha ≤ Hi < Hb)

Hc − Hi

Hc − Hb
(Hb ≤ Hi ≤ Hc)

0 (others)

(12)
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Fig. 11 Membership functions of propositions A, B, and C

For propositionsA,B, andC, their trapezoidalmembership
functions can be defined as (Fig. 11):

At a certain time point, the relationship among the mem-
bership degrees of the motor under each status, μ̃ν(Hi )

(ν � A, B,C), is

μ̃A(Hi ) + μ̃B(Hi ) + μ̃C (Hi ) � 1 (13)

On this basis, according to the construction principle of
evidence, the information provided by n kinds of feature
parameters at time t was taken as n kinds of evidence in
DS theory, represented by mt1, mt2, …, mtn. In this case, the
corresponding basic probability assignment function is

mti (A) � μ̃A(Hi ) (14)

mti (B) � μ̃B(Hi ) (15)

mti (C) � μ̃C (Hi ) (16)

4.2.3 Evidence Combination Based on Information Entropy
Weight

Because the credibility of information contained in each evi-
dence is different, we endowed with information entropy
weight to each feature parameter to make more accurate and
effective use of source information. Since Entropy originates
fromstatistical thermodynamicswhich is an expressionof the
disorder, or randomness of a system. Its increase often corre-
sponds to an increase in the disorder of system. In information
theory, entropy is themeasure to define the uncertainty of ran-
dom variable value and it is sometimes referred as Shannon
entropy, If X represents a random variable, and the proba-

bility when X equals x is p(x), the information entropy of X,
E(X), is defined as:

E(X) � −
∫

x
p(x) log p(x)dx (17)

Thus, information entropy can be the basis of weight
assignment. The information entropy of feature parameter
of X-, Y -, and Z-axial is shown in Table 2. Take A status
as example, the information entropy of its feature parameter
can be calculated by:

wAi � 1
/
EAi

6∑

j�1
(1

/
EAj )

(18)

Then, adjust the distribution function of the credibility
based on weight. Which is:

⎧
⎨

⎩

m′
k(Ai ) � [mk (Ai )]

wk /wmax
∑

j
[mk (A j )]wk /wmax

m′
k(φ) � 0

(19)

where wmax is the maximum value of all feature parameters
under all status. Next, we can adjust the evidence with less
weight.

4.2.4 Results Analysis

After the fusion of the frame combination using DS theory,
the motor’s health status D combining 6 kinds of three-axial
parameter information was obtained. Its basic probability
assignment function at time t is

mt (D) � mt1 ⊕ mt2 ⊕ · · · ⊕ mtn(D), (20)

Based on the above method, the fusion of X-, Y -, and
Z-axial informationwas carried out. Evidence of all informa-
tion sources was combined to obtain the probability function
of a motor in good condition (status A), which is as shown in
Fig. 12.

Figure 12a is the confidence distribution function of a
motor in good condition obtained by multi-feature param-
eters. Figure 12b is the confidence distribution function after
fusion (namely the probability of a motor being in good con-
dition).

A motor’s health status function Hi(t), i� A, B, C (as
shown in Fig. 13) was obtained by the fusion of probability
functions of motor health status acquired by multi-feature
parameters using the proposed method. As shown in Fig. 13,
B status meets its peak value at 829 h and then gradually
reduces. C status reaches 0.5 at 892 h (the sum of the value
of A status and B status) and reaches 0.9 at 1071 h. by that
time point the failure status is reached with a high probability
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Table 2 Information entropy
Information source X-1 X-2 Y-1 Y-2 Z-1 Z-2

1 2 3 4 5 6

A status 2.6068 2.2105 2.5453 2.2677 2.3651 2.8358

B status 2.9759 3.0632 3.0407 3.1048 3.1697 2.9505

C status 2.0792 2.2572 2.1789 2.2484 2.4042 1.5573

Fig. 12 Information fusion of status A

Fig. 13 Prediction results of motor health status using multi-sensor
information

for motor. So, one can infer that the status transition point of
motor is between 892 h and 1071 h which is matched with
test result (1018 h).

Furthermore, information entropy method is conducted
to verify the effect of the proposed method by assessing
the information of multi-feature parameter calculated above.
Table 3 shows the obtained information entropies of the
multi-sensor fusion parameter (the proposed method).

Table 3 Information entropy

Information source A status B status C status

Information entropy 1.5251 2.3672 1.442

As seen in Tables 2 and 3, the proposed method owes
the least information entropy, so we can see the proposed
method is more credible since it can integrate multi-source
information while reduce information uncertainty.

5 Application of Prediction Results in Safety
andMaintenance

5.1 Risk Assessment

Based on the prediction results, the dynamic risk assessment
of the system was realized in accordance with the motor’s
probability of being in different states, thereby guiding the
formulation of relevant safety decisions in a timely and effec-
tive manner.

