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Abstract The probability of detection curve is a standard
tool in several industries to evaluate the performance of
non destructive testing (NDT) procedures for the detection
of harmful defects for the inspected structure. Due to new
capabilities of NDT process numerical simulation, model
assisted probability of detection (MAPOD) approaches have
also been recently developed. In this paper, a generic and
progressive MAPOD methodology is proposed. Limits and
assumptions of the classical methods are enlightened, while
new metamodel-based methods are proposed. They allow to
access to relevant information based on sensitivity analysis of
MAPOD inputs. Applications are performed on eddy current
non destructive examination numerical data.
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1 Introduction

In several industries, the probability of detection (POD)
curve is a standard tool to evaluate the performance of non
destructive testing (NDT) procedures [12,15,22]. The goal
is to assess the quantification of inspection capability for the
detection of harmful flaws for the inspected structure. For
instance, for the French company of electricity (EDF), the
potentialities of this tool are studied in the context of the
eddy current non destructive examination in order to ensure
integrity of steam generators tubes in nuclear power plants
[20].

However, high costs of the implementation of experimen-
tal POD campaigns combined with continuous increase in
the complexity of configuration make them sometimes unaf-
fordable. To overcome this problem, it is possible to resort
to numerical simulation of NDT process (see for example
[25] for ultrasonics and [24] for eddy-current). This approach
has been called MAPOD for “Model Assisted Probability of
Detection” [30] (see also [22] for a survey and [8] for a syn-
thetic overview).

The determination of this “numerical POD” is based on a
four-step approach:

1. Identify the set of parameters that significantly affect the
NDT signal;

2. Attribute a specific probability distribution to each of
these parameters (for instance from expert judgment);

3. Propagate the input parameters uncertainties through the
NDT numerical model;
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4. Build the POD curve from standard approaches like the
so-called Berens method [4]. In POD studies, two main
models are used: POD model for binary detection rep-
resentation (using hit/miss data) and POD model for
continuous response (using the values of the NDT sig-
nal). We focus in this work on POD model for continuous
response, arguing that model-based data contain quanti-
tative and precise information on the signal values that
will be better exploited with this approach.

Of course, this process is conditioned by the quality of the
NDT model, which has to accurately represent the inspec-
tion technique under evaluation. This quality can be judged
by the so-called model verification and validation step [23],
that is considered as a preliminary step of our four step pro-
cess. Verification is testing the correctness of the software
execution and the equation solvers inside the model, while
validation evaluates the discrepancy between the model out-
puts and some measurements coming from representative
(of the domain of interest) experiments. For the NDT system
presented in this article, before the propagation of the input
parameters uncertainties (step 3), the computer code (C3D)
has been successfully verified and compared with experi-
mental data on about 100 typical defects [20,29].

As it totally relies on a probabilistic modeling of uncertain
physical variables and their propagation through a model, the
MAPOD approach can be directly related to the uncertainty
management methodology in numerical simulation (see [10]
and [2] for a general point of view, and [13] for illustration
in the NDT domain). This methodology proposes a generic
framework of modeling, calibrating, propagating and prior-
itizing uncertainty sources through a numerical model (or
computer code). Indeed, investigation of complex computer
code experiments has remained an important challenge in all
domain of science and technology, in order to make simula-
tions as well as predictions, uncertainty analysis or sensitivity
studies. In this framework, the numerical model G just writes

Y = G(X) = G(X1, . . . , Xd) , (1)

with X ∈ R
d the random input vector of dimension d and

Y ∈ R a scalar model output.
However, standard uncertainty treatment techniques req-

uire many model evaluations and a major algorithmic dif-
ficulty arises when the computer code under study is too
time expensive to be directly used. For instance, it happens
for NDT models based on complex geometry modeling and
finite-element solvers. This problem has been identified in [8]
who distinguishes “semi-analytical” codes (fast to evaluate
but based on simplified physics) and “full numerical” ones
(physically realistic but cpu-time expensive) which are the
models of interest in our work. For cpu-time expensive mod-
els, one solution consists in replacing the numerical model

by a mathematical approximation, called a response surface
or a metamodel. Several statistical tools based on numeri-
cal design of experiments, uncertainty propagation efficient
algorithms and metamodeling concepts will then be useful
[14]. They will be applied, in this paper, in the particular
NDT case of a POD curve as a quantity of interest.

