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Abstract This paper describes a novel non-destructive
evaluation methodology for imaging of damage in com-
posite materials using the electrical impedance tomography
(EIT) technique applied to a distributed carbon nanotube-
based sensor. The sensor consists of a nonwoven aramid
fabric, which was first coated with nanotubes using a solu-
tion casting approach and then infused with epoxy resin
through the vacuum assisted resin transfer molding tech-
nique. Finally, this composite sensor is cured to become
a mechanically-robust, electromechanically-sensitive, and
highly customizable distributed two-dimensional sensor
which can be adhered to virtually any substrate. By assuming
that damage on the sensor directly affects its conductivity, a
difference imaging-based EIT algorithm was implemented
and tailored to offer two-dimensional maps of conductiv-
ity changes, from which damage location and size can be
estimated. The reconstruction is based on a newly defined
adjacent current–voltage measurement scheme associated
with 32 electrodes located along the boundary of the sensor.
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In this paper, we evaluate our methodology first by introduc-
ing well-defined damage where sections are either removed
or narrow cuts are made on a series of sensor specimens.
Finally, a more realistic damage scenario was investigated
to show the capability of our methodology to detect impact
damage on a composite laminate. The resulting EIT maps are
compared to visual inspection and thermograms taken with
an infrared camera.
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1 Introduction

1.1 Damage Sensing Approaches Using Resistive
Sensors

Recent advances in composite materials have taken advan-
tage of both nanotechnology and composite engineering
and created a new era for developing novel and multifunc-
tional composite sensors that possess high sensitivity and
excellent mechanical response [1,2] which are suitable for
non-destructive evaluation (NDE) and structural health mon-
itoring (SHM) applications. A number of researchers have
validated the feasibility and sensitivity of employing carbon
nanotube (CNT)-based nanocomposites as strain/damage
sensors [3–9]. One approach to locate and image damage
on a structure is by using a series of one-dimensional mea-
surements collected from a two-dimensional (2-D) sensing
area covered by densely-spaced strain gages [10] or from
the quasi-distributed surface electrodes on an electrically
conductive composite panel [11]. However, this quasi-2-D
algorithm compromises the results by confining the possi-
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ble damage locations to the grid points of the measurements.
Electrical impedance tomography (EIT) is a true 2-D algo-
rithm and has been recently studied to perform spatial dam-
age evaluation on fiber reinforced composite plates [12–16],
nanocomposites [17–19] and concrete members [20–23].
Nevertheless, the results from these studies are influenced by
the anisotropic conductivity of the sensors used such that rela-
tively low resolution and high background noise are observed
in the final EIT maps [12–14,16,19]. Additionally, field
applications may be considerably limited due to the low sen-
sitivity of the sensor, vulnerability to environmental effects
[17,21,22], and also fabrication challenges [13–15,17,18].

In this study, a novel CNT-based composite sensor was
first fabricated following a two-step method where CNTs are
depositing from an aqueous dispersion onto a non-woven
fabric followed infusion of epoxy resin [9,24]. The nanotube
composite sensor can be adhered to virtually any shape to
detect deformation and damage and is also mechanically
robust and electrically isotropic. Electrodes are then attached
to the sensor to allow measurement of the resistance changes
in the CNT network and map local conductivity changes.
Moreover, the manufacturing approach is inexpensive and
can be readily scaled-up for large engineering applications.
This paper demonstrates for the first time the feasibility of
performing the difference imaging-based EIT on a CNT-
based nonwoven composite sensor to estimate the location
and severity of different types of damage.

1.2 Carbon Nanotube-Based Composites as Sensors

CNT-based composites are strong candidates for serving as
distributed strain and damage sensors due to their extraor-
dinary piezoresistivity [25], durability [26], and application
versatility [27]. To date, a number of experimental studies
have been performed on investigating and characterizing the
electromechanical behavior of CNT-based nanocomposites
and demonstrated their capability as in situ damage sensors
[3]. For example, Gao et al. [4,6] have analyzed the electro-
mechanical response of the CNT-based composite laminates
subjected to static and cyclic loading conditions. The bulk
resistance measured between the two ends of the nanotube
composite specimen displayed a strong correlation with the
applied load in real-time and identified the formation of
damage in the composites through sudden increases in the
electrical resistance due to damage-induced changes in the
nanotube network. In addition, many applications that use
CNT-based nanocomposites for SHM sensors have been doc-
umented such as damage sensing for composite joints [7,8],
dynamic strain sensing on a small cantilever beam [5], inte-
grated strengthening and monitoring of a concrete beam [28],
wireless damage sensing of a small concrete beam [29], and
dynamic strain monitoring of a full-scale reinforced concrete
beam [30].

