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Abstract The emergence of composite materials has started
a revolution in the aerospace industry. When using composite
materials, it is possible to design larger and lighter compo-
nents. However, due to their anisotropy, composite materials
are usually difficult to inspect and detecting internal defects
is a challenge. Line scan thermography (LST) is a dynamic
thermography technique, which is used to inspect large com-
ponents of metallic surfaces and composites, commonly used
in the aerospace industry. In this paper, the robotized LST
technique has been investigated on a large composite com-
ponent which contains different types of internal defects
located at a variety of depths. For theoretical analysis, the
LST inspection was simulated using a mathematical formula-
tion based on the 3D heat conduction equation in the transient
regime in order to determine the optimum parameters. The
solution of the model was performed using the finite ele-
ment method. The LST parameters were adjusted to detect
the deepest defects in the specimen. In order to validate the
numerical results with experimental data, a robotized system
in which the infrared camera and the heating source move in
tandem, has been employed. From the experimental tests, it
was noted that there are three sources of noise (non-uniform
heating, unsynchronized frame rate with scanning speed and
robot arm vibration) which affect the performance of the test.
In this work, image processing techniques that were initially
developed to be applied on pulse thermography have been
successfully implemented. Finally, the performance of each
technique was evaluated using the probability of detection
approach.
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1 Introduction

Nowadays, composite materials, specifically carbon fiber
reinforced polymers (CFRPs), play a dominant role in sci-
ence as well as civil, nuclear, aerospace, renewable energy
and automobile industries. These materials significantly
improve the mechanical properties, providing high stiffness,
higher strength, and improving the fatigue resistance [1,2].
Aerospace engineers prefer materials which are lighter and
easier to shape. Advanced composites such as CFRPs have
been increasingly utilized in aerospace structures such as aps,
slats, spoilers, elevators, etc. CFRPs offer valuable properties
to manufacture complex-shaped components with reduced
manufacturing time [1,3,4]. Due to their interlaminar struc-
ture, CFRPs distribute the energy of impact over a large
area using a polymeric matrix. This characteristic makes
them more resistant against low velocity impacts, but it may
increase the detection probability of internal defects that can-
not be observed from the surface [1]. Therefore, due to the
high probability of damaging composite materials, engineers
must inspect and evaluate the components during the differ-
ent steps of manufacturing, service and maintenance. In order
to detect subsurface defects, non-destructive testing (NDT)
techniques are employed. In the case of composite materials,
a variety of NDT methods have been proposed in the litera-
ture to evaluate composite materials. Infrared thermography
[5–8], ultrasonic [9] or thermosonics [10], SQUID magnetic
response [1], and X-ray [11] are some of the methods used
for the inspection of composite materials [12,13]. The final
selection of an NDT technique depends on the defect type,
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material characteristics, accessibility, sensitivity required, as
well as the time available to perform the inspection [14].

In this paper, robotized line scan thermography (LST)
was investigated in order to inspect a large CFRP specimen
which is used in the aerospace industry. This technique con-
sists in heating the component, line-by-line, while acquiring
a series of thermograms with an infrared camera [15]. The
robotic arm—which carries an infrared camera and the heat-
ing source—moves along the surface while the specimen
is motionless [15,16]. The robotized LST method provides
advantages in comparison to the static approaches. Robotized
LST provides heating uniformity and allows image process-
ing which enhances the detection probability, allowing a
large-scale component to be inspected with-out the loss of
resolution. Using the LST approach, it is possible to inspect
large areas at high scan speeds. Also, the inspection results
are immediately available for analysis while the scanning
process continues. In order to estimate the optimum inspec-
tion parameters, the heat transfer process that takes place
during the LST inspection is simulated using the 3D-FEM
approach.

COMSOL Multiphysics was the software used to model
the problem and to solve the differential equations that govern
the heat transfer process [17]. In this research, the CFRP spec-
imen has been modeled using approximately 200 K elements
to achieve accurate results. An experimental LST inspec-
tion has been conducted in order to validate the numerical
simulation and to verify the inspection parameters obtained
through the finite element method (FEM) simulation. As per
the obtained results, the main sources of noise that affect
the LST inspection performance are the non-uniform heat-
ing, unsynchronized frame rate with scanning speed and the
vibration produced by the robotic arm mechanism.

