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Abstract
Few studies in the literature have researched the use of surface electromyography (sEMG) for motor assessment post-stroke due to
the complexity of this type of signal. However, recent advances in signal processing and machine learning have provided fresh
opportunities for analyzing complex, non-linear, non-stationary signals, such as sEMG. This paper presents a method for identi-
fication of the upper limb movements from sEMG signals using a combination of digital signal processing, that is discrete wavelet
transform, and the enhanced probabilistic neural network (EPNN). To explore the potential of sEMG signals for monitoring motor
rehabilitation progress, this study used sEMG signals from a subset of movements of the ArmMotor Ability Test (AMAT) as inputs
into a movement classification algorithm. The importance of a particular frequency domain feature, that is the ratio of the mean
absolute values between sub-bands, was discovered in this work. An average classification accuracy of 75.5% was achieved using
the proposed approach with a maximum accuracy of 100%. The performance of the proposed method was compared with results
obtained using three other classification algorithms: support vector machine (SVM), k-Nearest Neighbors (k-NN), and probabilistic
neural network (PNN) in terms of sEMG movement classification. The study demonstrated the capability of using upper limb
sEMG signals to identify and distinguish between functional movements used in standard upper limb motor assessments for stroke
patients. The classification algorithm used in the proposed method, EPNN, outperformed SVM, k-NN, and PNN.
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Introduction

Surface electromyographic (sEMG) signals are electrical poten-
tials in the muscles during movement that are acquired by

electrodes applied on the surface of the skin [8, 16]. These
signals are generated by the brain and transmitted and opti-
mized through neural pathways and networks to produce the
appropriate muscle activation patterns for both voluntary and
involuntary movement. There are invasive and non-invasive
methods of acquiring EMG signals. Needle and fine wire elec-
trodes have been used to acquire intramuscular EMG signals by
penetrating the layers of the skin and being in direct contact
with the muscle fibers. Due to their invasive nature, intramus-
cular EMG recordings are limited to being applied in clinical
settings and only when absolutely necessary. sEMG is non-
invasive and uses Ag/AgCl disposable electrodes on the surface
of the skin. While this method has a lower signal acquisition
resolution due to the distance of the electrode from the actual
muscle, it is preferred inmost applications and bymost patients.

The advancement of machine learning techniques has pro-
pelled the field of technology in the last decade [13, 18, 32, 47,
52, 64]. Recent algorithms such as random forest classifica-
tion [6, 61], particle swarm optimization [2, 55], deep learning
[23, 60], and convolutional neural networks [4, 33, 35, 37, 50,
51, 57–59] have outperformed earlier methods such as the

This article is part of the Topical Collection on Image & Signal
Processing

* Hojjat Adeli
adeli.1@osu.edu

Alexis Burns
alexis.meashal@gmail.com

1 Department of Biomedical Engineering, The Ohio State University,
Columbus, OH 43210, USA

2 Departments of Biomedical Engineering, Biomedical Informatics,
Neurology, and Neuroscience, The Ohio State University,
Columbus, OH 43210, USA

3 Physical Therapy Division, School of Health and Rehabilitation
Sciences, The Ohio State University, 453 W 10th Ave, Rm. 516E,
Columbus, OH 43210, USA

https://doi.org/10.1007/s10916-020-01639-x
Journal of Medical Systems (2020) 44: 176

/Published online: 23 August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-020-01639-x&domain=pdf
http://orcid.org/0000-0001-5718-1453
mailto:adeli.1@osu.edu


support vector machine [5, 65], principal component analysis
[7, 15, 42], and linear discriminant analysis [40, 56] in many
applications. When applied to muscle signals, the aforemen-
tioned techniques have been utilized to classify movements
and to detect muscle activation abnormalities ([11, 17, 29]).

The purposes of sEMG are many. In biomechanics studies,
the goals are typically to determine which muscles are active
during a particular task, when they are active and when they
are not, and how strongly they are activated. Another applica-
tion of sEMG is to attempt to discern what movement is being
performed, and potentially, how well the movement is being
performed. Motion capture and analysis is currently the only
reliable way to measure movement [27]. It requires complex
systems, such as multi-camera motion tracking, acceleration
and orientation electrodes, and a variety of other approaches
that typically demand a full-blown biomechanics research lab-
oratory. These approaches are complex, expensive, time-
consuming and labor intensive, and not suitable for most clin-
ical applications. Surface EMG, in comparison, is relatively
simple to apply. A wearable technology with an embedded
machine learning algorithm can analyze sEMG signals from
the upper limb to determine what movements are being per-
formed and to grade the quality of movement in real time.
Such a device can provide objective and consistent analysis
of progressive motor improvements, providing clinicians with
objective, real time information about the effectiveness of var-
ious treatment approaches. This could prove useful not only in
research settings to test new therapies, but also in clinical use
to guide clinical decision making. Martinez-Mozos et al. [34]
use wearable physiological sensors for stress detection.