Due to the nanoscale size of CNTs combined with their
large aspect ratio (length/diameter), an electrically conduc-
tive network can be established in CNT-based composites
by integrating small amounts of CNTs by coating a carrier
fabric [9]. This fabric can be either structural [28] or non-
structural [9] to form an integrated strengthening/monitoring
composite or a distributed sensor, respectively. The deposi-
tion of CNTs onto the carrier fabric can be achieved in several
ways. The most important approaches include: coating the
fabric with CNT-based sizing [9,31], infusion of epoxy with
dispersed CNTs into fabric [4,6], and by electrophoretic
deposition from a CNT solution [32,33]. In a recent study
we have introduced a sizing approach and characterization
of CNT-infused nonwoven fabrics as strain sensors [9]. This
nonwoven fabric is a sheet of randomly-oriented aramid
fibers with high open porosity (about 90 %). Due to the ran-
dom, nonwoven structure the electrical conductivity of the
resulting composite is isotropic. The sensor is piezoresis-
tive, enabling the sensing of strain [9]. To determine the
location of damage within the sensor multiple electrodes
can be employed along with more advanced data analysis
approaches, such as electric impedance tomography (EIT).

1.3 Electrical Impedance Tomography

Electrical impedance tomography has been extensively stud-
ied for medical and geological applications since the 1980s
[34,35] but has been largely overlooked by the NDE and
SHM communities until recently. By measuring boundary
voltages EIT is able to map the internal conductivity dis-
tribution in an electrically conductive material [36–38]. In
order to solve this non-linear and ill-posed inverse prob-
lem, regularization and linearization techniques as well as
numerical solvers are employed to produce an approximate
solution [36,37]. Baltopoulos et al. [12] used a 20-electrode
EIT scheme to assess damage in carbon fiber reinforced com-
posite laminates that were subjected to indentation impacts.
The reconstructed conductivity maps were produced using
the least-squares method with Tikhonov regularization and
showed the localized areas with reduced conductivity cor-
responding to impact damage. Following the same EIT
algorithm they also performed impact damage evaluation on
a CNT-modified glass fiber-reinforced composite plate [13].
However, the resulting EIT maps from both studies showed
a significant amount of artifacts and low resolution.

Hou et al. [17] first employed the EIT technique on a
nanocomposite (i.e., CNT-PSS/PVA thin film) for spatial
damage sensing. They created a small (25 mm × 25 mm) pla-
nar sensor and used Gauss-Newton regularization algorithm
for EIT imaging of etching damage. Loyola et al. [14,15]
used EIT for strain and impact damage monitoring of glass
fiber composites by implementing a CNT-based polymer thin
film as spatial sensor. In these two experimental studies, a
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one-step linear reconstruction algorithm was employed and
tuned to achieve normalized differential conductivity maps
with optimal resolution. In addition, Loh et al. [18] and Hou
and Lynch [20] quantitatively correlated the reconstructed
EIT maps with strain. A linear relationship was observed
between the contrast of the reconstructed conductivity maps
and strain. Some EIT applications have also been conducted
to image surface cracking of concrete members [21] and to
detect internal anomalies [23]. Recently, Hallaji et al. [22]
performed EIT on a silver paint sensor using an absolute
imaging scheme to detect cracking of a concrete beam under
three-point bending obtaining high-resolution quantitative
reconstruction maps, which accurately show the complex and
evolving crack pattern. Additionally, Tallman and coworkers
used the difference imaging algorithm and conducted EIT
on the carbon nanofiber epoxy plates [19] and carbon black
filled glass fiber/epoxy laminates [16] for damage detection.
They also performed the same EIT algorithm on the flexible
carbon nanofiber/polyurethane composites [39] for imaging
tactile contacts and distributed strains.

2 EIT Methodology

In order to generate EIT reconstructions of conductivity
change it is required that a forward and inverse problem
be solved. Figure 1 illustrates the reconstruction approach
for mapping the sensor’s internal distribution of conductiv-
ity change. The inputs and variables shown in the figure are
defined in the following sections detailing the theoretical
basis for the EIT methodology.

2.1 Forward Problem

The forward problem solves the physical model for simulat-
ing the boundary voltages due to the applied electrical current

in the 2-D sensor (see Fig. 2a, b) with the given geometry,
boundary conditions, and assumed conductivity distribution
of the sensing medium. The relationship between the conduc-
tivity (σ) distribution inside a linear isotropic domain (Ω)

with a smooth boundary (∂Ω) and the boundary voltages (u)

is governed by a Laplacian equation derived from Maxwell’s
equations [37], assuming the absence of an interior current
source [36]:

∇ · (σ∇u) = 0, in(2 − DΩ) (1)

In this study, the so-called complete electrode model (CEM)
is used to apply the boundary conditions to the above
governing equation. As extensively detailed in literatures
[36,37,40,41], CEM mainly defines the total amount of cur-
rent and voltage at boundary electrodes and for the rest of
the domain. CEM considers both the shunting effect and the
contact impedance for each of the electrodes [36,37,41]. In
addition, the finite element (FE) method is employed [12–
15,21,23,36,37,41] to numerically solve for the discrete
approximation of Eq. (1) with CEM boundary conditions.
The domain (Ω) is first divided into a finite number of small
triangular elements as illustrated in Fig. 2c with Nn nodes
where a constant conductivity is assumed within each ele-
ment. The weak solution (uFEM ) to the problem governed
by Eq. (1) is then estimated by taking the sum of the nodal
voltages of each i th element multiplied by each of its corre-
sponding piecewise linear basis functions (ϕi ) as:

u ≈ uFEM =
Nn∑

i=1

uiϕi (2)