To compensate for the effects of the noise, data process-
ing algorithms such as thermographic signal reconstruction
(TSR), principal component thermography (PCA) and par-
tial least square thermography (PLS) were employed. This
paper investigates and evaluates the effect and performance
of data processing algorithms in LST data. Finally, the per-
formance of each data processing algorithm was evaluated
using the probability of detection(PoD) criterion.

2 Robotized Line Scan Setup

Robotized line scanning thermography was proposed as a
dynamic approach for the inspection of large and complex
shaped components. The infrared camera and heat source
are installed on the robot arm. These components move in
tandem, while the specimen remains fixed (see Fig. 1). Using
a computer program which provides the commands for the
robotic arm, it is possible to tune all inspection parameters
such as the speed of the inspection heat, the distance between

Fig. 1 Robotized line scan thermography inspection with low power
source

the inspection head and the specimen, acquisition rate, and
the scanning velocity.

The specimen under study is a 900 mm×150 mm
monolithic CFRP panel consisting of 10 sections (1–10 as
indicated) with a variable number of CFRP layers (progres-
sively increasing from 6 to 22 plies). Each section has 3
flat-bottomed holes of different diameters (6, 8 and 10 mm),
for a total of 30 defects located at different depths (from 0.425
to 6.09 mm). The characteristics of the specimen under study
are shown in Fig. 2. A relation of the depth and diameters of
the defects is presented in Table 1, together with the diam-
eter to depth ratios (D/z). A picture of the robotized line
scanning setup is shown in Fig. 1. The reference panel was
positioned over a fixed table and the inspection head over
the robot scanned the specimen surface while the camera
and heat source moved on the reference panel. An uncooled
micro-bolometer camera (Jenoptik IRTCM 384, LWIR 7.5–
14 μm; 384×288 pixels) was used during data acquisition
and the specimen was heated using a low power heating line
lamp.

3 Numerical Simulation of LST

Several models have been proposed in order to estimate the
temperature distribution during the thermography process.
In the case of LST thermography, there are some analyti-
cal models that are more precise than others. The following
equation has been proposed for composite materials in 2008
[18].
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Fig. 2 Defect map of the
reference panel and
corresponding depths

Table 1 Depths and diameter to
depth ratios corresponding to
the 30 at-bottom-holes of the
reference panel

Section 1 2 3 4 5 6 7 8 9 10

D = 6 mm 0.88 0.86 0.63 0.69 0.94 0.99 0.42 0.86 0.54 0.65

6.8 7.0 9.5 8.7 10.6 6.1 14.1 7.0 11.0 9.2

D = 8 mm 1.2 1.4 1.7 2.0 2.2 2.4 2.6 2.9 3.1 3.5

6.5 5.7 4.7 4.1 3.6 3.3 3.1 2.7 2.6 2.3

D = 10 mm 1.5 2.1 2.6 3.2 3.5 3.7 4.2 4.9 5.5 6.1

6.6 4.7 3.9 3.2 1.7 2.7 2.4 2.0 1.8 1.6

where the term K0(x) is a modified Bessel function of the
second kind of order zero, v is the line-source velocity, L
is the specimen thickness and q is the rate of heat emitted
per unit length. This equation calculates the temperature on
the specimen surface. It is considered that the material is
homogenous and the input energy source should be identical
for all points in the same line. In the case of CFRP materials,
because of their porous structure, the preciseness of the ana-
lytical model is not sufficient enough in order to detect the
small defects. Therefore, it is strongly suggested to employ
the three-dimensional finite element approach in order to cal-
culate the heat transfer in the material volume. It will be more
time consuming, but the result will be close to the reality.

To simulate the LST inspection, the three-dimensional
finite element method (3D-FEM) is employed to determine
the thermal response of the composite specimen when a
dynamic heat excitation is applied on its surface. The LST
parameters must be adjusted to maximize the temperature
variation on the material surface. COMSOL Multiphysics,
was employed to model and simulate the LST inspection of
the CFRP specimen. In order to simulate the LST thermog-
raphy in COMSOL Multiphysics, the heat transfer module
and multibody dynamics module is used. This module allows
the 3D transient energy equation to be modeled and solved
in order to obtain the temperature distribution in the CFRP
specimen that contains subsurface defects. The heat trans-
fer modulus also provides different types of uniform and
non-uniform time dependent heat sources [15]. The proposed
model in this work considers the heat transfer by conduction
within the specimen and heat transfer by convection and radi-
ation between the sample surface and the ambient. Figure 3
shows the schematic of the heat fluxes considered in this
work.

