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Abstract An analytical model is presented which pre-
dicts the forced, nonlinear response of a bar with arbitrarily
distributed damage. Damage, which is either described by
quadratic hysteresis, or due to dislocations interacting with
point defects distributed along the dislocations’ glide planes,
is considered. The wave equation is solved by means of a
perturbation approach. Resonance frequency shift caused by
damage-induced material softening, nonlinear attenuation,
and higher harmonics’ generation are evaluated. For dam-
age which is described by quadratic hysteresis, this model
recovers the well-known dependence of the three acoustic
quantities mentioned above on the source’s strength. On the
other hand, for damage due to dislocations, both frequency
shift and nonlinear attenuation present a distinctive nonlinear
behavior the origin of which resides in the stress dependence
of the fraction of dislocations breaking away from the point
defects. Furthermore, different distributions of damage hav-
ing the same integrated intensity are shown to generate non-
linear effects of increasing magnitude as their spatial extent
decreases. Finally, it is suggested that, once the effect of the
source’s strength is removed, spectral features may be used
to assess the spatial extent of damage.
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1 Introduction

Prior to fracture, material defects at atomic or mesoscopic
scale multiply altering the microstructure of a material sys-
tem to the extent and in a way that its response to a dynamic
excitation becomes nonlinear. For this reason, interrogating
a material by means of nonlinear techniques is tantamount
to searching for material damage at its early stage when
catastrophic failure is still a remote possibility.

Material damage often initiates and develops around local-
ized regions containing stress concentrators. As shown in
a recent theoretical investigation [1] of damage evolution,
when non-local effects are accounted for, accumulation of
damage is accompanied by diffusion. For these reasons, any
mathematical model that aims at describing the acoustic
response of a damage region at different stages of its evo-
lution must accommodate localization and broadening of the
damage spatial distribution.

Gliozzi et al. [2] used a numerical scheme to predict
the nonlinear response from localized hysteretic damage.
Anelastic damage was accounted for within the framework
of the Preizach–Mayergoyz model in which fictitious hys-
teretic units are considered to exist in two states. This work
showed that the dependence of the resonance frequency shift
on the amplitude of the excitation is linear like in the case of
uniformly distributed damage, and that different resonance
modes display different sensitivity to damage localization.
Interestingly, they commented on the need of deepening our
understanding of the physical mechanisms responsible for
the nonlinear hysteretic response as necessary condition to
further develop their models and provide predictions of quan-
titative nature.

Van Den Abeele et al. [3] further improved the numer-
ical approach adopting a multiscale strategy. To this end
the Preisach–Mayergoyz framework was used to formulate
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stress–strain relationships at mesoscopic level, which were
then integrated into a finite element scheme to predict
the macroscopic nonlinear dynamic response of a one-
dimensional bar subjected to a longitudinal excitation. They
also confirmed the expected dependence of the sensitivity of
various modes to the location, extent, and severity of spatially
confined damage.

Windels and Van Den Abeele [4] presented the first analyt-
ical solution of the vibration problem of a one-dimensional
bar affected by a confined region of damage. Damage was
characterized by a cubic stress–strain constitutive relation.
The solution of the time-dependent component of the wave
function was found by employing a multiple time scale per-
turbation technique and by neglecting any effect of damage
on the spatial component of the wave function. They also
derived an expression for the location of the damaged region
along the bar as function of the frequency shifts of two res-
onance modes. Van Den Abeele [5] extended this approach
to tackle the problem in which the nonlinearity is of the hys-
teretic type with quadratic dependence on strain.

In solving the problem in which the damaged region is lim-
ited to a fraction of the bar’s length, the two last references
did not include any information on the location and extent
of the region of damage in the constitutive relationship of
the bar’s material. Instead, the vibration problem was set up
by assuming the bar to be uniformly damaged. A convenient
consequence of this choice is the independence of the coef-
ficients of the nonlinear terms in the wave equation from the
spatial variable. Localization of damage was later introduced
in the solution by evaluating certain integrals only over the
region containing the damage. Although the magnitude of
the error introduced by this simplification is not known, the
arbitrariness of this approach by itself justifies the search of
an alternative method and solution of the original problem.

Experimental results, together with both numerical and
analytical models seem to indicate that the nearly linear
dependence of the resonance frequency shift and of the non-
linear attenuation, together with almost the quadratic depen-
dence of the higher harmonics’ amplitude on the strength
of the excitation are manifestations of non-classical nonlin-
earity [6]. These are the reasons which support the use of
constitutive relationships containing quadratic hysteresis. At
the same time, however, a variety of mechanisms have been
called upon to explain possible origins of non-classical non-
linearity of both natural and man-made geomaterials, and
materials with damage [7–10]. Among these, dislocations
are defects affecting the material structure at its atomic level.
Their dynamics continues to be a field of active research with
consequences of considerable relevance for the development
of nonlinear acoustic NDE (see for example [10]).

The purpose of this communication is twofold. Firstly, a
recent theoretical model [11] which describes the nonlinear
response of a bar subjected to a forced longitudinal, harmonic

oscillation is generalized to allow damage to be distributed
arbitrarily along the bar. Secondly, this model is used to
address, although to a very limited extent, the open issue
concerning the link between physical mechanisms that are
responsible for hysteretic damage and the nonlinear acoustic
response of materials affected by the latter. To this end, two
distinct forms of damage are considered. The first one is
represented by a constitutive relation with the well-known
quadratic hysteresis [6]. As mentioned above, it is the most
commonly used constitutive relation for it reproduces trends
that are typical of experimental results, and, thus, it is used
here as a reference model. The second one accounts for the
interaction between dislocations and point defects distributed
along their dislocation’s glide plane [10]. As shown in the
next section, this mechanism leads to a hysteresis cycle which
closely resembles the first one at low excitation’s amplitude,
yet its acoustic fingerprint differs from that of the former one
in essential ways. The resulting wave equations for the stress
field are solved by the same perturbation approach developed
in [11]. Results are presented which describe the dependence
of the negative shift of the resonance frequencies, the attenu-
ation of the fundamental component, and spectral features of
the nonlinear response on (i) the amplitude of the excitation,
(ii) the physical nature, (iii) distribution, and (iv) location of
the damage.