The physical system of interest, the numerical model
parameterization and the design of numerical experiments
are explained in the following section. The third section
introduces four POD curves determination methods: the clas-
sical Berens method, a binomial-Berens method and two
methods (polynomial chaos and kriging) based on the meta-
modeling of model outputs. In the fourth section, sensitivity
analysis tools are developed by using the metamodel-based
approaches. A conclusion synthesizes the work with a pro-
gressive strategy for the MAPOD process, in addition to some
prospects.

2 The NDT System

Our application case, shown in Fig. 1, deals with the inspec-
tion by the SAX probe (an axial probe) of steam generator
tubes to detect the wears, which are defects due to the rub-
bing of anti-vibration bars (AVB). This configuration has
been studied with Code_Carmel3D (C3D) for several years
and C3D has demonstrated its ability to accurately simu-
late the signature of a wear, with its influential parameters
(mainly the AVB). Besides, C3D has been involved in several
benchmarks between numerical tools and experimental data
[21].

2.1 The Computer Cand Model Parameterization

The numerical simulations are performed by C3D, computer
code derived from code_Carmel developed by EDF R&D and
the L2EP laboratory (Lille, France). This code uses the finite
element method to solve the problem. Hence, there is a large
flexibility for the parameters that can be taken into account

Fig. 1 Representation of the system under study (Tube with wear, AVB
and SAX)
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Fig. 2 Illustration of the mesh in the numerical model of NDT simu-
lation

(cf. Fig. 2). The accuracy of the calculations can be ensured
with a sufficiently refined mesh [29], using HPC capabilities
if necessary.

The eddy-current non-destructive examinations are based
on the change of the induction flux in the coils of the probe
approaching a defect. When the tube is perfectly cylindrical,
both coils of the probe get the same flux of induction. If there
is a defect, the flux are distinct and hence the differential flux,
which is the difference between the flux in each coil, is non-
zero: it is a complex quantity whose real part is the X channel
and the imaginary part is theY channel. Hence, when plotting
the differential flux for each position of the probe, one gets a
curve in the impedance plane, called a Lissajous curve. The
output parameters of a non-destructive examination are (as
illustrated on Fig. 3):

– the amplitude (amp), which is the largest distance
between two points of the Lissajous curve,

– the phase, which is the angle between the abscissa axis
and the line linking two points giving the amplitude,

– the Y -projection (ProjY ), which is the largest imaginary
part of the difference between two points of the Lissajous
curve.

Fig. 3 Lissajous curve: output parameters of a NDT simulation for the
SAX probe in differential mode (amp, phase and ProjY )

Fig. 4 Illustration of the considered inputs

2.2 Input Parameters and Associated Random
Distributions Definition

By relying on both expert reports and data simulations, the
set of the input parameters which can have an impact on
the code outputs have been defined. Probabilistic models
have also been proposed following deep discussions between
NDT experts and statisticians. N (., .) (resp. U[., .]) stands
for Gaussian (resp. uniform) law. These parameters are the
following (see Fig. 4):

– E ∼ N (aE , bE ): pipe thickness (mm) based on data got
from 5000 pipes,

– h1 ∼ U[ah1, bh1 ]: distance between the AVB and the top
of the first wear (mm),

– h2 ∼ U[ah2 , bh2 ]: distance between the AVB and the
bottom of the first wear (mm),

– P1 ∼ U[aP1, bP1 ]: first flaw depth (mm),
– P2 ∼ U[aP2 , bP2 ]: second flaw depth (mm),
– ebav1 ∼ U[−P1 + aebav1, bebav1]: length of the gap

between the AVB and the first flaw (mm),
– ebav2 ∼ U[−P2 + aebav2 , bebav2 ]: length of the gap

between the AVB and the second flaw (mm).