The 3D model geometry was defined as being the same
as the experimental specimen. Figure 4 shows the 3D model
which consists of 10 sections with various internal layers
(progressively increasing from 6 to 22 plies). Also, the fiber
orientations are shown in Fig. 5. The number of layers, the
defect position and size and the composite fiber direction
are the most important parameters when developing the 3D
model.

One of the key steps in the simulation process consists
in generating the appropriate mesh size. There is a trade-
off between the accuracy of the results and the simulation
time. A finer mesh size increases the accuracy; however, it
also increases the simulation time and requires more com-
putational resources. Figure 6 shows the generated mesh in
COMSOL 3D. The simulation parameters as well as the ther-
mophysical properties of the specimen are shown in Table 2.

4 Simulation Results

COMSOL solves the 3D heat conduction equation using the
finite element method. To simulate the LST model using
COMSOL, there are two procedures to implement that lead
to the same results: (1) moving the specimen under the fixed
heat source and camera (2) moving the heat source and cam-
era with a fixed specimen.

In this work, because of some mechanical constraints in
the experimental setup in order to move the specimen, the
second strategy was chosen in simulation. Figure 7 illustrates
three defect lines which consist of all internal defects. In the
results of the simulation, the sudden temperature change on
the lines indicates the defect position. To evaluate defect visi-
bility, the thermal contrast, which is defined as the difference
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Fig. 3 A schematic of the
specimen with the heat fluxes
participating

Fig. 4 Computational geometry of the specimen developed in COMSOL

Fig. 5 The specimen with bi-directional woven carbon fiber layers (in the photo on the left, half of the specimen is illustrated and in the photo on
the right, two layers of the specimen are magnified)
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Fig. 6 The generated 3D mesh in COMSOL

Table 2 Simulation parameters
used in the numerical simulation

Symbol Simulation parameters Value

Tamb Ambient temperature 293.15 k

To Initial temperature 293.15 k

H × L × W Specimen dimension H × 900 mm × 150 mm

δ Ply thickness 2 mm

H Height of the specimen δ × number of layers

u Scan velocity 10 mm/s

h Convection heat transfer 9.1

ρCFRP Density (CFRP) 1500 kg/m3

CPCFRP Specific heat (CFRP) 1000 J/(kg K)

KCFRP Thermal conductivity (fiber ||) 7 W/(m K)

KCFRP Thermal conductivity (fiber ⊥) 0.8 W/(m K)

ρT Density (Teflon) 2200 kg/m3

CPT Specific heat (Teflon) 1050 J/(kg k)

KT Thermal conductivity (Teflon) 0.25 W/(m k)

ε Emissivity 0.98

Fig. 7 The defined defect lines

of temperature between a non-defective and a defective area
of the specimen, is used. There are various thermal contrast
definitions such as the absolute contrast, running contrast,
normalized contrast and standard contrast [19]. The abso-
lute thermal contrast is the variable adopted to analyze the
detectability of defects and is given by [7]:

�T (x, y, t) = Td (x, y, t) − Ts(x, y, t) (2)

where Td is the temperature of a pixel or the average value
of a group of pixels of a defective area, and Ts is the temper-
ature at time t for the non-defective area [20].

In this paper, three scanning velocity speeds are consid-
ered: 10, 20 and 30 mm/s. The total power of the heating
source is 500 W. Figure 8 shows the temperature variation of
three defect sizes (A4, B4 and C4) at two different scanning
speeds (10 and 30 mm/s) using a constant heat energy (500
W).

It can be observed from figure 8 that the lower the scanning
speed, the higher the thermal contrast (or the detectability
level of the defects). This can be explained as follows lower
speeds the specimen receives more energy from the line
source, producing thus a higher thermal contrast between
defective and non-defective areas. The scanning speed has
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Fig. 8 The thermal profiles of three defects (A4, B4 and C4) using two scanning speeds, 10 and 30 mm/s (from left to right) and a constant heating
power of 500 W
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Fig. 9 The comparison of maximum thermal contrasts (A4 with
D/z = 8.7, B4 with D/z = 4.1 and C4 with D/z = 3.2) with different scan-
ning speeds

an impact on the observation time as well as in the amount
of energy that is delivered to the specimen. Thus, the obser-
vation time is dependent on the scanning speed. Since the
scanning speed increases, the observation time decreases
and the amount of energy that is delivered to the specimen,
decreases with a reduction in the observation time. The ther-
mal contrasts of three defects (A4, B4 and C4) considering
three scanning speeds are compared in Fig. 9.

