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Abstract This paper has introduced a digital process aimed
at automatically identify and classify flaws in the weld joints.
Therefore, various algorithms are presented for computer
aided detection (CAD) and classification. These algorithms
include preprocessing algorithms using Gaussian pyramidal
transform, contrast enhancement algorithm using contrast
stretch and normalization method, noise reduction algorithm
by blind image separation (BIS), measurement of the noise
separation quality and image segmentation algorithm based
on expectation-maximization (EM) method. Also, an algo-
rithm for detection and classification of welding defects from
radiographic images is presented. This algorithm is based
on multi-scale wavelet packet (MWP) technique for feature
extraction. Also, extraction of features from its transform
domains is proposed to assist in achieving a higher classi-
fication rate. Moreover, the support vector machine (SVM)
is applied for matching the extracted features. Consequently,
classification error was computed for both normal and defect
images. The obtained results confirm that much higher clas-
sification error was computed for defect image due to various
objects may be in the image. Moreover, the accuracy of
the considered algorithms is determined by statistical mea-
surements. These algorithms have the potential for further
improvement because of their simplicity and encouraging
results. Therefore, it will motivate real-time flaws detection
and classification for many CAD applications.
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1 Introduction

Gamma radiography was introduced as a supplement to X-
ray radiography to provide a means of welded assemblies
and other engineering structures for internal defects such as
blowholes and cracks [1]. Welded structures often have to
be tested nondestructively as industrial radiography using
X-rays or gamma rays, ultrasonic testing, liquid penetrant
testing or via eddy current [2].

Radiographic testing is the commonly used non-destructive
test (NDT) method for detecting internal welding flaws.
Also, it is based on the ability of γ -rays to pass through
metal and other materials opaque to ordinary light [3]. Gen-
erally, radiographic films are very dark. Their density is
rather large. Therefore, an ordinary scanner cannot give
a sufficient lighting through radiogram [4]. Also, gamma
rays produce photographic records by the transmitted radiant
energy. Therefore, the defective areas absorb more energy.
Consequently, penetrated γ -rays show variations in inten-
sity on the receiving films. Thus, the defects appear darker
in the image [5]. The limited range of intensities the image
capture device is able to accommodate is a reason of back-
ground in the image. Also, the gray level values of the noise
pixels are much higher than those of their immediate neigh-
bors [6]. However, the distribution of gray levels is highly
skewed towards the darker side in the original radiographic
image. Therefore, these defects can hardly be recognized
[6]. Consequently, these dark regions represent the back-
ground in the image. However, this noise represents the
high frequency components in the image. Therefore, it pro-
vides a means to examine the internal structure of a weld
[6].

There are several advantages of gamma radiography com-
pared to other technologies [1]. It can be done thoroughly and
non-invasively, more rapidly, and cheaply [7]. Gamma radi-
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ography testing (GRT) uses gamma radioisotopes to inspect
materials defects of welds in radiographic films [7].

Defect extraction, detection and classification from radi-
ographic images have been studied by several researchers
using various techniques and approaches in 2013 [7]. Inanc
[8] provides a brief survey of these radiography efforts and
discusses approaches adapted by various simulation efforts.
Abd Halim et al. [9] extract the weld defect and evaluate
its geometrical feature. The defect boundary is detected by
recognizing the black pixel of eight neighborhoods of 3x3
filtering. The coordinates of the boundary pixel are stored
and used to calculate the information of defect features. This
information can be used by interpreter to interpret a defect.
Also, Sundaram et al. [10] proposed an automatic method
to extract the various welding defects in radiographic weld
images. The welding region is extracted by using c-means
segmentation method. Then, different features of the welded
region are calculated after segmentation.

Moreover, Kasban et al. [11] presented a cepstral approach
for flaw detection from radiography images. In addition,
Saber et al. [12,13] proposed a method for the automatic
detection of weld defects in radiographic images. The cep-
stral features are extracted from the higher-order spectra
(Bispectrum and Trispectrum). Then, neural networks are
used for feature matching. Also, Alaknanda et al. [14] present
an approach to process the radiographic weld images of the
weld specimens considering morphological aspects of the
image.

Hassan and Awan [15] present a novel technique for the
detection and classification of weld defects by means of
geometric features. They tend to localize defects with max-
imum interclass variance and minimum intra class variance.
They move towards extracting features describing the shape
of localized objects in segmented images. They classify the
defects by artificial neural network (ANN) using these geo-
metric features. Also, Liao [16] proposed a fuzzy expert
system approach for the classification of different types of
welding flaws. His results indicate that the fuzzy expert sys-
tem approach outperforms all others in terms of classification
accuracy. Furthermore, Lim et al. [17] developed an effective
weld defect classification algorithm using a large database
of simulated defects. A multi-layer perceptron (MLP) neural
network was trained using shape parameters extracted from
the simulated images of weld defects. The optimized set of
nine shape descriptors gave the highest classification accu-
racy of 100 % by testing on 60 unknown simulated defects.
Defect classification on 49 real defects from digitized radi-
ographs produced maximum overall classification accuracy
of 97.96 %.

Humans have an enhanced ability to qualitatively extract
information from images [18]. However, this ability is limited
if quantitative information has to be achieved from the image.
Therefore, it is an important task to identify the welding

defects in gamma radiography images without human inter-
vention. The interpretation of these radiographic films can
be performed automatically [7]. Therefore, computer aided
detection (CAD) systems can help radiographers in interpret-
ing flaws detection and classification. The combination of
CAD scheme and expert’s knowledge would greatly improve
the detection and classification accuracy. This paper focuses
on developing a CAD system for automatic flaws detection
and classification using gamma radiography welding images.
This paper is organized as follows: Section 2 presents pro-
posed welding flaws classification of gamma radiography
images. However, Sect. 3 discusses the proposed defects
classification algorithm. Section 4 introduces the obtained
experimental results and discussion. Section 5 is devoted for
conclusion of this work.