All these input parameters are synthesized in a single input
random vector (E, h1, h2, P1, P2, ebav1, ebav2).

As displayed in Fig. 4, we consider the occurrence of one
flaw (or wear) on each side of the pipe due to AVB. To take
this eventuality into account in the computations, 50% of the
experiments are modeled with one flaw, and 50% with two
flaws.

2.3 Definition of the Design of Numerical Experiments

In order to compute the output of interest with C3D, it is
necessary to choose the points in the variation domain of the
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inputs (called the input set). This dataset, called “design of
experiments”, has to be defined at the very beginning of the
study, which is to say before any numerical simulation. A
classical method consists in building the design of experi-
ments by randomly picking different points of the input set,
obtaining a so-called Monte Carlo sample. However, a ran-
dom sample can lead to a design which does not properly
“fill-in” the input set [14]. A better idea would be to spread
the numerical simulations all over the input set, in order to
avoid some empty big subsets.

To this effect it is more relevant to choose the values
according to a deterministic rule, such as a quasi-Monte Carlo
method, for instance a Sobol’ sequence. Indeed, for a size
of design N , it is proved that this design often happens to
be more precise than the standard Monte Carlo method [14].
Given the available computing time (several hours per model
run), a Sobol’ sequence of size 100 is created, and 100 model
outputs are obtained after the computer code (G) runs.

3 Methods of POD Curves Estimation

In this section several methods (from the simplest relying on
strong assumptions to the most complex) are presented and
applied. The objective is to build the POD curve as a function
of the main parameter of interest, related to the defect size.
As there are two defects in the system, a := max(P1, P2) is
chosen as the parameter of interest.

By using the computer code C3D, one focuses on the out-
put ProjY which is a projection of the simulated signal we
would get after NDT process. The other inputs are seen as
random variables, which makes ProjY itself an other ran-
dom variable. The model (1) writes now

ProjY = G(a, X), (2)

with the random vector X = (E, h1, h2, ebav1, ebav2). The
effects of all the input parameters (a, X) are displayed in
Fig. 5. The bold values are the correlation coefficients
between the output ProjY and the corresponding input
parameter. Strong influences of P1 and P2 on ProjY are
detected, as it could be expected. iP2 is the binary variable
governing the presence of one flaw (iP2 = 1) or two flaws
(iP2 = 2).

Given a threshold s > 0, a flaw is considered to be detected
if ProjY > s. Therefore the one dimensional POD curve is
denoted by:

∀a > 0 POD(a) = P (G(a, X) > s | a) . (3)

Four different regression models of ProjY are proposed
in the following, in order to build an estimation of the POD

curve. Numerical simulations are computed for the N = 100
points of the design of experiments.

3.1 Data Linearization Step

All the POD methods consist in a (linear or non-linear)
regression of the output ProjY . Then, a data linearization is
useful to improve the adequacy of the models. This can be
made by a Box–Cox transformation [6] of the output, which
means that we now focus on:

y = ProjY λ − 1

λ
. (4)

λ is determined by maximum likelihood as the real num-
ber that offers the finest linear regression of y regarding the
parameter a (see Fig. 6). The same transformation has to
be applied to the detection threshold s. In the following, we
keep s for the notation of this threshold. It is important to
note that this transformation is useful for all the different
POD methods [13].

3.2 Berens Method [4]

The Berens model, based on y, is defined as

y(a) = β0 + β1a + ε, (5)

with ε the model error such as ε ∼ N (
0, σ 2

ε

)
. Maximum

likelihood method provides the estimators β̂0, β̂1 and σ̂ε .
Hence the model implies the following result: ∀a >

0, y(a) ∼ N
(
β̂0 + β̂1a, σ̂ε

2
)

. On our data, we obtain

β̂0 = 2.52, β̂1 = 43.48 and σ̂ε = 1.95, which leads to
the linear model represented in Fig. 7.

