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Abstract We report an investigation of the motion of a free-
falling permanent magnet in an electrically conducting pipe
containing an idealized defect. This problem represents a
highly simplified yet enlightening version of a method called
Lorentz force eddy current testing which is a modification of
the traditional eddy current testing technique. Our investiga-
tion is a combination of analytical theory, numerical sim-
ulation and experimental validation. The analytical theory
allows a rigorous prediction about the relation between the
size of the defect and the change in falling time which rep-
resents the central result of the present work. The numerical
simulation allows to overcome limitations inherent in the an-
alytical theory. We test our predictions by performing a se-
ries of experiments. We conclude that our theory properly
captures the essence of Lorentz force eddy current testing
although a refinement of the experiment is necessary to re-
duce the discrepancy to the predictions. In spite of its appar-
ent simplicity the present system can serve as a prototype
and benchmark for future research on Lorentz force eddy
current testing.
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1 Introduction and Motivation

The detection and localization of surface and subsurface de-
fects becomes more and more important nowadays. Electro-
magnetic techniques for nondestructive evaluation such as
the well-known eddy current testing technique [1] represent
a particularly powerful approach because they are contact-
less and can be applied to a wide variety of electrically con-
ducting materials. The present work is devoted to an alter-
native version of eddy current testing whose origin can be
traced back to [2, 3] and [4] and for which the authors of
[3] and [5] have proposed the term “Lorentz force eddy cur-
rent testing” (LET). The specific aim of the present paper
is to define and solve a conceptually simple model which
improves our understanding of the physics underlying LET.

In the traditional version of eddy current testing an alter-
nating (AC) magnetic field is used to induce eddy currents
inside the material to be investigated. If the material con-
tains a crack or flaw which make the spatial distribution of
the electrical conductivity nonuniform, the path of the eddy
currents is perturbed and the impedance of the coil which
generates the AC magnetic field is modified. By measuring
the impedance of this coil, a crack can hence be detected.
Since the eddy currents are generated by an AC magnetic
field, their penetration into the subsurface region of the ma-
terial is limited by the skin effect. The applicability of the
traditional version of eddy current testing is therefore lim-
ited to the analysis of the immediate vicinity of the surface
of a material, usually of the order of one millimeter. At-
tempts to overcome this fundamental limitation using low
frequency coils and superconducting magnetic field sensors
have not led to widespread applications.

LET is based on generating eddy currents by setting a
direct (DC) magnet system, usually a permanent magnet,
into relative motion with respect to the material to be in-
vestigated. This approach has the great virtue that the eddy
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Fig. 1 Permanent magnet and pipe with different defect shapes, (a) no
defect, (b) idealized axisymmetric defect, (c) non-axisymmetric defect.
The present work is devoted to case (b)

currents penetrate the material to a much greater depth1 than
with traditional eddy current testing [6–8]. A perturbation of
the eddy currents is detected through its influence upon the
Lorentz force acting both inside the material and inside the
permanent magnet. If the permanent magnet is swept across
a crack, the Lorentz force acting upon it will experience a
short breakdown whose detection is the key to successful
implementation of LET. An advantage of the fact that the
measurement is reduced to a force measurement is that LET
in its wider sense may offer potential benefits for some ap-
plications by introducing an alternate method of inducing
currents and sensing defects, and is worthy of deeper inves-
tigation.

In order to understand the underlying physics of the LET
problem it is desirable to formulate and study highly simpli-
fied models which can be solved analytically. The definition
of such a model is the main aim of the present paper. In ad-
dition to its enlightening character, the present model will
serve as a benchmark for future LET computations.

Our model is a slight modification of a popular educa-
tional experiment sketched in Fig. 1(a). The experiment is
often used to introduce Faraday’s law of induction and con-
sists of dropping a permanent magnet through a vertical
electrically conducting nonmagnetic pipe [9–12]. Due to the
relative motion eddy currents are induced in the pipe walls.
Furthermore, the magnet is exposed to a braking force that
is decelerating its free fall to a constant and relatively low
velocity. The effect can be recognized by the significantly
longer falling time of the magnet compared with its free fall.
The braking effect is caused by the Lorentz force. By New-
ton’s third axiom “actio = reactio” [13] the same braking
force acts on the pipe as well, but in opposite direction. This
can be used to measure the resulting Lorentz force distri-
bution as a function of time. The same effect occurs when
moving an electrically conducting solid state body or liquid
metal in the vicinity of a permanent magnet [3, 14]. The re-
sulting force acting on the magnet system can be measured

1Using an electrical conductivity of 20 MS/m we obtain at a measure-
ment frequency (AC-field) of 1 kHz an skin depth of 3.56 mm whereas
the DC-field at a velocity of 8 cm/s provides 89.21 mm for an inner
radius of the pipe of 8 mm.

and used to determine the relative velocity, material proper-
ties or defects within the material.

We modify the educational experiment in a way that is
sketched in Fig. 1(b). We introduce a highly simplified de-
fect which is axisymmetric and consists of replacing a sec-
tion of the electrically conducting pipe with an electrically
insulating part represented by cutting off a piece of the pipe.
When the falling magnet passes the region of the defect, the
eddy currents will be weakened, the braking Lorentz force
will decrease and the magnet will temporarily increase its
falling speed. As will be demonstrated below, this problem is
amenable to rigorous analytic treatment and efficient numer-
ical simulation and provides a number of unexpected phe-
nomena which are useful for further development of LET.
Although the present model has no direct practical applica-
tion, we believe it is helpful in elucidating the basic laws of
LET and in understanding more complex situations such as
the one shown in Fig. 1(c).

The structure of the remainder of the paper is as fol-
lows. In the following section we formulate the mathemati-
cal model and give an outline of its solution. In Sect. 3 we
describe the results of analytical and numerical solutions
of the ordinary differential equation that we have obtained
for the velocity of the falling magnet as a function of time.
Section 4 contains results of numerical simulations of the
full electromagnetic problem which are intended to check
the validity of the one-dimensional model and to highlight
one aspect which is absent in the simplified model, namely
the deformation of the magnetic field lines at high falling
speeds. In Sect. 5 we compare the analytical and numerical
models. Section 6 is devoted to the description of a series of
experiments which we have performed to validate our the-
oretical predictions. Section 7 summarizes our conclusions
and indicates some problems that would be useful to inves-
tigate in future.