2 Constitutive Relations

The dynamics to be studied is caused by a source of stress
applied to one of the two ends of a bar. Stress, σ (x,t), there-
fore, is the physical quantity under control, while strain,
e(x,t), is viewed as the result of the bar’s response to the
applied source. In this work, as in [11], constitutive relation-
ships expressing the dependence of strain on stress are used.

The most common constitutive relationship given in ana-
lytical form which has been used to reproduce experimen-
tal results is one in which the dependence of the anelastic
response of the material on the applied stress is quadratic,
and history dependent

e(x,t) =
t∫

to

S(t − τ)(∂σ/∂τ)dτ + 1

2
S1

[
(σ 2(x,t)

−σ 2
max(x))sgn

(
∂σ

∂t

)
+ 2σmax(x)σ (x,t)

]
(1)

In Eq. (1) the first term describes the linear viscoelastic prop-
erties of the material, and can also be written as

t∫

−∞
S(t − τ)(∂σ/∂τ)dτ =Soσ(x,t)+

t∫

to

S′(t − τ)σ (x, τ )dτ

= Soσ (x, t)+
+∞∫

−∞
S

′
(ν) σ (x, ν) e−jνtdν, (2)
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Fig. 1 Anelastic strain versus
stress describing quadratic
hysteresis cycle in Eq. (3)
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where So = S(0) is the elastic compliance of the material,
and S′(t −τ) represents the derivative of the creep func-
tion of the material, S, with respect to its argument, and
to is the instant in the past when the source of vibration
was switched on. The elastic compliance So is the inverse
of the Young Modulus E. The second equality is obtained
by expressing the convolution in terms of the integral of the
product of the Fourier transforms S′(ν) and σ (x, ν) of S′(t)
and σ (x, t), respectively. The quantities So and S1 are two
constants with dimensions of [stress]−1 and [stress]−2, while
σmax(x) is the local amplitude of the vibration and depends on
�, the strength of the excitation source. The function sgn(·) is
equal to 1 when its argument is positive, and to −1 when it is
negative. The second term in Eq. (1) represents hysteresis. In
the context offered by the interaction between elastodynamic
waves and interfaces formed by rough surfaces in contact, it
has been shown that friction between asperities in contact
leads to boundary conditions across the interface (i.e., to an
equation of state for the interface) in which stress displays
a hysteretic quadratic dependence on the displacement dis-
continuity across the interface [12]. There seems to be no
similar derivation for Eq. (1) which stems from a similarly
well-defined mechanism.

Information about the spatial distribution of damage along
the bar can be introduced in the constitutive relationship by
multiplying the term representing hysteresis by a suitable
function U(x),

e(x,t) = Soσ(x,t) +
+∞∫

−∞
S

′
(ν)σ (x, ν)e−jνtdν + 1

2
S1U(x)

×
[(

σ 2(x,t) − σ 2
max(x)

)
sgn

(∂σ

∂t

)
+ 2σmax(x)σ (x,t)

]
.

(3)

A uniform distribution of damage along the whole extent
of the bar can be represented by the function U(x) = 1 for all x
in [0, L], where L is the length of the bar. Figure 1 illustrates

a few qualitative examples of hysteresis cycles for increasing
values of σmax.

Dislocations and their interaction with other microstruc-
tural features have been the focus of extensive investigations
for their role in many problems concerning material science.
It has been long established, for instance, that they play an
important role in determining damping properties of alloys
via their interaction with point defects [10]. The role of dis-
locations in determining the ductility of a material is also
known. For this reason, a second constitutive relation is con-
sidered here which describes a material containing a distribu-
tion of dislocations interacting with point defects distributed
along their glide planes. In this work, this mechanism was
chosen because it leads to a macroscopic constitutive rela-
tionship similar to that in Eq. (3).

Point defects on a dislocation’s glide plane exert a pin-
ning force on the dislocation which may be overtaken by the
applied stress. The ensuing relationship between anelastic
strain and stress for dislocations included in a representa-
tive volume is schematically shown in Fig. 2 [10]. This rela-
tionship assumes that all dislocations break away from their
pinning defects at a critical value of the applied stress, σcr.
The loading and unloading sections of the cycle comprise an
initial fully plastic response followed by phases in which the
anelastic strain varies linearly with stress. The cycle in Fig. 2
can be represented by the following function

ean(x,t) = S1H
(
σmax(x) − σcr

)
C

(
σ(x,t)|σmax(x), σcr

)
,

(4)

where ean(x,t) is the anelastic part of the strain field describ-
ing the deformation of the representative volume centered in
x at the time t. The coefficient S1 is a constant with dimension
of [stress]−1 which controls the slope of the linear sections
of the cycle, and H(·) is the step function, which is equal to 1
when its argument is positive and it is null when the latter is
negative. This step function ensures that no anelastic strain is
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Fig. 2 Anelastic strain versus stress describing hysteresis of a rep-
resentative volume containing dislocations which interact with point
defects distributed along their glide plane. The symbol σcr represents
the critical value of the stress at which the response of the dislocations
begin to have an anelastic component

generated for values of the local amplitude σmax smaller than
the critical stress. The function C(σ |σmax, σcr) is defined as

C(σ |σmax, σcr)

= [
(−σmax + σcr)H(−σmax + 2σcr − σ)

+(σ − σcr)H(σ + σmax − 2σcr)
]
H(σ̇ )

+[
(σmax − σcr)H(σ − σmax + 2σcr)

+(σ + σcr)H(σmax − 2σcr − σ)
]
H(−σ̇ ). (5)

In Eq. (5), the symbol σ̇ = ∂σ/∂t. Furthermore, the first
and third term of the RHS represent the fully plastic sections
of the cycle, while the second and fourth one represent the
linear loading and unloading, respectively.