2 The Proposed Approach

Here, an approach is proposed. Therefore, various algo-
rithms are presented to accurately identify defects in gamma
radiography images. These algorithms are preprocessing
algorithm using Gaussian pyramidal transforms method,
contrast enhancement algorithm using contrast stretch and
normalization method, noise reduction algorithm by blind
image separation (BIS), and image segmentation algorithm
based on expectation-maximization (EM) method. The block
diagram of the proposed automatic defect identification and
classification approach is shown in Fig. 1. The functionality
of each stage is described in the following subsections.

2.1 Preprocessing Algorithm Using Gaussian Pyramidal
Transform

It is necessary to overcome the background problem in the
welding radiography image. Therefore, image preprocess-
ing is an essential step. Image preprocessing was done
using Gaussian pyramidal transform. The main strength of
Gaussian pyramidal transform is the capability of removing
the background without affecting the brightness area in the
image. Each weld image contains some background informa-
tion. In addition, weld images have a wide range of intensity
level. Therefore, image preprocessing is necessary to remove
the background, enhance the image, and normalize the image.
Thus, every image has the same maximal intensity [19]. On
other words, image preprocessing is used to remove the back-
ground. Moreover, it is used to normalize all the line images
to the same maximum gray level [19].

A single threshold value cannot be chosen to remove the
backgrounds for all images. Moreover, the overall gray lev-
els of different weld images are not consistent. A threshold
that removes the background correctly for a bright image
may remove all the pixels from a dark image. So, adjustment
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Start Preprocessing Contrast Enhancement Noise Reduction 

Image Segmentation Feature Extraction Classification End 

Fig. 1 Automatic classification approach of welding flaws of gamma radiography image

Input: Input Gamma Radiography Image 

Procedure:  

a)Do Gaussian Pyramidal Transform (2D) 

i) Identify Boundary Extension either Periodic or Symmetric 

ii) Compute The Gaussian Kernel 

iii) Decompose The Image Into Coefficients Using Gaussian Filter  

b)Do Inverse Gaussian Pyramidal Transform (2D) 

Output: Output the Reconstructed Image 

Fig. 2 Background correction algorithm of gamma radiography image using Gaussian pyramidal transforms

Input: Input the Preprocessed Gamma Radiography Image 

Procedure:  

a)Identify Low and High Threshold Values 

b)Return the Input Array if the Input Image is Uniform 

c)Find Closest Value to the Minimum and Maximum Values 

d)Zero Value is Background  

e)Determine Range of Contrast Values 

f) Do Variation for Contrast Stretching 

g)Compute Low and High Threshold Value For Contrast Stretching 

Output: Output the Enhanced Contrast Image  

Fig. 3 Contrast enhancement algorithm of gamma radiography image using contrast stretch and normalization method

of the images must be made to enable the use of a single
threshold [19]. Therefore, Gaussian pyramidal transforms is
used for this purpose. Consequently, preprocessing algorithm
using Gaussian pyramidal transforms is presented in Fig. 2.
The image can be processed into two subimages with the
pyramid wavelet transform. The subimage produced by the
low-pass filter can be further processed into two subimages.
The subimages yielded by the high-pass filters have reduced
entropy. They can be effectively coded and compressed [20].
However, the accuracy of this algorithm is measured with
respect to statistical measurements as illustrated in Appendix.

2.2 Contrast Enhancement Algorithm

The signal-to-noise ratios in different line images are differ
significantly. Consequently, the signal-to-noise ratio of some
dark images is smaller than those of bright images. There-
fore, the noise levels in dark images are amplified to a larger
degree than those of bright images as well as those images are
normalized. A dark image is the one with average gray level

lower than the expected average. Dark image enhancement
is performed using contrast stretch and normalization algo-
rithm in order to keep the bell shape similar to the original one
[19]. This algorithm is depicted in Fig. 3. The current algo-
rithm based on contrast stretches on the image and normalize
image from 0 to 1. It is completely differs from standard
stretching methods. The standard methods find global min-
imum and maximum of the image. Then, it uses some low
and high threshold values to normalize the image. Therefore,
the values below low threshold are equated to low threshold.
However, the values above high threshold are equated to high
threshold.

However, the contrast stretch and normalization method
uses threshold values that are next to minimum and maxi-
mum threshold. The minimum value on the image itself is
determined. Therefore, the normalized threshold values that
are equal to zero are identified. These normalized zero values
represents the background of the image [21]. Accordingly,
the image background was excluded. Since, it is normally
zero values. Also, the same consideration was done to high
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Input: Input Contrast Enhancement Radiography Images 

Procedure: 

a)Determine 

i)The Number of Samples, Sources and Sensors 

ii)Determine The Length of Mixing Filter and Separating Filter 

b)Do Blind Image Separation (BIS) by A Deflation Based Method 

c)Select the Appropriate Method for Source Extraction That May be 

i)Kurtosis 

ii)Quadsvd 

iii)Quadgrad 

iv)Cubihopm 

v)Cyclostat 

d)Identify Multiple-Input Multiple-Output Finite Impulse Response (MIMO-FIR) 

           Separator Coefficient 

e)Eliminate Ambiguities of Convolutive Blind Source Separation by A Correlation 

           Method 

Output: Evaluate the Result Quality

Fig. 4 Noise reduction algorithm based on blind image separation by a deflation based method

threshold values. So, the first global maximum was excluded.
Consequently, the zero value next to minimum threshold and
first global maximum was removed from the image. More-
over, better chance with the next value is obtained for spike
value. Otherwise, the next value is quite close to maximum.
Thus, the obtained error is reduced.