2 Definition of the Model

The problem to be investigated here is defined in Figs. 1(b)
and 2. We consider an infinitely long electrically conduct-
ing nonmagnetic pipe which contains an idealized defect.
The defect consists of a gap with prescribed height 2h in
which the electrical conductivity is assumed to be zero. This
problem can be considered in two different albeit physically
similar formulations. The “LET-problem” refers to a mag-
netic dipole located at a fixed position and a pipe containing
the idealized defect, referred to as the defective pipe, which
moves with constant velocity relative to the magnetic dipole.
When the defect moves across the location of the dipole, the
Lorentz force acting upon the dipole is temporarily changed.
The goal of the analysis of the LET-problem is to predict
the time-dependent longitudinal component of the Lorentz
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Fig. 2 Geometrical sketch containing the characteristic parameters,
(a) mathematical model, (b) real geometry

force F(t) acting upon the dipole and to determine the un-
known height of the defect from the measurement of F(t).
The “creeping-magnet problem” refers to the case when the
defective pipe is at rest and the magnetic dipole is released to
fall through the pipe. If the pipe contains no defect, the mag-
netic dipole falls with a constant velocity. In the presence
of the defect the falling velocity of the magnetic dipole is
temporarily modified. The goal of the analysis for this case
is to predict the time-dependent position z(t) of the falling
magnetic dipole and to determine the unknown width of the
defect from z(t) or from the velocity v(t). In the present
work we will focus on the creeping magnet problem, having
in mind that the results contain the LET-problem as well.

2.1 Analytical Model

The analytical model of a magnet falling through an electri-
cally conducting nonmagnetic pipe without defect has been
derived in [15] and has been applied in [9]. Nevertheless it
is a special case of the creeping-magnet problem contain-
ing an idealized defect, which we present here. The solution
of this special case can be used for the verification of the
creeping-magnet problem.

To describe the movement of the falling magnet we
use its instantaneous position z(t) and its velocity v(t) =
dz/dt = ż. We use a cylindrical coordinate system (ρ,ϕ, z)

for the computation of the eddy currents that is attached to
the dipole and that is shown in Fig. 2(a). The pipe is assumed
to be infinitely long and is characterized by its electrical con-
ductivity σ , inner diameter 2R, and by its wall thickness δ.
We shall assume that the wall is thin, i.e. δ � R. To de-
termine the eddy currents induced in the pipe we need the
distribution of the magnetic field of the falling magnet. We
assume that the magnet is a point dipole which gives a mag-
netic field of

B = μ0

4π
·
{

3 · (m · r)r
r5

− m
r3

}
(1)

where r is the field point and μ0 the absolute magnetic per-
meability. The magnetic dipole is characterized by its mag-

netic moment

m = −m · ez (2)

This represents the so-called impressed or primary magnetic
field.

The magnetic flux density of a dipole is decaying in space
with r−3 (see Eq. (1)). Since the wall thickness of the used
pipe is assumed to be small the variation of the magnetic
field across the pipe walls can be neglected. Additionally,
the problem at hand is axisymmetric. Thereby, only the ra-
dial component of the imposed magnetic field needs to be
considered to compute the eddy currents (cf. Fig. 2(b)). Us-
ing the dimensionless position coordinate ξ = z

R
the Bρ can

be written as

Bρ = −3μ0m

4πR3
· ξ

(1 + ξ2)
5
2

. (3)

The relative movement between the dipole and the pipe
induces eddy currents that are governed by Ohm’s law for
moving electrically conducting materials which has the form

j = σ · (E + v × B) (4)

Moreover, if there is no source or sink of electric currents
in the pipe, the distribution of the induced eddy currents is
purely azimuthal and the electric field is zero. In this case the
ϕ-component of Ohm’s law simplifies to jϕ = σvBρ and the
eddy currents become

jϕ = −3μ0mσż

4πR3
· ξ

(1 + ξ2)
5
2

. (5)

These currents give rise to a secondary magnetic field.
The resulting magnetic field represents a superposition of
both, the primary and the induced secondary field. As will
be discussed in Sect. 2.2, the magnetic field associated with
the induced eddy currents is much smaller than the applied
primary magnetic field. Therefore it can be neglected.

The resulting Lorentz force density can be calculated us-
ing f = j × B. Integrating the Lorentz force density over the
volume of the pipe leads to the total Lorentz force

F =
∫∫∫

(V )

(j × B)dV (6)

acting both on the pipe and (in opposite direction) on the
magnet. Taking all the assumptions into account, the result-
ing force has only a z-component which is given by

fz = −jϕBρ = −9μ2
0m

2σ ż

16π2R6
· ξ2

(1 + ξ2)5
. (7)

Carrying out the integration we obtain finally

F(z) = F0 + 9μ2
0m

2δσ ż

8πR4

∫ ξ ′= z+h
R

ξ ′= z−h
R

ξ ′2

(1 + ξ ′2)5
dξ ′ (8)
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for the total Lorentz force acting upon the pipe where we
have introduced the abbreviation

F0 = −45μ2
0m

2σδż

1024R4
.

The Lorentz force consists of two contributions. The
term F0, corresponding to a force pointing upward, de-
scribes the force which acts on a pipe without defect in op-
posite direction. The second term has a positive sign and
hence reduces the magnitude of F0. This term represents the
reduction of the Lorentz force due to the presence of the
defect. Notice that this term vanishes quickly as soon as the
distance z between the magnet and the defect becomes larger
than the characteristic size h of the defect. When the magnet
falls across the defect, its movement will hence be affected
only in the immediate vicinity of the defect.

2.1.1 Differential Equation of Motion

The differential equation for the instantaneous position of
the dipole z(t) is obtained by taking the z-component of
Newton’s equation of motion in the form

Mz̈ = F(z) + Mg (9)

where F(z) is given by Eq. (8) and where the term Mg rep-
resents the gravitational force acting on the magnet with g

being the acceleration of gravity. If the magnet is far away
from the defect, the main contribution to F(z) comes from
the term F0 and the dipole moves with a constant veloc-
ity v0. This velocity can be computed by setting the left-
hand side of Eq. (9) equal to zero and using F0 = −Mg.
A straightforward computation leads to the result

v0 = 1024MgR4

45μ2
0m

2σδ
(10)

To reduce the number of variables we normalize the
quantities on the basis of the scales R and v0/g for length
and time, respectively, which are characteristic for the given
problem. As a consequence the time derivatives contain no
time t anymore but a dimensionless time parameter τ that
can be calculated according to

dτ = g

v0
dt

Finally, we obtain the differential equation of motion for the
nondimensional coordinate ξ = z/R, the nondimensional
velocity ξ̇ = dξ/dτ and the nondimensional acceleration
ξ̈ = d2ξ/dτ 2 of the falling magnet

ξ̈ +
[

1 − 128

5π

∫ ξ ′=ξ+β

ξ ′=ξ−β

ξ ′2

(1 + ξ ′2)5
dξ ′

]
ξ̇ = α. (11)

Equation (11) is a nonlinear ordinary differential equa-
tion of second order containing two dimensionless param-
eters, namely the forcing parameter α = v2

0/(gR) and the
dimensionless defect height β = h/R. The derivation of this
equation constitutes a key result of the paper. To highlight
the mathematical structure of the obtained equation it can
be rewritten as

ξ̈ + f (ξ,β) · ξ̇ = α.