It seems reasonable to assume that different dislocations
may break away from the point defects with which they inter-
act at different values of the critical stress σcr. To account for
this material property, a probability density function, ϕ(σcr),
can be used to represent the fraction of dislocations in the rep-
resentative volume which break away at values of the stress
between σcr and (σcr + dσcr) : ϕ(σcr)dσcr. Therefore, the
dependence of the average anelastic macroscopic strain from
stress can be obtained by evaluating the following integral

ean(x,t)

= S1

σmax∫

0

H(σmax − σcr)C(σ |σmax, σcr)ϕ(σcr)dσcr.

(6)

Using the probability density function ϕ(σcr)

ϕ(σcr) = σcr
�2 e−σcr/� (7)

the integral in the RHS of Eq. (6) can be evaluated analyt-
ically. The quantity � in Eq. (7) controls the width of the
distribution, and is the only additional parameter introduced
in this model. Its value measures the strength of the interac-
tion between dislocations and point defects, and, therefore, it
depends also on the physical nature of the latter. The choice
of the function in Eq. (7) to describe the distribution of σcr is
dictated by only two criteria. The first one is that there is an
upper, yet unknown limit of the stress above which all dis-
locations break free from their pinning points. This property
translates into having a distribution that decays exponentially
with increasing σcr. The second criterion concerns the fact
that, in general, work has to be done to free any dislocation
from its pinning point defects. Therefore, it can be reason-
ably assumed that, in the limit of σcr becoming smaller and
smaller, even the number of dislocations breaking free at
this level of stress decreases accordingly. This property is
accounted for by the exponential’s pre-factor, which goes to
zero as σcr. The result is

ean(x,t) = S1U
{[

σ − (σmax + σ)(1 + z+)e−z+

+σmax(1 + zo)e
−zo 2�(1 − 2(1 + z+ + z2+/2)e−z+

+(1 + zo + z2
o/2)e−zo)

]
H(σ̇ ) + [σ + (σmax − σ)

×(1 + z−)e−z− − σmax(1 + zo)e
−zo

+2�(1 − 2(1+z−+z2−/2)e−z− (8)

In Eq. (8), z± = (σmax ± σ)/(2�), zo = σmax/�, and
the function U = U(x), similarly to Eq. (3), defines the spa-
tial distribution of damage along the bar. Furthermore, it is
stressed again that, while S1 plays identical roles in Eqs. (1)
and (3), the physical dimensions of this quantity are not the
same in the two cases. Figure 3 offers examples of this hys-
teresis cycle for four different values of σmax assuming that
� = 1 if measured by the same unit as σ . Comparison between
Figs. 1 and 3 indicates that the area of the former increases
faster than that of the latter as σmax increases.

3 Equation of Motion

The two constitutive relationships presented in the previous
section can be written in a shorter notation as

e(x,t) = Soσ(x,t) +
+∞∫

−∞
S

′
(ν)σ (x, ν)e−jνtdν

+S1U(x)	(x,t|σ, σmax, σ̇ ), (9)

the function 	(x,t|σ, σmax, σ̇ ) representing the anelastic
component of the total strain given in Eqs. (3) and (8). Intro-
ducing Eq. (9) in the equation of motion for the stress field
yields
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Fig. 3 Anelastic strain versus
stress (Eq. 8) for a material with
dislocations interacting with
point defects distributed along
their glide planes
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∂2σ(x,t)

∂x2 = ρ
∂2

∂t2

⎧⎨
⎩Soσ(x,t) +

+∞∫

−∞
S

′
(ν)σ (x,ν)e−jνtdν

+S1U(x)	(x,t|σ, σmax, σ̇ )

⎫⎬
⎭ , (10)

Equation (10) has to be solved with the following boundary
conditions

σ(x = 0,t) = �e−jωt, (11a)

σ(x = L,t) = 0. (11b)

Let the total stress field σ (x,t) be written as the sum of two
functions σo(x,t|ε) and σ1(x,t|ε), where ε is a small parameter
to be specified later

σ(x,t) = σo(x,t| ε) + σ1(x,t| ε). (12)

In Eq. (12), σo(x,t|ε) is a function which coincides with the
solution of the linear problem when ε = 0, while σ1(x,t|ε)
vanishes in the same limit. The dependence of σo(x,t|ε) on ε

accounts for the softening of the material caused by damage,
while σ1(x,t|ε) results from the generation of higher harmon-
ics and nonlinear attenuation. Furthermore, the norm of σo

is much greater than that of σ1, ‖σo‖ � ‖σ1‖, for any values
of the parameter ε. Let �o = max[σo(x,t|ε)] for every x ∈
[0, L], and at any time t, and introduce the new normalized
field function

ξ(x,t) = ξo(x,t| ε) + ξ1(x,t| ε), (13)

where ξ = σ/�o, ξo = σo/�o, and ξ1 = σ1/�o, by virtue of
which the amplitude of ξo(x, t|ε) is never larger than 1 along

the bar. Introducing Eq. (13) into the equation of motion,
Eq. (10) yields the following equation

∂2

∂x2 [ξo(x,t) + ξ1(x,t)] = ρ
∂2

∂t2

{
So [ξo(x,t) + ξ1(x,t)]

+S1U(x)	(x,t|(ξo + ξ1), (ξo + ξ1)max,(ξ̇o + ξ̇1))

+
∫ +∞

−∞
S

′
(ν) [ξo(x,ν) + ξ1(x,ν)] e−jνtdν

}
(14)

Using the inequality ‖ξo‖ � ‖ξ1‖, Eq. (14) can be split
into two equations governing the spatial and time evolution
of ξoand ξ1, respectively. They are