Automated analysis of movement is of high importance for
neurological disorders and injuries that cause motor impair-
ment. Much of the literature regarding machine learning for
sEMG has been dedicated to enhancing myoelectric control of
robotic arms, specifically for amputee patients [5, 6]. Other
neurological disorders that have been targeted in the literature
for sEMG machine learning include amyotrophic lateral scle-
rosis (ALS) [44] and stroke [36]. However, these have been
explored less in the literature compared to the targeted ampu-
tee population. Each of these populations has different needs
when it comes to movement classification. Many ALS pa-
tients are unable to make any movement at all, and therefore,
classifying movement is not a priority. Within the literature
regarding this target population, sEMG is used to identify
specific signatures within the signal that can be used for diag-
nosis of ALS [44]. On the other hand, many amputees main-
tain control of their upper arm and some of their forearm,
which enables them to complete larger movements, known
as gross motor functions, with the shoulder and elbow joint.
Because the hand has been amputated, fine motor functions,
such as wrist movements, finger movements, and grasps are of
the utmost importance to this population. Myoelectric pros-
thetic arms are robotic arms controlled by sEMG signals to

complete actions amputee patients cannot. Much of the liter-
ature focuses on restoring fine motor function to amputee
patients using the sEMG signals from the forearm. This differs
entirely from the stroke population, which is the target of the
present study.

Due to lesions in the brain caused by stroke, stroke patients
often lose motor control of one side of their body. Seventy-
five percent of stroke survivors lose motor control of their
upper limb that persists into the chronic stage [20]. To regain
motor function, many stroke patients go through rehabilitative
physical and occupational therapy, where therapists use their
expert knowledge to rate patient motor dysfunction and re-
sponse to treatment on a scale based on qualitative criteria.
Of the many motor function assessments, among the most
popular include the Fugl-Meyer Assessment, Arm Motor
Ability Test (AMAT), Wolf Motor Function Test, and
Brunnstrom Scale. Based on their level of motor impairment,
stroke patients rehabilitate motor function by attempting to
perform both gross and fine motor functional movements
within a structured rehabilitation program that sometimes uses
robotic mechanical assistance to enhance patient movement
[30, 46]. An automated and quantitative assessment of motor
function identification and quality has been studied in the
literature, due to a desire to monitor patients outside of the
clinic as well as to quantitatively show motor rehabilitation
progression [19, 26, 41].

One way to approach this problem of measuring recovery
is to determine ways to automatically classify movement from
biosignals. There are multiple techniques within machine
learning used in the literature for movement classification
via sEMG features. Among the most popular reported are
support vector machine (SVM) [5, 6], principal component
analysis [7], multilayer perceptron and fuzzy neural networks
[45], and linear discriminant analysis [40]. The accuracy of
many of these techniques depends heavily on the features
chosen to represent the signal characteristics. Because of this,
combinations of techniques are used to achieve higher accu-
racies, for example, with one as an optimizer and the second as
the classifier [9]. Used alone, SVM classification is shown to
yield poor accuracies for sEMG signals for movement classi-
fication, for example, Atzori et al. [5] reports an accuracy of
70% when classifying dynamic upper limb movements for 40
subjects.

Several studies have adjusted the feature set parameters
using optimization techniques in order to enhance the accura-
cy outcomes of SVM. By combining recursive feature elimi-
nation to use only the most pertinent features for SVM classi-
fication, a recent study reported increasing the accuracy by 3%
[48]. A similar study increased their SVM classification accu-
racy from 8% to 76% by applying non-negative matrix fac-
torization as a pre-processor to SVM [53]. While combining
pre-processing methods with SVM does increase the accura-
cy, it also increases the required processing time, because
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these studies used 10 subjects from the same database as
Atzori et al. [5] that has 40 subjects total, it has yet to be shown
if these combinatory methods will increase the accuracy with
more subjects in the pool.