2.3 Noise Reduction Algorithm

Blind image separation (BIS) is an important field of research
in image processing [22,23]. A deflation approach is used to
implement the blind source factor separation. Therefore, a
noise reduction algorithm based on blind image separation
(BIS) by a deflation based method is shown in Fig. 4. The
purpose of this section is to separate the noise from the weld-
ing gamma radiography image using blind image separation
based on five different methods. These methods are kurto-
sis maximization [23,24], quadratic backward compatibility
(Quadsvd), quadratic grad (quadgrad), cubihopm, and cyclo-
stationary sources. The multiple-input multiple-output finite
impulse response (MIMO-FIR) channel is considered as [25]

x(t) =
K∑

k=0

H (k)s(t − k) (1)

where x(t), s(t), H(k) = [h(k)
i,j ] and K denote an m column

output vector called the observed signal, an n column input
vector called the source signal, an i x j matrix representing the
impulse response of the channel, and the order, respectively.
However, the last equation can be rewritten as [25]

x(t) = H(z)s(t) (2)

where H(z) denotes the transfer function. It is defined by z-
transform of the impulse response,

∑K
k=0 H (k)zk . All signals

and channel impulse can be assumed real values [25].
The blind source-factor separation problem is formulated

by [25]

ci,j(t)=hi,j(z)s,j(t) (3)

where hi,j(z) is the (i,j)th element of H(z). A filtered version
yj(t) of source sj(t) is given by [25]

y j (t) = g j (z)s j (t) (4)

The filter value is given by

g j (z) =
∑m

i=1
w j i (z)hi j (z) (5)

where w j i (z) = ∑L
k=0 w

(k)
j i z

kand L is the order of w j i with a
sufficiently large positive integer. The filter gj(z) is obtained

by adjusting the parameter w
(k)
j i ’s of the filter wij(z). Since,

yj(t) is introduced by [25]

y j (t) =
∑n

i=1
w j i (z)xi (t) (6)

The filtered source signal,y j (t), is extracted from the
observed signals, xi (t), using a deflation approach. Then,
the contribution signal, cij(t) with (i = 1, . . . ., m), to the

123



J Nondestruct Eval (2015) 34 :34 Page 5 of 17 34

Input: Input De-noised Radiography Image 

i)Estimate the Source Image 

ii)Estimate the True Source Image 

Procedure: 

a)Standardize the Radiography Images 

b)Determine the Performance Criteria That Are One of the Following 

i)Signal to Distortion Ratio (SDR) 

ii)Source Image to Spatial distortion Ratio (ISR) 

iii)Source to Interference Ratio (SIR) 

iv)Sources to Artifacts Ratio (SAR) 

v)The Best Ordering of Estimated Source (BOES) 

c)Do Decomposition of An Estimated Source Image Into Four Components (SDR, 

           ISR, SIR, and SAR) 

d)These Components Are Derived From the True Source Images Using 

           Multichannel Time-Invariant Filters 

e)Perform Least-Squares Projection of Each Channel of Estimated Source Image  

Output: Perform Measurement of the Separation Quality for Source Image  

Fig. 5 Noise separation quality algorithm based on blind image separation (BIS)

source signal, sj(t), was computed by using the filtered sig-
nal, yj(t). Subsequently, the difference signal, xi(t)- cij(t) for
i = 1, . . . ., m is calculated. This process is repeated until the
last contribution is extracted. Then, blind source-factor sep-
aration problem is solved. The contribution signal problem
can be obtained as follows [25]

ci j (t) = ai j (z)y j (t) (7)

where ai j (z) = hi j (z)
g j (z)

. Therefore, it follows from above that
[25]

x(t) = A(z)y(t) (8)

where y(t) =[y1(t), . . . ., yn(t)]T and A(z)=[aij(z)]. The con-
tributions signal, cij(t), can be replaced by the transfer func-
tion, A(z). Since, the filtered versions, yj(t) with (j = 1, . . . ,

n), is obtained. The transfer function, A(z), was assumed to
has no pole on the unit circle |z| = 1. Therefore, the trans-
fer function is very simple to become conventional system
identification. Since, both of the two signals x(t) and y(t)
are known. Consequently, the second-order correlation tech-
nique is used to find the transfer function, A(z) [25].

2.3.1 Measurement of Noise Separation Quality Algorithm

The quality of the sspati j estimates of the spatial images of all
sources j for some test mixtures was evaluated by compari-
son with the true source images, simg

i j , using four objective

performance criteria [26]. These criteria can be computed
for all types of separation algorithms. It does not necessitate
knowledge of the separating filters or masks [26]. The cri-
teria derive from the decomposition of an estimated source
image as [26]

S
img
i j (t) = Simg

i j (t) + eispati j (t) + Sinter fi j (t) + eiarti fi j (t) (9)

where Simg
i j (t), eispati j (t), Sinter fi j (t), eiarti fi j (t)denote the true

source image, distinct error components representing spatial
(or filtering) distortion, interference and artifacts, respec-
tively. On other words, the spatial distortion and interference
components can be expressed as filtered versions of the true
source images. These are computed by least-squares projec-
tion of the estimated source image onto the corresponding
subspaces.

We are interested with evaluation of blind image sepa-
ration (BIS) algorithm as shown in Fig. 5. Therefore, the
true source spatial, source interference and artifacts are used
for evaluation of blind image separation (BIS) algorithm.
The relative amounts of spatial distortion, interference and
artifacts were measured using three energy ratio criteria
expressed in decibels (dB). These are source image to spatial
distortion ratio (ISR), source to interference ratio (SIR) and
sources to artifacts ratio (SAR) that are defined by [26,27]

I SR j = 10 log10

∑I
i=1

∑
t s

img
i j (t)2

∑I
i=1

∑
t s

spat
i j (t)2

(10)
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Input: Input De-noised Radiography Image 

Procedure: 

a)Divide Image into Vectors 

b)Normalize Each Vector 

c)Assign Vectors Into the Matrix Raw 

d)Get Assignment Matrix That is Membership Probability 

e)Get Vector of the Estimated Means of Gaussian Function 

f) Get Vector of the Estimated Segment Distribution (SD) 

g)Uses EM Method to Estimate K-Gaussian Distribution Functions By 

i)Initialize Centroid Matrix That Has k Raw 

ii)Initialize Standard Deviation That Has k Raw and Weight 

iii)Initialize Membership Probability Matrix (Assignment Matrix) 

iv)Calculate Membership Probability That is an Assignment Matrix 

Output: Output the Segmented Image 

Fig. 6 Gamma Radiography image segmentation algorithm with EM using Gaussian mixed model

where simg
i j and sspati j denote the true source image and true

source spatial (or filtering), respectively.