∂2ξo

∂x2 = ρ
∂2

∂t2

⎡
⎣So(1+εγ (x))ξo+

+∞∫

−∞
S

′
(ν)ξo(x,ν)e−jνtdν

⎤
⎦,

(15a)

∂2ξ1

∂x2 = ρ
∂2

∂t2

⎡
⎣So(1+εγ (x))ξ1+

+∞∫

−∞
S

′
(ν)ξ1(x,ν)e−jνtdν

⎤
⎦

+ερSoU(x)
∂2

∂t2
	

′
(x,t|ξo, ξo,max, ξ̇ ) (15b)

In Eq. (15a), ε = �o(S1/So), and γ (x) = ξo,max(x)U(x)
for the case of quadratic hysteresis, while ε = (S1/So), and
γ (x) = U(x)

[
1 − (1 − zo(x)/2)e−zo(x)/2

]
for a distribution

of dislocations. Recall that zo(x) = σmax(x)/�. Note that,
in both equations, the inclusion of εγ (x) in the coefficient
of the first second-order derivative of the unknown func-
tion allows the solution to account for the effect of damage-
induced material softening. This term derives from the defi-
nition of the function 	. Thus, new function 	′ on the RHS
of Eq. (15b) is obtained by subtracting ρSoεγ (x)ξ1 from 	.
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Finally, the argument of 	′ has been approximated by substi-
tuting ξ with ξo in view of the fact that the error introduced
in this way is an order of magnitude smaller than ‖ξ1‖.

For the way ξo and ξ1 have been defined, Eq. (15a) has to
be solved together with the boundary conditions derived from
Eq. (11a, 11b) once the stress field has been normalized by
the constant �o. On the other hand, the boundary conditions
associated with Eq. (15b) require the normalized stress field
ξ1to be null at both ends of the bar, ξ1(x = 0) = ξ1(x = L) = 0.

Equation (15a) is nonlinear since the coefficient of
(∂2ξo/∂t2) depends on the solution itself through γ (x). To
circumvent this difficulty, γ (x) can be written as the sum of
its mean value over the bar, which is independent of x, and a
new function �γ (x), γ (x) = 〈γ 〉(x)+�γ (x), so that Eq. (15a)
can be rearranged as follows

∂2ξo

∂x2 −ρ
∂2

∂t2

⎡
⎣So(1+ε〈γ (x)〉)ξo+

+∞∫

−∞
S

′
(ν)ξo(x, ν)e−jνtdν

⎤
⎦

= ρSoε�γ (x)
∂2ξo

∂t2
. (16)

The original equation has been transformed in such a way
that its homogeneous version has the form of a linear integro-
differential equation which is affected by damage through
the average value of the latter over the bar. The RHS of this
equation, which depends on the damage location, plays the
role of a source contributing to the general solution with a
correction of the first order in ε. This consideration suggests
searching for an approximate solution of Eq. (17) by writing
ξo = ξ

′
o + ξ ′′

o , where the former term is the solution of the
homogeneous equation

∂2ξ
′
o

∂x2 − ρSo
∂2

∂t2

⎡
⎣(1 + ε〈γ (x)〉)ξ ′

o

+j

+∞∫

−∞
η(ν)ξ ′

o(x,ν)e−jνtdν

⎤
⎦ = 0, (17)

with boundary conditions ξ ′
o(x = 0, t) = (�/�o)e−jωt,

and ξ ′
o(x = L, t) = 0, while the second term is found solving

the following equation

∂2ξ
′′
o

∂x2 −ρSo
∂2

∂t2

⎡
⎣(1+ε〈γ (x)〉)ξ ′′

o +j

+∞∫

−∞
η(ν)ξ

′′
o (x,ν)e−jνtdν

⎤
⎦

= ρSoε�γ (x)
∂2ξ

′
o

∂t2
, (18)

with boundary conditions ξ ′′
o (x = 0, t) = ξ ′′

o (x = L, t) = 0.
Note that the substitution of ξo with ξ ′

o in the RHS of Eq.
(18) is justified by the fact that they are of the same order of
magnitude. In Eqs. (17) and (18), jη(ν) = S′(ν)/So, where j is

the imaginary unit, is responsible for the linear attenuation
experienced by the stress field. A complete model of the vis-
coelastic behavior of the material should include also a real
component in S′(ν). Given that the vibrations of the bar are
forced by a harmonic source with frequency ω, the introduc-
tion of Re[S′(ν)] would alter only the value of the material
compliance at the frequency of the excitation, leaving the
nonlinearity of the material unaffected.

The boundary conditions enforced on the solution of
Eq. (17) require that the Fourier transform of the normalized
stress ξ ′

o(x, ν) to be proportional to δ(ν − ω) : ξ ′
o(x,ν) =

ξ ′
o(x)δ(ν − ω). This observation greatly simplifies Eq. (17),

which can thus be written as

∂2ξ
′
o

∂x2 + ρω2So
[
(1+ε〈γ (x)〉)+jη(ω)

]
ξ

′
o = 0. (19)

This equation governs the longitudinal vibrations of a bar
with effective compliance given by So[(1 + ε〈γ (x)〉) +
jη(ω)]. Note that being ε〈γ (x)〉 positive, the effect of non-
linear hysteresis is to soften the material regardless whether
the applied stress is compressive or tensile. Further, through
the link between the linear attenuation coefficient, α, and the
linear quality factor, QLin, one can identify η(ω) as the inverse
of QLin. To obtain Eq. (19), the time dependence of the solu-
tion has been assumed to be that of the source, e−jωt . The
solution of this nonlinear homogeneous equation is found by
iteration, assuming as a seed of this process the solution of
the linear problem

ξ
′
lin(x,t) = �

�o

sin
[
klin(x − L)

]
sin(klinL)

e−jωt, (20)

where k2
lin = ρSo[1 + jη(ω)]ω2. This function is used to

evaluate 〈γ (x)〉 first, and then the new solution ξ ′
o, which has

the same analytic form as ξ ′
lin. The iteration continues until

convergence of k2 = ρSo[(1 + ε〈γ (x)〉) + jη(ω)]ω2 is
achieved.

