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Abstract This paper describes an application of emotion recognition in human gait by

means of kinetic and kinematic data using artificial neural nets. Two experiments were

undertaken, one attempting to identify participants’ emotional states from gait patterns, and

the second analyzing effects on gait patterns of listening to music while walking. In the

first experiment gait was analyzed as participants attempted to simulate four distinct

emotional states (normal, happy, sad, angry). In the second experiment, participants were

asked to listen to different types of music (excitatory, calming, no music) before and during

gait analysis. Derived data were fed into different types of artificial neural nets. Results

showed not only a clear distinction between individuals, but also revealed clear indications

of emotion recognition in nets.
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Introduction

The question ‘‘How is it going?’’ is often posed when a person is interested in another

individual’s mood state. A fascinating aspect of this question is the vocabulary which is

used. The word going (from gait as a mode of locomotion) is used to ascertain information

on feelings and emotional states or on health in general. Thus, in common linguistic usage,

there seems to be a connection between movement and inner feelings, which can be
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confirmed by interpreting the etymology of the word emotion (from Latin e: out of and

movere: move).

Whether or not this connection exists and whether bodily expression is affected by

emotional states has been the subject of several previous studies. According to some

previous research, humans are able to recognize emotions from a person’s posture (e.g.,

Coulson 2004), facial expression (e.g., Ekman and Friesen 1978), or body movement (e.g.,

Clarke et al. 2005; De Meijer 1989; Dittrich et al. 1996; Montepare et al. 1987; Montepare

et al. 1999; Walk and Homan 1984, Wallbott and Scherer 1986). While these studies

primarily focused on the human ability of perception and recognition of emotions in

movements, computer-assisted research has tended to focus on recognizing emotions from

speech patterns (e.g., Nicholson et al. 2000; Nwe et al. 2003; Park et al. 2005), from facial

expressions (e.g., Ichimura et al. 2001; Ioannou et al. 2005; Kaiser and Wehrle 1992), or in

both speech and facial expressions (e.g., Fragopanagos and Taylor 2005). More recently in

the field of human–machine communication, the recognition and application of emotional

elements has received increasing interest for the improvement of machine-based speech

interpretation, lie detection, intelligent tutoring applications, and for the enhancement of

interactive and realistic computer games (Fragopanagos and Taylor 2005).

However, research on acquiring emotional information by observing body movements

by means of automated computer assistance is rare. For example, Camurri et al. (2003) and

Sawada et al. (2003) studied computerized emotion recognition techniques in analyzing

dance movements. In an ongoing program of work, a comparison between that technique

and the subjective judgements of spectators was drawn. The computer-based technique was

found to achieve 71.4% of the spectators’ level of performance (Camurri et al. 2004). In

other work, Gunes and Piccardi (2005) developed a multi-modal method to study com-

puter-based recognition of emotional information from both facial expressions and upper

body gestures. In their study, participants were filmed while interpreting different emo-

tional states. Manually selected video frames were extracted for the computer-based

emotion recognition. This multi-modal approach (facial expression and upper body ges-

tures) led to an increase in emotion recognition rates when contrasted with the use of only a

single modality.

However, not only movement characteristics, postures and facial expressions seem to be

affected by emotions. Further support for the emotional impact on bodily processes are

provided by data from studies by Coombes et al. (2005, 2006), who were able to identify

changes in movement coordination and force production processes, respectively, after

visual presentation of emotional stimuli to participants. Similar findings based on changes

in hand movement patterns while listening to different types of music, were provided by

Camurri et al. (2006). Their results suggested that even music is able to influence move-

ment characteristics.

However, when an individual is observing another individual, expressed emotional

content is not the only information which can be received. It has been found that humans

are also able to recognize the individuality of others from facial information, even in a

crowd (e.g., Bichot and Desimone 2006), or from a person’s individual walking style (e.g.,

Cutting and Kozlowski 1977). In these contexts, dynamic data seem to provide more

reliable information to support recognition processes than static data (e.g., Schöllhorn et al.