Kinematic and sEMG electrodes have been applied in an
attempt to identify characteristics of movement in patients re-
covering from stroke outside of the clinic, to provide informa-
tion to mechanical movement assistance robots, and to provide
more information to clinicians for diagnosis and treatment.
Randomized control trials utilizing wearable technology have
changed from solely using accelerometer data [21, 39, 54] to
using inertial measurement units (IMUs) for daily movement
monitoring in stroke patients ([28]; [36]; Z. [62]).
Unfortunately, wearable IMUs are limited to collecting gross
motor movements and can be bulky and uncomfortable. sEMG,
on the other hand, is capable of collecting data to classify both
gross and fine motor movements [5, 45] and is not limited to
providing information for movement prediction alone. sEMG
can also be analyzed to decipher limb and joint position in
space. A recent study reported estimated joint position over
time using sEMG [30]. Information provided by sEMG can
also be used as a measurement of movement quality. Changes
in the sEMG activity in the upper limb have been correlated to
motor function improvement based on Fugl-Meyer scores [41].

Only a few studies in the literature report application of
the sEMG to movement classification for stroke patients.
Lorussi et al. [31] combined an IMU with an sEMG elec-
trode to model shoulder movement with the goal of under-
standing scapular function during stroke rehabilitation. Liu
et al. [30] used sEMG and a non-linear autoregressive ex-
ogenous model to classify continuous arm position of el-
bow, shoulder, and wrist joints with 10 stroke subjects at
98% accuracy. That study, however, used a robotic exo-
skeleton while collecting sEMG signals, which would help
stabilize movements in light of spasticity. Another study
attempted to classify free reaching movements in stroke
subjects, and reported that an SVM model yielded an av-
erage accuracy of 34% [7].

Frequency domain feature extraction using information
from the discrete wavelet transform provides a proper depic-
tion of sEMG’s non-stationary nature. The enhanced probabi-
listic neural network (EPNN) has shown promising results in
previous studies using biosignals such as electrocardiograms
(ECGs) and electroencephalograms (EEGs) [1]. To answer
the question, “Can movements used in stroke motor ability
assessments be distinguished using EPNN?”, this paper pre-
sents a method for identification of the upper limbmovements
from sEMG signals using a combination of digital signal pro-
cessing, wavelet transform and the enhanced probabilistic
neural network. The performance of the proposed method is
compared with results obtained using three other classification
algorithm: SVM [25], k-Nearest Neighbors (k-NN), probabi-
listic neural network (PNN) [43].

Methods

NINAPro EMG Data

To test the approach, the authors used a publicly available
NINAPro (Non Invasive Adaptive Prosthetics) data source
based on movements performed by healthy individuals col-
lected by Atzori et al. [5] (http://ninapro.hevs.ch/). There is no
comparable public database of EMG for patients recovering
from stroke. Upper limb sEMG data from the open-source
NINAPro database 2 during Exercise C were used to validate
the model developed in this study. Atzori et al. [5] collected
sEMG signals via wireless Ag/AgCl electrode data using 40
different upper extremity movements from 40 healthy, 23–
45 years old subjects. Exercise C consisted of 23 different
hand grasping movements. Electrodes were placed over the
following muscles in the arm: biceps brachii, triceps brachii,
extensor digitorum superficialis, and 8 equidistant electrodes
around the forearm to capture aggregate muscular signals
from small forearm muscles (Fig. 1). The 12 electrodes were
spread across the arm above and below the elbow to capture
muscle activity while each subject completed 40 different
movements, with the expectation that the variance of the
sEMG signals for each channel could be used to distinguish
between these movements. Sampled at 2 kHz, the NINAPro
data includes timestamps for periods of rest and the beginning
of each movement. A number associated with the type of
movement is also included. These timestamps were
crosschecked after recording by Atzori et al. [5].

Illustrated are the positions of wireless Ag/AgCl electrodes on
the subjects from the NINAPro Database. Each oval represents
an electrode. The sample signals shown are a representation of
the raw sEMG signal from each electrode during onemovement.
Each signal is on a y-axis of 0.001 mV and an x-xis of 6 s.