This solution in employed to evaluate the source function
of Eq. (18), with which the solution of that equation is found
to be

ξ
′′
o (x, t) = ρSoε

L∫

0

�γ (x′)
∂2ξ

′
0

∂t2
G(x,x′)dx′e−jωt, (21)

where G(x, x′) [11] is the Green function which describes the
vibration due to a point source at x′, and satisfies the boundary
conditions G(0, x′) = G(L, x′) = 0. These boundary condi-
tions render the solution of the homogeneous wave equations
for ξ ′′

o (x, t) identically null within [0,L]. Furthermore, they
must be satisfied by ξ ′′

o (x, t) since ξ ′
o(x, t), by itself, satisfies

those enforced on the total field.
Considerations identical to those just examined can be

used to solve Eq. (15b). In fact, even in this case the bound-
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ary conditions which accompany this equation lead to the
conclusion that the solution of the homogeneous equation
derived from Eq. (15b) is identically null over [0, L]. To solve
the Eq. (15b), the harmonic balance method is employed. To
this end, the source function is expanded in a Fourier series
of harmonics with frequencies that are multiples of that of
the applied source,

U (x)
∂2

∂t2
	

′ (
x,t|ξo, ξo,max, ξ̇o

) =
+∞∑

n=−∞
Fn (x) e−jnωt. (22)

Using this representation of the source function, and the har-
monic balance method, Eq. (15b) leads to a series of equa-
tions, the n-th of which yields the n-th harmonic component
of ξ1

ξ1,n(x, t) = ερSo

L∫

0

Fn(x
′)Gn(x, x′)dx′e−jnωt. (23)

Of these components, ξ1,1(x, t) accounts for most of the atten-
uation experienced by the fundamental component. In Eq.
(23), the Green’s function Gn(x, x′) [11] represents the vibra-
tion generated by a point source with harmonic time depen-
dence characterized by the frequency ωn = nω, radiating in a
medium with effective compliance So[(1+ε〈γ (x)〉)+jη(ω)].

To recover strain from stress, the nonlinear constitutive
relationship in Eq. (9) should be used. To the order of approx-
imation adopted in this work, however, the inclusion of the
nonlinear terms amounts to a correction in the fourth sig-
nificant digit, which can be neglected. For this reason, once
the stress field accounting for nonlinear effects up to the first
order correction in ε is known, any dependence on the mag-
nitude of the source which can be attributed to the stress field
can also be considered as a characteristic of the displace-
ment field, and thus, of the velocity and acceleration of any
material point along the bar.

4 Numerical Results

In this section, numerical results are presented which refer
to a material with mechanical properties similar to those of
Berea Sandstone with mass density ρ = 2.077 103kg/m3, and
Young’s Modulus E = 15 GPa. Dissipation is controlled by
the non-dimensional function η(ω) which, in this simulation,
is assumed to be frequency independent and equal to η(ω) =
10−2. Note that this assumption yields a linear wave number
with imaginary part proportional to ω. The constants S1is
numerically equal to 5 10−10So in the model of the quadratic
hysteresis cycle (Eq. 3), while S1 = 5. 10−4 So in Eq. (8).
In this work, the constant � in Eq. (7) controlling the width
of the distribution of σcr is equal to 30 kPa. With this value

of �, the probability density function extends to values of
σcr up to 200 kPa. In principle, the nonlinear response of a
material should be expected to be sensitive to the value of
�. The choice of � = 30 kPa has been made in view of the
agreement obtained between a model based on Eq. (8) and
experimental results [13] in a theoretical investigation of the
physical origins of the dynamic acoustic response on Berea
sandstone [14]. Finally, the length of the bar is L = 0.3 m.

In the following, the effect of the nature of damage is
investigated first. In these simulations, the function which
describes the distribution of damage along the bar is assumed
to be equal to 1 along the whole bar, i.e., U(x) = 1, ∀x ∈ [0,L].
The effect of changing U(x) is examined afterwards.

A final comment is in order to warn the reader not to regard
the quantitative difference between the two models as mean-
ingful. They depend on the magnitude of the constant S1 the
physical dimensions of which are different in the two mod-
els of damage. Therefore, any comparison between the two
is not straightforward. On the other hand, qualitative differ-
ences in the dependences among the physical and acoustic
parameters are relevant.

4.1 Uniform Distribution

One of the main features which have been regarded as man-
ifestation of non-classical nonlinearity is the dependence of
the resonance frequency, ωR, on the amplitude of the vibra-
tion.

Numerous publications have reported results showing an
essentially linear dependence of the frequency shift �ωR =
ωR−ωLin, where ωLin is the resonance frequency in the linear
regime, on some system parameter connected to the ampli-
tude of the source, �. In this work, the resonance frequency
has been determined as the frequency at which the resonance
curve of the stress field attains its maximum. Indeed, Fig. 4
shows that the model presented in the previous section repro-
duces the expected linear behavior if damage is represented
by quadratic hysteresis. These data points have been gener-
ated assuming the bar being excited in the neighborhood of
its first resonance. The frequency ωo which is used as normal-
ization constant for �ωR. is ωo = π/(L

√
ρSo), which is the

first resonance of a bar of length L, of the same material but
without dissipation. On the other hand, the data calculated for
a bar with a distribution of dislocations interacting with point
defects distributed along the dislocations’ glide planes appear
to display a markedly nonlinear trend. This behavior may be
understood in terms of the dependence of the fraction of dis-
locations which break away from surrounding point defects.
For values of � smaller than � the increase of the number
of dislocations breaking away from point defects along the
whole length of the bar leads to a seemingly linear depen-
dence of �ωR on the source’s strength. As � increases fur-
ther, the central region of the bar becomes subjected to such
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Fig. 4 Relative frequency shift as functions of the strength of the vibra-
tion source. Two bars which are affected by quadratic hysteresis (square
black symbols) and dislocations interacting with point defects (white
circles) are considered

a high stress that all the dislocations in that region break free,
and any further increase of � no longer affects the behavior
of the bar in that region. The extent of this region, however,
continues to grow with increasing �, leading to a further
reduction of the resonance frequency of the fundamental har-
monic component. At values of the applied stress so high that
no dislocation is still pinned to the surrounding point defects,
any further increase of � produces no additional change in
�ωR.

