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Abstract The innovative method for weld defect classifi-
cation based on rough set theory is presented in this study.
The classification rules have been generated by processing
of data base composed of 640 radiographic images refer-
ring to certain welding process in aircraft industry. The
obtained accuracy of defect identification (from 88% up to
100%, depending on class of defect and choice of classi-
fier) can be evaluated as at least competitive or even better
one comparing to results referring to other type of fre-
quently “exploited” classifiers, those mentioned in attached
overview section. The identification of weld defects is the
final operation which is premised by complicated “chain”
of consecutive operations transforming primary radiographs
to the form enabling calculation of conditional attributes.
That is why brief description of process of transformation
of primary radiographs to the forms which are suitable for
attributes calculation is included in the paper.

Keywords Weld defects classification · Classifiers based on
rough sets · Relevance of attributes · Radiographic images
processing

1 Introduction

The radiographic NDT methods of welds inspection are com-
monly used in order to evaluate the quality of welds. In period
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since 1990 till now we can observe considerable efforts aimed
at automatic analysis of radiographs. The current paper con-
centrates on the idea and possible applications of promising
method for classification of welds defects based on rough
set theory [1–4]. The usefulness of proposed method for
computerized classification of weld flaws was confirmed by
introductory experiments and comparative data presented in
[5,6]. The method allows to determine the reducts, i.e. mini-
mal set of attributes which preserve ability of distinguishing
the classes of weld defects. Thus, the redundant attributes
can be removed by means of formalized procedures. The
discussion of other problems encountered during realization
of consecutive operations preparing input image data to the
form which allows coming to decision on weld quality and
class of imperfection is marginally included in scope of cur-
rent paper. Let us note that hundreds of publications yielded
during last 20 years have been devoted to these problems.
The automatic classification of weld defects is based on input
data generated by chain of previously done operations, i.e.
weld images acquisition and preliminary processing, seg-
mentation, feature extraction, detection of flaws. Thus, even
faultless classifying algorithms do not guarantee perfect final
results for “poor” input data caused by errors and omissions
contributed by former transformations of primary image. The
standard EN ISO 6520-1 distinguishes between five types of
welding defects, i.e. cracks, slag inclusions, porosity, lack of
fusion, and continuous undercuts. The levels of acceptance
of welds containing those imperfections are determined in
standard EN ISO 5817 and the other ones.

Depending on sizes and other parameters referring to geo-
metric and texture properties of single defect or cluster of
defects the classifying algorithm should recognize them as
acceptable or not. If necessary, the weld flaws should be
assigned to classes defined by standards mentioned above.
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In order to design classifying algorithms one has to choose
the set of parameters (descriptors, conditional attributes) as
basis for decision making process and select the type of
classifier processing these parameters. The computational
complexity can be important agent influencing the choice
of classifying algorithm as well. If we take into account
quite substantial number of known type of classifiers and
procedures determining classifier parameters as well as data
drawn from published reports, where up to about 60 differ-
ent attributes describing weld flaws were processed, then the
following conclusion seems to be obvious: design of classifi-
cation algorithm occurs as task characterized by large number
of “degrees of freedom”. That is why researchers proposed
variety of approaches. It could be argued that almost all exist-
ing data mining methods and algorithms for classification
have been used by scientific teams struggling with maximiz-
ing of classification accuracy. The still existing importance
of problem discussed in current paper is proved by tens, if
not hundreds, papers and reports dealing with welds flaws
detection, segmentation and classification published every
year since the early nineties of the last century to the present
days.

2 The Brief Overview of Methods Used for Weld
Defects Classification

The numerous approaches have been used for design of weld
defects classifiers. It seems, that most of them were designed
by means of methods belonging to class of statistical and/or
AI ones. Basing on the arbitrary and rough review of attempts
to classification given in this section one is able to recognize
what are the typical algorithms which are useful for automatic
classification of weld defects. Furthermore, the overview
provides with brief information on accuracies of various clas-
sifiers as well as number and “essence”of input parameters
used in classification procedures. The short information on
less or more complicated methods of determining of relevant
and redundant parameters can be found as well. Neverthe-
less, the advanced presentation of contemporary “state of art”
ought to be the subject of comprehensive, dedicated publica-
tion which does not fall in framework of current paper.

In recent paper [7] the Bayesian Networks (BN) based
on probability theory has been used as classifying tool.
Choosing the invariant geometric attributes like in [8], i.e.
compactness, elongation index, rectangularity, symmetry,
deviation index to the largest inscribed circle, Euclidian
lengthening, etc. and learning the BN with set composed
of several hundreds of welds samples the promising results
have been obtained. For “fifty/fifty” splitting of data into
learning and testing sets the defects, like cracks (CR), lack of
penetration (LP), porosities (PO), slug inclusions (SI), were
classified correctly with accuracy 90–97%.