Details about the FE model used in this study are further
explained in Sect. 2.3. For a finite set of injecting current, the
FE system for the forward problem is commonly formulated
as a system of linear equations [37,41]:
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Fig. 1 Flowchart visualizing EIT methodology implemented in this study (Color figure online)
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Fig. 2 Illustration of EIT methodology adapted for our CNT composite
sensor: a current injection route (solid red line) along the boundary and
voltage measurement protocol (dashed yellow lines) for a 16-electrode
(boundary dots) sensor, b detailed illustration of the series of voltage

measurements (i.e. V1 to V13) corresponding to a selected current injec-
tion electrode pair (for simplicity, only 16 electrodes are shown in a,
b), and c FE mesh with 2336 triangular elements used in modeling of
our actual 32-electrode CNT composite sensor (Color figure online)

[
AM + AZ AW

AT
W AD

] [
u
U

]
=

[
0
I

]
(3)

where

[AM ]i j =
∫

Ω

σ∇ϕi · ∇ϕ j dxdy (4)

[AZ ]i j =
L∑

l=1

1

zl

∫

el
ϕiϕ j dS (5)

[AW ]i = − 1

zl

∫

el
ϕi dS (6)

[AD] = diag

( |el |
zl

)
(7)

with i, j = 1, 2, …, Nn , l = 1, 2, …, L , |el | is the length
of the electrode el (in 2-D), and zl is the contact impedance
between the electrode and the sensing medium. In this alge-
braic system, [AM ] represents the usual system matrix for the
governing equation to the numerally meshed 2-D domain
while [AW ], [AD] and [AZ ] impose the CEM boundary
conditions [37,41]. The unknown nodal voltages [u] and
boundary voltages [U ] at electrodes are then solved with
the known injecting current [I ] at the electrodes. These cal-
culated voltages are used to construct the Jacobian matrix in
the inverse problem as explained in the following section.

2.2 Inverse Problem

The inverse problem reconstructs the sensor’s internal distri-
bution of conductivity change in accordance with the voltage

measurements at all electrodes resulting from the adjacent
current injection scheme (Fig. 2a, b). This represents an
ill-posed non-linear problem and the result is sensitive to
modeling errors and measurement noise [36,37,41]. In this
study, for solving the inverse problem we used a maxi-
mum a posteriori (MAP) reconstruction approach which was
developed by Adler and Guardo [42]. This MAP algorithm
makes the Gaussian assumptions for the a posteriori distri-
bution and is a one-step linearization solver reconstructing
the normalized change in electrical conductivity between the
intact and damaged condition of the sensor. This probabilistic
method yields the estimate ([�σ /σ0]) following the regular-
ized inverse as [14,15,42]:

{
�σ

σ 0

}
=

[
(JTW J + λR)−1 JTW

] {
�U
U0

}
= B

{
�U
U0

}
,

(8)

where

[J ]i j = −
∫ 2∑

i=1

(∇u)i (∇u∗) j dxdy

(for isotropic 2 − D medium [36]) (9)

in which, [W ] is the covariance matrix containing the inverse
variance of noise for every voltage measurement and then
represents the noise level of the obtained voltage measure-
ments; [R] is the regularization matrix imposing conditions
of smoothing and stabilization by using a spatially invari-
ant Gaussian high-pass filter to treat the measurement noise;
λ is the regularization parameter controlling the amplifica-
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tion of noise in the reconstructed images [14,15,42]. [B] is
the image reconstruction matrix corresponding to a given λ;
[U0] represents baseline measurements from the undamaged
state of the sensor; [U ] includes the measurements taken after
damage may have occurred; [�U ] = [U ] − [U0]; Jacobian
matrix [J ] relates the changes in the measured voltages at the
electrodes to the changes in the conductivities of the elements
shown in Fig. 2c.

In this study, [W ] is separately represented by a sparse and
an identity matrix. For the sparse matrix, it is assumed that
Gaussian noise exists. The identity matrix on the other hand
assumes zero-mean Gaussian white noise, ignoring the phys-
ical errors within the specimen. The regularization parameter
(λ) is determined according to the resulted noise figure (NF)
of MAP algorithm, in which NF is defined as the signal-
to-noise-ratio (SNR) of the voltage measurements (SNRU )

divided by the SNR of the reconstructed conductivity (SNRσ)

according to [42]:

NF = SN RU

SN Rσ

= (1t Z)
√
N · trace(ABW−1Bt A)

(1t ABZ)
√
M · trace(W−1)

(10)

where, N ,M , and [A] are the number of elements, number of
voltage measurements and the diagonal matrix composing
of the areas of the i th element, respectively. [Z ] = ([U ] −
[U0])/[U0] and [B] is defined in Eq. (8). In order not to under-
or over-smooth the reconstruction, an optimal regularization
parameter (λoptimal) was determined when the reconstructed
image results in NF = 1 [14,15,42].