The function f (ξ,β) represents a position-dependent elec-
tromagnetic friction coefficient which differs from its unper-
turbed value f = 1 only in a small neighborhood of the loca-
tion ξ = 0 of the defect. A peculiarity of the present problem
consists of the fact that the value of this coefficient is deter-
mined by an integral over the whole pipe. Before passing on
the solution of this model it is useful to discuss the physical
meaning of the parameters α and β briefly.

All geometrical data and material properties are con-
tained in α. This parameter can be interpreted as a forcing
parameter since it appears on the right-hand side of Eq. (11).
If there is no defect, this equation reduces to ξ̈ + ξ̇ = α

whose solution ξ = αt describes steady electromagnetically
damped motion of the magnet with constant downward ve-
locity α. Notice that α represents the ratio between the un-
perturbed velocity v0 and the velocity

√
gR which a freely

falling body would attain in the absence of electromagnetic
damping after having traversed a height R/2. Hence, small
values of α correspond to low velocity and strong electro-
magnetic damping whereas higher values of α indicate a
higher velocity and weak damping. The “geometry” of the
defect is described by the parameter β where β = 0 repre-
sents the pipe without defect. The solution of Eq. (11) will
be extensively discussed in Sect. 3.

2.2 Numerical Model

The analytical model developed so far is suitable for the
fast determination of the falling time and the characteris-
tic Lorentz force profiles. It was derived using several sim-
plifications which lead to lower accuracy than a full three-
dimensional electromagnetic field computation would pro-
vide. To take into account the finite shape of both, the pipe
and the magnet, and the effect of the secondary magnetic
field we have additionally developed a numerical model.
This enables us to solve the given problem for thick pipes,
arbitrary shapes of the permanent magnet and high falling
velocities. The variation of the magnetic field within the pipe
walls is properly taken into account as well.

We use the finite element method (FEM) to simulate the
real geometry of the given problem. The point dipole is re-
placed by a spherical permanent magnet. The conducting
pipe is modeled as a hollow cylinder with finite wall thick-
ness.
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The analysis has been divided into two parts. The first
part comprises the consideration of a nondefective pipe. As
a result the falling time of the magnet through the pipe is de-
termined. The calculated falling time is used for verification
and validation of the numerical simulations. In the second
part an ideal defect is introduced into the pipe walls. The
main aim of this analysis is to estimate the nondimensional
falling time difference �τ with respect to the nondefective
pipe.

2.2.1 Model Parameters

The geometry used for the numerical simulation is presented
in Fig. 2(b), comprising the same geometrical parameters
presented in Fig. 2(a). The model consists of the falling
spherical permanent magnet, the cylindrical pipe and the
surrounding air region. The parameters describing the mag-
net are its radius (Rmag), magnetization (m) and mass den-
sity (ρ). The magnetization direction is considered to be
coaxial with the z-axis of the used coordinate system. The
pipe is represented by its finite length (L), inner radius (R),
thickness (δ) and electrical conductivity (σ ).

In case of a defective pipe, an ideal defect is modeled as
a section of the pipe where conductivity is zero as in the
analytical model. It is characterized by its height (2h), (see
Fig. 2(b)).

If the magnet moves parallel to the model axis, the in-
duced eddy currents flow in the azimuthal direction (see
Fig. 2(b)). Due to the circular distribution of the current den-
sity, a 2D axisymmetric model is used instead of a com-
plete three-dimensional setup. This reduces the computa-
tional time considerably.

The pipe is assumed to be long enough so that an infi-
nite length can be considered. The entire dynamic behavior
of the Lorentz force in time is calculated using two numer-
ical approaches, namely (i) the quasi-static approximation
(QS), where the magnetic field reacts instantaneously to the
motion of the crack across the magnet and (ii) the transient
model (TR), where the magnetic field diffusion time (δ2μσ )
is taken into account. For the transient approach the magnet
is considered to be in relative motion to a stationary defec-
tive pipe, whereas for the quasi-static approach the magnet
is at rest and the pipe is set to move accordingly.

The falling time of the magnet is calculated after reaching
the equilibrium state using the following equation

t0 = te + (L − Le)

ve

(12)

where te is the time needed to reach the equilibrium state, ve

is the calculated equilibrium velocity and Le is the traveled
distance during the time te.

2.2.2 Governing Equations

The braking force on the magnet can be calculated using
Eq. (6). Therefore, both the magnetic field and the induced
eddy currents, have to be determined. The magnetic flux
density in the presence of moving conductors can be de-
scribed by the magnetic field transport equation or the mag-
netic field induction equation [16]:

∂B
∂t

= ∇ × (v × B) + 1

σμ
∇2B (13)

where B = B0 + b represents the total magnetic field which
is the superposition of the primary magnetic field B0 and the
secondary magnetic field b. Furthermore, μ is the magnetic
permeability and v is the velocity of the moving pipe. Note
that this is a general equation valid for both, the magnet and
the pipe in motion.

So far, in the analytical model, the effect of the secondary
magnetic field was neglected. Nevertheless, it is reasonable
to expect either explicitly or implicitly, that the pipe slightly
perturbs the magnetic field of the magnet. It can be shown
that the extent of perturbation depends on several parame-
ters, namely the relative velocity between the magnet and
the pipe, the pipe’s conductivity and thickness [16]. In order
to reduce the number of dependent variables, the induction
equation is normalized based on the scales of length (δ), ve-
locity (v) and time (δ/v). The result is the nondimensional
form of the induction equation (see Eq. (14)).