The expectation-maximization (EM) statistical method of
classification of weld defects is presented in [9]. The data
clustering EM algorithm is an iterative way finding maximum
likelihood or maximum a’posteriori estimates of parameters
of statistical models, where model depends on latent vari-
ables. The results yielded by EM algorithm were compared
to results obtained by artificial neural network (ANN) classi-
fier with input represented by 4 principal components created
on the basis of several “elementary” features and learned
by error backpropagation technique. The presented exper-
imental results showed that performance of ANN classifier
(accuracy about 97%) is a little bit better comparing to results
of EM method (accuracy about 92%).

In [8] problem of relationship between elementary geo-
metric parameters of weld defects and classes of defects
has been considered. This analysis inclined authors to intro-
ducing of “hybrid” parameters SGD (Shape Geometric
Descriptor) and GFD (Generic Fourier Descriptor). Fur-
thermore, the combined descriptor f(CFD,FGD) has been
proposed in order to discriminate better the problematic
defects. The use of hybrid descriptors is especially advised
when CBIR (Content-Base Image Retrieval) technique of
classification is used. This technique consists in compari-
son of currently examined weld defect to correctly classified
“patterns” of defects collected in data base. It is worth to be
mentioned that procedure of creation of “hybrid” parameters
on the basis of primary parameters is one among commonly
used advanced tools aimed at deletion of inconsistencies in
decision tables.

The very interesting study of statistical approach to weld
defects classification on the basis of texture features is pre-
sented in [10]. The following two groups of widely used
texture features are taken into consideration:
(1) features based on the co-occurrence matrix, which gives
a parameterized information of how often one grey value
will appear in a specified spatial relationship to another grey
value on the image (angular second moment, contrast, cor-
relation, sum of squares, inverse difference moment, sum
average, sum variance, sum entropy, entropy, difference vari-
ance, difference entropy, information measures of correlation
1, information measures of correlation 2, maximal correla-
tion coefficient),
(2) features based on 2D Gabor functions.

The selection of features for classification from the ini-
tial set of 64 based on Gabor filtering and 148 based
on co-occurrence matrix were done by means of the SFS
(Sequential Forward Selection) method and analysis of
ROC (Receiver Operation Characteristics) curves. The paper
states that best texture features drawn from co-occurrence
matrix were the mean of the difference entropy and the
mean of the difference variance, for a distance of d=3,
while the best Gabor’s features were those obtained for
scale p=6, and orientations: \,—, /. The classification was
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executed by means statistical classifiers, i.e. polynomial,
Mahalanobis and nearest neighbor. The sensitivities (defined
as TP/(TP+FN), where TP—number correctly classified
defects, FN—number of flaws recognized as non-defect)
yielded by above classifiers were about 91% except those
for nearest neighbor procedure, where sensitivities were less
than 80%. This evaluation has been obtained after examina-
tion of almost 1400 samples including 200 with defects.

The AI techniques can be concerned as most popular
tools used to classification of weld defects. The classic
expert system with weld defects classification rules drawn
from sophisticated decision tree is described in [11]. The
implemented knowledge base was gathered from specialists,
textbooks and international standards. The expert system can
identify the 11 faults in gas pipelines welded by shielded
metal arc welding. The classification of flaws is carried out on
the basis of features concerning shape of defect (rectangular-
ity factor, quotient of perimeter and area), orientation (size in
X direction, size in Y direction), location (inside weld, centre
of weld, edge of weld, base metal). The dimensions of classi-
fied weld defect are compared with requirements of standards
(API, ASME, DIN, BS, AWS, ABS, JIS) which allow to for-
mulate final decision on weld acceptation or rejection. The
discussed paper does not contain the numbers characteriz-
ing accuracy of classification. Nevertheless, it can be found
concluding statement that accuracy does not differ from this
yielded by top experts.

The other rule-based expert system for detection of flaws
(however without procedures for classifying of them) has
been described in [12]. This system seems to be one among
pioneering, where attributes of transversal gray level line pro-
files and “technology” of curve fitting have been used to find
the weld defective areas.