SI R j = 10 log10

∑I
i=1

∑
t (s

img
i j (t) + sspati j (t))2

∑I
i=1

∑
t s

inter f
i j (t)2

(11)

where sinter fi j denotes true source interference.

SAR j = 10 log10

∑I
i=1

∑
t (s

img
i j (t) + sspati j (t) + sinter fi j (t))2

∑I
i=1

∑
t s

iarti f
i j (t)2

(12)

where siarti fi j denotes true source artifacts. Also, the total
error was measured by the signal to distortion ratio (SDR)
[26]

SDR j =10 log10

∑I
i=1

∑
t s

img
i j (t)2

∑I
i=1

∑
t (s

arti f
i j (t) + sspati j (t) + sinter fi j (t))2

(13)

2.4 Image Segmentation Algorithm

Accurate image segmentation is an important step of gamma
radiography image analysis. The purpose is to use the regions
extracted by preprocessing. Then, the segments that corre-
spond to the defects are extracted [5]. An EM algorithm
for welding gamma radiography image segmentation was
studied. This algorithm is rapidly converges to a reasonable
approximate solution with little iteration. The EM algorithm
is the mean-field approximation that used to simplify the
computation [28]. It plays an important role in computing
maximum likelihood estimate from missing or hidden data

in mathematical statistics. Gaussian mixture model (GMM)
represents a modeling of statistical distribution by a linear
combination of several Gaussian distributions. The EM algo-
rithm is a natural method to estimate parameter for Gaussian
mixture. It automatically meets constraint, requires no learn-
ing step and monotonously converges to a local maximum or
a saddle point [29].

Image segmentation with EM algorithm using Gaussian
mixed model of defect gamma radiography image is pre-
sented in Fig. 6. Let χ denotes a random variable that having
the distribution pr(χ |�), where � is its parameter. Also,
X = {x1, x2, ..., xN } is an observed data set consisting of
N independent samples. The maximum likelihood estimate
is to find an optimal distribution parameter, �, to maximize
the log-likelihood function that is given by

L(�) =
N∑

i=1

log pr(xi |�) (14)

The iterative computation is to maximize a conditional
expectation under the current �n . This is essential instead
of directly maximizing the log-likelihood function. Then, a
new �n+1 is obtained as follows [29]

�n+1 �= arg max
�

E(�
∣∣�n ) (15)

3 Flaws Classification

The flaws classification step in welding radiography image
provides a set of objects that correspond to one of the follow-
ing classes: non-defect (false alarm), worm holes, porosity,
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linear slag inclusion, gas pores, lack of fusion and cracks
[5]. A set of multi-scale wavelet packet (MWP) features is
extracted. Then, it is used as input to a multi-class classifier
in order to classify each of the obtained objects.

3.1 Feature Extraction

3.1.1 Multi-scale Wavelet Packet (MWP) Feature Extraction

Welding radiography images usually consist of brief high-
frequency components that closely spaced in time. Also, it
is accompanied by low-frequency components that closely
spaced in frequency. Wavelets are considered appropriate
for analyzing welding gamma radiography images. Since,
they are exhibit good frequency resolution along with finite
time resolution. The first is to localize low-frequency com-
ponents. Then, the high-frequency components are resolved
[30]. The wavelet-packets transform (WPT) was introduced
by Coifman et al. [30]. Thus, the link between multiresolu-
tion approximations and wavelets is generalized. The WPT
may be thought of as a tree of subspaces, with �0,0 rep-
resenting the original signal space (the root node of the
tree). The node � j,k (j denoting the scale and k denot-
ing the subband index within the scale) is decomposed
into two orthogonal subspaces. These are an approxima-
tion space [30] � j,k → � j+1,2k and a detail space
� j,k → � j+1,2k+1. This is done by dividing the orthogonal
basis

{
φ j (t − 2 j k)

}
k∈Zof � j,k into two other orthogo-

nal bases
{
φ j+1(t − 2 j+1k)

}
k∈Z . These bases are � j+1,2k

and
{
ψj+1(t − 2j+1k)

}

k∈Zof � j+1,2k+1. The scaling and

wavelet functions are given respectively in [29] as

φ j,k(t) = 1√∣∣2 j
∣∣
φ

(
t − 2 j k

2 j

)
(16)

ψ j,k(t) = 1√∣∣2 j
∣∣
φ

(
t − 2 j k

2 j

)
(17)

where 2 j and 2 j k denote the dilation factor and location
parameter, respectively. The latter measures the degree of
compression or scaling. The former determines the time loca-
tion of the wavelet.

This process is repeated J times, where J ≤ log2 N with
N being the number of samples in the original signal. This in
turn results in J × N coefficients. Thus, the tree has N coef-
ficients divided into 2 j coefficient blocks at resolution level
( j = 1, 2, ..., J ). This iterative process generates a binary
wavelet-packet tree-like structure. Since, the nodes of the
tree represent subspaces with different frequency localiza-
tion characteristics. This is shown schematically in Fig. 7
with three decomposition levels.

0,0

1,1

1,0

3,5

2,2

2,1

2,0

3,7

3,6

2,3

3,4

3,2

3,3

3,1

3,0

Fig. 7 The wavelet-packet decompositions of �0,0 into tree structured
subspaces [30]

3.1.2 Wavelet Packet Based Feature Extraction Method

The problem of WPT-based feature extraction can be decom-
posed into two main tasks: feature construction and bases
selection. For feature construction step, the goal is to uti-
lize the WPT coefficients generated at each of the WPT tree
subspaces. In order to construct variables that can represent
the classes of the signals at hand. However, the bases selec-
tion problem is related to the identification of the best bases.
Moreover, the constructed features can highly discriminate
between the signals belonging to different problem classes
[30]. Features are usually generated by taking the energy of
the wavelet coefficients in the subband according to the nor-
malized filter bank energy, S(l). It is given by [30,31]

S(l) = log

(∑∞
m=1 Wx (l,m)2

Ni

)
(18)

where wx , l , and Ni denote wavelet packet transform of
image x, subband frequency index and number of wavelet
coefficients in the lth subband, respectively. A more powerful
measure is required to identify the information content of the
different features. Since, the error depends on the overlap
between the class likelihoods.