2002). Interestingly, most research on the analysis of individual gait patterns has been

conducted in clinical settings or on biometric identification processes (e.g., Benabdelkader

et al. 2004). For example, Schöllhorn et al. (2002) demonstrated that participants (n = 13

females walking in dress shoes with different heel heights) could be identified with rec-

ognition rates of up to 100%, from analysis of only 200 ms of their gait pattern, using
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kinetic and kinematic data obtained with artificial neural networks in the recognition

process. Kinetic data (3D ground reaction forces during gait) were derived with a force

plate while kinematic data (3D angles and angular velocities of ankle and knee) were

computed using a four-camera motion analysis system.

Due to methodological issues, there has been a strong emphasis on investigating the

recognition of individuals and emotional influences, independently of each other. Research

on simultaneous recognition of individuals and their emotions has tended to be neglected.

For this reason, our experiments studied whether it was possible to recognize individuals by

their gait patterns, and on refined level to distinguish emotions that were directly or indi-

rectly evoked by imagination or by musical influence. Accordingly, we sought to examine

three main questions: (1) Can neural networks recognize individuals by their kinetic and

kinematic gait patterns? (2) Can neural networks distinguish different emotional states

simulated within the individual gait patterns? and (3) How do participants’ gait patterns

change when listening to music? More specifically, does gait pattern provide any infor-

mation about characteristics of the type of music that a participant might be listening to?

An overview of the study’s organization is given in Fig. 1. Two experiments were

undertaken: In the first experiment participants were asked to imagine several emotional

states while walking. Kinetic data were derived and prepared for the recognition of indi-

vidual gait patterns with a multilayer perceptron (MLP; Rumelhart et al. 1986),

representative of supervised learning, and for emotion recognition with a self-organizing

map (SOM; Kohonen 1982), representative of unsupervised learning. In the second

experiment kinetic and kinematic data were recorded when participants were walking

while listening to different types of music. In this second experiment, kinetic data were

treated as in Experiment 1, and kinematic data were fed into a MLP for recognition of

individual gait patterns and into a custom-made SOM for emotion recognition. Details on

neural networks used for data analysis are provided in the next section. The experiments

are described in more detail in subsequent sections of this article.

Neural Networks

In gait analysis, previous research has primarily focused on; (i) the human capacity to

perceive and recognize individual, gender- or age-specific gait patterns; (ii) the emotional

influence on perception and recognition processes; or (iii) the recognition of intentionally

disguised movement patterns. This body of work has tended to adopt more subjective

Fig. 1 Schematic overview of the two experiments with included types of variables and aimed recognition
area
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methods of movement recognition (for an overview see Richardson and Johnston 2005).

Over the past 15 years, a considerable amount of research on gait analysis has been

conducted using quantitative and more objective computer-based methods such as artificial

neural nets (ANNs). Due to their nonlinear recognition and classification methods, ANNs

are more suitable for tasks such as pattern or speech recognition in comparison to linear

methods (a review in the context of clinical biomechanics is provided by Schöllhorn 2004).

ANNs in general can be viewed as heavily simplified models of parts of the human brain.

Several different types of ANN models exist, including models with supervised, unsu-

pervised, and reinforcement learning methods. However, the architecture of ANNs mostly

consists of a mathematical graph and, depending on the topology of the network, it is either

cyclic or acyclic. In addition, shortcut connections within the architecture may exist as

well. The graph’s vertices are substituted by neurons, which receive input signals (modeled

by means of numerical values) from their dendrites (connected presynaptic neurons) over

the edges (weighted connections). The connections between neurons are weighted with

different strengths (also numerical values) in order to simulate different synaptic weights in

accordance with the neurobiological model of origin.

Within the field of ANNs the most popular nets, inter alia, are the supervised multilayer

perceptrons (MLP) and the unsupervised self-organizing maps (SOM). From a statistical

point of view, these two approaches can be seen as hypothesis verifying (supervised) and

hypotheses generating (unsupervised) approaches. For the use of a MLP, the data need to

be divided into training and test data. Training data are used to train the net, whereas test

data are used for the application. A validation data set may exist as well, but is not

considered in our experiments. During the training process the elements of the network

(more precisely the weights and biases) are modified, so that for each input pattern the

given network output is made more similar to the desired output. For example, if a gait

pattern belongs to person A, but the network allocates it to person B, the inner units are

changed, so that after some training the network correctly associates this specific pattern

with person A. If this occurs for all available inputs over several hundreds or thousands of

trials, the network learns to recognize specific patterns well, while still being able to

generalize and associate novel patterns with the appropriate individuals. The information is

not stored in a database-like unit, but is implicitly distributed among the neurons and

connection values.

