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Abstract
In recent years, artificial intelligence-based computer aided diagnosis (CAD) system for the hepatitis has made great
progress. Especially, the complex models such as deep learning achieve better performance than the simple ones due to the
nonlinear hypotheses of the real world clinical data. However,complex model as a black box, which ignores why it make
a certain decision, causes the model distrust from clinicians. To solve these issues, an explainable artificial intelligence
(XAI) framework is proposed in this paper to give the global and local interpretation of auxiliary diagnosis of hepatitis
while retaining the good prediction performance. First, a public hepatitis classification benchmark from UCI is used to
test the feasibility of the framework. Then, the transparent and black-box machine learning models are both employed to
forecast the hepatitis deterioration. The transparent models such as logistic regression (LR), decision tree (DT)and k-nearest
neighbor (KNN) are picked. While the black-box model such as the eXtreme Gradient Boosting (XGBoost), support vector
machine (SVM), random forests (RF) are selected. Finally, the SHapley Additive exPlanations (SHAP), Local Interpretable
Model-agnostic Explanations (LIME) and Partial Dependence Plots (PDP) are utilized to improve the model interpretation
of liver disease. The experimental results show that the complex models outperform the simple ones. The developed RF
achieves the highest accuracy (91.9%) among all the models. The proposed framework combining the global and local
interpretable methods improves the transparency of complex models, and gets insight into the judgments from the complex
models, thereby guiding the treatment strategy and improving the prognosis of hepatitis patients. In addition, the proposed
framework could also assist the clinical data scientists to design a more appropriate structure of CAD.

Keywords Hepatitis · Model interpretation · SHapley Additive exPlanations ·
Local Interpretable Model-agnostic Explanations · Partial Dependence Plots

Introduction

Liver plays an important role in many essential body
functions [1]. Thus, any lesion of the liver adversely affects
the important physiological functions such as excretory,
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secretory and detoxification, which eventually leads to the
poor health of patient [2]. Recent research demonstrates that
hepatitis such as Hepatitis B or Hepatitis C cause the liver
failure, cirrhosis, or cancer [3].

Hepatitis is defined by the World Health Organization as
an inflammation of the liver and is caused by a variety of
pathogenic factors such as viruses, bacteria, parasites, chemi-
cal poisons, drugs, alcohol and autoimmune [4]. Hepatitis
A virus (HAV), hepatitis B virus (HBV), hepatitis C virus
(HCV), hepatitis D virus (HDV) and hepatitis E virus
(HEV) are the five major pathogenic viruses cause the viral
hepatitis [5]. Hepatitis like HBV gradually develops into
chronic hepatitis, cirrhosis and hepatocellular carcinoma,
which eventually leads to a large number of deaths each year
[6]. Especially, 80% of patients with HBV develop into liver
cancer as the lack of timely medical intervention[7, 8].

However, early intervention on these patients with
hepatitis can avoid further damage, and finally reduce
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morbidity and mortality. The Model for End-Stage Liver
Disease (MELD) is widely used in liver disease diagnosis
and treatment because of its simplicity and objectivity [9].
Nevertheless, it remains challenging to identify the onset
of liver failure caused by hepatitis due to the complex
interaction between liver and other organs [10].

Over the last few years, researchers have utilized
machine learning to identify the onset of liver failure
caused by hepatitis. Alexandra et al. employed Chi-squared
Automatic Interaction Detector (CHAID) to forest the
patients who should be screened for chronic hepatitis B
or C. The results showed that the probability of HBV
infection was higher in patients with ALT ≥ 0.56 μkat/l
[11]. Chen et al. utilized Support Vector Machine (SVM),
Naive Bayesian Model (NBM), Random Forest (RF) and
K-Nearest Neighbor (KNN) to predict the stage diagnosis
of the hepatitis. The experimental results showed that
RF classifier achieved the best performance among the
four machine learning models. The result indicated that
the complex models could be a potentially useful tool to
predict the stage of hepatic fibrosis [12]. Hashem et al.
took advantage of multilinear regression (MR), decision
tree (DT), particle swarm optimization (PSO) and genetic
algorithm (GA) to forest the advanced fibrosis risk by
combining the serum bio-markers and clinical information.
The study found that machine learning could be used as
the alternative methods to prognose the risk of advanced
liver fibrosis caused by chronic hepatitis C [13]. Tian et al.
compared the eXtreme Gradient Boosting (XGBoost), RF,
DT, and logistic regression (LR) to identify the optimal
model to predict the HBsAg seroclearance. The study
discovered that the XGBoost reached the best predictive
performance for predicting HBsAg seroclearance with
clinical data [14]. Singh et al. proposed a hybrid approach
to evaluate the stage of hepatitis disease. Simulation results
indicated that the improved ensemble learning method
performed better than the other existing individual methods
on the diagnosis of hepatitis [15].