The fuzzy expert systems presented in [13,14] can be
treated as classic examples of classifier based on fuzzy-logic
(FL) approach. The so-called WM (Wang, Mendel) machine
learning method [15] was used to generation of fuzzy rules
from more than 100 examples. The choice of number of par-
titions for input and output data was supported by means of
genetic algorithm (GA). The other fuzzy rules based classifi-
cation algorithm for attributes selected by means of principal
component analysis (PCA) was presented in [6]. Depending
on class the obtained MSE (Mean Square Errors) were in
range 0.02–0.05. The best results were achieved for cracks,
which was the most separated group in case of PCA anal-
ysis. This algorithm was included in software of Intelligent
System for Radiographs Analysis (ISAR). On the beginning
authors of ISAR system took into consideration almost 60
weld defect attributes: 22 representing geometrical and textu-
ral properties, 6 representing brightness and 32 representing
central, normalized and invariant Hu’s shape moments [16–
18]. The “basic” classifier included in ISAR system was
that in form of Multi-Layer Perceptron Neural Network

(MLPNN) with 2 hidden layers containing up to16 neurons
[19]. The database for learning and testing contained about
1500 samples of weld defects representing standard classes of
weld imperfections. The comparative examinations of results
given by MLPNN classifier and classifiers based on k-means
clustering algorithms proved that accuracy was much better
in case of applying of ANN (depending on class and number
of samples for ANN learning and testing the proper classifi-
cation coefficients were in the acceptable range 0.6–0.7).

Artificial neural networks are commonly chosen tools for
classification of patterns based on learning from examples.
In researches reported in [20] the set of 43 descriptors cor-
responding to texture measurements (angular 2nd moment,
contrast, correlation, sum of squares, inverse difference
moment, sum average, sum variance, sum entropy, entropy,
difference variance var., data from co-occurrence matrix) and
geometrical features (relative position to the weld bead, the
aspect ratio, the length/area ratio, the area/bounding rectan-
gle ratio, the roundness, the rectangle ratio, the Heywood
diameter and the relative angle to the weld bead) were deter-
mined for each segmented object and put as classifier input.
The classifiers were trained to classify each of the objects into
one of the defect classes or indicate lack of defect. Three-fold
cross validation was carried out for evaluation of experimen-
tal results. The paper contains comparison of results yielded
by ANN-classifier to results obtained by use of SVM (Sup-
port Vector Machine) and k-NN (k-Nearest Neighbourhood)
classifiers. The experiments were carried out for 411 seg-
ments (objects) corresponding to worm holes (85 cases),
porosity (94 cases), linear slag inclusion (42 cases), gas pores
(13 cases), lack of fusion (57 cases), crack (26 cases) and
non-defects, i.e. false positives (94 cases). To reject redun-
dant data the Sequential Backward Selection (SBS) method
has been applied. The obtained accuracies were about 87%
for both ANN and SVM classifiers and identical input data
represented by 43 descriptors. After diminishing the number
of descriptors to 7 the ANN classifier preserved almost the
same accuracy as in case of 43 descriptors but accuracy of
SVM was considerably lower. For the k-NN classifier the
results were significantly inferior.

The interesting results concerning nonlinear ANN classi-
fiers are presented in [21,22]. The ANN was composed of two
layers (intermediate and output one). The number of neurons
in intermediate layer was optimized, i.e. the net performance
and its training errors were taken into account to find the
optimal number of neurons. Like previously, the problem of
relevance of input data has been examined. The criterion for
choice of relevant attributes was based on observations of
changes in the network responses when a feature (attribute)
used was substituted by its average value. The larger the
difference between these net responses, the larger attribute
relevance. The dimension of input vector initially represented
with four components, has been diminished gradually to 3,
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2 and 1 components in function of the features selected by
relevance criteria. The paper shows how to apply the NN
network to determining the first principal nonlinear discrim-
ination component and consecutive ones. The presented idea
can be treated as generalization of PCA (Principal Compo-
nent Analysis) which in fact is widely used techniques for the
size reduction of multivariable data set. The criterion of rele-
vance together with nonlinear classifiers proved that only four
of the six initial features were relevant for the classification of
defects. The obtained accuracy was about 99–100% for train-
ing set containing 125 samples described by 4 conditional
attributes each. Thus, the considered paper supports thesis
that “quality” of the conditional attributes is more impor-
tant than their “quantity”. By the way: problem of relations
between parameters quantity and quality is discussed even in
“historical” papers [23,24] where authors convince that no
more than 10 meaningful features is sufficient for accurate
weld defect classification.