3.1.3 Feature Extraction from the Transform Domain

The flaw classification becomes a challenging task in the
presence of noise. The noise may mask the signal making the
features infeasible in the identification. Also, noise degrada-
tion acts like a low pass filter on the signal. Moreover, it is
removing most of the characteristic features of the signal. As
a result, much more coefficients are required in the presence
degradations. Various transform domains are used in order to
obtain a large feature vector suitable for defect classification
in the presence of degradations. The discrete cosine trans-
forms (DCT), discrete sine transforms (DST), and discrete
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wavelet transforms (DWT) can be a useful tool to overcome
the degradation problems. Features can be extracted from
these transforms of the WPT flaw signal and added to the
feature vector extracted from the signal itself.

3.2 Classification Using Support Vector Machine (SVM)

Classification of normal image is necessary in order to
compare with defect image. Also, we are interested in the cal-
culation of classification error with normal image in order to
design a complete computer aided detection (CAD) system.
On other words, it provides a complete embedded system.
This system will decide if the image is normal (free of
defects). Otherwise, it will determine the type of defect class
in the image as depicted in Fig. 8. Moreover, the interesting
object in the normal image that is used in training purpose
was the brightness section referring to good welding (free of
defect).

The SVM based on statistical learning theory was intro-
duced by Vapnik [32]. Support vector machine (SVM) based
techniques have proven to be powerful in classification and
regression. It provides a higher performance than that of tra-
ditional learning machines. It tends to find a hyperplane that
can separate the input samples. The SVM will transform the
original data into a feature space of higher dimension by using
the kernel function. This is performed as well as the original
data cannot be separated by a hyperplane. The popular ker-
nels are [32] Linear kernel, Polynomial kernel of degree d,
Gaussian radial-basis function, and neural nets (sigmoids).

Suppose a training set, S, contains n labeled samples
(x1, y1), ..., (xn, yn), where xi ∈ {−1, 1} , i = 1, ..., n.	(x)
denotes the mapping from RN to the feature space, Z . It
needs to find the hyperplane with the maximum margin as
[32]

w · z + b = 0 (19)

such that for each point (zi , yi ) , where zi = 	(xi ) ,

Input 
Normal and 

Defect Image

Detect Type 
of Welding 

Is It Defected 

Normal 
Image 

Classify the 
Defect Class

Yes No 

Fig. 8 Flowchart of welding radiography classification algorithm

yi(w · zi + b) ≥ 1, i = 1, ...,n (20)

The soft margin is allowed by introducing n non-negative
variables that denoted by ξ = (ξ1, ξ2, ..., ξn) as the dataset
is not linearly separable. Therefore, the constraint for each
sample in Eq. 20 is rewritten as [32]

yi(w · zi + b) ≥ 1 − ξi, i = 1, ...,n (21)

The optimal hyperplane problem is to solve the following
equation

Minimize

1

2
W.W + C

k∑

i=1

ξi (22)

where C is a constant parameter that tunes the balance
between the maximum margin and the minimum classifi-
cation error. Also, the first term in Eq. 21 measures the
margin between the support vectors. However, the second
term measures the amount of misclassifications. The clas-
sification errors were computed by training linear support
vector machine (SVM). Therefore, classification error is the
fraction of misclassified observations.

The classification error of both normal and defect images
were computed using features extractions from multi-scale
wavelet packet. Then, the SVM was employed to measure
the error of classified objects. These objects may be bright-
ness section in normal image or one of defect classes that
illustrated below for defect image. Moreover, two different
methods are used for classification error computation. These
are re-substitution error and loo error methods. Thus, the
classification error based on re-substitution method is given
by

e =
k∑

i=1

ξi − σ

k
(23)

where ξi , k and σ denote m-by-1 vector of class label, the
length of vector of class labels and the measure of classified
data using SVM, respectively. However, the classification
error for loo error method is identified by

e = CpER (24)

whereCp and ER are the performance evaluation data classi-
fier parameter and the error rate as a performance parameter,
respectively.

The loo error method achieves the lowest possible error.
Consequently, the obtained results are based on loo error
method. Then, the percentage error is given by

ep = e × 100 (25)
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Furthermore, the classification rate percentage in next
tables is computed according to the following relation

CR = (1 − e)x100 (26)

4 Experimental Results and Discussion

4.1 Preprocessing Results

The background correction of normal and defect gamma
radiography image using the Gaussian pyramidal transform
method is depicted in Fig. 9. The original normal image is
shown in Fig. 9a. However, its background corrected image
is depicted in Fig. 9b. Also, the original defect image is illus-
trated in Fig. 9c. Consequently, its background corrected
image is depicted in Fig. 9d. The accuracy and evaluation
of the considered algorithm is obtained in terms of sta-
tistical measurements for both normal and defect gamma
radiography image as depicted in Table 1. These statisti-
cal measurements are discussed in Appendix. The obtained
result confirms that Gaussian pyramidal transform achieves
better background correction without changing the image
quality. Moreover, background correction results of normal

image are superior that of defect image due to little objects
in normal image than defect image.

4.2 Contrast Enhancement Results

The contrast enhancement of normal and defect gamma radi-
ography image using the contrast stretch and normalization
method is depicted in Fig. 10. The original normal image
is shown in Fig. 10a. However, its enhancement image is
depicted in Fig. 10b. Also, the original defect image is
observed in Fig. 10c. Consequently, its enhancement image
is depicted in Fig. 10d. The accuracy and evaluation of the
considered algorithm is obtained in terms of statistical mea-
surements for both normal and defect image as depicted in
Table 2. The obtained results show that high peak signal
to noise ratio (PSNR) and low mean square error (MSE) is
achieved using contrast stretch and normalization method for
both cases. However, smaller error and higher signal-to-noise
ratio (SNR) were achieved with normal image.