In general, the complex machine-learning models such
as RF and XGBoost perform better than the simple models
such as LR in the prediction of hepatitis [16]. However,
the complex machine-learning model as a black box does
not reveal its internal mechanisms. Thus, the hepatobiliary
physicians can not understand the models by looking at
their parameters (e.g. a XGBoost). Due to the lack of
interpretability, the application of the complex machine-
learning approaches in the actual clinical setting is limited.

For the sake of a broader applicability of artificial
intelligence (AI) to the hepatitis diagnosis, it is imperative to
provide the hepatobiliary physicians with the explanations
why a certain prediction is made, that is, the internal
mechanisms that lead to the prediction [17]. Thus, an
explainable AI (XAI) framework combing the SHapley

Additive exPlanations (SHAP) [18], Partial Dependence
Plots (PDP) [19] and Local Interpretable Model-agnostic
Explanations (LIME) [20] methods is proposed to provide
the explanations for the complex models. Figure 1
represents the flow chart of XAI-based diagnosis process
of hepatitis. The clinical data collected is sent to the
XAI framework after the hepatitis patient is examined by
different inspections. Then, the proposed XAI approach
generates the computer aided diagnosis (CAD) results to the
doctors. Finally, the doctors perform the diagnosis and the
treatment to the hepatitis patient with the support of CAD.

The main contributions of this paper are summarized
as follows: (1) To obtain a higher exacerbation risk
identification accuracy for hepatitis, multiple complex
models are explored. A public benchmark data set from
UCI is applied to assess the performance of the complex
models. (2) To achieve a broader applicability of the
complex models to the hepatitis diagnosis, an interpretable
framework is proposed to provide the global and local
explanations to improve the clinical understanding of the
hepatitis exacerbation risk prediction. The rest of paper
is organized as follows. In “Methodology”, the research
methodology that we apply is explained. In “Results”, we
present the details of how the interpretability framework
works. “Discussion” discusses the proposed interpretability
framework. Finally, “Conclusion” concludes our paper with
the future developments.

Methodology

Figure 2 illustrates the framework of the proposed
XAI for the CAD system. The proposed framework
provides the global and local explanations to improve the
clinical understanding of the hepatitis exacerbation risk
prediction. Patient record is obtained by data collecting
and preprocessing. Then, the model is loaded to predict
the outcome of the exacerbation risk. Next, the model
explanation method is applied to achieve the global
and local explanations. Finally, the prediction and the

Fig. 1 Flow chart of XAI-based diagnosis process of hepatitis
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Fig. 2 The framework of XAI

explanation results are transmitted to the doctors for
examining and further validating.

Data collecting and preprocessing

To evaluate the feasibility of the proposed framework,
a public classification benchmark on hepatitis from UCI
machine learning repository is used in the empirical study
[21]. The benchmark contains a mixture of integer and
real value attributes about patients affected by the hepatitis.
The task of our proposed framework is to predict the
disease deterioration risk. Distribution of survival (low risk)
and death groups (high risk) in patients with hepatitis is
shown in Table 1. The benchmark contains 155 patients
with hepatitis and 19 features. The attribute description of
hepatitis and its abbreviation are shown in Table 1.

As indicated in Table 1, patients those die are labeled
as class 1, while those survive are labeled as class 2.
The data set contains 75 instances with missing values. To
deal with the missing values of the hepatitis data set, the
nominal or binary features are set to the majority value
while the continuous attributes are set to the average value.
The proportion of hepatitis patients with death outcome is
20.6%, while the proportion of survival outcome is 79.4%.
To overcome the model bias caused by data imbalance,
Synthetic Minority Oversampling Technique (SMOTE) is
applied to balance the data set [22].

Model selection and prediction

The easiest way to obtain the model explanations is to
apply the interpretable models (simple models) to the
clinical data. Linear/logistic regression, decision tree, naive
bayesian and k nearest neighbor are the most commonly
used explanatory models. However, the simple models such
as logical regression can only represent linear relationships
between the input and output, which often oversimplify
the complex relationships in reality and usually reach

the unsatisfactory predictive performance. In the low-
risk scene (e.g. a music recommender system), it may
be good enough that the simple model performs well
on a test dataset. But in the high-risk medical scene,
the prediction performance provides the reliability for the
model. While the explanations give the clinicians the deeper
understanding about the problem, the data and the reason
why a model might fail. Thus, the prediction performance
and the explanation are both important to the clinicians
when designing the CAD system [23].