∂B∗
∂t∗

= ∇∗ × (v∗ × B∗) + 1

Rm

∇2∗B∗ (14)

Subscript ∗ indicates the dimensionless quantities and
Rm represents the magnetic Reynolds number defined by

Rm = μσvδ (15)

Using the obtained nondimensional form of the induction
equation, the magnetic field perturbation can be analyzed by
only one parameter, i.e. Rm. In case of Rm � 1, the convec-
tive term (first term on the right hand side) and the transient
term (left hand side) can be neglected with respect to the
diffusive term (second term on the right hand side), and the
induction equation becomes a diffusion equation. In case of
Rm � 1, convection of the magnetic field dominates over
its diffusion and the resulting magnetic field is strongly al-
tered due to the pipe in motion. As a result, the magnetic
field is gradually expelled from the pipe walls. This effect is
referred to as the skin effect.

Whereas our analytical model is valid for Rm � 1, we
wish to take into account the deformation of the magnetic
field lines for high falling speeds in the numerical model
and use it for finite values of Rm. We shall therefore assume
that the magnetic field reacts instantaneously when the crack
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is moving across the magnet in which case the time depen-
dent term in Eq. (13) can be neglected. However, we retain
the right-hand side of this equation thereby allowing for fi-
nite Rm.

Taking all the assumptions into account, the induction
equation can be simplified to its final static form:

0 = ∇ × (v × B) + 1

σμ
∇2B (16)

The derived Eq. (16) together with Eq. (9) forms the final
set of equations describing the given problem. This repre-
sents the QS approach [5]. The same approach is used in
both cases, for the nondefective and for the defective pipe.

The numerical implementation of this approach has been
achieved using Matlab and Comsol Multiphysics as FEM
solver. Furthermore, magnetostatics module of Comsol has
been used to estimate the resulting magnetic field, induced
eddy current distribution and the total Lorentz force acting
on the magnet (see Eq. (6)).

In the case of a pipe without defect, the model geom-
etry is not changing in time. There are no spatial material
changes during the simulation, and thus no remeshing of the
computational domain is necessary. The equation of motion
(see Eq. (9)) is solved using the finite difference scheme
implemented in Matlab. For every time step, the estimated
magnet velocity is used for the calculation of the corre-
sponding Lorentz force using the Comsol FEM solver.

For a pipe with an ideal defect the same QS approach is
used. To simulate the motion of the pipe the defect is moved
with the according velocity

�z(t) = v(t) · dt. (17)

As a consequence, the model geometry is changing in time
which requires additional remeshing of the computational
domain in every time step. It results in a longer computing
time compared to the nondefective pipe.

The computation is performed iteratively until the val-
ues for the Lorentz force and the falling velocity converge.
After reaching the convergence criterion the falling time of
the magnet and the drop time difference are calculated using
Eq. (12).

Strictly speaking, the QS approach is only valid for
the investigation of the problems with no spatial material
changes in time. It has been shown in [5] that this approach
can be successfully applied for the problems involving rel-
atively slow spatial material changes, which is true for the
so-called creeping-magnet problem only.

In order to quantitatively evaluate the limits of the QS
approach used as a numerical model for high magnetic
Reynolds numbers (Rm � 1) and for a pipe with defects,
we consider the so-called transient approach (TR). When
Rm � 1, we can no longer neglect the finite diffusion time

and therefore we have to include the time derivative in the
magnetic induction equation. For the numerical implemen-
tation of the TR approach, we assume the magnet to be in
motion relatively to a stationary conducting pipe. With this
assumption, the first term on the right hand side of the mag-
netic induction equation goes to zero and the time deriva-
tive of the magnetic field is balanced by its diffusion (see
Eq. (18)).

∂B
∂t

= 1

σμ
∇2B (18)

Equation (18) is implemented inside COMSOL Multi-
physics using the moving mesh technique [17]. The moving
mesh introduces interpolation of the magnetic field between
the fixed mesh on the one side and the moving mesh on the
other side, providing the coupling of the field between the
assembly.

3 Results of the Analytical Model

In this chapter we will discuss the solutions of Eq. (11) for
three distinct cases. We start with the general case where the
equation has to be solved numerically. This discussion will
be followed by an analysis of the narrow defect approxima-
tion which is amenable to analytic treatment and is mostly
relevant for the comparison with experiments. We will fi-
nally discuss the opposite limiting case of a wide defect. In
all three cases, the central question is the prediction of the
trajectory ξ(t) (or ξ̇ (ξ)) as well as the falling time difference
and the trajectory expansion.

3.1 General Case

We find it illustrative to provide the solutions in Fig. 3 in or-
der to highlight the role of the parameters α and β . Figure 3
shows selected numerical solutions of Eq. (11) in the form
ξ̇ = f (ξ) representing the velocity of the falling magnet as a
function of the position. This representation is more conve-
nient for the present work than the seemingly more natural
form ξ = f (τ) because it allows us to compare the falling
speeds of magnets at one particular location relative to the
defect. Figure 3(a) shows the solution for variable α at a
fixed value β = 0.01 corresponding to our experiments to be
discussed in Sect. 6 whereas in Fig. 3(b) α = 0.0592 is kept
constant and β is changed. One apparently counterintuitive
feature is common to all solutions shown in Fig. 3. Based
on qualitative reasoning one may expect that the presence
of the defect would lead to a temporary rise in velocity, and
that the curve ξ̇ = f (ξ) would therefore have a bell-shape
with a single maximum velocity close to the location of the
defect, i.e. close to ξ = 0. By contrast, all curves shown in
Fig. 3 have two maxima rather than one. This indicates that
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Fig. 3 Velocity distribution in the defect region as obtained from the solution of Eq. (11) without any further approximations, (a) β = 0.01,
different α, (b) α = 0.0592, different β

Fig. 4 Path of the magnetic dipole with and without a defect in the
pipe; �τ—time shift, �ξ—trajectory expansion, where α = 0.0592

the falling magnet experiences two phases of acceleration
when passing the defect. The reason for this behavior can be
easily understood by invoking Fig. 2(b) in which the qual-
itative structure of the eddy currents is shown. Figure 2(b)
shows that the eddy currents induced by the moving mag-
net consist of two structures with opposite orientation. This
leads to the fact that the Lorentz force has two minima rather
than just one and that ξ̇ = f (ξ) has two maxima as long as
the gap is not too wide.