A second acoustic parameter which has been used to detect
and monitor damage evolution is the inverse of the quality
factor, Q. When damage affects the response of a material,
this quantity appears to increase proportionally to the ampli-
tude of the excitation. Experimentally, Q may be determined
by the width of a resonance curve, the identification of which
is the result of an ad hoc fitting procedure, especially if the
resonance curve suffers high distortion caused by nonlinear-
ity. In this work, an approach similar to the so-called scaling
subtraction method developed by Scalerandi et al. [15] and
Bruno et al. [16] is adopted instead. By this method, the
signal obtained by subtracting a scaled version of the linear
response from the actual signal is decomposed in three parts,
one of them being the relative variation of the amplitude
of the fundamental component at the excitation’s frequency.
The scaling factor is determined by the ratio, �, between the
amplitude of the current excitation, �, and of one for which
the material’s response is linear, �Lin : κ = �/�Lin. Figure 5
illustrates a number of data points which have been evaluated
for the two types of damage and increasing values of �. Note
the maximum value attained by the relative amplitude varia-
tion of the stress field vibrating a bar with dislocation-induced
damage, as predicted also in [10]. The excitation frequency
has been assumed to be ωo = π/(L

√
ρSo). Identical remarks
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Fig. 5 Relative variation of the amplitude of the fundamental compo-
nent as functions of the strength of the vibration source. Two bars are
considered, which are affected by quadratic hysteresis (square black
symbols) and dislocations interacting with point defects (white circles)

to those made about the previous figure apply here. Renaud et
al. [14], have recently presented experimental results which,
although only over a limited range that corresponds to values
of σ ≤ 10 kPa in Fig. 5, follow the general trend of those asso-
ciated with the interaction between dislocation–point defects
in Fig. 5. The results in Fig. 5 referring to damage involving
dislocation distributions may also be understood as the result
of two competing effects: the increase of energy stored in
the fundamental component, on one side, and the increasing
fraction of dislocations which break free from their pinning
defects, on the other. As the former increases linearly with
the strength of the source, the latter grows even faster at the
beginning to become progressively less and less relevant as
the remnant fraction of dislocations, which are still pinned,
decreases. In this instance the choice of function in Eq. (7)
matters.

In conclusion, the results in Figs. 4 and 5 provide evidence
which, in principle, may be used to discriminate these forms
of damage from each other, and demonstrates that damage
leading to hysteresis may yield dependences of nonlinear
attenuation and resonance frequency shift on the excitation’s
strength that are not linear.

Equation (23) provides the way to evaluate the normalized
amplitudes of the higher harmonics. Recovering the explicit
expression for the coefficients Fn(x) (see also [11] for the case
of quadratic hysteresis) brings out the quadratic dependence
of the higher harmonics on the amplitude of the excitation.
Figure 6 offers a comparison between the first five higher
harmonics generated by two uniform distributions of dam-
age considered in this work. The amplitude and the frequency
of the excitation are � = 15 kPa and ω = π/(L

√
ρSo),

respectively. As expected from the similarity of the hys-
teresis cycles, the associated spectra display no remarkable
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Fig. 6 Spectra generated by two uniform distributions of damage
described by a quadratic hysteresis (black bars), and by of disloca-
tions interacting with point defects (white bars). The amplitude of the
source is � = 15 kPa

feature that may be used to discriminate the two from each
other. In particular, both contain odd harmonics only. Further-
more, in agreement with the findings by Bruno et al. [16], the
energy spent to generate higher harmonics can be estimated
as being at least one order of magnitude smaller than the
energy loss due to nonlinear attenuation. Finally, the increas-
ing gap between the two models in Fig. 5 can be correlated to
a comparison by Riviere et al. [17] between the dependence
of the material’s modulus defect on the source strength and
predictions based on the quadratic hysteresis damage. These
authors found the latter to be incompatible with the experi-
mental evidence because it grossly overestimates the varia-
tions of the modulus defect. On the contrary, recent theoret-
ical results have demonstrated that a model based on Eq. (8)
can account for both the offset of the modulus defect and the
magnitude of the areas defined by the hysteresis cycle [13].

Scalerandi et al. [18] commented that, when the nonlin-
ear signature employed in the scaling subtraction method is
reported against the amplitude of the nonlinear response on a
log-log scale, the slope of the apparently linear dependence
of the former on the latter may be used to differentiate forms
of damage of diverse physical origin. The present models can
be used to produce similar plots for the fundamental com-
ponents and its higher harmonics. However, notice must be
taken of the fact that the plots produced by the scaling sub-
traction method, since they are derived directly from time-
domain signals, include the effect of the phase shift caused
by the amplitude-dependent softening induced by damaged.
The plots produced with the models presented in this work,
on the other hand, use the magnitude of Fourier components
of the time-domain signals, and, thus, do not account for the
latter effect. For damage described by quadratic hysteresis,