To achieve a high prediction performance, the complex
models SVM, Xgboost and RF are employed to build
the model. SVM is a convex optimization problem that
achieves data partitioning by searching the hyperplane
with maximum intervals [24]. Xgboost is an optimized
distributed gradient promotion model, which is designed
to be efficient, flexible and portable [25]. RF is generated
by the ensemble of decision trees. It is widely used in
the analysis and modeling of medical scenarios due to its
rapidity, high accuracy, and robustness [26]. In the field of
data science, SVM, XGBoost and RF are the most popular
models. In particular, SVM, XGBoost and RF are also the
most commonly used in hepatitis-assisted decision-making
systems. However, it is not enough just to know what is
predicted in the high-risk medical scene by the black box
models.

Model-agnostic explanations

To obtain the explanation of the complex models, the model-
agnostic interpretation methods, the recent advances in
machine learning, are applied to achieve the explanations
of the complex models while retaining a good prediction
performance. Compared with model-specific explanation
method, the model-agnostic interpretation is more flexible
by separating the model from explanations [27]. Model-
agnostic interpretation methods can be divided into two
categories: local explanation and global explanation [28].
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Table 1 Distribution of
survival and death groups in
patients with hepatitis. Values
are expressed as mean ±
standard deviation

Survival Group(low risk) Death Group(high risk)

Number of cases 123(79.4%) 32(20.6%)

Sex Male 107(87.0%) 32(100.0%)

Female 16(13.0%) 0(0.0%)

Age(year) 39.8 ± 12.8 46.6 ± 9.8

Steroid(STR) Without 56(45.5%) 20(62.5%)

With 67(54.5%) 12(37.5%)

Antivirals(ATV) Without 22(17.9%) 2(6.2%)

With 101(82.1%) 30(93.8%)

Fatigue(FTG) Without 71(57.7%) 30(93.8%)

With 52(42.3%) 2(6.2%)

Malaise(MLS) Without 38(30.9%) 23(71.9%)

With 85(69.1%) 9(28.1%)

Anorexia(ANR) Without 22(17.9%) 10(31.3%)

With 101(82.1%) 22(68.8%)

LiverBig(LB) Without 22(17.9%) 3(9.4%)

With 101(82.1%) 29(90.6%)

LiverFirm(LF) Without 47(38.2%) 13(40.6%)

With 76(61.8%) 19(59.4%)

SpleenPalpable(SPP) Without 18(14.6%) 12(37.5%)

With 105(85.4%) 20(62.5%)

Spiders(SPD) Without 29(23.6%) 22(68.8%)

With 94(76.4%) 10(31.2%)

Ascites(ASC) Without 6(4.9%) 14(43.8%)

With 117(95.1%) 18(56.2%)

Varices(VRC) Without 7(5.7%) 11(34.4%)

With 116(94.3%) 21(65.6%)

Bilirubin(BLRB) 1.2 ± 0.7 2.5 ± 1.9

AlkPhosphate(APSP) 102.0 ± 45.6 118.1 ± 45.7

Sgot(SG) 82.5 ± 85.5 99.0 ± 96.9

AlbuMint(ABM) 4.0 ± 0.5 3.3 ± 0.6

ProTime(PRT) 64.5 ± 16.6 51.5 ± 15.2

Histology(HTL) Without 78(63.4%) 7(21.9%)

With 45(36.6%) 25(78.1%)

LIME is the most commonly used local explanation
method. While PDP and SHAP are the most popular global
interpretable approaches.

LIME as a local explanation method trains the local
surrogate models to provide the interpretability for the
complex models. First, LIME creates a new dataset by
data perturbation. Then, LIME trains an interpretable model
such as decision tree on the new dataset. Finally, the
corresponding prediction performance of the black box
model is compared with that of the interpretable model.
LIME is defined as follows:

γ (x) = arg min
g∈G

L(f, g, πx) + �(g) (1)

where the loss functionL is used to measure how close the inter-
pretable model g is to the prediction of the original complex

model f . f is the original complex model. g denotes the
interpretable model for the instance x (e.g., logistic regres-
sion). G indicates the family of the interpretable models.
πx represents proximity of the sampled instances to the
instance x. �(g) is the complexity of model g.