4.3 Noise Reduction Results

The image is de-noised using blind image separation (BIS)
algorithm. Five defferent methods of blind image separation

Fig. 9 Background correction of gamma radiography image using Gaussian pyramidal transforms for a Original normal image b Background
corrected image of normal image c Original defect image d Background corrected image of defect image

Table 1 Statistical measurements of background correction of gamma radiography image using Gaussian pyramidal transform for normal and
defect image

Statistics PSNR MSE Entropy SNR RMSE MAE PCC

Normal Image 61.087 0.050627 0.75235 48.13080 0.225 0.76424 1294649

Defect Image 60.0414 0.064409 0.82972 48.13080 dB 0.25379 1.1856 164120
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Fig. 10 Contrast enhancement image using contrast stretch and normalization method a Original normal image b Enhanced normal image c
Original defect image and d Enhanced defect image

Table 2 Evaluation of contrast enhancement algorithm of gamma radiography image using contrast stretch and normalization method for normal
and defect image

Statistics PSNR MSE Entropy SNR RMSE MAE PCC

Normal Image 61.0941 0.050544 0.80553 46.40864 0.22482 0.7639 1280975.4497

Defect Image 60.0523 0.064246 0.95265 45.68791 dB 0.25347 1.1841 161496.3642

Fig. 11 The estimated separated signals for the considered five methods

(BIS) are considered. These methods are Kurtosis, Quadsvd,
Quadgrad, Cubihopm and Cyclostat. Comparisons between
these methods were done with respect to the number of
estimated separator as depicted in Fig. 11. As shown in
this figure, the Kurtosis method achieves the lowest esti-

mated signal separation. Evaluation between these methods
is done in terms of mean square error (MSE) as depicted
in Table 3. From this table, the Kurtosis and Cyclostat
methods introduces lower error in comparison with other
methods.
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Table 3 Mean square error (MSE) calculation of the considered meth-
ods

Kurtosis Quadsvd Quadgrad Cubihopm Cyclostat

MSE 0.9501 48.8827 48.8827 48.8827 0.9559

4.3.1 Measurement Results of Noise Separation Quality

Evaluation of ordering and measurement of the separation
quality for estimated source spatial image by blind image
separation (BIS) were performed. This evaluation was per-
formed in terms of signal to distortion ratio (SDR), spatial
distortion ratio (ISR), source to interference ratio (SIR),
sources to artifacts ratio (SAR) and best ordering of esti-
mated sources image (BOES) as depicted in Table 4. These
noise separation measurements at different classes of welding
radiography images are illustrated in Table 4. The obtained
results indicate that blind image separation (BIS) introduces
effective results for de-noising the welding gamma radiog-
raphy images.

4.4 Image Segmentation Results

The brightness area in the image represents the flawed area
that should be selected for features extraction for classifica-
tion. The flaw in the weld usually exists in the brightness
section of the image. On other hand, background repre-
sents the darkness area around the welding section. Image
segmentation was done automatically based on the selec-
tion order (k). On other words, the parameter k denotes the
pixel order of the image. Furthermore, it means that seg-
mentation method has an underlying assumption that each
element cannot belong to two clusters at the same time. How-
ever, an element in transition area between two clusters is
hard to define. This element may belong to multiple clusters
with different probabilities [33]. Here, the expectation max-
imization algorithm and Gaussian distribution function for
image segmentation of defect image was achieved. There-
fore, the results of the considered segmentation method are
presented. Segmented radiography image results of defect
image were depicted in Fig. 12. The original defect image
is shown in Fig. 12a. However, the segmented image with

Table 4 Ordering and
measurement of separation
quality for estimated source
spatial image by BIS at different
class of welding radiography
images

Separation measurements SDR (dB) ISR (dB) SIR (dB) SAR (dB) BOES (dB)

Data Input

Cracks 0.5608 0.6314 23.8579 224.4337 6

Undercut 4.7699 4.9012 3.3433 229.7332 7

Porosities 9.6347 9.8875 23.0380 229.1740 8

Inclusion 9.7603 9.9163 22.3274 240.7732 9

Lack of Penetration 5.0106 5.4429 17.9672 228.7130 3

Worm Holes 7.3838 7.6695 16.2010 218.0611 1

Cavity 8.8100 9.7143 15.8971 222.5713 2

Burn Through 5.4363 5.9050 18.3068 220.9444 4

Normal 3.9327 4.2292 19.5211 232.7093 5

Fig. 12 Image segmentation with EM using Gaussian mixed model with a Original image b k = 11, c k = 9 and d k = 2
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Table 5 Quantitative evaluation
of image segmentation
algorithm based on expectation
maximization at different
Gaussian order of k = 2, 9 and
11

Statistics PSNR MSE Entropy SNR RMSE MAE PCC

Gaussian Order of k=2 60.0412 0.064411 0.86207 48.15095 0.25379 1.1856 162817.678

Gaussian Order of k=9 60.0412 0.064412 0.79762 48.16095 0.25379 1.1856 162193.9962

Gaussian Order of k=11 60.0398 0.064432 0.90733 48.35769 0.25383 1.1856 145925.4495

Table 6 Acquired data sets of welding radiography images

Defect class Cracks Undercut Porosities Inclusion Lack of penetration Worm holes Cavity Burn through Normal

Number
of Images

13 11 20 12 17 9 9 2 40

orders k=11, 9, and 2 is depicted in Fig. 12b, c, d respec-
tively. The obtained results confirm that the mask out, M,
of the segmented image increases with the decrease of pixel
order of the image, k. Moreover, the mask out is given by

M =
k∑

i=1

PiCi (27)

where i, k, Pi and Ci denote the group of each pixel that
may be (1, 2, 3, ..k), pixel order of the image, the probability
that this pixel belong to the group i and the center of the
group k that refers to RGB space, respectively. Therefore,
better region of interest is obtained with Gaussian order of
k = 9. In this case, the number of segmented objects is 100 %.
Therefore, the number of selected objects of welding gamma
radiography image is based on the selected Gaussian order,
k.