The problems associated with design of NN classifiers of
weld flaws are deeply discussed in [25]. The samples for 140
non-defects, 126 slag inclusions, 87 porosities, 8 transver-
sal and 14 longitudinal cracks were examined. The initial
set of attributes was composed of 12 members represented
area, centroid (x and y coordinates), major axis, minor axis,
eccentricity, orientation, Euler number, equivalent diameter,
solidity, extent and position. The samples with defect and
non-defect ones were classified by outstanding experts. The
ANN classifiers were learned by backpropagation method
using Widrow–Hoff algorithm for multiple-layer networks
and non-linear differentiable neuron transfer functions. To
eliminate the redundant attributes the PCA transformation of
input data has been executed. In order to overcome problem
of ANN overfitting the procedures of Bayesian regular-
ization and bootstrap approaches have been implemented.
Furthermore, the classic MSE (Mean Square Error) criterion
evaluating accuracy of ANN classifier was supplemented
with additional term representing the mean of the sum of
squares of the network weights and biases. The paper con-
tains comparative results of classifications for Bayesian and
bootstrap regularization as well as classic and supplemented
MSE criteria of ANN performance. Authors of [25] con-
clude that the proposed technique is capable of achieving
good results. The ANN (composed of 11 input neurons and
20 neurons in hidden layer) optimized by means of supple-
mented MSE criterion and PCA transformation of input data
has occurred to be the best classifier. Depending on class of
defect the accuracy of classification fell in the range from
72% (slug inclusion) up to 96% (cracks). The non-defect
samples were classified correctly with accuracy 92% and
obtained mean accuracy was about 80%.

There are numerous reports dealing with classifiers in
form of feedforward multilayer neural networks [26,27]
where supervised learning of ANN was executed and error

backpropagation learning was often used. The classifiers
based on networks of ART (Adaptive Resonance Theory)
type are presented in [28]. The networks of this type are
examples of classifiers which can be learned without super-
vision, i.e. algorithm of learning generates patterns of defects
on the basis of “distances” between vectors of attributes
describing weld flaws. It leads finally to determining of cen-
ters of clusters and so-called largest radiuses of similarity
recommended for each class of defects. Analysis of so-called
demerit factors gave possibilities of creation of several pat-
tern curves (2–9) for each class of defects. The examination
of classifier under consideration was carried out with use of
attributes drawn from processed gray level curves of weld
samples representing 100 transversal profiles for each con-
cerned classes (lack of discontinuity, porosity, longitudinal
crack, slug inclusion, lack of fusion, lack of penetration,
undercutting).

In [29] were compared accuracies of NN classifiers to
those based on pruned and non-pruned decision trees opti-
mized by measure of entropy. The following types of NN
were used: a backpropagation net, a RBF (Radial Basis Func-
tion) Net, a Fuzzy ARTMAP Net and LVQ (Learning Vector
Quantization) Net. The 36 features were initially taken into
account. The best accuracies calculated for testing set were
obtained for RBF and backpropagation net - both in the range
94–95% of correct classifications. The error rates of other
type classifiers were in range 9–12%.

At the end of this section it should be noted, that authors
of papers often neglect presentation of complete information
about structure of algorithms and their parameters. More-
over, the described examinations were not done for identical
databases. That is why comparisons of final accuracies of
methods presented in accessible publications should be done
very carefully.

3 The Classification of Defects Based on Rough
Sets Theory

The processing of weld defect image yields set of parameter-
ized attributes (see former section) which can be useful for
defect classification purposes. The data referring to images of
defects can be gathered in decision table which can be treated
as representation of information system (SI). The developed
in the last twenty years of previous century theory of rough
sets [1–4] can be considered both as extension of classic sets
theory and tool enabling successful design of classifiers.

The discretization of conditional attributes usually dimin-
ishes the number of samples (rows) in decision table because
parameters of certain subsets of elements (“classes of
abstraction”) belong to the same ranges created for val-
ues of attributes by discretization. The modified decision
table obtained due to discretization can contain redundant
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attributes as well. The so-called “B-indiscernibility relation”
can be used as precisely defined tool enabling the rejection of
redundant attributes. Let SI =(U , A)be information system,
and B ⊆ A, where U is considered set of samples (“uni-
verse”), A, B is set (subset) of attributes respectively. The
relation:

IND(B) = {(x, y) ∈ U ×U : ∀α ∈ B, α(x)= α(y)}
(1)

is called the „B-indiscernibility relation”. Thus, the elements
x, y from U which fulfill (1) are indescirnible because all
values of attributes α belonging to subset B and represent-
ing those elements are identical. If subset B induces classes
of abstraction which are identical to those generated by A
then attributes of A in classification procedures can be sub-
stituted with reduced number of attributes, i.e. by attributes
belonging to B.