2.3 Numerical Modeling

The finite element method is employed along with partial
calculation routines selected from the electrical impedance
tomography and diffuse optical tomography reconstruction
software (EIDORS) [41,43,44] through MATLAB (R2012a,
MathWorks®). The geometry and mesh generation of the FE
models for our CNT-based composite sensors were devel-

oped using a MATLAB-based mesh generator, DistMesh
[45]. The final mesh of the FE models consists of 1238
nodes and 2336 2-D triangular elements as shown in Fig. 2c
where each electrode was modeled as two adjoining nodes
represented by black dots. By applying the MAP algorithm,
the difference in voltage measurements between the undam-
aged and damaged states is immediately calculated and used
for the EIT reconstruction. In this way, the experimental
errors associated with the contact impedance, poor elec-
trode contact and electrode mismatches do not change in
the EIT measurements for both states, then by subtracting
the initial measurements we avoid these errors influencing
the reconstruction of the damaged specimens [19,42]. Here,
the complete electrode model (CEM, [46]) was employed
and a unit contact impedance value was assumed for all 32
electrodes. For the forward problem, the initial electrical con-
ductivity of the FE model was considered isotropic. The final
EIT reconstruction map for each specimen was achieved in
correspondence to λoptimal (defined in Sect. 2.2). Specifically,
MATLAB was used to handle the EIT calculations based on
a customized script to perform the direct inversion of the sys-
tem matrix. This large sparse matrix is in the size of 1270
by 1270 (with conditioning numbers of 3 ∼ 6×1017 for our
FEMs) and stored in the MATLAB program. The solution
to the forward problem takes about 4 min of computational
time on a 2.40 GHz desktop computer with 8 GB RAM and
2–3 min of computational time to solve the inverse problem.

3 Experiment

3.1 Sensor Fabrication Process

A sizing approach was used to fabricate the CNT-based com-
posite sensor by employing a nonwoven aramid veil (34 g/m2,
Technical Fiber Products Inc.) as the non-conductive carrier
fabric. This 0.5 mm thick fabric consists of 12.7 mm long ran-
domly oriented short fibers, as shown in Fig. 3a. The trimmed

Fig. 3 a Optical micrograph of nonwoven aramid fabric and its random fiber architecture, b coating of CNTs on fabric using the water-based CNT
sizing, c photo showing the flexibility of final CNT composite sensor

123



26 Page 6 of 15 J Nondestruct Eval (2016) 35 :26

fabric was dipped into a commercially-available CNT sizing
agent (SIZICYLTM XC R2G, Nanocyl), as shown in Fig. 3b,
which had been diluted with distilled water (1:2 by weight)
and sonicated for 15 min using a bath sonicator (Branson®
1510, Branson Ultrasonics Corp.). The CNT-modified fab-
ric was then dried at 130 ◦C and infused with epoxy resin
to form the final CNT-based composite sensor. After finish-
ing the resin infusion, the composite sensor was cured in the
oven at 130 ◦C for 6 h. For a detailed discussion of the siz-
ing approach, the reader is referred to our previous studies
[9,24]. The resulting final CNT-based composite sensor has a
uniform thickness of 0.47 mm across the entire area with 0.75
wt.% CNT. Through this process, each individual short fiber
becomes conductive and the whole nonwoven fabric turns
into a dense network of randomly connected resistors. Figure
3c illustrates the sensor’s flexibility and the final product. As
discussed in our previous work [9], this CNT-sizing-based
two-step technique employs a dip-coating process using a
prepared low CNT concentration aqueous solution which sig-
nificantly reduce the material and labor cost comparing with
other studies [3,5,18]. Specifically, solely coating the non-
woven fabric significantly improves the efficiency of CNTs
as forming conductive networks within the nanocomposites
by concentrating the limited amount of CNTs onto a small
amount of fibers. Therefore, our approach is low cost, simple
to setup and operate, and able to be easily scaled up.

In our prior research scanning electron microscopy (SEM)
was utilized to study the morphology of the CNT coating on
the aramid nonwoven fabric. The CNT layer uniformly coats
the individual fibers, indicating good wettability of the sizing
[9]. The CNTs form a random conductive network that is
supported by the aramid fibers.

3.2 Preparation of Test Specimens

Boundary electrodes were applied to the sensor in order
to conduct the EIT measurements (described in Sect. 2.1).
A 32-electrode arrangement with eight electrodes equally
spaced along each boundary was selected for this study, as
shown in Fig. 4a. For each electrode location, an area of 3.2
mm × 3.2 mm was coated with a conductive silver paint
(SPI Supplies®, Structure Probe, Inc.). Two lead wires were
then attached to each electrode using a conductive epoxy
(EPOXIES® 40-3900, Epoxies, Etc.). According to the man-
ufacturer the electrical resistivity of the conductive epoxy is
0.0001 �-cm. The conductive epoxy was cured at 90 ◦C for
30 minutes. Finally, the sensor was attached to a 178 mm ×
114 mm × 3.2 mm glass fiber composite (G-10/FR4, Profes-
sional Plastics, Inc.) using a 5-mine epoxy (Loctite® E-00CL
Hysol®, Henkel) to form the final test specimen. The non-
conductive composite has an elastic modulus of 18.6 GPa
and flexural strength of 379 MPa, as reported by the man-
ufacturer. A total of three test specimens were prepared for

Fig. 4 a Illustration of the electrode array for a 32-electrode CNT
composite sensor made and b photograph showing the final EIT spec-
imen used in this study where CNT composite sensor is attached on a
nonconductive composite. Dimensions in (mm)

this study with reference conductivities for Specimen 1, 2,
and 3 of 3.0, 3.5 and, 3.4 S/m, respectively. Figure 4b shows
an example of the three specimens.