With the normality hypothesis, as displayed in Fig. 7, the
values of the POD curve can be easily estimated, giving the
POD curve of Fig. 8. By considering the error that is provided
by the property of a maximum likelihood estimator in a case
of a linear regression, we can use this uncertainty on both β0

and β1 to build non-asymptotic confidence intervals. Indeed,
the Gaussian hypothesis on ε makes it possible to obtain the
prediction law of β0 and β1 conditionally to σ 2

ε :

(
β0

β1

)
∼ N

(

β̂ =
(

β̂0

β̂1

)
, σ 2

ε

(
XTX

)−1
)

, (6)

with X the data input matrix:

X =

⎛

⎜⎜⎜
⎝

1 a1

1 a2
...
...

1 aN

⎞

⎟⎟⎟
⎠

.
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Fig. 5 ProjY with respect to
the input parameters. On each
plot, the solid curve is a local
polynomial smoother and the
upper number is the
corresponding correlation
coefficient between the input (in
abscissa) and ProjY (in
ordinate)

Fig. 6 Model response with respect to a. Left: Initial data (ProjY as response); Right: Linearized data (yProjY as response) by Box–Cox
transformation with parameter λ = 0.3 of the response ProjY

Classical results on linear regression theory state that the
variance σ 2

ε follows a chi-2 distribution with N − 2 degrees
of freedom:

(N − 2)σ̂ε
2

σ 2
ε

∼ χ2
N−2, (7)

where

σ̂ε
2 =

(
yN − Xβ̂

)T (
yN − Xβ̂

)

N − 2
, (8)

with yN = (y(a1), . . . , y(aN )) the data output sample. Then,
we can obtain a sample (β0, β1, σ

2
ε ) by simulating σ 2

ε then(
β0
β1

)
conditionally to σ 2

ε . From this sample, we get a sample
of POD(a) via the formula:

1 − �((s − β0 − β1a)/σε) , (9)

where � is the standard Gaussian distribution. By simulating
a large number of POD samples, we can deduce some con-
fidence intervals. The 95%-confidence lower bound of the
POD curve is illustrated in Fig. 8.
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Fig. 7 Linear model illustration. The Gaussian predictive distributions
for a = max (P1, P2) = 0.2, 0.3 and 0.4 are given. The horizontal line
represents the detection threshold s

Fig. 8 Results of Berens method: POD curve estimation (solid curve)
and POD lower curve (dashed curve) of the POD 95%-confidence inter-
val

From the estimated POD of Fig. 8, we obtain a90 � 0.30
mm for the defect size detectable with a 90%-probability.
Taking into account the confidence interval, we obtain
a90/95 � 0.31 mm for the defect size which at least 90% of
the cracks can be detected, established with 95% confidence.
In other words, a90/95 purports to be the size of the target
having at least 90% probability to be detected in 95% of the
POD experiments under nominally identical conditions.

In conclusion, we remind that the Berens method stands
on two hypotheses that have to be validated:

– the linearity relation between y and a (after the Box–Cox
transformation) that can be studied via classical linear
regression residuals analysis [9]. On our data, we have
for instance R2 = 88% for the regression coefficient

of determination, indicator which denotes the explained
variance of the linear regression;

– the Gaussian distribution, homoscedasticity and indepen-
dence of the residuals that can be studied via many sta-
tistical tests (see for instance [31]). On our data, we have
the following p-values: 0.62 for Kolmogorov–Smirnov
test (Gaussian distribution), 0.10 for Anderson-Darling
test (Gaussian distribution), 0.82 fo Breusch–Pagan test
(homoscedasticity) and 0.12 for Durbin–Watson test (non
correlation). We conclude that, with a 90%-confidence,
the homoscedasticity and non-correlation hypotheses of
ε cannot be rejected, but the normality hypothesis of ε

can be rejected.