Figure 3(a) shows that ξ̇ = f (ξ) is symmetric for small
values of the forcing parameter. When α increases, the ve-
locity distribution becomes asymmetric due to the increas-
ing influence of inertia for high velocities. Bigger defects
cause an asymmetry in the velocity distribution as shown
in Fig. 3(b). There, the acceleration phase is dominating
when the magnet is experiencing a decrease of the breaking
Lorentz force due to the presence of a defect.

The resulting trajectory of the dipole is shown in Fig. 4.
When the unperturbed trajectory represented by the full line
is compared with the trajectory in the presence of the defect
represented by the dotted line, two features become appar-
ent. In a given time the magnetic dipole travels a distance
that is �ξ longer than in the unperturbed case. From an-
other point of view, the dipole arrives by �τ earlier at any

position that is sufficiently far “downstream” of the defect.
We shall refer to �τ as the falling time difference whereas
�ξ is the trajectory expansion compared to the nondefective
pipe.

Since the falling time difference will be measured in our
experiments, it is a particularly important quantity. It is used
to detect and identify the defect. To get a first idea of the
characteristic change of falling time for any size of the de-
fect we investigate the motion in the defect region. There-
fore we integrate Eq. (11) for τ = [−τ ∗, τ ∗] where τ is
the nondimensional time scale and −τ ∗ the nondimensional
time when entering the defect region. Considering the width
of the defect region to be 2β = 2·h

R
(Eq. (11)) and the flyby

time �τ = 2τ ∗ we obtain Eq. (19).
[
ξ̇
(
τ ∗) − ξ̇

(−τ ∗)] + [
ξ
(
τ ∗) − ξ

(−τ ∗)]

= 2ατ ∗ + 128

5π

∫ τ∗

−τ∗
dτ ξ̇

∫ ξ+β

ξ−β

ξ ′2

(1 + ξ ′2)5
dξ ′ (19)

An application of an appropriate Heaviside function and the
evaluation of the generated integrals leads consequently to

ξ
(
τ ∗) − ξ

(−τ ∗)︸ ︷︷ ︸
=�ξ

= α�τ + 128

5π
2β

∫ ξ ′=∞

ξ ′=−∞
ξ ′2

(1 + ξ ′2)5
dξ ′

︸ ︷︷ ︸
= 5π

128

(20)

�ξ = α�τ + 2β. (21)

Since 2β is the normalized defect length and �τ the
flyby-time we conclude that the dipole’s trajectory increases
by the same length as the size of the defect and the flight
time shortens by the unperturbed flyby-time. We have shown
analytically that the falling time difference is increasing lin-
early with the defect height and that �ξ and �τ obey the
rigorous relations

�ξ = 2β|�τ→0 (22)
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Fig. 5 Comparison of the position-dependent perturbation of the dynamics of the motion between the complete solution and the NDA where
α = 0.0592 and (a) β = 0.05, (b) β = 1

�τ = −2β

α

∣∣∣∣
�ξ→0

. (23)

This analysis is performed under the assumption that the
pipe contains only one idealized defect. Moreover, only the
presence and the size of a defect is determined, but not its
location.

In order to simplify the equation of motion and gain more
information about the behavior of the dipole motion, an
analysis dealing with two extreme defect sizes is performed.
This is referred to as the so-called narrow and large defect
approximation.

3.2 Narrow Defect Approximation

Assuming a very small defect, compared with the radius of
the pipe, the equation of motion can be further simplified.
Stating that β � 1, the integral appearing in Eq. (11) is ap-
proximated as the integrand itself multiplied by the length of
the integration domain. This leads to the simplified equation

ξ̈ +
[

1 − 256β

5π

ξ2

(1 + ξ2)5

]
ξ̇ = α (24)

that can be rewritten as

ξ̈ + C(ξ,β)ξ̇ = α (25)

where

C(ξ,β) =
[

1 − 256β

5π

ξ2

(1 + ξ2)5

]
. (26)

Using the narrow defect approximation (NDA), the dy-
namics of the falling dipole are equivalent to the motion of
a mass with a position-dependent linear friction coefficient.
Its value is given by the term C(ξ,β) in Eq. (26). Figure 5
shows the spatial structure of this coefficient which can be
considered as an electromagnetic friction coefficient in com-
parison with the perturbation coefficient f (ξ,β) of the com-
plete solution. Notice that in the framework of the NDA, the

width of the defect β only affects the amplitude but not the
shape of the position-dependent part of C(ξ,β). It should
also be emphasized that C(ξ,β) is symmetric with respect
to the location of the defect and C(ξ,β = 0) = 1 as well
as C(ξ = 0, β) = 1. These properties are consequences of
the assumption that the magnetic Reynolds number is small
and would disappear if the theory would be extended to fi-
nite Rm. By contrast, our numerical simulations to be de-
scribed in Sect. 4 take into account the finite value of Rm.

Using the principle of the perturbation method, according
to

ξ(β, τ ) = ξ (0)(τ ) + βξ(1)(τ ) + o
(
β2, τ

)
(27)

we obtain a differential equation of motion that allows us to
characterize the 1st order perturbation of the motion of the
permanent magnet in the narrow defect region

ξ̈ (1) + ξ̇ (1) = 256α

5π

(ατ)2

(1 + (ατ)2)5
(28)

Equation (28) shows that the magnet is accelerated when
entering the defect region, whereas it is decelerated by the
Lorentz force again when leaving the defect region. In the
phase diagram one can see the typical M-shape that was al-
ready obtained in the exact solution (cf. Figs. 6(a) and 6(b)).

Equation (28) is a linear inhomogeneous differential
equation of second order. So a full analytical solution of the
NDA equation is gained using Green functions. The full ex-
pression is lengthy and can be calculated using mathematical
software tools as Maple for example.

Note, that the validity of the NDA is only given for
β � 1. In Fig. 5 one finds the comparison of the friction
terms. Figure 5(a) shows the case when β � 1. As a con-
sequence the difference to the complete solution f (ξ,β) is
very small. In Fig. 5(b) the opposite case is shown where
β = 1. The shape of the complete solution is changing sig-
nificantly whereas the NDA is keeping the M-shape con-
stantly and is only changing in magnitude as has been ex-
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Fig. 6 Velocity distribution in the defect region: comparison between approximation and complete solution, (a) NDA, β = 0.05, different α,
(b) NDA, α = 0.0592, different β , (c) LDA, β = 2, different α, (d) LDA, α = 0.0592, different β

pected from Eq. (26). The resulting error is big and there-
fore, the NDA not valid anymore.