The quantitative evaluation of the expectation maximiza-
tion algorithm is achieved in terms of statistical measure-
ments for different Gaussian order of k = 2, k = 9 and k = 11
as depicted in Table 5. Also, the results confirm that efficient
measurements are achieved using Gaussian order of k = 9.

4.5 Defects Classification Results

The purpose of image segmentation algorithm is to extract
the region of interest (ROI) that is the brightness area in the
image. It extracts the ROI regardless of the type of welding.
However, the classification algorithm is tested for both nor-
mal and defect images. One of the advantages of the current
methodology is to detect type of welding that may be normal
or defect. Next, it determines the type of defect class that are
mentioned in Table 6. Therefore, normal and defect gamma
radiography images are used for classification. Then, there
are several types of defects that are used for classification pur-
poses of defected images. These defects are cracks, undercut,
porosities, inclusion, lack of penetration, worm holes cavity
defects and burn through. Moreover, normal images are con-
sidered for classification. The data sets of these defects are

as illustrated in Table 6. The main objective of including
normal images in comparison with defect one is to imple-
ment a complete embedded system and to avoid human eye
interpretation. This system will decide if the tested image
is defected or free of defect. Then, determine the type of
defect class as the image is defected. The main object in
normal image is the brightness section. However, the inter-
esting one in the defect image is one of the defect classes
that illustrated in Table 6. Features from normal and defect
images are extracted and saved in database during training
phase. These features are extracted from the original image
or from one of its transform domain. Then, these features are
compared with extracted features of tested images. The dif-
ference between both features represents classification error.
Consequently, the classification error was computed for both
normal and defect image at different number of extracted
features as shown in Figs. 13, 14, 15, and 16.

More than 40 images of normal and defect gamma radiog-
raphy images are used for the classification purpose. Support
vector machine (SVM) was used as a classifier. Polynomial
kernel function was employed with SVM. The parameters
with the smallest generalization error are chosen. Conse-
quently, the best parametric settings are obtained.

Fig. 13 Classification error against number of extracted features by
WPT for features extracted from the signal
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Fig. 14 Classification error against number of extracted features by
WPT for features extracted from a The DWT of signal b The signal
with DWT of signal

Fig. 15 Classification error against number of extracted features by
WPT for features extracted from a The DCT of signal b The signal
with DCT of the signal

Fig. 16 Classification error against number of extracted features by
WPT for features extracted from a The DST of signal b The signal with
DST of the signal

Moreover, sampling frequency of 256 and spacing of the
windows of 32 was used. Wavelet-packets transform (WPT)
with seven decomposition levels was applied on gamma
radiography images. Thus, total 128 features are extracted

from gamma radiography image. Also, 486 feature vectors
are obtained. These features are extracted from both normal
and defect gamma radiography images using wavelet packet
based feature extraction method and its transform domain.
These domains are discrete cosine transforms (DCT), dis-
crete sine transforms (DST), and discrete wavelet transforms
(DWT). The obtained result confirms that 64 features are
used to distinguish normal and defect gamma radiography
images. However, the other 64 features introduce similar
results. Therefore, these features can not be used to dis-
tinguish between normal and defect gamma radiography
images. Consequently, classification error rate against the
number of extracted features by WPT for features extracted
from original images, DWT and signal with DWT, DCT and
signal with DCT, DST and signal with DST from both nor-
mal and defect gamma radiography image is depicted in Figs.
13, 14, 15, and 16, respectively. From these figures, the error
decreases with the number of extracted features. The number
of these extracted features increases with the selected decom-
position level. Therefore, the percentage error is very large
at small number of features. Consequently, the CAD can not
discriminate the necessary object in the image. However, the
classification error is decreased with the number of selected
features as illustrated in Figs. 13, 14, 15, and 16. The classifi-
cation error of normal image is less than that of defect image
at the same number of extracted features from the image as
illustrated in Fig. 13.

Classification error rate against the number of extracted
features by WPT for features extracted from DWT and signal
with DWT from both normal and defect gamma radiography
image is shown in Fig. 14. It is evident that features extracted
from DWT achieves lower error for both normal and defect
images. Also, classification error rate against the number of
extracted features by WPT for features extracted from DCT
and signal with DCT from both normal and defect gamma
radiography image is illustrated in Fig. 15. The obtained

Fig. 17 Number of support vectors for both defect and normal radiog-
raphy images against a Number of extracted features b The decompo-
sition levels
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results confirm that features extracted from DCT achieves
lower error for both normal and defect images. Moreover,
classification error rate against the number of extracted fea-
tures by WPT for features extracted from DST and signal
with DST from both normal and defect gamma radiography
image is shown in Fig. 16.

From the figure, the features extracted from DST achieves
lower error for both normal and defect images. The obtained
results confirm that signal with DCT achieves the low-

Fig. 18 Classification error against number of extracted features by
WPT for features extracted by underlined methods from a Normal
image b Defect images

est classification error for defect image at smaller number
of extracted features. The number of support vectors (SV)
against the number of features and decomposition levels for
both normal and defect images are shown in Fig. 17a, b
respectively. The number of SV increases with both num-
ber of features and decomposition levels.

Classification error against number of extracted features
by WPT for features extracted from original signal, DWT of
signal, DWT with signal, DCT of signal, DCT with signal,
DST of signal and DST with signal for both normal and
defect images is illustrated in Fig. 18. The classification error
against number of extracted features for normal image is
shown in Fig. 18a. However, the classification error against
number of extracted features for defect image is shown in
Fig. 18b. It is apparent that extracted features above 64 are
not included for classification purposes.

Classification rate at different decomposition levels for
defect and normal image for features extraction by WPT from
original signal, DWT, signal with DWT, DCT, signal with
DCT, DST, signal with DST are depicted in Tables 7, 8, 9,
10, 11, 12, and 13 respectively. From these tables, the highest
classification rate is achieved with level 7 for all cases. How-
ever, the highest classification rate is achieved with features
extraction from DCT. Since, it has high compaction energy.