3.3 Binomial-Berens Method

Here we keep the linear regression on y, which is: ∀a >

0 y = β̂0 + β̂1a + ε but we do not assume that ε is Gaus-
sian anymore. However the errors are still assumed to be
independent and identically distributed. We then consider
that we have N of its realizations which we regroup in the
following vector

εN = yN − β̂0 − β̂1a
N . (10)

Therefore we build its histogram and we add it to the
prediction of the linear model as shown in Fig. 9. By using the
i.i.d. property of ε, let us consider that we have N realizations
of the random value y(a) for a > 0. We propose to use them
to estimate the probability for y(a) to exceed the threshold s
(see Fig. 9).

For each a > 0, let Ns(a) be the number of realizations of
the random variable y(a) that are higher than s. That is to say:

Fig. 9 Binomial-Berens method: Berens method without normal
hypothesis. The Gaussian densities are replaced by the sample his-
togram. The horizontal line represents the detection threshold s
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Ns(a) = Card
({

(εi )i∈{1,...,N } | β̂0 + β̂1a + εi > s
})

.

(11)

Therefore an estimation of POD(a) is given by Ns (a)
N , with

Ns(a) ∼ B (N , POD(a)), with B the binomial probability
law. The assumption on Ns(a) distribution can then be used to
build confidence intervals on the value of POD(a), for a > 0.

Let us note that the Binomial-Berens method only requires
to validate the linear relation between y and a. For the 90%-
level defect, we obtain a90 � 0.30 mm and a90/95 � 0.305
mm. A slight difference with the classical Berens method is
present for a90/95.

3.4 Polynomial Chaos Method

As some criticism could be made at some point regarding the
simplistic linear model of equation (5), let us build a meta-
model [14] of the transformed output y. Now the influence of
the other inputs (described in Sect. 2.2) are explicitly men-
tioned in the model whereas it used to be all included in ε.
The model response of interest, e.g. the Y -projection, is rep-
resented as a “pure” function of X (i.e. without additional
noise):

Y = G(a, X). (12)

The so-called polynomial chaos (PC) method [5,28] con-
sists in approximating the response onto a specific basis made
of orthonormal polynomials:

Y ≈ Ŷ =
P−1∑

j=0

a jψ j (a, X) , (13)

where the ψ j ’s are the basis polynomials and the a j ’s are
deterministic coefficients which fully characterize the model
response and which have to be estimated. The orthonormality
property reads:

E
[
ψi (a, X)ψ j (a, X)

] = 1 if i = j else 0 . (14)

The derivation of sensitivity indices (see Sect. 4.1) of the
response is direclty obtained by simple algebraic operations
on the coefficients a j . The latter are computed based on the
experimental design and the associated model evaluations by
least squares.

PC approximations are computed with several values for
the total degree, and their accuracies are compared in terms
of predictivity coefficient Q2, itself based on the leave-one-
out error. The greatest accuracy is obtained with a linear
approximation (i.e. with degree equal to one), with Q2 =
88%. This PC representation reads:

Ŷ � 27.9 − 0.5 ψ1(E) + 11.4 ψ2(a) + 0.7 ψ3(ebav1)

+ 0.3 ψ3(ebav1) + 0.4 ψ4(h1) + 1.0 ψ5(h2) (mV).
(15)

As in the Berens model in Sect. 3.2, it is assumed that the
approximation error is a normal random variable ε with zero
mean and standard deviation equal to σε , that is:

Y ≈ Ŷ + ε, ε ∼ N
(

0, σ 2
ε

)
. (16)

Thus the POD associated with a given defect size a can
be approximated by:

POD(a) = P(Y > s | a) = P
(
Ŷ (a, X) + ε > s

)
. (17)

For any value of a, this probability is estimated by Monte
Carlo simulation of the random quantities X and ε (104 ran-
dom values are drawn).