Known from the property of basic quantitative risk assess-
ment which describe risk with risk severity and risk proba-
bility, the risk value of the motor at each state can be assessed
[25]. According to the prediction results given in Sect. 4, the
motor’s statuses (Fig. 13) can be divided into three risk lev-
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Fig. 14 Risk Level of motor health status

Fig. 15 Risk value of motor

els, also named the severity of the risk, and can be shown in
Fig. 14. The risk probability is related to health status. There-
fore, the assessed risk value of the motor at each state can be
calculated. The risk value of motor is shown in Fig. 15.

5.2 Maintenance Planning

Motormaintenance planning can be carried out in accordance
with the health status functions HA(t), HB(t), and HC(t). If
the near-failure status functionHC(t) is taken as the criterion
by which motor failure is determined, with given preventive
maintenance costCp and corrective maintenance costCc, the
preventive maintenance cost TC(Tp) at time Tp is [26]:

TC
(
Tp

) � Cp · (
HA

(
Tp

)
+ HB

(
Tp

))
+ Cc · HC

(
Tp

)
(21)

the expected lifecycle L (Tp) is expressed as

L
(
Tp

) � Tp · (
HA

(
Tp

)
+ HB

(
Tp

))
+ M

(
Tp

) · HC
(
Tp

)

(22)

and the cost per unit time EC(Tp) is expressed as

EC
(
Tp

) � Cp · (
HA

(
Tp

)
+ HB

(
Tp

))
+ Cc · HC

(
Tp

)

Tp · (
HA

(
Tp

)
+ HB

(
Tp

))
+ M

(
Tp

) · HC
(
Tp

)

(23)

where M(Tp) denotes the timeframe of the failure period
estimated by the truncated expected value of the failure dis-
tribution at Tp, which is expressed as

M
(
Tp

) �
∫ Tp

0

tc(t)dt

C
(
Tp

) (24)

where c(t) denotes the failure probability density function
and C(Tp) the cumulative failure probability of the motor at
Tp.

By optimizing the preventive maintenance time Tp, the
optimal preventive maintenance cost per unit time EC(Tp) at
Tp can be obtained, and the corresponding Tp is the pre-
ventive maintenance time corresponding to the minimum
maintenance cost. It is known that the preventive mainte-
nance cost Cp of this motor is 1000 CNY and that the
corrective maintenance costCc is 7000 CNY, which includes
the cost of motor and potential loss.

Figure 16a shows the relationship between the motor’s
preventive maintenance time Tp and the total maintenance
cost TC(Tp). The probability of motor failure has been
gradually increasing since the 558th hour. The relationship
between the motor’s preventive maintenance time Tp and
the maintenance cost per unit time EC(Tp) is shown in
Fig. 16b. In the early stage, the dominant factor for EC(Tp)
is the motor’s expected lifecycle L(Tp), so EC(Tp) decreases
with time. After 852 h, the corrective maintenance cost Cc

caused by failure becomes the dominant factor forEC(Tp), so
EC(Tp) increases gradually with increasing failure function
value C(t). In other words, it grows with time. Therefore, the
motor’s preventive maintenance cost per unit time EC(Tp)
reaches the minimum at the 852nd hour, which is 1.261
CNY/h.

6 Conclusions

In order to acquiremotor health status informationmore com-
prehensively and effectively and solve the information fusion
problems betweenX-, Y-, and Z-axial information andmulti-
feature parameter information of motor. This paper takes a
UAV power motor as the test item and studies this prob-
lem with its life cycle vibration data. The problem is solved
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Fig. 16 Maintenance cost optimization analysis: Relationship between a Tp and TC(Tp) and b Tp and EC(Tp)

based on quality and quantity method considering the diag-
nosis results and degradation path descriptive ability. Then,
the health status prediction is achieved with Bayesian updat-
ing algorithm. Next, a DS theory and information entropy
weight-based health status information granulation fusion
method for the electric motor is proposed to fuse informa-
tion obtained from the X-, Y -, and Z-axial. The method can
achieve the fusion of multiple prediction results obtained
from multi-feature parameters to gain the optimal health sta-
tus prediction result for the motor. The analysis results show
that the prediction results are in conformitywith the actual sit-
uation, and the proposed method is more credible since it can
integrate the multi-source information while reducing infor-
mation uncertainty. Meanwhile, according to the prediction
results, its application in risk assessment and maintenance
planning were discussed, which indicates that it can be used
as data support for lifecycle management, thereby ensur-
ing the high reliability, safety, and economic efficiency of
motor products and their systems. However, given the lim-
ited amount of experimental data in this paper, the details of
this method should be optimized gradually with the expan-
sion of sample size. Moreover, the implementation of the
proposed method will also be affected by different motor
types and sensor-assembly methods, which will be studied
in follow-up research.
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