The maximum thermal contrast and its time of occurrence
are dependent on the aspect ratio D/z of the defects (diameter
to t depth ratio) [21]. It can be observed from the results

Fig. 11 Comparison of the maximum thermal contrast values consid-
ering the 500 and 1000 W heat source at 10 mm/s

obtained that defects with lower D/z require more energy (or
lower scanning speed) to obtain a higher value of thermal
contrast. Figure 10 illustrates the direct relationship between
the maximum thermal contrast and the depth of defects (for
three diameters) when the scanning speed is of 10 mm/s.

The amount of energy has a significant effect on the
detectability of the defects. To show the influence of the
irradiation power density on the thermal contrast, another
amount of energy is applied (1000 W). Figure 11 shows the
influence of the amount of energy on the maximum ther-
mal contrast at a constant velocity. It can be observed that
the visibility of the defects characterized in this work by the

Fig. 10 a–c Maximum thermal contrast as a function of depth for three different diameters, d maximum thermal contrast as a function of D/z ratio
at 10 mm/s
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Fig. 12 The surface temperature variation during the different simulation times at 10 mm/s

maximum thermal contrast can be improved by increasing
the amount of the irradiation power density delivered to the
specimen. And also, as shown in Fig. 11, the simulation LST
results indicate that the detection of the defects is a func-
tion of the aspect ratio of the defects (considering the same
inspection parameters). Defects with a higher D/z ratio have
higher detectability level.

Figure 12 shows 4 different thermal maps of the surface of
the material at four different times of the inspection using a
scanning speed of 10 mm/s. It is possible to observe that the
thermal contrasts of the subsurface defects and the moment at
which they become visible in the thermal map are functions
of the depth and the lateral size of the defects. Data processing
methods could help to increase the detection probability.

According to the simulation results, it is possible to detect
almost all of the defects with a different level of visibility
using the LST approach. The simulation results using differ-
ent scanning speeds prove that a longer heating time (lower
scanning speed) increases the PoD of the defects due to the

Table 3 Experimental parameters

Experimental parameters Value

Heat source 500 W

Length of the source 150 mm

Width of the source 2 mm

Distance between source and sample 7 cm

Length of the projected line 950 mm

Velocity 10 mm/s

time during which energy is delivered to the specimen sur-
face.

5 Experimental Setup

In the experimental setup, an uncooled microbolometer cam-
era (Jenoptik IRTCM 384, LWIR 7.5–14 μm, 384×288
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Fig. 13 Thermal profiles of three defects in simulation and experimental data

pixels) was used during data acquisition and the specimen
was heated using a 500 W line source. The linear speed of
the source on the specimen is 10 mm/s. During the experi-
mental implementation of LST, due to the specimen length,
the infrared camera covered only a section of the specimen
at a time. Therefore, the pseudo-static matrix reconstruction
approach is utilized to produce a static image of the spec-
imen, thus allowing a better analysis of the produced data
and the possibility to apply post-processing techniques to
the acquired thermal images. The experimental parameters
are shown in Table 3.

5.1 Validation of the Numerical Simulation

Figure 13 shows the thermal profiles of three defects (A1,
B1 and C1) which were obtained from simulation and exper-
imental results at a 10 mm/s scanning speed. These profiles
are the best criterion in order to validate and prove the accu-
racy of the simulation model. A comparison between the
simulation profiles and experimental profiles confirms the
validity of the simulation model, composite parameters and
our analysis approach. However, because of the low frame
rate of the camera, the resolution of the experimental profile
is not high enough to compare with the simulation profiles.
At the beginning of the heating process, the simulation and
experimental results are in good agreement while in the cool-
ing time, the cooling rate of the experimental data is higher.
It could be dependent on the room temperature or data acqui-
sition accuracy.