The AMAT is a widely accepted method for qualitatively
assessing a patient’s motor ability post-stroke. It consists of
10 movements, which are then broken down into sub-
movements for assessment (see Appendix Table 4). To the
best of the authors’ knowledge there is no database contain-
ing upper limb sEMGdata during dynamic functionalmove-
ments from stroke patients. Therefore, five movements were
selected from theNINAProDatabase 2 thatmimickedmove-
ments used within the AMAT. Table 1 identifies which five
NINAPro movements were selected that corresponded with
AMAT gestures. Signal processing, feature extraction and
EPNN classification were applied to these five movements
for a clinically-relevant application of movement classifica-
tion for use during motor rehabilitation.

For the classifier to distinguish between movements, it was
necessary to separate periods of rest and periods of movement
in the signal. A Matlab code was written to detect time stamps
for the beginning of each movement segment and each rest
segment. Only the periods of movement were used in the
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remainder of this study. It is important to characterize how the
muscle activity changes throughout dynamic movement. The
amplitude and frequency of the signals change at different
times for different muscles to complete a functional move-
ment. With this in mind, eachmovement segment was divided
to consider the non-stationarity of the signal frequency and
amplitude. Multiple sets of time divisions were tested to iden-
tify the best total number to represent signal information.
Dividing the signal into 3, 5, 10, and 20 segments separately,
the statistical features were calculated and input into the clas-
sifiers. The classification accuracies were highest with the 3-
segment divisions, and therefore, the signal was divided into
thirds to signify the beginning, middle, and end of a move-
ment. For each of these sub-segments, the mean amplitude
and frequency of the signal was calculated. These time-
domain parameters are the input data for the EPNN classifier
to determine the type of movement.

Feature Extraction

Time-frequency features were extracted from decomposed
signals of each of the 12 channels used for each subject.
Each signal was between 4 and 6 s long. The db4 wavelet
from the Daubechies wavelet family was applied to conduct
the discrete wavelet transform for signal decomposition into
5 levels. Both 5-level and 3-level DWT were applied for
feature extraction. The use of 5 levels was determined based
on the work of Subasi [45]. A similar study by Atzori et al.
[5] used a 3 level DWT. In this study, the 5-level DWT

features provided the most accurate classification. While
these feature bands are not directly physiologically correlat-
ed with motor unit frequencies in the arm, they can be used
as a pseudospectrum of similar firing rates belonging to the
motor units active during specific movements. Statistical
parameters were calculated from each of these decomposed
signals in an approach similar to that described in a recent
study [45]: mean of the absolute value of wavelet coeffi-
cients, standard deviation of wavelet coefficients, the aver-
age power of the wavelet coefficients, and the ratios of the
absolute mean value of adjacent sub bands. For each one of
the five movements listed in Table 1, twelve channels of
data were collected from the upper limb as depicted in Fig.
1. The breakdown of feature extraction from each channel
of data is shown Fig. 2. Each channel is broken down into
five levels using the DWT. Each level was broken down into
3 time segments. The mean, standard deviation, and power
of the wavelet coefficients are calculated for each of the
three time segments for all levels. This yielded a subtotal
of 45 features for that channel. There were 8 ratios between
the adjacent levels. In total, there were 53 features for each
channel. The features for all 12 channels were included in a
one distinguishing feature vector for one movement trial,
yielding 53 × 12 = 636 unique features per movement.

The raw sEMG signal is decomposed into 5 levels using
the discrete wavelet transform. The signal coefficients for each
are plotted for d1 to d5, where d stands for details, which are
the detailed levels provided by the wavelet transform.
Statistical calculations for each level are calculated. The mean

Channel Muscle
1-8 Equidistant electrodes around radio-humeral joint

9 Flexor Digitorum Superficialis

10 Extensor Digitorum Superficialis

11 Biceps Brachii

12 Triceps Brachii

Fig. 1 Electrode Placement and
Sample Signals. Illustrated are the
positions of wireless Ag/AgCl
electrodes on the subjects from
the NINAPro Database. Each
oval represents an electrode. The
sample signals shown are a rep-
resentation of the raw sEMG sig-
nal from each electrode during
one movement. Each signal is on
a y-axis of 0.001 mV and an x-xis
of 6 seconds
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absolute value (MAV) of the amplitude for each level is cal-
culated and compared to the adjacent levels using a ratio. The
time scale is then broken into thirds for the mean, standard
deviation, and power to be calculated. For each electrode
channel, the mean, standard deviation, and power are calcu-
lated for each decomposition level and each time segment,
accompanied by the ratios to complete the feature set for that
channel during one movement.