3.2.1 Specimen 1: Square Holes

Three identical holes each with a size of 12.7 mm × 12.7 mm
were introduced to Specimen 1 by successively removing the
sensing area at three random locations. These holes introduce
an infinite resistance increase in the electrical field at those
locations and correspond to 1.6, 3.1, and 4.7 % of the total
sensing area. This test aimed at validating the feasibility and
sensitivity of our methodology to localized damage occurring
at different locations simultaneously.

3.2.2 Specimen 2: Simulated Crack

A 25.4 mm long narrow notch was cut using a razor-blade on
Specimen 2 to introduce a local discontinuity in the sensor,
simulating a crack. Figure 9a shows the sensor with a 0.4
mm wide cut (i.e., aspect ratio = 64). This localized damage
represents 0.1 % of the total sensor area. The goal of this test
was to evaluate the sensitivity of our methodology to detect
damage with a large aspect ratio, similar to an actual crack.

3.2.3 Specimen 3: Impact Damage

Impact damage is a common problem for composites because
of their relatively low out-of-plane strength [47]. The objec-
tive of this specimen is to examine the sensitivity of the
methodology to the damage severity. After specifying an
impact energy level of 6.7 J/mm in accordance with ASTM-
D7136 [48], Specimen 3 was impacted multiple times with
21-J nominal energy impacts using an Instron Dynatup 9200
drop weight tester with a 12.7 mm blunt hemispherical tup
hitting the center of this specimen. Figure 5 shows the impact
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Fig. 5 Photo of impact test apparatus with Specimen 3

test setup where the specimen was clamped on along its long
edge. The specimen was impacted six times. After the sixth
impact the tup completely perforated the composite laminate.
Snapshots of the impacted specimen are shown and discussed
further in Sect. 4.4.

3.3 Non-destructive Characterization

For each specimen, visual inspection, EIT measurements,
and infrared (IR) thermography were performed after each
impact. Prior to the initial impact boundary voltage measure-
ments were obtained and used as the undamaged reference
measurement.

3.3.1 EIT Measurements

For EIT measurements current was sourced using the adja-
cent (neighboring) pattern [34]. Compared to the traditional
adjacent current–voltage schemes, we measured the voltage
differences from all other remaining pairs of electrodes with
respect to a reference electrode as illustrated in Fig. 2a, b to
increase the number of independent measurements and the
overall sensitivity at the center of the sensor. The domain
used in the EIT inversion has exactly the same dimensions at
the specimen. As highlighted in Fig. 2a the simplified sam-
ples are 2-D square sensors with 16 electrodes, where all
16 current injection pairs are located successively along the
boundary (i.e., clockwise from the first pair of electrodes #1
and #2, the second pair of electrodes #2 and #3…, to the 16th
pair of electrodes #16 and #1) and the resulting voltage dif-
ferences are measured from electrode #1 to #16 between the
grounded reference electrode #4 shown as the yellow-dashed
lines. To minimize errors caused by the contact impedance at

current-carrying electrodes, only the voltage measurements
taken from the pairs of electrodes not overlapping the cur-
rent injecting electrodes are used in the EIT reconstruction
algorithm. For example, when the current is applied between
electrodes #2 and #3, as shown in Fig. 2b, 13 voltage mea-
surements are acquired and saved. In this way, a total of
13 × 14 = 182 voltage measurements are obtained. Corre-
spondingly, a complete measurement set of 29 × 30 = 870
differential voltages are acquired for our CNT-based compos-
ite sensor with 32 electrodes (shown in Fig. 4b). Following
the commonly accepted minimal contrast of the EIT approach
defined in accordance with the number (Nivol) of indepen-
dent differential voltage measurements as [49]:

Nominal resolution = 1√
Nivol

× 100 % (11)

Our EIT methodology is believed to hold the minimal planar
contrast of 1/

√
870 = 3.4 %.

The data acquisition system used to perform the current–
voltage measurements consists of three components: a
current source meter, a voltmeter, and an electrical multi-
plexer. These were integrated and controlled by a customized
National Instruments LabVIEW program. All 64 connection
wires from the test specimens (shown in Fig. 4b) were con-
nected into a Keithley 3750-ST terminal block attached to
a Keithley 3706A multiplexer. By following the prescribed
current injection pattern, a DC current was applied using a
Keithley 6430 source meter via an electrode pair consisting
of a current source and current sink. In order to avoid Joule
heating while providing an accurate measurement with min-
imal noise, 10 mA was selected for all EIT experiments in
accordance with the conductivity of the fabricated sensor.
The resulting voltage measurements were collected using a
Keithley 2182A nano-voltmeter. Electrode #8 per Fig. 4b
was assigned as the fixed ground electrode. A full set of
EIT data was obtained until the current as injected to all
pairs of adjacent electrodes excluding the two pairs involv-
ing the ground electrode. The initial (reference) conductivity
of the specimens was determined in accordance with the aver-
age resistance measured in its horizontal (i.e., electrodes of
#32 and #9, electrodes #31 and #10…, electrodes #25 and
#16) and vertical directions (i.e., electrodes of #1 and #24,
electrodes of #2 and #23…, electrodes #8 and #17). The con-
ductivity of each sensor was calculated using the following
equation:

σ = 1

ρ
=

(
R
A

L

)−1

(12)

where σ is the electrical conductivity, ρ is the resistivity, R
is the measured electrical resistance in one direction, L is the
length and A is the cross-sectional area of the sensing skin.