A changing velocity α does not have much influence on
the difference between the full and the NDA solution (see
Fig. 6(a)), whereas the comparison in Fig. 6(b) shows the
difference in magnitude for higher β . Nevertheless, the NDA
is a good approximation of the complete solution for small
β that enable us to save computational time since we get rid
of the position dependent integration.

3.3 Large Defect Approximation

For large defects (β � 1) there is an approximation possi-
ble which we will refer to as the large defect approxima-
tion (LDA). We state that the magnet is far enough from
the edges of the pipe. Without the edge effects the magnetic
dipole reaches equilibrium velocity, i.e. it is falling with a
constant velocity v0.

We divide the path along the pipe into three parts: first
part of the pipe (index U(pper)), free fall (index M(iddle)),
second part of the pipe (index L(ower)). The LDA is based
on the oversimplification that the magnet is falling with the
equilibrium velocity v0 in the pipe parts U and L whereas
the magnet does not experience any braking Lorentz force

in the pipe part M (F = 0). The full details of the derivation
are not given here in the interests of brevity.

Assuming the large defect, we consequently approximate
the solution of the equation by

ξ(τ ) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ατ + ξ0, (0 ≤ τ ≤ τU-M)

ατ 2

2 + (α + β + ξ0)τ + β2+2βξ0+ξ2
0 +2ξ0α

2α
,

(τU-M ≤ τ ≤ τM-L)

− (
√

α2+4αβ−a)

e
α+ξ0+β−

√
α2+4αβ

α

e−τ + ατ + 2β + ξ0,

(τ ≥ τM-L)

τU-M = −β − ξ0

α

τM-L = −1 − β + ξ0

α
+

√
1 + 4β

α

(29)

The nondimensional times τU-M and τM-L mark the inter-
section points of the graphs ξ(τ ).

The approximation of the full equation of motion is cap-
turing the general behavior of the magnetic point dipole
falling through a pipe with defect. Due to the simplifica-
tions and the ansatz using continuity conditions the path of
the dipole is slightly different in the transition regions. The
characteristic M-shape of the phase curve is not captured
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(see Figs. 6(c) and 6(d)). But nevertheless, the LDA is an
approximation of the complete solution of the ordinary dif-
ferential equation of motion that is especially useful when
the free fall is dominating. Using LDA it is possible to save
computational costs since it deals with linear and quadratic
equations only and it enables the user to determine defect
sizes and to estimate falling times as well.

4 Results of the Numerical Model

In the following section we shall discuss the numerical re-
sults for the two cases of the creeping-magnet-problem,
namely (i) the nondefective pipe and (ii) the defective
pipe. The numerical analysis is divided into three differ-
ent regimes based on the value of the magnetic Reynolds
number as low, intermediate and high. The question of ap-
plicability of QS and TR approaches to each regime of the
creeping-magnet-problem will be answered.

4.1 Nondefective Pipe

The dynamic behavior of the magnet falling through a non-
defective pipe is compared using the QS and TR approaches.
For the comparison, the variation of the magnet’s veloc-
ity during the acceleration phase is plotted with respect to
time for different magnet sizes in Fig. 7(a). We observe that
both of the investigated approaches converge to an identical
equilibrium velocity. This has been expected because of the
isotropy of the material properties in the direction of motion.
The comparison of the numerically obtained equilibrium ve-
locity with the analytical solution shows a discrepancy of
59 % owing to the lack of the magnetic field gradients within
the pipe wall in the analytical model (material properties ac-
cording to Table 1, αnum. = 0.0938, αanl. = 0.0592). Fur-
thermore, it has to be emphasized that the 1D analytical
model is valid only for low values of the magnetic Reynolds

numbers unlike the numerical approaches (both QS and TR).
In case of intermediate Rm values the results differ signif-
icantly. In order to illustrate this effect quantitatively, the
total Lorentz force is plotted with respect to the magnetic
Reynolds number (Fig. 7(b)). For the analytical solution the
Lorentz force increases linearly with Rm, whereas for the
numerical models the force initially increases linearly till
Rm = 0.5 and then begins to saturate to a constant value. It
is further expected that the total Lorentz force will decay at
high values of Rm [18].

4.2 Defective Pipe

The geometrical and material properties for the particular
creeping-magnet problem correspond to a low value of mag-
netic Reynolds number (Rm ≈ 5 × 10−3, Eq. (15)). The re-
sults are shown in Fig. 8.

In case of Rm � 1 the resulting magnetic field is un-
perturbed due to the relative motion and it is equal to the
imposed primary field B0 (Figs. 8(a) and 8(b)). Due to the
relatively low velocities all the changes, influenced by the
defects, are considered to be slow. Therefore, the reaction of
the magnetic field can be considered as instantaneous.

Table 1 Geometrical and material properties

Parameter Value

Pipe radius R 0.008 m

Pipe length L 1.001 m

Wall thickness δ 0.001 m

Conductivity σ 4.45 × 107 
−1 m−1

Magnet radius 1 Rmag 0.0075 m

Magnet radius 2 Rmag 0.005 m

Magnet density ρ 7588.85 kg m−3

Permeability μ 4π × 10−7 V s A−1 m−1

Magnetic dipole moment density m 0.9054 × 106 A m−1

Fig. 7 Comparison between transient (TR) and quasi-static (QS) numerical solutions for the pipe without defect, (a) dynamic behavior of the
falling magnet after start, (b) effect of arbitrary magnetic Reynolds number Rm in comparison with the analytical solution (anl.)
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In the extreme case of Rm � 1 the magnetic field lines
are gradually expelled out from the pipe region. Due to the
skin effect the induced eddy currents are distributed close
to the inner surface of the pipe wall. To enter the regime of
high Rm, the permanent magnet falling in the gravitational
field has to be accelerated additionally or the experiment has
to be build in larger size.

Fig. 8 Influence of the magnetic Reynolds number Rm on the mag-
netic field distribution when the magnet is moving down, using
α = 0.4078 (Rm = 0.01)

In order to describe the effect of finite values of Rm quan-
titatively, the numerical analysis is performed for various de-
fect sizes (β) and forcing parameters (α). The analysis helps
to compare the QS and TR approaches.