The rough sets theory introduces the lower and upper
approximations of set. On this basis one can evaluate the
level of „belief” concerning the membership of given object
to set D (representing decision, concept, idea, type of weld
defect, etc.). The lower approximation:

BIND(B)D = {x ∈ U : [x]IND(B) ⊆ D} (2)

represents elements of universe U belonging to classes of
abstraction induced by attributes of subset B where all mem-
bers of these classes fulfill conditions of membership to set
D. The upper approximation of D is defined as:

BIND(B)D = {x ∈ U : [x]IND(B) ∩ D �= φ} (3)

and represents all classes of abstraction induced by B which
contain any elements or even single element belonging to D.

The boundary region:

BN (B)(D) = BIND(B)D − BIND(B)D (4)

is composed of elements belonging to these classes of
abstraction where values of attributes from set B do not
allow to decide if given element belong to D or not. For
example, if we assume that decision D denotes “unaccept-
able crack in weld” then exact rules of classification of this
defect have to be based on lower approximation of D. For
introductory selection of elements which potentially can be
defective (“cracked”) one can use knowledge defining the
upper approximation of D.The elements (welds) of boundary
region can be cracked or not. For boundary region elements,
the task of overcoming of classification inconsistencies has
to be solved (through the introduction of new conditional
attributes, changing of parameters for attributes discretiza-
tion, introduction of “artificial” parameters by creation of

functions defined on previously used parameters, etc.). Of
course, depending on particular requirements, one can agree
for certain level of faulty decisions using other solutions, like
widely known “simple voting” approach, probabilistic rule
induction [30]. The other exemplary algorithms processing
inconsistent Decision Tables can be found in [30–33]. The
presented LEM2 (Learning from Examples Module, version
2) rule induction algorithm uses rough set theory to handle
inconsistent data set. LEM2 algorithm induces a set of certain
rules from the lower approximation and a set of possible rules
from the upper approximation. The procedure for inducing
the rules is the same in both cases - see [32]. The algorithm
imitates the classical greedy scheme yielding a local cover-
ing of each examples from the given approximation using
a minimal set of rules [33]. The preliminary discretization
of attributes is not necessary when algorithm called MOD-
LEM is used [32]. The MODLEM processes these attributes
during rule induction, when elementary conditions of a rule
are created. The MODLEM algorithm can operate accord-
ing to its Entropy Version or Laplace Version. MODLEM
uses rough set theory to handle inconsistent examples and
determinates a single local covering for each approximation
of the concept [32]. The search space for MODLEM is big-
ger comparing to search space for LEM2, because LEM2
creates rules basing on already discretized attributes. That is
why rules obtained by MODLEM are “simpler and stronger”.
The algorithm called EXPLORE extracts all decision rules
which satisfy requirements, referring to strength, level of dis-
crimination, length of rules and syntax conditions of rules. It
can be adapted to processing of inconsistent examples by
using rough set approach or by tuning a proper value of
the discrimination level. Induction of rules is executed as
result of exploring the rule space with simultaneous imposing
the restrictions referring to above mentioned requirements.
Procedure of exploration of the rule space is repeated for
each concept to be decided. Each concept can be a class of
examples or one of its rough approximations in case of incon-
sistent examples. The “kernel” of algorithms was built using
breadth-first exploration of rule space, beginning from one-
condition rules. Exploration of given branch is stopped if the
requirements are satisfied or stopping condition is fulfilled
(impossibility of fulfilling the requirements is attained [33]).

The existence of mentioned and several other algorithms
inclines to using of rough sets approach to classification of
weld defects. Thus, definitions (2), (3), (4) can be taken into
consideration during organizing of process of inducing of
classification rules, because depending on results of rough
selection (determination of upper approximation) the farther
classification procedures can be activated. The existing pro-
grams, like “Rough Set Exploration System” (http://logic.
mimuw.edu.pl/~rses/get.htm), can be helpful tools for clas-
sification experiments.
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Table 1 The exemplary
information system

A → a1 a2 a3 D
U ↓
u1 0 0 0 D1

u2 0 1 0 D2

u3 0 0 1 D3

u4 1 1 0 D2

u5 1 1 1 D4

u6 1 0 1 D5

By rejection of redundant attributes we obtain “reduct”,
i.e. minimal subset of attributes that enables the same clas-
sification of elements of the universe Uas the whole set of
attributes. Usually one obtains set of reducts. Every reduct
(set of attributes) contains certain subset of attributes which
is identical for all reducts. It is called “core”. If sets IND(B)
=IND(A), then CORE(B) =∩ RED(A), where RED(A)—
set of all reducts classifying elements of U identically like
with use of all attributes of A. The parameters of discretiza-
tion influence substantially the sizes of sets (2),(3),(4) as well
as forms and number of reducts. In general, the problem of
determining of reducts for big sizes of Decision Tabels is
considered as non-deterministic polinomial-time hard (NP-
hard) one. That is why genetic algorithms or other heuristics
are used for determining of reducts. Fortunately, the conclu-
sions and advices given in many papers (see previous section)
contain statements that weld defect classification should be
done with use of not to big number of relevant parameters.