Note that this estimate relies upon the assumption that the
chaos coefficients are perfectly calculated. However, their
estimation is affected by uncertainty due to the approxima-
tion error (1 − Q2 = 12% of unexplained variance of the
Y -projection) and the limited number of available evalua-
tions of C3D. As for the Berens model, standard theorems
related to linear regression hold for the PC expansions and
can be used to define the probability distribution of the chaos
coefficients and the residual standard deviation σε . Based
on these results, 150 sets of both quantities are randomly
generated and each realization is used to compute the POD
(Eq. (17)). Hence, for any a, a sample of 150 values of
POD(a) is obtained. We computed its 5%-empirical quan-
tile in order to construct the 95%-POD curve. The average
and the 95%-POD curves are plotted in Fig. 10. The char-
acteristic defect sizes (defined in the previous sections) are
given by a90 � 0.30 mm and a90/95 � 0.32 mm.

Fig. 10 Average and 95%-POD curves based on a PC approximation
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It has to be noted that the chaos results are closed to the
ones obtained by the Berens approach. Indeed, the PC rep-
resentation (15) is similar to the Berens model (5) as all the
coefficients except the mean value and the factor related to
a are relatively insignificant in our application case. Further-
more, it is also supposed that the residuals are independent
realizations of a normal random variable. As discussed pre-
viously, this assumption can be rejected by statistical tests.
Another kind of metamodel, namely kriging, is based on
the weaker and more realistic assumption of correlated nor-
mal residuals (the correlation between two model evaluations
increases as the related inputs get closer). This is the scope
of the next section.

3.5 Kriging Method

We turn now to a probabilistic metamodel technique, which
is the Gaussian process regression [26], first proposed by
[11] for POD estimation. Since the linear trend used in the
Berens method was rather relevant, we keep it as the mean
of the Gaussian process that we are about to use. The kriging
model is defined as follows:

Y (a, X) = β0 + β1a + Z(a, X), (18)

where Z is a centered Gaussian process. We make the
assumption that Z is second order stationary with variance σ 2

and covariance Matérn 5/2 parameterized by its lengthscale
θ (θ ∈ R

6 in our application case). Thanks to the maximum
likelihood method, we can estimate the values of the so far-
unknown parameters: β0, β1, σ

2 and θ (see for instance [19]
for more details).

Kriging provides an estimator of Y (a, X) which is called
the kriging predictor and written ŶP (a, X). On our data, we
compute the predictivity coefficient Q2 in order to quantify
the prediction capabilities of this metamodel [19]. We obtain
Q2 = 90%.

In addition to the kriging predictor, the kriging variance
σ 2
Y (a, X) quantifies the uncertainty induced by estimating

YP (a, X) with ŶP (a, X). Thus, we have the following pre-
dictive distribution:

∀x
(
Y (a, X) | yN

)
∼ N

(
ŶP (a, X), σ 2

Y (a, X)
)

, (19)

where ŶP (a, X) (the kriging mean) andσ 2
Y (a, X) (the kriging

variance) can both be explicitly estimated.
Obtaining the POD curve consists in replacing Y =

G(a, X) by its kriging metamodel (19) in (3). Hence we can
estimate the value of POD(a), for a > 0 from:

POD(a) = P

(
(Y (a, X) | yN ) > s|a

)
. (20)

Fig. 11 Example of POD curves estimated with a kriging model

Two sources of uncertainty have to be taken into account in
(20): the first coming from the parameter X and the second
coming from the Gaussian distribution in (19). From (20),
the following estimate for POD(a) can be deduced:

POD(a) = EX

[
1 − �

(
s − ŶP (a, X)

σY (a, X)

)]
. (21)

This expectation is estimated using a classical Monte Carlo
integration procedure.