the slope of the theoretical data interpolation is equal to one
in all cases reported in Fig. 7a. For damage in the form of
distributions of dislocations, no linear fit of the data in Fig. 7b
can be conceived, and their quality worsens with increasing
harmonic order, although they all approach a value of 0.5.
As the present model and additional results in [13] show, the
slope of these lines appears to be sensitive to both the physical
nature of damage, which is encoded in the rheological model
behind the constitutive relation, and to the distribution of the
critical stress, ϕ(σcr), which, in principle, may be a property
shared by other forms of damage. This situation is typical of
wave phenomena where a probing wave interacts with dis-
tributions of scatterers. For instance, the nonlinear response
of interfaces formed by rough solid surfaces in contact to an
inspecting ultrasonic wave is the result of two contributions,
the first one being the nonlinear behavior of the contacts
under compression, and the second one being due to the dis-
tributions of the asperities height. In conclusion, although
the present theoretical results do not provide conclusive evi-
dence against the method proposed by Scalerandi et al. [18]
and references therein, they suggest that a confident use of
the latter requires two major points to be clarified. The first
one concern the restoration of the linear dependence in Fig.
7a, which is so clearly violated by the results related to the
interaction between dislocations and point defects. A possi-
ble solution of this conflict may reside in the effect of the
phase variation discussed above. Second, evidence should
be given which proves that the linear stress dependence on a
log–log scale is a consequence of the nonlinear mechanism
in itself and not of the distribution of its activation energy. In
the opposite case, different damage distributions of defects
of identical physical nature would be assigned different
exponents.

4.2 Non-Uniform Distribution

Damage evolves from specific locations within a structure,
increasing in severity and spatial extent. To exemplify the
effect of damage localization on the nonlinear response of
a bar under forced harmonic oscillations, four rectangular
distributions with the same area have been considered. In
Fig. 8, the distribution labeled D1 is the uniform distribu-
tion used in the previous section, and D2, D3, and D4 are
distributions having the same area as D1, but width equal
to 0.5, 0.2, and 0.05 L, respectively. Figure 9 shows the
effect of varying the width of the distribution maintaining
its area constant on the relative variation of the amplitude
of the fundamental harmonic component for both types of
damage. In both cases, there is a detectable increase of the
nonlinear attenuation following the reduction of the distri-
bution width. This behavior is particularly pronounced at
the early stages of damage localization. The reason for the
strengthening of the effect when damage is highly localized
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Fig. 7 Stress dependence of
the first three higher harmonic
components for a quadratic
hysteretic damage, and b
distributions of dislocations.
Best linear fit are shown
together with the corresponding
equations and R values. Stress
values are given in units of MPa y = 1,0102x - 34,298
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is, in part, due to the increase of the average value of the
stress over the extent of the damage distribution. This quan-
tity varies between 60 % of the maximum amplitude, �, for
the uniform distribution, D1, to 93 % of the same ampli-
tude for D4. Note that the values of (1−A1/ALin) for D1
and D4 differ by a factor about 2.5. This variation cannot
be accounted for by that of the average value of the stress
amplitude. Another and definitely more relevant contribu-
tion to this difference is due to interference among the non-
linear sources of higher harmonics [see Eq. (23)] which is
less destructive when the location of the sources is more
concentrated.

To investigate the relative contribution of these two causes,
a simulation was carried out using distributions of damage

consisting of two rectangular regions of width 0.1 L each,
placed in symmetrical positions with respect to the center of
the bar, and with their centers at relative distance, d, vary-
ing from 0.1 to 0.9 L. Damage was of the type described
by quadratic hysteresis. For each distribution, the value of
the relative variation of the stress amplitude was calculated
twice. The first time, the strength of the applied source was
equal to � = 2 kPa for all distributions. The second time, the
strength of the source was modified so that the stress acting on
the damage had strength equal to its value at the center of the
bar when the distance between the two regions was d = 0.1 L.
Figure 10 shows the results of these simulations. The rela-
tive change of the amplitude of the fundamental harmonics
appears to decrease as d increases at a similar rate in the two
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Fig. 9 Relative amplitude variation of the fundamental component for
four rectangular distributions of damage of decreasing width and same
area. Black bars refer to damage described by quadratic nonlinearity,
white bars to dislocations interacting with point defects

cases. This result shows that maintaining the stress constant
over the region of damage does not significantly affect the
nonlinear attenuation. On the other hand, the geometry of
the damage distribution is proven to be a key factor in con-
trolling the magnitude of nonlinear attenuation produced by
localized damage when the fundamental mode of the bar is
excited.

Nonlinear attenuation of the fundamental component
depends on the physical parameters characterizing the sys-
tem’s nonlinearity besides the distribution width. Therefore,
when considering the problem of assessing the spatial extent
of the distribution, it may be of interest to investigate whether
other acoustic properties of the nonlinear response of the dis-
tributions at hand may be of help to this end. Figure (11a, b)
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Fig. 10 Relative amplitude variation of the fundamental component
produced by localized damage regions in symmetrical position with
respect to the center of the bar and at distance d. Data have been cal-
culated for a stress field generated by a source of strength � = 2 kPa
(black symbols), or by sources producing the same stress at the damage
location (open symbols)

shows the ratio between the amplitude of the third and the
n-th higher harmonic component, with n = 5, 7, 9 11, gener-
ated by (a) damage leading to quadratic hysteresis, and (b)
dislocations, all having spatial distributions D1, D2, D3, and
D4 shown in Fig. 8. Recall that all higher harmonics have the
same dependence on the source amplitude. In particular, in
the case of quadratic hysteresis higher harmonics are propor-
tional to �2. Therefore, when their ratio is considered, any
effect of the source’s amplitude is eliminated. For disloca-
tions interacting with point defects, there remains an effect
of the source amplitude which is mediated by the fraction of
depinned dislocations. The latter can still be regarded as a
property of the material system rather than of the inspection
technique. In other words, the magnitude of these differences
depends on properties that either are entirely intrinsic to the
distributions in the case of quadratic hysteresis, or, at most,
are affected by the excitation amplitude only through some
intrinsic properties of the damage of interest, such as the
distribution of the critical stress, σcr [see Eq. (7)]. Figure
11 illustrates that, disregarding minor variations between the
two models, the uniform distribution consistently generates
harmonics higher than the third with less efficiency. In other
words, the efficiency of the generation of higher harmonics
increases with the concentration of damage. It is plausible,
therefore, to consider these or similar data as signatures of
the distributions themselves, and to use them for discrimina-
tion purposes in a Bayesian strategy of model’s selection as
discussed by Bretthorst [19]. In this context, it is also clear
that any prior information obtained from other features of
the bar’s nonlinear response may be of considerable help to
characterize the extent of the region of damage. For instance,
having identified the nature of damage affecting the mater-
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Fig. 11 Harmonic amplitudes normalized with respect to the ampli-
tude of the third harmonic component for damage a represented by a
quadratic hysteresis, b distribution of dislocations. The strength of the
source is � = 15 kPa

ial via the dependence of the nonlinear attenuation of the
fundamental component, the possible models to be tested
could be reduced to those associated to that type of damage.