In case of Rm � 1, the velocity changes due to the
present defect is shown for the small and large defects, re-
spectively (Figs. 9(a) and 9(c)). As expected, after pass-
ing the defect region the magnet velocity converges to the
equilibrium velocity for both numerical models. When hav-
ing a small defect both models are in good agreement. The
discrepancy is increased for larger defects because of the
increased falling velocity after passing the defect region.
Due to the finite diffusion time in the TR model there is
a phase shift between the QS and TR results. Neverthe-
less, from the obtained results one can conclude that for the
creeping-magnet problem the QS approach can be success-
fully applied even for investigations of relatively large de-
fects.

A similar conclusion could be drawn concerning the
force profiles (Figs. 9(b) and 9(d)). In the case the defect size
is comparable to the size of the magnet itself, the Lorentz
force drops to zero unlike in the case of small defects. This
results in a higher falling velocity when leaving the defect
region.

Fig. 9 Comparison between the transient (TR) and the quasi-
static (QS) solution in the defect region for Rm � 1, α = 0.094,
Rmag = 7.5 mm and F0 = −0.13145 N: (a) velocity profile, different

small β , (b) force profile, different small β , (c) velocity profile, differ-
ent large β , (d) force profile, different large β
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Fig. 10 Comparison between the transient (TR) and the quasi-static (QS) solution in the defect region for Rmag = 7.5 mm: (a) force profile,
different β , where δ = 1 mm, Rm ≈ 1, α = 165, (b) force profile, different β , where δ = 5 mm, Rm ≈ 10, α = 165 · 102

Fig. 11 Path of the magnet in the defect region for different defect
sizes β , TR numerical solution for α = 0.094, Rmag = 7.5 mm

Figure 10 shows the resulting Lorentz force profiles in
the defect region obtained by both QS and TR approaches
for finite values of magnetic Reynolds numbers. The defect
size β is considered to be small, so that a fair comparison is
provided. The obtained results show considerable discrep-
ancy even for small values of Rm (≈ 1) in Fig. 10(a). Due to
the finite diffusion time in the TR approach the amplitude of
the force perturbations is different to the one obtained by the
QS approach. Nevertheless, the characteristic force profile is
still conserved for both models.

If we further increase the values of Rm (≈ 10) the result-
ing force profiles differ significantly. There arise phase shifts
as shown in Fig. 10(b).

Figure 11 shows the corresponding position of the mag-
net with respect to the non-dimensional time τ and defect
width β . The position of the magnet, after passing the de-
fect region, is used for the calculation of the falling time and
the falling time difference �τ according to Eq. (12).

From the presented results, we want to point out that QS
approach is an option to simulate even large defects when
the magnetic Reynolds numbers is low (Rm � 1). In the
case of intermediate Rm ≈ 1, the force profiles obtained by
the QS approach and TR approach differ even for relatively
small defects as shown in Fig. 10. Therefore, we can no

longer neglect the finite time response of the magnetic field,
and for accurate calculations of the force perturbation due to
defects the TR approach has to be used.

5 Comparison of Analytical and Numerical Models

There are three important differences between the numeri-
cal and the analytical model that have to be kept in mind
when comparing results. The decay within the pipe walls
is neglected in the analytical model, we assume a magnetic
dipole instead of a permanent magnet and the effect of ar-
bitrary magnetic Reynolds number Rm is not taken into ac-
count.

The verification of both the analytical and the numerical
model has been carried out using the common model of a
pipe without defect, i.e. β = 0. The results of the QS and
TR numerical model are the same. There is no change in ge-
ometry, therefore both models describe the behavior of the
falling model equally taking into account the effect of finite
values of Rm. Due to the fact that there is no perturbation of
Lorentz force, we forbear from showing well-known figures.
In this section we want to emphasize on the comparison be-
tween the analytical 1D model and the numerical models
described above for the pipe with idealized defect.

As we presented above, the main influence on the veloc-
ity is caused by the force perturbation and vice versa since
the model equations for force calculation Eq. (8) and differ-
ential equation of motion Eq. (11) are fully coupled. There-
fore, one can find in Fig. 12 the velocity and the force pro-
files around the defect region.

In Figs. 12(a) and 12(b) we show the influence of the
chosen model on the velocity and force profile. Due to the
different velocity α the magnitude of the analytical solution
differs from the numerical one. Nevertheless, the character-
istic shape is conserved for different defect sizes.

In Figs. 12(c) and 12(d) one finds the comparison be-
tween analytical and numerical solution for thin pipe walls.
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Fig. 12 Comparison between the analytical (anl.) and the numer-
ical (num.) solution in the defect region, where Rmag = 7.5 mm
and F0 = −0.13145 N: (a) Velocity profile, where δ = 1 mm,
αnum. = 0.094 and αanl. = 0.0592, (b) Force distribution, where

δ = 1 mm, αnum. = 0.094 and αanl. = 0.0592, (c) Velocity profile,
where δ = 0.25 mm, αnum. = 1.064 and αanl. = 0.947, (d) Force distri-
bution, where δ = 0.25 mm, αnum. = 1.064 and αanl. = 0.947

Fig. 13 Comparison of the numerical with the analytical model;
falling time change versus defect width where ‘ideal �τ ’ is charac-
terized by Eq. (23)

The difference between the solutions has become smaller.
We conclude that for infinite thin pipe walls we would
have the same solution for the analytical and the numerical
model.

Finally, the result of the force perturbation that goes
along with the velocity perturbation is a change in falling
time. In Fig. 13 the nondimensional time shift �τ with re-
spect to the defect size β is shown. (Please note that we used
the QS approach in this calculation to save computational
costs.)

The curve for “ideal �τ” are calculated according to
Eq. (23). As expected the full analytical solution of the dif-
ferential equation of motion Eq. (11) provides results di-
rectly on the graph of the ideal time shift. The numerical
obtained falling time changes differ slightly from the ideal
ones due to the effect of arbitrary Rm and the full geome-
try. Nevertheless, the linear dependency between defect size
and falling time change �τ is remarkable in both models
and corroborates the result of Eq. (23).

6 Validation

In order to validate the presented analytical and numerical
models, an model experiment has been performed. A spher-
ical permanent magnet (NdFeB) has been dropped through
a nondefective copper pipe and the falling time has been
measured. All necessary geometrical and material proper-
ties have been measured according to Table 1. Due to the
fact that the measurements have been carried out with a stop
watch the reaction time has also been determined (treact =
324 ± 10 ms).