When using a SOM for classification or data mining, the category that a pattern belongs

to, need not be known a priori. The network is able to classify, separate, and distinguish

high-dimensional input patterns by their similarities. This approach is well-suited for

studying data where there is a lack of knowledge of membership of classes or categories,

since the net is able to find clusters (classes) of similar input-patterns within the data set

automatically and to map them onto groups of similar or neighbored neurons. A mostly two-

dimensional graphical output space is used to illustrate the mapping of the data onto the net.

Further types of neural networks, including combinations of supervised and unsuper-

vised approaches can be found in Haykin (1998).

Experiment 1

Method

For studying the emotional states simulated by participants (walking normally, with joy,

with sadness, and with anger) kinetic data were recorded from 22 healthy male and female
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participants using a 40 9 60 cm Kistler force platform 9821B with a frequency of

1,000 Hz. The experimental setup is illustrated in Fig. 2. Participants had to walk a dis-

tance of approximately 7 m at a self-determined walking speed registered by two pairs of

double light-barriers after a short period (about two and a half minutes) of internalization

of the emotion to be simulated by imagination. Participants were asked to feel sad, angry,

or happy, depending on the assigned emotion. Simulations of these emotions were aided by

encouraging participants to remember a particular occasion when they felt each specific

emotion. The order of emotions to be simulated in walking was randomly pre-assigned.

With their 3rd to 5th foot contact, participants were required to hit the force platform with

the right foot without incurring any unnatural step lengths or movements. Participants had

to perform several trials until data on gait from three consecutive error-free trials were

collected per participant for each emotion. Error-free in this context meant that participants

were asked to avoid looking at the platform, and data were only recorded if they hit the

platform centrally with their 3rd to 5th stride. The ground reaction forces in x-, y-, and z-

dimensions were acquired by means of commercially available software (Dasy Lab

6.00.03). In order to remove, or at least to minimize the influence of speed and body weight

on the recognition process, all measurements were normalized by amplitude and time. The

vertical ground reaction force was divided by the participant’s weight, and the horizontal

forces were scaled into a unique interval. Since data were recorded at 1,000 Hz for each

trial, approximately 600 data points were available for analysis per dimension. These

points were time-normalized to 100 data points for the z-, 50 for the x-, and 50 for the y-

dimensions, leading to an optimal ratio of computational effort and precision for use with

the neural nets. Subsequently, a synthetic model gait pattern was built by calculating the

mean of all available ground reaction forces from all participants in x-, y-, and z-dimen-

sions. This reference gait pattern was then subtracted from all single gait patterns in order

to extract the individual deviations from the model pattern. This process allowed us to

extract solely the individual characteristics of each participant’s gait patterns for further

analysis. All calculations were based on the software package Matlab R2006a.

In order to analyze individuality in gait patterns, the data set, consisting of all available

gait patterns from the 22 participants, was split into training and test data at a ratio of 2:1

and thereafter presented to a supervised MLP with 200-111-22 (input-hidden-output)

neurons (one output neuron per participant). Recognition rate was computed by expressing

the number of correct recognitions (correct identifications of gait patterns that belonged to

a particular participant) as a percentage. Recognition rate was additionally averaged using

cross-validation (Schöllhorn et al., in press) in order to obtain precise rates of identification

(see Appendix for a more precise description of the nets’ architectures).

Fig. 2 Schematic depiction of the data collection apparatus
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For intra-individual emotion recognition during gait, an unsupervised SOM with 5 9 3

neurons was chosen. All available gait patterns from a single participant were in each case

fed into the network. From gait analysis, it is known that dynamic data provides more

information than static data (Richardson and Johnston 2005). In addition, Schöllhorn et al.

(2002) underlined that time-continuous data sets are better suited for achieving individual

information than time discrete data sets. Hence, similar to Schöllhorn et al. (2002), two

approaches were applied: (i) using time discrete parameters (minima, maxima, positions of

minima, positions of maxima, integral, length, and mean of the curves in x-, y-, and z-

dimensions); and (ii) using time continuous data (whole time courses) as inputs for the

SOM. The SOM classified and clustered the gait patterns according to their similarities.