5.2 Data Reconstruction

Figure 14 illustrates the methodology adopted to produce the
pseudo-static matrix. The infrared camera captures the orig-
inal sequence Pxi (t), frame by frame (through time t). The
first line of the image matrix at time t1, will be relocated as the
first line of the reconstructed image matrix corresponding to a
virtual time t ′1, that is Px ′1(t ′1). The first line at the same posi-
tion x1 but in the following frame (at time t2) is then relocated
as the second line of the reconstructed matrix, and so on. At

the end of this process, the sequence of lines at position x1 in
the original sequence: Px1 (t1) . . . Px1(tn) is rearranged into
a single image representing the first frame at the virtual time
t ′1 which is defined as the time of the visibility of a specified
specimen line for the camera. The same procedure is repeated
for the remaining lines in the original sequence [15]. In order
to construct the accurate pseudo matrix, the camera and heat
source should move with a constant speed. In other words,
the camera framerate must be perfectly synchronized with
the scanning speed, which is difficult to achieve. To address
this issue, an additional calibration procedure was proposed
by Oswald-Tranta and Sorger [22]; or one can use a shifting
correction procedure based on the interpolation between the
initial and final positions of a reference pixel. In both cases,
it is assumed that the camera and source move at a constant
speed [15]. The observation time tobs (or time window), the
time during which a given point (line) in the inspected object
is observed at a given scanning speed ux , can be precisely
calculated with the knowledge of the length of the FOV in
the scanning direction X [15]:

tobs = X

ux
(3)

The virtual acquisition rate of the reconstructed sequence
f ′
rate, can then be estimated using the known number of pixels

being scanned px during the observation time from tobs [15]:

f ′
rate = px

tobs
= 1

�t ′
(4)

Equations 3 and 4 are employed to reconstruct the pseudo-
static sequence from the dynamic matrix and to determine the
observation time and frame rate for every pixel in the new
sequence [15].

Figure 15 shows the reconstructed thermograms obtained
using the robotized LST inspection. The reconstructed ther-
mograms correspond to the virtual times 2.17, 3.03, 4.17 and
6.5 s. As mentioned in the previous section, it is difficult to
synchronize the mechanical motion speed and the acquisi-
tion frame rate of the IR camera. The misalignment is visible
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Fig. 14 The algorithm is used to construct the pseudo matrix

in the results caused by shifting the object position from one
frame to the next. Several solutions have been proposed to
reduce the effect of this problem, such as using the matching
algorithms as iterative closest point (ICP), the interpolation
between the initial and final positions of a reference pixel
[22], or increasing the field of view (FOV). As per Fig. 15
it is possible to observe that shallower defects (line A) were
easy to detect by robotized LST.

As times elapses, deeper defects are visible. In other
words, deeper defects require more time to be detected,
in a similar way as in the static inspection. In the last
frame (at virtual time 6.5 s), four defects in line B and the
first defect in line C appeared. Therefore, without the data
processing algorithms it is possible to detect the defects
located close to the surface at a depth of 2mm and less.
However, through the implementation of signal processing
techniques it is possible to reduce the effects of different
sources of noise and therefore, improve the detectability
of the defects that are undetectable in raw images. The
next section discusses the implementation of some of the
most commonly used techniques to process infrared thermal
data.

6 Data Processing Algorithms

Currently in the literature one can find information on a
wide selection of methods aimed at processing thermo-
graphic images. Some of the most commonly used techniques
are: thermographic signal reconstruction (TSR) [23], ther-
mal tomography [24], pulsed phase thermography (PPT)
[5], Principal component thermography (PCT) [25,26] and
Partial least square thermography (PLST) [27]. Data pro-
cessing techniques in NDT enhance the defect detection
probability, with the downside of increasing the computa-
tional time or requiring interactions with an operator to select
algorithm parameters [26]. In this paper, these data process-
ing algorithms have been used to increase the visibility of
defects.

6.1 TSR

Thermographic signal reconstruction (TSR) is well-known as
an effective data processing technique for PT data. The most
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Fig. 15 The robotized LST thermography experimental results

important advantages of using this method over raw data
is the simplicity and accuracy of quantitative measurement,
the increase of temporal and spatial resolution, reduction of
high frequency noise and the ability to produce time deriva-
tive images [5]. As its name implies, TSR uses a low order
polynomial function in order to reconstruct the temperature
evolution curve which is obtained from a PT inspection [28].
Figure 16a shows the result of the TSR approach. It is clear
that the TSR approach enhances the detection probability and
makes it possible to locate deeper defects.