The experiments have been done using two permanent
magnets of different diameter. There have been done forty
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Table 2 Experimental
validation: falling time Rmag Lab-Exp STAT eSTAT DYN eDYN NUM eNUM

7.5 mm 11.966 ± 0.092 s 14.690 s 22.7 % 14.697 s 22.8 % 11.663 s 2.5 %

5 mm 3.426 ± 0.079 s 4.353 s 27.1 % 4.376 s 27.7 % 3.479 s 1.5 %

runs for each magnet which allows the investigation of ran-
dom errors following the guideline [19].

6.1 Nondefective Pipe

The experimental data are shown in Table 2, together with
the predicted drop times from the analytical and numerical
models.

The abbreviation STAT means stationary, i.e. the magnet
is moving with equilibrium velocity t0 = L/v0. DYN repre-
sents the dynamic approach, i.e. the complete solution ac-
cording to the differential equation of motion (c.f. Eq. (11)).

It is possible to relate the measured falling time to the
predicted velocity using Eq. (30). In Table 2 are given the
relative errors of the different approaches for the predicted
drop velocities ξ̇ . The numerical approach fits best, natu-
rally. Due to the fact that the real geometry and an arbitrary
magnetic Reynolds number is taken into account, it is possi-
ble to predict the velocity within of a few percent. The error
estimation has been done with respect to the experimentally
obtained falling time according to Eq. (31).

tsim = L

ξ̇
(30)

e = |texp − tsim|
texp

· 100 % (31)

6.2 Defective Pipe

The validation of the special case of a pipe with a defect of
the size β = 0 has been performed above. In order to check
whether the models fit the more general case of a pipe with
an ideal defect we carried out experiments on pipes with
different defect sizes.

To record the time changes we build up an pipe with
changeable defect size. To minimize the perturbation we
mounted a mechanical nonmagnetic and nonconductive
guidance. The time was measured as described in Sect. 6.1.
The relative errors of the estimation obtained by the de-
scribed model is shown in Table 3.

In Sect. 3.1 we have shown that the flight time increases
linearly with the defect size. This dependency is validated
with Figs. 14(a) and (b). The slope differs from the analyti-
cal one because of the difference in the forcing parameter α.
The numerical solution is much closer to the experimental
falling time changes �τ . Additionally, the errors in time

Table 3 Experimental validation for a pipe with ideal defect: error
estimation between measurements and different mathematical models

Defect texp Estimated Error |e|
DYN QS TR

Rmag = 7.5 mm

0.02 m 10.23 ± 0.08 s 22.45 % 2.81 % 2.81 %

0.04 m 10.20 ± 0.09 s 22.89 % 2.47 % 2.44 %

0.06 m 10.15 ± 0.11 s 23.45 % 2.04 % 2.00 %

0.08 m 10.00 ± 0.11 s 25.30 % 0.58 % 0.52 %

0.12 m 10.03 ± 0.07 s 24.95 % 0.88 % 0.79 %

Rmag = 5 mm

0.02 m 2.81 ± 0.06 s 32.73 % 4.82 % 4.85 %

0.04 m 2.79 ± 0.06 s 33.96 % 5.80 % 5.88 %

0.06 m 2.82 ± 0.06 s 32.42 % 4.58 % 4.64 %

0.08 m 2.80 ± 0.06 s 33.57 % 5.48 % 5.61 %

0.12 m 2.74 ± 0.06 s 36.15 % 7.52 % 7.64 %

measurement for the experimental data have to be taken into
account.

The difference between the presented solutions of the an-
alytical approach, numerical approach and the experiments
with respect to the analytical solution are shown in the sub-
plots of Figs. 14(a) and 14(b). Due to higher speed the er-
ror of the measurements with the 5 mm—magnet is larger
and the gradient of the graph is bigger than the one of the
7.5 mm—magnet. The same linear behavior has been found
in the numerical results (c.f. Fig. 13). We conclude that the
presented models represent the physical effect well that has
been measured in the experiments.

7 Conclusion

The creeping-magnet problem that has been under investiga-
tion refers to the case when the pipe is at rest and the magnet
moves. The characteristic behavior we presented is valid for
the LET problem as well. The reason for this is that physi-
cally the crucial parameter to describe both problems is the
relative velocity between pipe and magnet. For mathemati-
cal comfort we have chosen the creeping-magnet problem.

Despite of this, it has been shown that the model of the
creeping magnet can serve as a good representation in order
to understand the basic laws of LET. The presented proto-
type model that benefits from the simple geometry demon-
strates the good agreement between analytical, numerical
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Fig. 14 Comparison of experimental data with analytical and numerical obtained falling time changes �τ , (a) magnet Rmag = 5 mm, subplot:
compensated plot, (b) magnet Rmag = 7.5 mm, subplot: compensated plot

and experimental results. Obviously the analytical model
suffers from the taken assumptions and simplifications from
that the neglected field decay within the pipe wall is dom-
inant. The presented model can suit as a demonstrator for
educational purposes.

We have shown that there are different possibilities of ap-
proaching the gathered differential equation of motion. For
different velocity regimes and defect sizes there have been
demonstrated the narrow defect approximation, the large de-
fect approximation and the complete solution. All results
have been compared with the full numerical solution show-
ing good agreement.

Having the further investigations on LET in mind it is ev-
ident that the numerical model can be used to verify the up-
coming results. Since the LET problem is crossing different
Rm-regimes and we have to take into account geometrical
changes when defects are considered, the application of a
3D transient model is necessary. Nevertheless, the presented
model serves as a benchmark for the evaluation of software
codes due to the relatively simple comparison and low com-
putational costs [20].

We have shown that using time measurement it is possi-
ble to distinguish whether there is a defect in the pipe un-
der test or not. Since the cause of the falling time change is
a force perturbation we draw conclusions that using force
or velocity measurements and appropriate data process-
ing techniques defects can be localized and identified with
higher precision [5].

The computed falling time differences due to the velocity
perturbation caused by an ideal defect have been validated
experimentally. Moreover, the linear dependency between
falling time difference and the defect size has been proved.
As a result, the time measurement in the creeping-magnet
problem represents a straightforward inverse problem that
can be solved to detect and localize defects.

Further work will mainly contain research on the LET
problem. The Lorentz force profile resulting from the rela-

tive movement between a solid state body (e.g. a bar) and a
permanent magnet or a magnet system cannot be solved an-
alytically. The presented study can be understood as a verifi-
cation of the numerical methods to be used in LET problem
investigations.
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