Let us illustrate the “philosophy” of idea of creating of
classification rules by elementary example. For Informa-
tion System defined by Table 1 we can create Discernibility
Matrix (Table 2) and Functions, or other equivalent repre-
sentations (without redundant data like in symmetric Dis-
cernibility Matrix) which are more convenient for computer
processing. The Discernibility Matrix shows these attributes
which obtains different values for elements belonging to cou-
ple defined by raw and column labels. Thus, one obtains
information which attributes are necessary in order to dis-
tinguish objects of U , or classes of abstractions ui , if ui
represents class of objects fulfilling the given indiscernibil-
ity relation. Let us note, that SI in Table 1 is deterministic
one, because it does not contain identical sets of values of

conditional attributes which generate different decisions. The
lack of such property makes SI non-deterministic.

For example, object (or class) u2 differs from u5because
of values of attributes a1, a3.The discernibility function for
u2 is:

f 2 = a2 ∧ (a2 ∨ a3) ∧ a1 ∧ (a1 ∨ a3) ∧ (a1 ∨ a2 ∨ a3)

= ... = (a1 ∨ a2) ∧ (a2 ∨ a3)

This function shows attributes which differ u2 from other
objects of U. For u4 is:

f 4 = (a1 ∨ a2) ∧ a1 ∧ (a1 ∨ a2 ∨ a3) ∧ a3 ∧ (a2 ∨ a3)

= ... = (a1 ∨ a3) ∧ (a2 ∨ a3)

Hence the decision rule classifying objects to decision
classD = D2 is:

I F (a1 = 0 AND a2 = 1)OR(a2 = 1 AND a3 = 0)

OR (a1 = 1 AND a3 = 0) T HEN D = D2

Let us note that CORE of SI in Table 1 is composed of
attributes {a1, a2, a3} because of known property, thatCORE
contains all these attributes which exist in “cells” of discerni-
bility matrix as single attribute. This means, that number of
attributes can not be reduced (all attributes are necessary) if
the same classification like in Table 1 has to be kept.

The procedure of data processing for weld defect classi-
fication is shown in Fig. 1. The algorithms LERS (Learn-
ing from Examples based on Rough Sets) similarly to
other approaches based on “learning from examples” which
process Decision Tables of big sizes (numerous objects,
attributes and ranges of attributes) yield the satisfying clas-
sification rules after execution of iterative process where
parameters for discretization of attributes, choice of subsets
of accessible attributes, choice of objects to learning and test-
ing sets are changed many times. The welds defects used for
learning of classifier have to be assigned to standard classes of
defects by top experts. The research process of classification
with the usage of rough sets theory consists of the six steps,
those represented in Fig. 1 as well as by following stages:

Table 2 The discernibility
matrix

u1 u2 u3 u4 u5 u6

u1 – a2 a3 a1, a2 a1, a2, a3 a1, a3

u2 a2 – a2, a3 a1 a1, a3 a1, a2, a3

u3 a3 a2, a3 – a1, a2, a3 a1, a2 a1

u4 a1, a2 a1 a1, a2, a3 – a3 a2, a3

u5 a1, a2, a3 a1, a3 a1, a2 a3 – a2

u6 a1, a3 a1, a2, a3 a1 a2, a3 a2 –
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1. Loading and 
preparation of data 2. Discretization of 

data 

3. Important features 
selection and 

dimension reduction - 
estimation of reducts 

4. Division of data into 
testing and learning 

sets 

5a. Creating of 
learning set 

6. Rules estimation 
and extraction 

7. Gaining rules accuracy - 
confusion matrix 

5b. Creation of testing 
set 

Fig. 1 Procedure for weld imperfections identification

• data retrieval from calculated parameters on recognized
weld imperfections,

• discretization of attributes,
• computation of attribute importance and decision aimed

at dimension reduction,
• dividing of information table into learning and testing

sets,
• process of extracting rule sets,
• computation of confusion matrix and other qualitative

coefficients.