PDP demonstrates the marginal effect of the single
feature on the predicted outcome for the complex machine
learning model. PDP represents the relationship (linear,
monotonous or more complex) between the outcome and
input. The partial dependence function ˆfxs defined as:

ˆfxs (xs) = 1

n

n∑

i=1

ˆfxs (xs, x
i
c) (2)

where ˆfxs (xs) is the partial function which displays the
global relationship of a input feature with the predicted
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Table 2 Comparison results on the hepatitis dataset using K-fold validation

Models Interpretable models Complex models

LR CART KNN NBM SVM XGBoost RF

K=5 85.4% 85.4% 77.2% 74.0% 88.2% 87.4% 88.2%

K=10 85.7% 87.0% 79.2% 72.7% 86.9% 89.8% 91.0%

K=20 87.5% 85.9% 78.9% 76.7% 88.3% 89.6% 91.9%

outcome. s is a feature set containing only one or two
features, xs denotes the set of features is to be plotted by
ˆfxs (xs), xc indicates the other features used in the machine

learning model f . xi
c expresses the actual feature values

from the dataset for the features in which we are not
interested, n is the number of instances of the dataset.

SHAP uses the Shapley values to measure the feature
impact for the complex model. Shapley values is defined
as the (weighted) average of marginal contributions [29].
It is characterized by the impact of feature value on the
prediction across all possible coalitions [30]. Shapley value
is defined as:

φj (x) =
∑

s⊆{x1,x2,...,xm}\{xj }

|s|!(m−|s|−1)!
m! (val(s ∪{xj }−val(s)))

(3)

where φj (x) is the Shapley value of xj , xj represents a
feature value, s is a feature subset of the model, m depicts
the number of features, val is the prediction for feature
values in set s.

Results

Prediction results

We implement the interpretable framework on the devel-
opment platform of Python 3.6.4. We calculate the overall

accuracy of the simple and complex models using K-fold
cross-validation. Generally, K is set to 5,10 or 20. The evalu-
ation of the simple and complex models on the hepatitis data
are shown in Table 2. When K=5, the prediction accuracy
of the developed LR, Classification and Regression Tree
(CART), KNN, NBM, SVM, XGBoost and RF with K-fold-
cross validation is 85.4%, 85.4%, 77.2%, 74.0%, 88.2%,
87.4% and 88.2%. SVM and RF perform better than the
other models. When K=10, the prediction accuracy of the
developed LR, CART, KNN, NBM, SVM, XGBoost and
RF with K-fold-cross validation is 85.7%, 87.0%, 79.2%,
72.7%, 86.9%, 89.8% and 91.0%. RF perform better than
the other models. When K=20, the prediction accuracy of
the developed LR, CART, KNN, NBM, SVM, XGBoost and
RF with K-fold-cross validation is 87.5%, 85.9%, 78.9%,
76.7%, 88.3%, 89.6% and 91.9%.

We can find that the developed the complex models such
as SVM, XGBoost and RF achieve better performance than
the simple ones. Especially, RF obtains the best predictive
performance. This is mainly due to the data collected fits
better with RF. However, RF is a black box model. To get
the explanation of RF, the global and local interpretation
methods are applied while retaining the good prediction
performance.

Global explanations

To get insights into the impact of each predictor to the
output of complex model, we compute the mean SHAP
values of random forest. Figure 3 demonstrates the average

Fig. 3 Average feature impact
of the developed RF classifier
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Fig. 4 Averaged
feature-importance estimates of
random forest

feature impact of the developed RF classifier. We can find
that ascites, spiders, bilirubin, albuMin, malaise, varices,
and SpleenPalpable have more impact than the others.
The explanations for the feature impact are broadly in
accordance with the literature and prior knowledge from
hepatobiliary physicians.

Figure 4 represents the averaged feature-importance esti-
mates extracted from random forest classifier. Horizontal
axis (x-axis) represents the Shapley value which denotes the
average feature value marginal contribution on the output
across all possible coalitions. Shapley value with less than
0, equal to 0 and greater than 0 means the negative contribu-
tion, no contribution and positive contribution, respectively.
Left longitudinal coordinate (y-axis) indicates the features
which are sorted by the importance in reverse order. Right
longitudinal coordinate expresses the value of the features
from low to high. We can see that ascites is the most impor-
tant feature on average, and the developed random forest
classifier is more likely to consider the hepatitis patients
as high risk when the feature value of ascites becomes
larger. Compared with the traditional features importance,
the interpretable framework we proposed can assist the hep-
atobiliary physicians to predict the deterioration risk of
hepatitis.

SHAP aids the hepatobiliary physicians to probe the feature
contribution of the developed model. While it is also clinically
meaningful to explore how each feature affects the model
decision-making. Thus, PDP is applied to achieve to visu-
alize the linear, monotonous or more complex relationship
between the output and a feature. To visualize the PDP
with the continuous features, we examine the effects of the
bilirubin and alkphosphate on the predicted output.