Feature Analysis

A sensitivity analysis was conducted to determine the effect of
feature subsets on each classifier. Feature subsets were divid-
ed based either on signal decomposition level or statistical
calculations. The decomposed signal levels served as a
pseudo-representation of the sub-signals that make up the
sEMG signals collected. Time windows represent the begin-
ning, middle, and end of a movement and were chosen to
analyze different signal contributions at different time points
during the movement. Statistical features were excluded one

by one to analyze their relevance to movement identification.
First the features were removed from the feature set based on
decomposition level, timewindow, type of statistical measure-
ment, and channel. For example, the features calculated for
decomposition level 1 were removed from the feature set,
leaving a subset of features containing all of the features from
decomposition levels 2 through 5. This was done for all de-
composition levels. To understand the contribution of the time
segments, the first time segment was removed and the remain-
ing feature subset consisted of all the features for the remain-
ing time segments for all decomposition levels. This was done
for all three time segments. Lastly, the statistical parameters
were excluded. The mean calculations for all of the decompo-
sition levels were excluded, leaving the feature subset to con-
sist of the ratios, standard deviations, and power calculations.
This was also done for power, standard deviations, and ratios
separately. The new feature set, excluding a subset of features,
were then input into the classifiers.

A second feature analysis was conducted to determine in-
dividual feature’s contribution to classification accuracy. All

Table 1 Association of the AMATmovements to movements available
through the NINAPro Database. Dynamic movements available through
the NINAPro Database and used in this study because they mimic the

movements used in the AMAT for assessment of motor ability. Full
AMAT list of movements available in Appendix Table 4

AMAT Movement Associated NINAPro Database Movement

1 Telephone Grasp Small Diameter Grasp

2 Doorknob grasp 3-Finger Sphere Grasp

3 Light switch (pincer) grasp Prismatic Pinch Grasp

4 Foam Sandwich grasp Parallel Extension Grasp

5 Cut Meat Cut Something
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combinations of features were tested to determine the optimal
feature set. This totaled up to 1430 combinations. For 53 fea-
tures from each channel, all amounts lower than 53 were input
into the mathematical combination formula, n-choose-r. For
example, all combinations for 52 features from the original
feature set of 53 features were tested. The same was done
for 50 features, 49 features, 48 features, and so on. The subset
of features was input into EPNN to identify which feature set
produced the highest accuracy.

Classification

Four machine learning techniques were employed for classi-
fication evaluation: SVM, k-NN, PNN, and EPNN. The orig-
inal feature set consisted of 636 features for every movement
trial. This included statistics for all DWT decomposition
levels for each channel, with the overall time to complete the
movement equally divided into three sections. Extracted fea-
tures were fed into each classifier using a leave-one-out meth-
odology, where the classifier was trained using all trials except

one for each movement on a subject-by-subject basis. Each
classifier is described briefly in the following paragraphs.

PNN is a supervised, feed-forward neural network
consisting of four layers: an input layer, a pattern layer, a
summation layer, and an output layer. The input layer of
PNN consisted of 636 neurons. The pattern layer uses a global
Bayesian rule [24, 63] to determine the distance of testing data
relative to the training data. The summation layer calculates
the probability that testing data belongs to one of the indexed
movement classes, which is then fed into a maximum likeli-
hood function in the output layer to produce a class prediction.
EPNN is an enhanced version of PNN which takes local in-
formation into consideration as well as global information in
the pattern layer. Using local hyperspheres with a user-defined
radius, the spread parameter is weighted by data points within
this hypersphere in relation to the data point being assessed
[1]. EPNN has proven to provide higher accuracies than PNN
in the literature [3, 14, 22].

SVM is a supervised-learning technique that iteratively
computes a vector that distinguishes features between classes
[10]. It does this by calculating a non-linear vector, choosing

Fig. 2 Feature extraction breakdown. The raw sEMG signal is
decomposed into 5 levels using the discrete wavelet transform. The
signal coefficients for each are plotted for d1 to d5, where d stands for
details, which are the detailed levels provided by the wavelet transform.
Statistical calculations for each level are calculated. The mean absolute
value (MAV) of the amplitude for each level is calculated and compared

to the adjacent levels using a ratio. The time scale is then broken into
thirds for the mean, standard deviation, and power to be calculated. For
each electrode channel, the mean, standard deviation, and power are
calculated for each decomposition level and each time segment, accom-
panied by the ratios to complete the feature set for that channel during one
movement
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the largest distance between features of each class. It was
applied here using a non-standardized feature set and trained
on 5 out of the 6 trials for each movement. k-NN is another
supervised-learning technique that can be used for classifica-
tion. The “k” in k-NN represents the user-defined number of
neighbors, or closest data to the unknown data point to be
classified, and is chosen based on the nature of the data being
classified. It relies on a majority voting system to determine to
which class a test input belongs.