Because recognition rates are normally not provided by a SOM, a customized algorithm

was developed in order to ascertain the emotion-distinction quality of the net. For each gait

pattern the demonstrated emotion was documented. With this knowledge a kind of ret-

rospective performance analysis was conducted, analyzing whether gait patterns with the

same demonstrated emotions formed clusters, which implied that these patterns should be

more similar (see Appendix).

Results

A person recognition rate of 95.3% was achieved with the MLP trained with 176 gait

patterns from all 22 participants and tested with 88 unknown gait patterns of these indi-

viduals. Hence, 95.3% of the gait patterns were allocated to the correct individuals.

Intra-individual emotion recognition (identifying the four emotional states of an indi-

vidual’s gait patterns correctly) was realizable with up to 100% accuracy for some

participants. Figure 3 provides an exemplary spread of a participant’s gait patterns over the

output space of the SOM (5 9 3 neurons). In all parts of the figure the SOM output is

shown. Parts (b–e) of the figure illustrate which neurons classified the participant’s gait

patterns from the simulated emotional state. The bigger a filled hexagon appears, the more

gait patterns of the same emotion are classified onto this neuron. It can be seen, that gaits of

the same emotions are predominantly classified into the same region, and these gaits are

more strongly distinguished from the gaits associated with other emotions in most cases.

This observation is supported from data shown in part (a) of the figure (the unified distance

matrix), where the real similarities between classified gait patterns (represented by acti-

vated neurons) can be interpreted from the brightness of the background. The cluster

borders are illustrated in black. Neighbored gaits inside this region are more dissimilar,

because the real distances between them are greater (borders can be thought of as hills in a

3D landscape). By contrast, white planes (valleys in this sense) indicate that gaits in these

areas have strong similarity. The emotions anger, joy, and sadness are distributed over the

map with maximum distances to each other, the control condition normal is closest to the

emotional state sadness.

Average emotion recognition rates were also calculated. For the time discrete

parameters an average recognition rate of 80.8% (SD = 11.5; maximum = 100.0%) was

achieved from analysis of data from all participants pooled. By including the whole time

courses of action, when considering time continuous data, performance could be

increased to 83.7% (SD = 12.5; maximum = 100.0%) and thus both methods revealed

findings significantly above the level of chance (25%). However, no statistical difference

was reported between both emotion recognition rates using the Mann–Whitney Test

(Z = -.82, p = .41).
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Experiment 2

Method

Using the same data processing as in Experiment 1, with respect to observing changes in

participants’ gait patterns when listening to music defined as excitatory and calming, and

including a no-music condition, kinetic and kinematic data were recorded from 16 healthy

participants different from those in Experiment 1. As excitatory music a track from a

German techno group (Scooter—Back to the heavyweight jam; 130 beats per minute

[bpm]) was chosen, whereas for calming music a track in a world music style (Bjørnstad/
Darling/Christensen/Rypdal—The sea; free tempo) was selected. The latter track had a free

tempo of about 80 bpm, with slowly changing melodies and harmonies. Due to its

smoothness it was designated as calming. Differences between these tracks were used to

intuitively define music as excitatory or calming. The experimental setup was similar to the

first experiment (see Fig. 2). However, since Experiment 1 showed the possibility of

recognizing emotions by means of ground reaction forces, kinematic data were also

recorded in Experiment 2, in order to scrutinize whether or not visible effects in the gestalt

of the movement pattern were observable. Therefore, participants were filmed by two

synchronized orthogonally positioned cameras with a frequency of 25 Hz. For kinematic

analysis, markers were attached on the top of the manubrium sterni, the left and right

acromion, the epicondylus lateralis, the processus steyloidus ulnae, the left and right spina

illiaca anterior superior, the trochanter major, the lateral end of the femur (knee), the left

and right patella, the articulatio tibo fibulare talare, the calcaneus, the phalanx distalis, and

the hallux. Through this, 3D angles and angular velocities of arm, hip, knee, and ankle

could be digitized.