123



26 Page 8 of 15 J Nondestruct Eval (2016) 35 :26

Fig. 6 Baseline reconstruction results: a photo of undamaged sensor, and EIT maps of normalized conductivity change for b Specimens 1 and 2
using sparse covariance matrix, and for c Specimen 3 using identity covariance matrix (Color figure online)

3.3.2 Infrared Thermography

Infrared thermography (IRT) is a non-contact non-destructive
evaluation (NDE) technique frequently used for the inspec-
tion of civil structures [50,51], electronics [52], machinery
[53], and composites [54,55]. IRT utilizes an infrared detec-
tor to capture the infrared radiation emitted by an object
[56]. For this study, active IRT was used to perform the post-
damage inspection with the handheld IR camera (i7, FLIR®
Systems, Inc.). Active IRT uses a heat source to produce ther-
mal contrast between the damage and damage-free regions
in an object. The entire specimen was heated up to a temper-
ature of 125 ◦C in the oven to maintain a consistent thermal
reference for all IRT images, followed by cooling outside the
oven. Due to the different thermal conductivities between the
composite, the adhesive layer, and the damaged and undam-
aged regions within the sensor, the heat energy dissipates
from the specimen at different rates which results in tem-
perature differentials in different areas. For each specimen,
multiple thermograms were taken at different temperatures
and the one with the best resolution of showing the damage
is reported.

4 Results and Discussion

4.1 Baseline Measurements

Prior to damaging the specimen, EIT measurements were
conducted to obtain the baseline reconstruction maps and
quantify the background noise level. As detailed in Sect.
2.2, two kinds of covariance matrices including the sparse
and identity matrix were employed in this study. Figure 6a

shows a photo of the undamaged sensor used for the three
damage cases. As displayed in Fig. 6b, the sparse covariance
matrix leads to scattered background noise and corresponds
to a λoptimal = 4.1289×10−7 (defined in Sect. 2.2). The iden-
tity covariance matrix produces concentrated background
noise only along the boundary as presented in Fig. 6c and
the corresponding λoptimal =0.0519. It can be seen that both
approaches cause minimal background noise (<−0.5 % con-
ductivity change).

4.2 Specimen 1: Square Holes

The executed EIT reconstructions for Specimen 1 corre-
sponding to the three-step damage test described in Section
3.2.1 were obtained by using a unit NF with λoptimal =
6.3939 × 10−7 (per Sect. 2.2) and are shown in Fig. 7a2–
c2. Photos of Specimen 1 for the different damage stages are
shown in Fig. 7a1–c1. The dashed squares represent the holes
removed from the CNT-based composite sensor. While our
EIT methodology accurately maps the location of all three
holes, the damage severity and shape are slightly overes-
timated and shown as round-shaped areas with a negative
conductivity change. A possible reason may be that the sen-
sor is treated as an electrically homogeneous object where,
in reality, it likely contains some local anisotropy due to the
fibrous structure. Quantitatively, the predicted damage areas
are 2.87, 5.91, and 10.3 % of the total sensing area, which
results in an 84, 89, and 119 % overestimation compared to
the actual damage size, respectively.

As damage is added to the sensor more background noise
is evident in the EIT maps. Figure 7c3 shows an IRT temper-
ature map for Specimen 1 for the case where all three square
holes are present. The shape of the holes is distinctly repre-
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Fig. 7 Experimental results: Columns show (1) Photo of CNT composite sensor on Specimen 1, (2) EIT maps of normalized conductivity change,
and (3c) temperature map from IR thermography. Rows a–c correspond to the number of square holes (Color figure online)

sented by the darker (hot) lines indicating non-uniform heat
flux occurring along the sharp edges of the discontinuities.
The electrodes are also clearly observed as yellow-green dots
corresponding to a much lower temperature because the ther-
mal conductivity of the silver-filled epoxy electrodes is much
higher than the rest of the specimen. In short, we were able
to demonstrate that it is feasible to detect and map damage
at multiple locations simultaneously using our EIT method-
ology.

A histogram of the elementary results from the EIT recon-
struction is shown in Fig. 8. It can be observed that the
number of elements with ≥−100 % change in conductiv-
ity are 67, 138 and 240 corresponding to one, two and three
square holes, respectively. At the same time, the number of
elements with no conductivity change decreases. Both trends
follow a linear fashion, which validates the use of the linear

reconstruction algorithm of MAP. These observations are in
line with the experimental study conducted by Loyola et al.
[14,15].