The commonly used measures of classification accuracy
can be applied to results generated by procedures based
on rough sets approach. Thus, one can calculate “basic”
evaluating parameters, like true positive TP, false positive
FP, true negative TN, false negative FN, positive Pos =
TP + FP, negative Neg = TN + FN, true True = TP +
TN, false False = FP + FN. Depending on needs one can
also determine the “derived” parameters: sensitivity (recall)
Se = T P/(T P+ FN ), specificity Sp = T N/(T N + FP),
precision P = T P/(T P + FP), measure Fb = [(b2 +
1)T P]/[(b2 + 1)T ]P + FP + b2FN , accuracy Acc =
(T P + T N )/(Pos + Neg), the balanced accuracy BAcc =
c1(T P(Pos)1 + T N (Neg)−1)) and some others.

4 The Classification of Weld Defects on the Basis of
Real Data

The main problem discussed in current paper concerns the
possibilities of using of algorithms drawn from rough sets

Fig. 2 The cropped weld radiograph

Fig. 3 B-Spline reconstructed weld image

Fig. 4 Absolute difference image

theory to classification of weld defects. Nevertheless, assign-
ment of defects to class defined by standards can be treated
as the “terminal” stage which is executed after several oper-
ations processing primary radiographs image. Thus, some
brief information on preparing data to design of weld defect
classifiers is necessary. On the beginning all radiographs were
normalized. This operation fits the distribution of illumina-
tion of processed image to distribution represented by known
parameters (mean, standard deviation). Then algorithm of
weld detection and its shape extraction is applied. There are
following operations included to this algorithm: low pass fil-
tering of image (reduction of noise and texture details), local
tresholding of filtered image with use of sliding window in
accordance to Nibalac’s method, removing of morphological
noise by closing operation, filtering of obtained binary image
on the basis of pixel area criteria (removing of small objects
with acceptable sizes in relation to defects sizes accepted by
standard requirements), hole filling (creation of weld mask),
calculation and extraction of rectangular bounding box with
a certain margins from the detected weld. The exemplary
cropped and normalized image of the radiograph is shown
in Fig. 2. The feature extraction is the next set of operations.
The cropped radiograph image is “passed” through median
filter (removing of “paper and salt” type of disturbances).
Next, the weld is divided into N -pixel wide windows. For
each window an average profile is computed. Then averaged
windowed profiles are fitted by using the B-Spline functions
(reconstruction of weld profile). The reconstructed image is
shown in Fig. 3. Afterwards the calculation of absolute dif-
ference between the reconstructed and original image is done
(Fig. 4). Finally, the simple thresholding (threshold level is
determined on the basis of image mean and STD values)
generates the binary images which can be treated as
final result of stage under consideration. During the next
stage the final filtering by morphological closing reduces the
unwanted objects in the image. Next the area based particle
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eliminates one-pixel artefacts obtained due to thresholding
process. To erase artifacts outside the image the masking
technique is applied. Finally, the objects still existing in the
image are labeled and “exported” for further processing by
means of identification procedures—see Fig. 5. The exem-
plary image of weld containing two types of defects (crack,
pores) is shown in Fig. 6. Result of processing of this image
according to above mentioned procedure is shown in Fig. 7.

Fig. 5 Detected weld flaws

Fig. 6 Weld containing two types of flaws (crack and pores)

Fig. 7 Detected weld flaws (crack and pores)

The database used later in machine learning process was
created on the basis of 640 original radiographs of the
thin-walled welded joints of aircraft structures. All the radio-
graphs were achieved from digital radiography system. The
flaws have been marked manually by an expert with use of
dedicated software application. For each defect its binary
mask was created to facilitate computation of the flaw’s geo-
metrical attributes. In certain number of cases generating
of binary masks was supported by manual correction. The
exemplary images of the flaw and its mask for each defect
type are presented in Fig. 8. Finally, the images of the flaws
cut from the original radiograph along with their masks were
saved and the full information about each defect for every
radiograph was gathered in resulting .xml file.