Two and a half minutes before and during the walking procedure, participants listened

to the randomly pre-assigned music type using headphones. The last double-step before

touching the force platform with the right foot was chosen for kinematic data acquisition,

beginning and ending with the toes of the right foot leaving the floor. The walking pro-

cedure was repeated until data from three error-free gait trials per music type were logged

(for criteria see Experiment 1). The derived kinetic data were processed as described in

Experiment 1. The processing of the kinematic data was as follows: With the aid of Adobe

Fig. 3 Unified distance matrix (a) and activated neurons ordered by simulated emotions (b–e) of a
participant’s kinetic gait patterns classified with the SOM. The filled hexagons (b–e) show onto which
neuron gait patterns for the given emotional state are classified. The bigger a hexagon appears the more gaits
are classified onto this neuron. Neighborhood can be interpreted as similarity. The distance matrix (a) shows
the real distances between the data vectors. Black planes indicate borders, white planes donate clusters.
Within a cluster similarity is higher than between neighbored neurons of a border-region. Emotion-regions
are given as well
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Premiere 6.0, the single video sequences were cut to the length of a double-step (see above)

before 3D angles and angular velocities of arm, hip, knee, and ankle were manually

digitized with the commercially available software Simi Motion 5.0 (SIMI Reality Motion

Systems). The generated files were mathematically scaled to the same time-length. Due to

the sampling rate of 25 Hz, the smallest number of sampled data vectors was 21, so that all

other files were mathematically normalized to this global minimum of 21 discrete values

per angle and angular velocity. A further normalization was not necessary as angles and

angular velocities were recorded using the same scale for all participants.

To examine person recognition rates, kinetic and kinematic data from gait patterns were

fed to a 200-108-16-MLP and a 168-92-16-MLP, respectively. The configuration of the

MLPs was the same as described above and the architectures only differed in the number of

available or selected data points (200 as in Experiment 1 for the kinetic data and 168 for

the kinematic data: [4 angles + 4 angular velocities] � 21 data points). Intra-individual

emotion recognition on the basis of the kinetic data was managed using the same 5 9 3

SOM structure as described in the first experiment. However, as the input dimension of the

kinematic data (four angles and four angular velocities) was considerably higher, a self-

implemented network called 2SOM (due to its structure that consisted of two series-

connected SOMs) was chosen for classification. Within the 2SOM, the first SOM (SOM A)

had the task of reducing the data dimension, whereas the second SOM (SOM B) took care

of the classification (see Fig. 4). This procedure is based on the original work of Bauer and

Schöllhorn (1997) and Barton et al. (2006). Further information on these procedures is

provided in the Appendix. For both net types, again, time-discrete as well as time-con-

tinuous parameters were chosen for input (inside the 2SOM, this differentiation was

implemented after the dimension reduction of SOM A).

Results

The average person recognition rate with the MLP was 99.3%. In each case the net was

trained with 96 kinetic gait patterns of 16 different participants and tested with another

unknown 48 gait patterns. The MLP that was trained and tested with 96 and 48 kinematic

gait patterns, respectively, achieved a person recognition rate of 96.9%, a performance rate

that was slightly lower than the MLP trained with the kinetic data.

Intra-individual emotion recognition for the participants listening to calming, excitatory,

or no music revealed recognition rates of up to 100% for the kinetic and kinematic data.

Figure 5 illustrates a representative spread of an individual participant’s kinematic gait

Fig. 4 Architecture of the 2SOM. Trajectories of activated neurons on SOM A are used as input vectors for
SOM B
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patterns ordered by music types and the unified distance matrix. The gait patterns with

calming and no music in this case seem to be more similar, whereas the pattern with

excitatory music defines a single cluster. The average recognition rates for the kinetic gait

data from all participants pooled was 77.8% (SD = 9.1; maximum = 100.0%) and 82.6%

(SD = 9.9; maximum = 100.0%) for the time discrete and time continuous data,

respectively, regarding all participants. On average, the recognition rates for the kinematic

data were 73.0% (SD = 11.5; maximum = 88.9%) and 79.2% (SD = 13.4; maxi-

mum = 100.0%) for the time-discrete and time-continuous data, respectively, a

performance rate that was slightly lower than obtained with the kinetic data. As in the first

experiment, the Mann–Whitney-Test delivered no statistical differences between the two

approaches (Z = -1.49, p = .14 for the kinetic data; Z = -.40, p = .16 for the kinematic

data). In the case of the second experiment, chance level was about 33.3% due to the three

types of music. Hence, all rates were significantly above this level.