By using the uncertainty implied by the Gaussian distri-
bution regressions, one can build new confidence intervals as
explained in [16]. It is illustrated in Fig. 11. We visualize the
confidence interval induced by the Monte Carlo (MC) estima-
tion, the one induced by the kriging (PG) approximation and
the total confidence interval (including both approximations:
PG+MC). For the 90%-level defect, we obtain a90 � 0.305
mm and a90/95 � 0.315 mm.

The four methods discussed in this section have given
somewhat similar results. This will be discussed in the con-
clusion of this paper, which also introduces a general and
methodological point of view for the numerical POD deter-
mination.

4 Sensitivity Analysis on POD Curve

Sensitivity analysis allows to determine those parameters that
mostly influence on model response. In particular, global sen-
sitivity analysis methods (see [17] for a recent review) take
into account the overall uncertainty ranges of the model input
parameters. In this section, we propose new global sensitivity
indices attached to the whole POD curve. We focus on the
variance-based sensitivity indices, also called Sobol’ indices,
which are the most popular tools and were proved robust,
interpretable and efficient.
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4.1 Sobol’ Indices on Scalar Model Output

If all its inputs are independent and E(Y 2) < ∞, the vari-
ance of the numerical model Y = G(X1, . . . , Xd) can be
decomposed in the following sum:

Var(Y ) = V =
d∑

i=1

Vi +
∑

i< j

Vi j + · · · + V1...d , (22)

with Vi = Var[E(Y |Xi )], Vi j = Var[E(Y |Xi X j )]−Vi −Vj ,
etc. Then, ∀i, j = 1 . . . d, i < j , the Sobol’ indices of Xi

write [27]:

Si = Vi
V

, Si j = Vi j
V

, . . . , and Ti = Si + Si j + · · · . (23)

The first-order Sobol’ index Si measures the individual effect
of the input Xi on the variance of the output Y , while the total
Sobol’ index Ti measures the Xi effect and all the interaction
effects between Xi and the other inputs (as the second-order

effect Si j ). Ti can be rewritten as Ti = 1 − V−i

V
with V−i =

Var[E(Y |X−i )] and X−i the vector of all inputs except Xi .
These indices are interpreted in terms of percentage of

influence of the different inputs on the model output uncer-
tainty (measured by its variance). They have been proven to
be useful in many engineering studies involving numerical
simulation models [10].

4.2 Sobol’ Indices on POD

In order to define similar sensitivity indices for the whole
POD curve, we first define the following quantities:

PODX (a) = P(Y > s | a, X) ,

PODXi (a) = P(Y > s | a, Xi ) ,

PODX−i (a) = P(Y > s | a, X−i ) ,

D = E‖POD(a) − PODX (a)‖2

(24)

with ‖.‖ the euclidean norm. The POD Sobol’ indices are
then defined by:

SPOD
i = E‖POD(a) − PODXi (a)‖2

D
,

TPOD
i = E‖PODX (a) − PODX−i (a)‖2

D
.

(25)

These POD Sobol’ indices are easily computed with the
metamodels. In particular, the kriging metamodel allows one

to replace P(Y > s | a) by the expectation EX

[

1 − �

(
s − ŶP (a, X)

σ 2
Y (a, X)

)]

in the POD expressions of (24).

Figure 12 gives the sensitivity analysis results on our data.
We find that the POD curve is mainly influenced by ebav1

parameter, with smaller effects of ebav2 and h12 parameters.
As the first-order and total Sobol’ indices strongly differ,
we know that the main contributions come from interactions
between these three influent parameters. From an engineering
point of view, working on the uncertainty reduction of ebav1

is a priority in order to reduce the POD uncertainty.