4.3 Specimen 2: Simulated Crack

A photo of Specimen 2 is shown in Fig. 9a, and the obtained
EIT map of Specimen 2, as described in Sect. 3.2.2, is shown
in Fig. 9b. Similar to the previous case, the reconstruction
was executed using the sparse covariance matrix when solv-
ing the inverse problem. The λoptimal corresponding to a unit
NF (described in Sect. 2.2) was found to be 2.0842 × 10−7.
As a result, these maps of normalized conductivity change
for Specimens 1 and 2 show similar levels of noise and types
of artifacts. It can be observed that the area with ≥−100 %
conductivity change fully covers the simulated crack. In addi-
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Fig. 8 Distribution of the obtained 2336 EIT element results from each
damage case (Color figure online)

tion, the EIT reconstructed area with localized conductivity
change is stretched along the diagonal direction. Figure 9c
shows an IRT thermogram for Specimen 2. The shape of the
simulated crack is shown by a darker (hot) area indicating the
non-uniform heat flux caused by the discontinuity. The elec-
trodes are also visible, similar to Specimen 1. Both EIT and
IRT images are able to locate the simulated crack. Although
the exact shape is not resolved there is a clear aspect ratio to
the damaged area, indicating an elongated area of damage.
Nevertheless, we were able to demonstrate that it is feasible
to detect and map a discontinuity with a large aspect ratio
(64 in this case) using our EIT methodology.

A histogram of elementary results from the EIT recon-
struction is plotted in Fig. 10, in which 82 % of the elements
maintain unchanged in conductivity and 2.7 % of them rep-
resent ≥100 % decrease in conduction due to the applied
damage on the sensing skin. This is consistent with the min-
imal planar contrast of 3.4 % defined Sect. 3.2.1.

Fig. 10 Distribution of the obtained 2336 EIT element results from
each damage case (Color figure online)

4.4 Specimen 3: Impact Damage

For Specimen 3 the identity matrix was used for [W ] to fur-
ther reduce background noise. This implies that all boundary
voltage measurements have uncorrelated noise (i.e., equal
noise). Figure 11a3–f3 present the resolved EIT maps of
Specimen 3, which show minimized boundary noise and a
clean background. The λoptimal corresponding to the unit NF
(described in Sect. 2.2) is found to be 0.0464, which is much
bigger than that for the previous two specimens. Similar to
the previous two cases, the location of the impact damage is
accurately predicted, although the size is slightly overesti-
mated. Nevertheless, the EIT methodology is able to capture
the evolution of the accumulated damage. The color gra-
dient of the EIT identified damage areas is consistent with
the severity of the imposed damage. After each impact, the
specimen was visually inspected. Photos of the impacted top
face (sensor) and the back face (composite laminate) taken
during the six-step impact test are shown in Fig. 11a1–f1,
a2–f2, respectively. It is evident that damage in Specimen 3

Fig. 9 Experimental results: a Photo of CNT composite sensor on Specimen 2 with insert of artificial crack, b EIT maps of normalized conductivity
change, and c temperature map from IR thermography (Color figure online)
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Table 1 Visual observations from the six-step 21-J impact test

Impact no. Impacted Face: Sensor Figure 11a1–f1 Back Face: Composite Laminate Figure 11a2–f2

Figure Observations Damage mode Figure Observations Damage mode

1 (a1) 3 mm-diam. dot, no
sign of surface
cracking

Barely visible
damage

(a2) 10 mm-square spot
with surface
cracking

Matrix cracking

2 (b1) 7 mm-diam. spot, no
sign of surface
cracking

Slightly visible
damage

(b2) 20 mm-
cross-shaped spot
with surface
cracking

Matrix cracking

3 (c1) Barely visible
ring-shaped
surface cracking
with 10 mm-
quatrefoil-shaped
central dent

Minor surface
cracking

(c2) 31 mm-cross-shaped
spot with partial
bulging, surface
cracking

Delamination / Fiber
fracture

4 (d1) 22 mm-diam.
ring-shaped
cracking with 12
mm-quatrefoil-
shaped central
dent

Surface cracking (d2) 41 mm-cross-shaped
bulge with broken
fiber at the corner

Fiber fracture

5 (e1) 22 mm-diam. ring
cracking with 12
mm-quatrefoil-
shaped central dent
and cross cracking

Sever surface
cracking

(e2) 47 mm-cross-shaped
bulge with broken
fiber along the
edge

Fiber fracture

6 (f1) hole penetrated
through the panel

Puncture (f2) 41 mm-cross-shaped
opening with
broken lamina

Lamina fracture and
penetration

accumulates with each impact. A description of the visual
observations from the test is presented in Table 1.

The IRT temperature maps for Specimen 3 are shown in
Fig. 11a4–f4. It can be observed that the temperature images
for the first three impacts (Fig. 11a4–c4) do not indicate any
signs of impact damage. This is likely due to the fact that
heat dissipation from the hot specimen to the cold ambient
air can still be accomplished by the bridging fibers within the
matrix-cracked zone. After the third impact, thermal images
show the impact damage (Fig. 11d4–f4), and match the loca-
tion of the boundaries of the real damaged areas on the test
specimen. For this test, the EIT reconstructions were able
to detect damage that was barely visible. IRT, on the other
hand, required severe damage (i.e., surface cracking or fiber
fracture) before the damage was detectable.