6.2 PCA

An interesting technique is principal component thermogra-
phy (PCT) which is used to extract features and reduce the
undesirable information in thermographic sequences. PCT
is used in NDT for defect detection and the estimation of
depth of the detected subsurface defects [25]. PCT is based
on the singular value decomposition (SVD) to extract the spa-
tial (Empirical Orthogonal Functions or EOFs) and temporal
(principal components PCs) information from thermal data.
Each principal component is characterized by the variability
level or its variance. Thus, the first component is the largest
variance of all the components, followed by the second
component and so on. Using the first few (most important)
principal components helps to reduce the dimensionality of
the data [29,30]. Figure 16b shows the results of using PCT
on the robotized LST data. The PCT technique has a signifi-
cant effect on raw data and enhances the detection capability
of the test. In Fig. 16c a combination of TSR and PCA tech-
niques was employed, thereby improving the performance.

In this way, the TSR technique was used as a filter to
reduce the noise and then PCA was applied to this sequence.
The TSR is employed to suppress noise and in the next step

PCT is carried out to improve defect detection. The combi-
nation of these signal processing techniques (TSR and PCT)
effectively improves the result by combining the advantages
of each technique.

6.3 PPT

The application of pulsed phase thermography to process
thermographic data obtained from the LST inspection is also
investigated in this work. PPT is based on the fact that any
waveform can be approximated by the sum of harmonic
waves at different frequencies through the Fourier Transform,
which is used to extract a certain number of thermal waves
from a thermal pulse [31], each one oscillating at a different
frequency and having a different amplitude. The amplitude
and phase maps obtained after the implementation of PPT to
processing the thermographic LST data is shown in Fig. 17a
and b.

6.4 PLST

Partial least square (PLS) is composed of a wide class of
methods in order to establish the relations between sets
of observed variables by means of latent variables. This
involves regression and classification tasks as well as dimen-
sion reduction techniques and modeling tools [32]. Using
this method, irrelevant and unstable information is discarded
and only the most relevant part of the thermal data is used
for regression. Furthermore, since all variables are projected
down to only a few linear combinations, simple plotting tech-
niques can be used for analysis. As a regression method,
PLSR seeks to model a dependent variable Y (predicted) in
terms of an independent variable X (predictor) [27,33]. PLS
generalizes and combines features of two techniques: prin-

123



32 Page 12 of 15 J Nondestruct Eval (2017) 36 :32

Fig. 16 The robotized LST
results with the TSR and PCA
approach

Fig. 17 The robotized LST
results with PPTS and PLS

cipal component regression (PCR) and multivariate linear
regression (MLR) to achieve this aim [27,33]. The result of
the partial least square thermography (PLST) technique is
shown in Fig. 17c. The PLS technique does not provide an
appropriate performance for this data. In the next section, the
performance of the different data processing approaches is
compared.

7 Evaluation of Signal Processing Techniques

Concerning the signal processing algorithms, it is important
to note that PPT and TSR were originally developed to be
applied on static thermography, when the heat conduction
regimes follow the solution of the 1D differential equations.
For this reason, their performance could not be as expected
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Fig. 18 The calculated PoD
value for different data
processing techniques

since the thermal regime or the thermal process is not 1D
anymore. In fact, the decay curve obtained from LST is very
different from the one obtained from static thermography.
Therefore, it is important to investigate and evaluate per-
formance of the data processing algorithm in the new space.
The performance evaluation provides a criterion to determine
the capability of each algorithm to eliminate the noise and
detect the deeper defects. The PoD is known as a powerful
tool which is employed to estimate the performance of data
processing algorithms [34–36].

In this research, the performance of the processing tech-
niques has been evaluated quantitatively using the PoD
approach. The PoD analysis is a quantitative measuring
method used to evaluate the inspection quality and the relia-
bility of a NDT&E technique. This criterion is widely used
for traditional NDT&E techniques [30]. PoD tries to recog-
nize the minimum aw depth that can be reliably detected by
the NDT technique. This is best done by plotting the accu-
mulation of flaws detected against the aw depth of all of the
flaws “detected” or that produce a response over a threshold.
Based on the PoD result, all defects which are

deeper than a critical depth is not detected while others are
detected. The tool most commonly used for PoD description
is the PoD curve [37]. It was proven that the log-logistic
distribution was the most acceptable [38]. The PoD curves
can be produced from two types of data: (1) hit/miss data
(the flaw is detected or not), (2) signal response data. The
mathematical expression to describe the PoD function from
hit/miss data is written below:

PoD (a) = e
π√

3
((ln a−μ)/σ)

1 + e
π√

3
((ln a−μ)/σ)