The statistics of flaw’s imperfections in database repre-
senting certain process of welding in aircraft industry is
presented in Table 3. One can observe strongly differing
numbers of examples in consecutive classes of imperfec-

Table 4 The statistics of reduced database dedicated for classification
rules induction and extraction

No. of
flaws

No. of cracks
(class 1)

No. of porosities
(class 2)

No. of undercuts
(class 5)

152 39 109 4

Fig. 8 Examples of flaws and
their binary masks: a lack of
fusion, b undercut, c porosity,
d tungstem inclusion, e group of
pores, f crack

Table 3 The statistics of
processed data

No. of
flaws

No. of cracks
(class 1)

No. of porosities
(class 2)

No. of inclusions
(class 3)

No. of lacks of
fusion (class 4)

No. of undercuts
(class 5)

499 39 453 1 1 4
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tions which can be result of applying of restrictive, repeatable
procedures during welding. For purpose of design of clas-
sifier, the table has to be changed to balance differences
between numbers of different type of flaws which is nec-
essary for creation of identification algorithm. The number
of porosities has been reduced to 109 and classes referring to
inclusion and lack of fusion have been eliminated, because
farther researches does not make sense for single examples
in these classes (compare the contents in Tables 3, 4). The
mentioned above introductory processing of defect images
yielded binary in grayscale forms representing defects (see
Figs. 5, 7, 8). That is why 21 attributes characterizing shape
of collected flaws have been taken into account. The family
of attributes was initially composed of the seven moments
of inertia I , the seven normalized moments of inertia N and
moments of Hu (H) of orders 1÷ 7, expressed in form of
functions of normalized moments of inertia (compare to set
of attributes in Table 5).

The researches were aimed at obtaining of acceptable clas-
sifiers based on possible small number of attributes. The
specificity and scrupulosity of welding process under consid-
eration make that set of forms of defects contains “relatively
similar” members belonging to given class of defects. This
allowed to diminish substantially the number of relevant
attributes up to 2÷3 while 21 attributes were initially taken
into account. Furthermore, due to mentioned above rigors the
acceptable accuracies of classification were obtained even for
checking of values of single attribute. These extremely sim-
ple classifiers based on single attribute yielded decision after
checking the value Ixx or H1, where Ixx - moment of inertia
(shift invariant moment about the center of mass of defect
image)

Ixx =
∑

xx − (
∑

xx)2

A
, (5)

H1-invariant to shift, scale, rotation first order moment of Hu:

H1 = Nxx + Nyy = Ixx
A2 + Iyy

A2 . (6)

The A in (6) denotes the area of defect representation (num-
ber of pixels), Nxx , Nyy represent normalized moments of
inertia, x, y are the coordinates of pixels of defect in relation
to axis x or y respectively. According to procedure in Fig.
1 the data has been randomly divided into learning data set
(50% of examples) and testing set (50% of examples). The
exemplary “piece of input data” covering six examples for
extraction of classifying rules is shown in Table 5.

The accuracy of classification obtained with rules gener-
ated by means of RSES program (http://logic.mimuw.edu.
pl/~rses/get.htm) is described by figures gathered in the con-
fusion matrixes shown in Tables 6, 7. The figures without
brackets refer to results of applying of classification rules to

Table 6 The results of classification (confusion matrix for reduct
based on Ixx )

Table 7 The confusion matrix for classification by means of reduct
based on H1

reduced population of examples, these containing 152 mem-
bers (see Table 4). The numbers in brackets represent results
of applying of the same rules (i.e. drawn from 152 examples)
to classification of the entire population of examples (i.e. for
499 examples).

5 Conclusions

Let us note, that results for class 5 have been obtained for
processing of data referring to 4 examples. Thus, they have
to be treated in category of „curiosity”, especially in case
where all or almost all examples were included to learning
set (see figures without brackets for class 5 in Table 6). The
comparison of qualities of results obtained for classes 1 and 2
(accuracy, coverage) to those obtained by use of other meth-
ods (see rough overview in Sect. 2) inclines to conclusion,
that approach based on rough sets theory is competitive in
relation to other methods. The specificity of processing of
unbalanced data covering in fact 2 classes of defects does not
empowers to draw the general conclusions. Nevertheless, one
ought to take into account, that presented good results distin-
guishing 3 classes of weld imperfections were obtained with
use of extremely “low-size” reducts. This inclines to supposi-
tion that classifiers of weld defects “adjusted” to specific and
rigorous welding process can be based on small number of
attributes. Thus, the obtained initial results have to be treated
as promising. The final stage of radiograph processing, i.e.
classification of weld defects by use of small number of con-
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ditional attributes, cannot be treated as very complicated task.
Nevertheless, one should keep in mind the complicated way
of processing of radiographs to the forms enabling calcu-
lation of conditional attributes, like these given by (5) and
(6). Presently Authors of current paper try to supplement
the data base with more examples referring to imperfection
classes 3,4,5. The application of described methodology to
processing of big size, balanced data base covering all classes
of weld imperfections should lead us successfully to compre-
hensive evaluation of concepts associated with use of rough
sets theory to weld defect classification and in fine to design
and implementation of automatic system classifying defects
for chosen operations of welding in aircraft industry.
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