A histogram of the elementary conductivity changes for
Specimen 3 is plotted in Fig. 12. It can be observed that
the number of elements with no conductivity change in the
EIT maps correlate well to the six successive impacts in a
bi-linear fashion, which is explained by visual observations
included in Table 1: Since the first impact only causes minor
damage in the specimen without permanently cracking the
CNT composite sensor, the conductivity change is small at

the impacted areas and a large number of conductive path-
ways around this area exist. Once the surface cracking is
initiated after the 3rd impact, a large and direct reduction in
local conductivity due to the damage on the CNT composite
sensor is introduced. Next, the local change in conductivity
continues declining with each successive impact and finally
reaches the infinitesimal level due to the loss of sensing area
after full penetration. From these results, we demonstrate that
our damage detection methodology is capable of detecting,
locating, and estimating the severity of accumulating damage
due to impact.

4.5 Discussion

In general it can be observed that the resolved EIT maps
are able to predict the location and size of damage. How-
ever, the shape is not predicted well and for the damage
having a large aspect ratio, such as a crack, the area of dam-
age is significantly overestimated. This relatively low spatial
resolution is a common issue existing in all EIT applica-
tions [12–14,16,18,19,38] due to the inherent difficulties
of this problem: (1) EIT is a diffusion problem where the
injected electrical current propagates within the entire mater-
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Fig. 11 Experimental results: Columns show (1) Photo of CNT composite sensor on Specimen 3, (2) Photo of FRP panel (backside), (3) EIT
reconstructions, and (4) thermograms from IR thermography. Rows a–f correspond to the number of 21-J impacts (Color figure online)
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Fig. 12 Distribution of the obtained 2336 EIT element results from
each damage case (Color figure online)

ial [37,41], (2) solving the severely ill-posed inverse problem
continuously depends on the boundary voltage measure-
ments, which are not always stable and accurately measurable
[37], and (3) the smoothing regularization used in the inverse
problem usually exaggerates the area with decreased conduc-
tivity [21]. It can also be seen from the EIT maps that artifacts
appear at the electrodes and are rippling around the vicinity
of conductivity-changed regions in Figs. 7 and 9. Obviously,
these artifacts are intensified as more conductivity disconti-
nuities are introduced as for Specimen 1. Possible reasons
for this could be the anisotropic conductivity around areas
under the electrodes that violates the assumption of isotropic
conductivity in the FE model and results in an inappropriate
interpolation of the voltage measurements or the small elec-
trode contact impedance leads the voltage measurements at
the electrode depending on the neighboring mesh’s conduc-
tivity in the FE model [57]. In addition, the use of a sparse
[W ] (described in Sect. 2.2) in the MAP algorithm, assumes
that the noise in the voltage measurements is correlated and
causes relatively low measurement accuracy simulated in the
inverse problem [34]. Meanwhile, the level of this correlated
noise is amplified as more differential voltage measurements
are associated with the enlarged regions with conductivity
change (i.e., more holes on the sensor). Additionally, λoptimal

(described in Sect. 2.2) values for Specimens 1 and 2 are very
small, suggesting that these specific inverse problems are
close to where linear approximation is valid. After employ-
ing an identity [W ] for Specimen 3, a comparatively large
λoptimal is obtained. As discussed by others [12,42], large
λoptimal leads the regularization to amplify large singular
value decomposition (SVD) components of the calculated
voltage change corresponding to the conductivity change but
to restrain the smaller SVD components. Since the large SVD
components are associated with the voltage changes closer to
the electrodes, therefore amplifying the large SVD compo-
nents increases the contrast in the area around the electrode
and results in the reduction of noise near the electrodes as
shown in Fig. 11a3–f3. On the other hand, the small SVD
component controls the reconstruction of conductivity at the

interior of the object and to restrain them reduces the back-
ground noise and the resolution at the areas away from the
electrodes in the EIT reconstruction map.

5 Conclusions

This research has established a methodology implementing
a novel carbon nanotube-based composite sensor in con-
junction with electrical impedance tomography (EIT) for
detection and imaging of a variety types of damage. The novel
sensor is based on a CNT-modified nonwoven aramid fabric
and possesses isotropic electrical conductivity, mechanical
robustness, and the ability to be adhered to complex surfaces.
Additionally, the manufacturing process is cost efficient and
allows the sensor to be scaled up for large engineering
applications. A difference imaging-based EIT algorithm was
implemented and adapted to enable 2-D spatial damage sens-
ing capability of the sensor.

A series of tests were conducted to evaluate our method-
ology with a newly defined adjacent current–voltage mea-
surement scheme. Damage included: (1) square holes cut
into the sensor, (2) a narrow cut simulating a crack, and (3)
progressive impacts on a composite laminate. The results
demonstrate that it is possible to detect and locate damage
as well as capture the severity of the accumulated damage.
However, the size is typically overestimated and the shape
not well represented. This is a particular problem for cracks,
which have a large aspect ratio. Infrared thermography (IRT)
images were also taken for comparison and produced compa-
rable results. In some cases, however, our EIT methodology
was able to detect the initiation of damage well before it was
visible with IRT. Improvements on the EIT algorithm are
planned in the future to increase the accuracy to predict the
size and shape. Finally, the methodology will be scaled up
and evaluated for large-scale structures in the laboratory.
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