Table 7 Classification rate (%)
at different decomposition levels
for defect and normal images for
features extraction from the
image

Levels 1 2 3 4 5 6 7 Type

Classification rate (%) 0 42.8600 57.1400 86.6700 98.4100 99.2100 99.2100 Defect

Classification rate (%) 0 42.8600 71.4300 93.3300 98.4100 99.2100 99.2100 Normal

Table 8 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from the DWT of signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 0 42.8600 57.1400 86.6700 98.4100 99.2100 99.2100 Defect

Classification Rate (%) 0 57.1400 42.8600 86.6700 98.4100 99.2100 99.2100 Normal

Table 9 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from the signal with DWT
of signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 66.6700 42.8600 71.4300 86.6700 98.4100 99.2100 99.2100 Defect

Classification Rate (%) 50.0000 42.8600 57.1400 93.3300 98.4100 99.2100 99.2100 Normal

Table 10 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from DCT of the signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 0 71.4300 85.7100 86.6700 96.8300 99.2100 99.5000 Defect

Classification Rate (%) 0 71.4300 71.4300 93.3300 98.4100 99.2100 99.5000 Normal
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Table 11 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from signal with DCT of
the signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 50.0000 57.1400 71.4300 86.6700 98.4100 99.2100 99.5000 Defect

Classification Rate (%) 66.6700 42.8600 57.1400 93.3300 98.4100 99.2100 99.5000 Normal

Table 12 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from DST of the signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 0 71.4300 57.1400 86.6700 98.4100 99.2100 99.2200 Defect

Classification Rate (%) 33.3300 85.7100 71.4300 93.3300 98.4100 99.2100 99.2200 Normal

Table 13 Classification rate (%) at different decomposition levels for defect and normal images for features extraction from the signal and DST of
the signal

Levels 1 2 3 4 5 6 7 Type

Classification Rate (%) 50.0000 42.8600 57.1400 86.6700 98.4100 99.2100 99.5000 Defect

Classification Rate (%) 50.0000 42.8600 71.4300 93.3300 98.4100 99.2100 99.5000 Normal

5 Conclusion

Automatic detection and classification of flaws in weld-
ing radiographic images is the main task of this paper.
Therefore, an approach is introduced comprises different
algorithms to deal with this task. These algorithms are back-
ground correction, contrast enhancement, noise reduction,
segmentation and classification. Background correction of
radiographic images is performed as a preprocessing step
using Gaussian pyramidal transforms. It achieves better cor-
rection without changing the image quality. The contrast
enhancement of the radiography image using the contrast
stretch and normalization method was carried out. Statistical
measurements were used to judge on the considered method.
Also, a noise reduction algorithm based on blind image sep-
aration by a deflation based method is adopted using five
different methods. These methods are kurtosis maximization,
quadratic backward compatibility, quadratic grad, cubihopm,
and cyclo-stationary sources. The obtained results show that
Kurtosis method achieves better mean square error (MSE)
and signal separation than other methods. Evaluation of
ordering and measurement of the separation quality for esti-
mated source spatial image by BIS was adopted. The obtained
results indicate that BIS introduces effective results for de-
noising the radiography images. Also, image segmentation
algorithm based on expectation-maximization (EM) with
Gaussian mixed model was considered. The results showed
that the proposed method provides better segmentation with
Gaussian order of 9. Also, an efficient classification algo-
rithm from welding defects of gamma radiography image
is proposed. This Algorithm depends on the multi-scale

wavelet packet (MWP) technique for feature extraction from
the defect images and its transform domains. The SVM is
used as a classifier for matching the extracted features. It has
been found from the experimental results that the multi-scale
wavelet packet is more sensitive to welding defects. Also,
classification rate of 99.5 % is achieved for features extrac-
tion by WPT from signal with DCT and signal with DST at
the seven decomposition level. Consequently, the obtained
results show that the WPT features extraction from signal
with DCT is the most appropriate domain for feature extrac-
tion from defect images. The accuracy achieved is satisfied.

Acknowledgments Dr. H. Kasban provided database of welding radi-
ography images.

Appendix

The proposed algorithms have been tested using multiple
gamma radiographic welding images. However, the purpose
of the statistical measurements is the quantitative evaluation
of the considered algorithms. Moreover, statistical measure-
ments are considered for comparison between the proposed
algorithms. Therefore, some parameters have been calcu-
lated for testing the corrected image. These parameters are,
peak signal to noise ratio (PSNR), mean square error (MSE),
entropy, signal to noise ratio (SNR), root mean square error
(RMSE), mean absolute error (MAE), and Pearson corre-
lation coefficient (PCC). Mean square error (MSE) is the
average squared difference between a reference image and a
distorted image. It is computed pixel-by-pixel by adding up
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the squared differences of all the pixels and dividing by the
total pixel count. The sum of the mean square error (MSE) of
each region is used as a cost value to segment the difference
image computed by the absolute-valued log ratio [34].

MSE =
M−1∑

m=0

J−1∑

n=0

(A(m, n) − B(m, n))2

MN
(28)

where A, B, M and N denote the corrected image, the input
image, the number of rows and columns of input signal,
respectively. The PSNR represents a measure of the peak
error. It is given by

PSN R = 10 log10

(
2562

MSE

)
(29)

The entropy of the image, the SNR, the RMSE, the mean
absolute error (MAE) and the Pearson correlation coefficient
are given by

Entropy = −
∑

Pj Log2Pj (30)

where Pjand Log2 denote the probability that is the differ-
ence between 2 adjacent pixels, and the base 2 logarithm,
respectively.

SN R = 10 log10

(
Ps
Pn

)
(31)

where Ps and Pn denote the signal power and noise power,
respectively.

RMSE = √
MSE (32)

MAE =
M−1,N−1∑

m=0,n=0

|(A(m, n) − B(m, n))|
MN

(33)

PCC =

M−1,N−1∑
m,n=0

S1 − S2

σ(A)σ (B)
(34)

where S1 = A(m, n) −
M−1,N−1∑
m=0,n=0

A(m,n)

M+N , S2 = B(m, n) −
M−1,N−1∑
m=0,n=0

B(m,n)

M+N , and σ denotes the standard deviation.
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