General Results

Apart from specific results, there were some outcomes common to both experiments. To

begin with, the strong individuality of the gait patterns in both experiments warrants

attention. Even when combining the kinetic data of the two experiments, person recog-

nition was achieved at a 98.5% success rate for all participants (n = 38). Kinematic data

are believed to be more convenient for gait pattern recognition since they provide more

individual information (Schöllhorn 2004). In our experiments, the recognition rates for

kinematic data were slightly lower than for kinetic data. However, the high level of

individuality in the gait patterns was not surprising, since in previous work Schöllhorn

et al. (2002) were able to distinguish individuals with recognition rates of up to 100%. This

finding might explain why inter-individual emotion recognition was not realizable in the

present study. The individuality of the gait patterns was just too dominant and gaits were

mainly classified by each individual, regardless of simulated emotion.

On a more subtle level, a kind of finer structure within the participants’ individual gait

patterns was discovered, as emotion recognition was achievable with recognition rates of

up to 100% (see Figs. 3 and 5). A more detailed analysis of the spreads of data in

Fig. 5 Unified distance matrix (a) and activated neurons ordered by music types (b–d) of a participant’s
kinematic gait patterns classified with the 2SOM. The filled hexagons (b–d) indicate the activated neurons
for the given music type. The distance matrix (a) shows the real distances between the data vectors. Black
planes indicate borders. White planes donate clusters. Emotion-regions are given as well
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Experiment 1 showed a clearly visible tendency. In nearly all cases, the gait patterns with

the highest degree of differences in arousal levels (Bradley et al. 2001) were clustered well

away from each other. Arousal, in this instance, can be viewed as a tendency from low

(e.g., sadness) to high (e.g., joy). In most cases, this trend was also confirmed for the gait

patterns in the second experiment. An overview of the recognition rates and results is given

in Tables 1 and 2.

Discussion

In the two experiments reported in this paper, kinetic and kinematic gait patterns served as

input for three different neural networks (in different configurations) with the task of

recognizing individuality and emotional states from individual gait patterns. In the case of

person identification, recognition rates of up to 99.3% were achieved by the nets. Inter-

individual emotion recognition levels, by means of the same data analysis approach, were

not as high and remained around chance level. Hence, the results suggested that intra-

individual emotion recognition performance was successfully accomplished using self-

organizing maps. Kinetic as well as kinematic gait patterns delivered recognition rates of

up to 100%. Even the kinematic data of participants, listening to music while walking,

delivered sufficient information for emotion recognition (based on the assumption that

emotions in this case were influenced by music). Taken together, the results of both

experiments showed: (i) the potential of a more objective emotion recognition approach in

human gait with artificial neural nets in a diagnostic way (Experiment 1); and (ii) that by

using this diagnosis tool, it was possible to observe changes in participants’ gait patterns

induced by music while walking (Experiment 2).

Although intra-individual emotion distinction and recognition was successful in most

cases, for some participants emotion recognition rates were lower. Thus, it was not possible

to identify the type of music listened to by analyzing the gait pattern for all participants.

Hence, two consequences can be drawn: First, the approach has to be improved to get

better results. Second, emotion expression (more precisely: effects on the gestalt of the

movement induced by music) is highly individual and individually pronounced with dif-

ferent levels of magnitudes. Potential improvements in sports or exercise performance by

listening to music, for example, may only be promising for a few athletes since not all

athletes will benefit from it. In this context, the effects of music on sports performance are

controversial (Tenenbaum et al. 2004) and have been reported for physiological processes

such as changes in hormone concentrations (e.g., Yamamoto et al. 2003), heart rate (e.g.,

Guzzetta 1989) or sports performance (e.g., Becker et al. 1994; Ferguson et al. 1994). In

the latter studies, participants’ performance was increased after listening to specific kinds

of music. These changes in performance may, as in this study, be provoked by changes in

the characteristic or gestalt of the movement.