In this investigation, the nonlinear response of a bar with
hysteretic damage has been predicted also assuming spatial
distributions that are exponential or Gaussian. The results of
these simulations, which are not reported here explicitly, indi-
cate that among three distributions having the same area, the
rectangular one generates the strongest nonlinearity, while
the Gaussian is the least responsive of the three. Finally, sim-
ulations aiming at assessing the effect of location of a narrow
region of damage along the bar have led to the same conclu-
sions at which other investigations have arrived earlier (see,
for example, Gliozzi et al. [2]). That is to say, locations that
are symmetric with respect the center of the bar produce
nonlinear responses which are identical for all practical pur-
poses, the reason for it being the symmetry of the exciting
stress field along the bar.

5 Concluding Remarks

Attempts at linking the acoustic nonlinear response of a mate-
rial to realistic mechanisms responsible for damage at the
micro/mesoscale are still limited in number and accuracy. As
mentioned in the introduction while reporting on the results
by Gliozzi et al. [2], researchers active in this area (see also
Renaud et al. [20]) seem to share the conviction that deeper
understanding of the actual physical mechanisms affecting
the nonlinear dynamic response of damaged materials is nec-
essary to further the application of nonlinear inspection meth-
ods to problems of practical relevance. Part of this larger
problem lies also in the lack of convincing mathematical
models connecting various forms of damage to the acoustic
nonlinearity manifested by these materials.

The long-term goal of the present effort is to develop
a mathematical framework which allows the nonlinear
response elicited in a resonance test and caused by differ-
ent forms of material damage to be predicted, and, possibly,
differentiated. In this communication a theoretical model has
been presented which describes the longitudinal forced vibra-
tions of a bar affected by hysteretic damage over a limited
region of the bar. The mathematical model sets no constraints
on the geometry of the damage distribution, and shows how
the spatial component of the solution is modified by this fac-
tor. Two constitutive relationships have been considered. In
the first one, hysteresis has a quadratic dependence on the
instantaneous stress. This model has been widely used in
previous studies for its ability to reproduce the most charac-
teristic trends shown by experimental results. In this work,
it plays the role of reference model. The second constitutive
relationship describes the interactions of dislocations with
point defects distributed along their glide planes. This is a
realistic mechanism leading to hysteresis between macro-
scopic strain and stress.

The equation of motion has been solved by means of
a perturbation technique which allows the effect of dam-
age on both the fundamental component of the nonlinear
response, and the generation of higher harmonics to be pre-
dicted. Damaged-induced material softening is a common
manifestation to both forms of damage. However, the strong
resemblance between the two hysteresis cycles notwithstand-
ing, the nonlinear attenuation due to a distribution of dislo-
cations is shown to be characterized by a behavior which
markedly departs from that produced by quadratic hystere-
sis. This departure can be observed when the amplitude of
the excitation ranges over values sufficiently large to cause
depinning of a sizeable fraction of dislocations from the point
defects with which they interact. Only for values of the ampli-
tude of the excitation much smaller than the width of the dis-
tribution in Eq. (7), the predictions of the two models tend
to agree, at least qualitatively. Consistently with the similar-
ity between the two hysteresis cycles, on the other hand, the
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spectral responses of two distributions of damage, which are
spatially identical but of different physical nature, strongly
resemble each other.

Several additional models of damage have been mentioned
in the literature [7] for which constitutive relationships like
Eq. (8) should be developed. Eventually, these might be mod-
ified to describe not only the mechanical properties of the
system in an equilibrium state, but also its possible paths to
equilibrium. A noteworthy application of this development
would be to provide credible explanations for the condition-
ing effect. To this day, however, the mathematical formula-
tion of the dynamics leading a material with defects at the
micro/mesoscale to thermodynamic equilibrium seems to be
a subject requiring investigations on their own. In this con-
text, therefore, it seems reasonable to prioritize the identi-
fication of those physical mechanisms that are responsible
for the variety of already documented acoustic responses of
material nonlinearity under approximately equilibrium con-
ditions (see Renaud et al. [20], for example), leaving prob-
lems of considerable greater complexity to be tackled in later
studies.

In the greatest number of investigations on the nonlin-
ear response of a material to an external disturbance, the
quantity which is used as the independent variable is the
maximum value of the strain amplitude. Here, stress, and
not strain, has been considered as the independent variable.
This choice is dictated by the fact that stress, not strain, is
the physical quantity, which is under direct control of the
experimenter, affecting the material response. In fact, stress
is continuous across the interface between source and sam-
ple, while strain depends on the boundary condition on the
displacement at the interface between source and material.
With that said, for a given experimental setting and nonlin-
ear damage far from levels producing catastrophic failure,
the difference between using stress and strain as indepen-
dent variable, although undesirable in reporting experimental
results, should not be expected to produce major distortions
in the representation of the results and in their interpretation.

Finally, for a given type of damage, spectral features have
been identified which a Bayesian procedure for model selec-
tion could be used to discriminate distributions of damage
of different spatial extent. To this end, however, identifica-
tion of the physical nature of damage is required. In this con-
text, the relevance of prior independent information, possibly
derived from additional features of the nonlinear response of
the material, has been stressed.
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