4.3 Sobol’ Indices for a Specific Defect Size or
Probability

The POD Sobol’ indices quantify the sensitivity of each input
on the overall POD curve. However, we could be interested
in the sensitivities on the detection probability at a specific

E ebav1 ebav2 h11 h12

S

Main effect sensitivity indices

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E ebav1 ebav2 h11 h12

T

Total effect sensitivity indices

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 12 POD first order (left) and POD total (right) Sobol’ indices

123



8 Page 10 of 12 J Nondestruct Eval (2017) 36 :8

E ebav1 ebav2 h11 h12

S

a90 − Main effect sensitivity indices

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E ebav1 ebav2 h11 h12

S

a90 − Total effect sensitivity indices

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 13 First order (left) and total (right) Sobol’ indices on a90

Fig. 14 General and
progressive MAPOD
methodology

Table 1 Synthesis of results for
detectable defect sizes (in mm)
with the four methods of the
POD methodology

Berens Binomial-berens Polynomial chaos Kriging

a90 0.30 0.30 0.30 0.305

a90/95 0.31 0.305 0.32 0.315

defect size a. As it is a scalar value, this can be directly done
by replacing Y by PODX (a) in all the equations of Sect. 4.1.

If we are now interested by the sensitivities on the defect
size at a specific probability detection, we have to study the
inverse function of the POD: POD−1

X (p) with p a given prob-
ability. Similarly to the previous case, the defect size Sobol’
indices can be obtained by replacing Y by POD−1

X (p) in all
the equations of Sect. 4.1. Figure 13 displays these sensitiv-
ity indices on our data for p = 0.90. We conclude that a90 is

mainly influenced by ebav1 parameter, with smaller effects
of ebav2 and h12 parameters. The influences are similar than
those of the POD curve.

5 Conclusions

This paper has presented four different techniques for POD
curves determination (flaw detection probability), valuable
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over a wide range of NDT procedures. As part of this study,
we focus on the examination under wear anti-vibration bars
of steam generator tubes with simulations performed by the
finite-element computer code C3D. The model parameteri-
zation and the design of numerical experiments have been
firstly explained.

Based on these methods of POD curves (and associated
confidence intervals) determination, a general methodology
is proposed in Fig. 14. It consists in a progressive application
of the following methods:

1. the Berens method, based on a linear regression model,
and requiring normality assumption on regression resid-
uals;

2. the Binomial-Berens method which relaxes the normality
hypothesis;

3. the polynomial chaos metamodel which does not require
the linearity assumption but requires normal metamodel
residuals;

4. the kriging metamodel.

Other techniques, not discussed here, could be introduced in
this scheme, as the quantile regression used in [13] to relax
Berens’ hypothesis on the residuals distribution, or bootstrap-
based alternatives.

The results of these four techniques in terms of the esti-
mation of the defect size detectable with a 90%-probability
(a90) and its 95%-lower bound (a90/95) are synthesized in
Table 1. While a90 is rather unchanged, we observe slight
variations on a90/95 between the different methods.

From the metamodel-based techniques, variance-based
sensitivity analysis can also be performed in order to quantify
the effect of each input on the POD curve. Other sensitivity
analysis methods devoted to POD curves allow to quantify
the effects of the modifications of each input distribution.
For example, the Perturbation-Law based sensitivity Indices
[18] have been used in [16]. Finally, an iterative process
can be applied to choose new simulation points in order to
improve the metamodels predictivity or to reduce the POD
confidence interval (see Fig. 14). These metamodel-based
sequential procedures have not been discussed in the present
paper.

It is important to note that the obtained POD curves are
based on a probabilistic modeling of system input param-
eters that has to be validated. Moreover, the initial simple
model (1) does not fully represent the reality, and taking
into account the numerical model uncertainty is an impor-
tant task [1]. Additional noise as reproducibility noise and
measurement errors have also to be added. Solutions for this
problem, based on random POD models, are currently under
study [7]. Another idea would be to use the Gaussian pro-
cess framework to infer an error model between the model
outputs and some measurements, as done in many validation

model problems [3]. Propagation of this model error, asso-
ciated to parameter uncertainties, may allow to obtain some
more realistic prediction intervals for the POD curve.
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