Table 1 Person recognition
rates with the MLP

– Not recorded

Kinetic data (%) Kinematic data (%)

Experiment 1 95.3 –

Experiment 2 99.3 96.9

All available data 98.5 –
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Whether or not the relative distances of the observed emotional states (c.f. Figs. 3, 5)

provide information about emotional traits needs further research. However, if the normal
gait pattern is identified as very similar to the simulated sad gait pattern, two different

implications can be drawn. First, participants were not able to distinguish between normal
and sad simulations of gait at the motor control level. Second, normal gait patterns may

reflect a sad or rather depressive trait of participants. In conclusion, the results suggest

further research would be useful, particularly for music therapies or therapies in general

where exploring the emotional processes of patients through non-verbal behavioral indices

is desired. Self-organizing maps provide a graphical, interpretable output that allows

retracing the development and changes in intra-individual gait patterns. In this vein, for

example, the development of a ‘‘propelling’’ to ‘‘pulling’’ gait (e.g., Sloman et al. 1982;

Sloman et al. 1987) in depressive patients could be monitored and tracked over a specific

period of time.

Finally, a further application of the research in this paper may consist of enhancing

existing emotion recognition system technology (e.g., emotion recognition in speech or in

facial expression). The approach of recognizing emotions through movements may

improve the reliability and validity of existing computerized expert systems, leading to

developments in security and perhaps clinical usages. For example, since the individual

occurrence of emotional expressions differed from participant to participant in the current

study, traditional clinical practices with orientation towards general ‘person-independent’

models may not seem to support patients optimally. However, as shown in this paper, when

the focus of the therapeutic program is on individual progression, better clinical support

may be guaranteed.
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Appendix

The Nets

The processing was implemented using Matlab R2006a, the Neural Network Toolbox V5.0

and the SOM Toolbox (Vesanto et al. 2000). Before the data were fed into the networks, a

further normalization to the interval [-1 to 1] was completed in order to prepare the data

for the nets. For the kinetic data, the MLP consisted of three layers with 200 neurons (50
x-, 50 y-, and 100 z-data-points) in the first layer, about (n+c)/2 neurons in the hidden

layer, where n is the number of input neurons and c is the number of desired classes and

Table 2 Recognition rates of
intra-individual emotion recogni-
tion with the SOM and 2SOM

Note. In Experiment 1 chance
level was about 25%, in
Experiment 2 chance level was
about 33%

– Not recorded

Kinetic data (%) Kinematic data (%)

Experiment 1

Time discrete 81.3 –

Time continuous 83.7 –

Experiment 2

Time discrete 77.8 73.0

Time continuous 82.6 79.2
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also the number of output neurons. The MLPs for the kinematic data were built analogi-

cally except for the first layer which contained 168 neurons (21 data points � 8 angles and
angular velocities). As an activation function, the tangens hyperbolicus was chosen in all

layers. The nets were initialized with the Nguyen–Widrow function (Nguyen and Widrow

1990) and trained with the scaled conjugate gradient algorithm (Møller 1993). Training

lengths were set to 500 epochs in general and 600 epochs for the classification with all data

from 38 participants respectively. Recognition rates were calculated counting the mis-

classifications and expressing them as a percentage using cross-validation.

The SOM algorithms were used in two different ways. The normal SOM was used to

classify the data as usual; the 2SOM implied two connected SOMs (see Fig. 4). Within this

architecture, the first SOM (SOM A) served as data reduction; the second SOM (SOM B)

took note of classification tasks. To achieve this, the data vectors were presented as feature-

vectors. One single vector then included the values of all angles and angular velocities for a

particular point in time, what Bauer and Schöllhorn (1997) call a more ‘coordination-

oriented’ approach. In this way, the process information of the movement was represented

by the trajectory built by the successively activated neurons in a two-dimensional space.

The trajectory of activated neurons was converted to a new data vector by using the x- and

y-coordinates from each neuron as new data points. Finally, the second SOM classified the

actual measurement. All used SOMs were two-dimensional maps with a hexagonal lattice

and a rectangular shape, as recommended by Kohonen et al. (1995). A comparatively small

lattice of 5 9 3 neurons was preferred for the data. As a training method batchtrain was

chosen. The learning rate was initially set to 0.5 for the rough training phase and then

reduced to 0.05 for the fine tuning phase. Training length was set to 10 epochs in rough

training and 40 epochs in fine tuning. Further training was not necessary and yielded no

better results. The calculation of recognition rates was achieved as follows: During

repeated presentation of training data, the distances from each classified gait pattern to the

‘emotion clusters’ (not the clustering on the SOM, but the collection of gait patterns from

one simulated emotion) of all emotions were calculated. If the distance to the emotion-

cluster, to which the gait pattern belonged to, was not the shortest, the classification was

counted as a misclassification.
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