Figure 5 shows the relationship between the bilirubin and
the prediction of patient outcomes. It can be seen that there
exists a complex relationship between the output and the
feature bilirubin. First, the impact of bilirubin on the output
increases when the value changes from 0.3 to 0.9. Then, the
impact falls when the value changes from 0.9 to 2.5. Finally,
the impact remains the same when the value is greater than
2.5.

Similarly, Fig. 6 depicts the relationship between the
alkphosphate and the prediction of patient outcomes.
Similarly, there also exists a complex relationship between
the output and the feature alkphosphate. First, the impact
of alkphosphate on the output falls when the value changes
from 26 to 106. Then, the impact increases when the value
changes from 106 to 250. Finally, the impact remains the
same when the value exceeds 250.

Fig. 5 Partial dependence plot
of feature Bilirubin
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Fig. 6 Partial dependence plot
of feature AlkPhosphate

Local explanations

After taking into account the global explanation for the
predicted outcome of hepatitis patients, it is also essential
to comprehend whether the condition of a specific hepatitis
patient will get worse. To explain why individual outcome
prediction for the hepatitis patients are carried out by the
black box machine learning model, LIME is employed to
train a local surrogate models instead of training a global
surrogate model. Figure 7 shows the LIME explanations for
one instance randomly selected from hepatitis dataset.

The top left diagram shows the predicted outcome of
hepatitis patients with probability. Class 1 indicates the hep-
atitis patients with death outcome, while class 2 represents
hepatitis patients with survival outcome. The developed RF

Fig. 7 LIME explanations for one instance from hepatitis dataset

classifier predicts the randomly selected hepatitis patient
with 93% probability survival (7% probability death). The
orange color represents the target class 1 whereas the blue
color represents the target class 2. It can be seen that
the weight for each feature with their predicted class is
denoted by color. They represent the local positive or nega-
tive weights assigned to each feature. The greater the weight
is, the longer the color bar becomes.

Discussion

We investigate the use of XAI frameworks and the example
of such application to support the healthcare of hepatitis.
Our research can be summarized as follows: First, both
interpretable and complex models are utilized to identify
the exacerbation risk in patients with hepatitis. Especially,
to improve the prediction accuracy, the complex models
based on decision trees are introduced. Second, the global
and local explanation methods are employed to avoid the
obscurity of the complex models. Third, the predictors
such as ascites, spiders, bilirubin, albumin, malaise, varices
and spleenpalpable seem to display more important clinical
significance than the other predictors. This can assist the
hepatobiliary physicians to get insight into the predictions
made by the clinical decision support system, and thereby
they can make more accurate clinical diagnosis.

Lundberg et al. employed a single complex model
(XGBoost) and the explanation method SHAP to predict
the intraoperative hypoxaemia events based on the elec-
tronically recorded data before they occur [17]. Due to the
complexity of clinical decision-making, it is often more con-
vincing to adopt multiple models and interpretation meth-
ods. Different from the prescience system Lundberg (2018)
developed, we stress the integration of multiple complex
models and interpretable methods to improve the clinical
understanding of the hepatitis exacerbation risk.

There are some limits in our research. First, to make
the experiment objectivity and justice, the present study
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uses a benchmark on the hepatitis from UCI Machine
Learning Repository. The number of patients is relatively
small. To ensure the generalization ability of the model, K-
fold cross validation is applied. However, more hepatitis
data would be needed to conclusively validate the results.
Especially, the real time data of hepatitis is the key to
realizing the monitor of the exacerbation risk in patients
with hepatitis. In the future, we will collect more hepatitis
patients from the real world. Second, we employ three
typical model-agnostic methods to improve the complex
models explanation. However, the other interpretability
methods such as counterfactual explanation, which may
be conducive to improve the explanation, are ignored for
now because the construction of counterfactual samples in
medicine often requires rich human and material resources.

Conclusion

In the study, we propose an interpretable machine learning
framework, which combines the complex models and the
explanation methods that are developed recently, to reliably
forecast the exacerbation risk of hepatitis. To evaluate the
feasibility of the proposed framework, a benchmark on the
hepatitis from UCI Machine Learning Repository is used.
The results shows that random forest achieved the best
overall accuracy (91.9%). The detailed evaluation of the
proposed framework is shown in Table 1. The explanation
results generated by the proposed framework agree with
the characteristics of the hepatitis, which may improve the
diagnostic accuracy of clinicians. In addition, our proposed
framework could help the hepatobiliary physicians choose
the right structure when they design the CAD system.
Our work highlights the values of XAI frameworks in
interpreting blackbox models such as RF, which supports
the use of AI in healthcare. Further research can focus on the
collection of the real time hepatitis data and the exploration
of the novel model-agnostic methods.
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