(5)

where a is the defect size, μ = −α
β

and σ = π

β
√

3
are

the median standard deviation respectively. From Eq. 6, a
direct relationship can be demonstrated between the log-odds
PoD(a) and defect size:

ln

(
PoD (a)

1 − PoD (a)

)
= α + β ln a (6)

For signal response data, the following formula is com-
monly used to model the relation between a flaw size (a) and
a quantitative response data (â) [30,39]:

ln â = β0 + β1 ln (a) (7)

where β0 and β1 are respectively the intercept and slope
which can be estimated by maximum likelihood. The PoD(a)
function will be calculated as:

PoD (a) = Probabili t y(ln â > ln âdec) (8)

where âdec is a decision concerning the threshold. Finally, the
PoD function is written based on the continuous cumulative
distribution function.

PoD (a) = 1 − F

(
ln âdec − β0 + β1 ln a

σ

)
= F

( ln(a) − μ

σ

)

(9)

where F is the continuous cumulative distribution function
which has the cumulative log-normal distribution. The val-
ues of β0, β1 and σ are calculated by Minitab software and
represent the 95% lower confidence bound [30,39].
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Fig. 19 A comparison of the PoD value for different techniques

Figure 18 shows the 95% lower confidence bound of vari-
ous data processing algorithms, which were calculated using
Minitab. The PoD curves of each technique are shown in
Fig. 18. This result shows that PCA provides the highest
probability to detect the deeper defects. In order to have a bet-
ter comparison, the performance of each technique has been
measured. The detection performance of each approach is the
area under the PoD curve divided by the total area. Figure 19
shows a comparison of the PoD value for different techniques
which represents the capability to detect the deepest defects.
PoD calculates the performance of each data processing algo-
rithm based on the number of visible defects and their depth.
In other words, PoD provides an appropriate criterion in order
to determine the ranking of each algorithm. In this research,
the results of raw data, TSR, PCA, PLS, TSR + PLS and PPT
were evaluated and compared. The raw data has very low
performance due to low camera resolution, camera vibra-
tion and Non-uniform motion of the camera and source. The
TSR algorithm reduces the noise and significantly increases
the number of visible defects. Unexpectedly, the PPT and
PLS algorithms have lower performance. In comparison with
the static thermography, it can be concluded that these algo-
rithms are sensitive to the motion noise and are not proper
choices for LST application. PCA and TSR + PCA provide
the highest performance in comparison to other techniques.
This indicates that TSR, PCA and especially their combina-
tion is robust against the motion noise and are the best choices
for LST.

8 Conclusion

In this research, the application of robotized Line Scan
Thermography (LST) has been investigated for the non-
destructive inspection of large and complex composite struc-
tures. All the experiments and theoretical analysis were
conducted on a carbon fiber reinforced polymer (CFRP) spec-
imen with defects located at different depths and diameters.
For theoretical analysis, the heat transfer process that takes
places within the material during the LST inspection was sim-

ulated using COMSOL Multiphysics. The developed thermal
model also considered different parameters associated with
the LST setup, such as the amount of energy delivered to the
specimen and the speed at which the IR camera and heating
source move. It is important to mention that the developed
thermal model can be used not only to study the heat trans-
fer process in the LST inspection, but also as a technical
tool that can be employed for training of technicians and
specialists. Furthermore, the model can be used as a pre-
screening tool to obtain inspection parameters and to verify
the reliability of the LST before being applied in real tests. A
parametric study was conducted to analyze the influence of
the irradiation density and the scanning speed on the thermal
contrast (or the defectivity level) of the defects. From this
study, it was observed that the simulated thermal curves of
the defects with respect to time follow a similar behavior as
that observed in pulse thermography. Furthermore, the results
indicate that there is a direct relation between the scanning
speed and the maximum thermal contrast of the defects due to
the amount of heat energy delivered to the specimen. Based
on the results obtained from numerical simulation, a com-
prehensive analysis of several image processing techniques
(TSR, PCT, PCT + TSR, PPT and PLST) commonly used to
improve the quality of PT data were implemented on the ther-
mal maps obtained from the inspection by the robotized line
scan thermography system. After processing, the results were
evaluated in terms of the PoD criteria, allowing to conclude
that principal components thermography and thermographic
signal reconstruction provided an improvement of the depth
probing capabilities of LST. In both cases, it was possible
to detect defects up to a depth of 2.1 mm from the surface
of the specimen. Further investigations are focused on the
implementation of machine learning methods to go beyond
the current limit of 2.1 mm depth.
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