Results

Classification

Error bars represent the 95% confidence interval.
Each box contains a percentage of occurrences where one

class was predicted for another class. This is done for each
movement. The diagonal line represents the classification ac-
curacies for each movement, i.e. when the predicted class
matches the true class.

When classifying the five movements associated with the
AMAT using all of the features described above, average
within-subject accuracy was 73.8% for EPNN, 73% for
PNN, 63% for SVM, and 61% for k-NN (Fig. 3). The highest
accuracy was achieved using EPNN by setting the spread
parameter to 0.01 and the local hypersphere radius to 0.001.
The highest accuracy for k-NN was achieved using k = 3 and
without feature standardization. The highest accuracy for
SVM was achieved without standardization as well.

The EPNN classifier predicted movement #5 (cut some-
thing) for movement #1 (telephone grasp) 32% of the time,
providing an accuracy of only 57% for movement #1 (Fig. 4).
The remaining four movements were classified within an ac-
curacy range of 77% - 85%. The large misclassification of

movement #1 brought down the overall accuracy of the
EPNN classifier. This is likely due to the similarity in grip
type to complete each task. The only difference between the
telephone grasp and the cut something grasp is the extension
of the pointer finger, which is better detected with muscles in
the hand. While the misclassification of movement #1 as
movement #5 occurs at a similar rate in both the SVM and
k-NN classifiers, the overall accuracy is not heavily affected,
as the accuracies for all five movements remain within 59% -
66% for SVM and 58% - 68% for k-NN.

Feature Analysis

Table 2 reports the effects on each classifier of excluding
features from the feature set. Of the classifiers used in this
study, EPNN is the best suited for determining a feature’s
weight on the model because it makes its decisions based on
the distribution of features and the distance between them,
whereas SVM and k-NN do not take both global and local
information into account simultaneously. Removal of statisti-
cal features from 4 of the 5 decomposition levels caused a
decrease in accuracy, indicating their importance to the clas-
sification decision. Removal of statistical features from any of
the time divisions did not affect the accuracy at all, indicating
they may not contain information pertinent to classification
accuracy separate from each other. The most interesting find-
ing is the effect of removing the types of statistical features
regardless of decomposition level or time division. When re-
moving the mean, standard deviation, or power calculations,
the accuracy of classification showed no difference. However,
when removing the ratio of adjacent decomposition level
means, the accuracy of the classifier dropped significantly

Fig. 4 EPNN Confusion Matrix. Each box contains a percentage of
occurrences where one class was predicted for another class. This is
done for each movement. The diagonal line represents the classification
accuracies for each movement, i.e. when the predicted class matches the
true class.
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Fig. 3 Within-Subject Classification Accuracy
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by 54%. Because of the large effect the ratio features had, the
classifiers were run using these features only.

The change in accuracy due to feature exclusion is reported
here. The left column identifies the subset of features that were
excluded from the overall feature set. All features related to
the level, time division, or statistical calculation indicated in
the leftmost column have been excluded and input into the
three classification algorithms, EPNN, SVM, and k-NN.

Table 3 indicates the effect each channel has on the classi-
fication accuracy of each classifier. EPNN and k-NN showed
decreases in accuracy consistently by removing a channel’s
worth of information, which indicates that information from

all channels are necessary for these two classifiers to make
their most accurate predictions. SVM, however, showed in-
creases in accuracy when removing 3 of the 8 forearm chan-
nels, biceps brachii channel, and extensor digitorum
superficialis channels, which demonstrates these channels
were not used to create the largest distinction among classes.
A removal of any channel with k-NN created a decrease in
accuracy between 24% - 28.5%, indicating the necessity of all
channel information for this algorithm. Except for channel 3,
one of the eight radio-humeral level forearm electrodes, re-
moval of any channel in the EPNN classifier resulted in a
decrease in accuracy as well, but not to the magnitude of k-
NN. Removal of channel 12, the triceps brachii, caused the
largest decrease in EPNN accuracy for classification. The best
combination of features excluded one of the eight ratios of
mean absolute values between decomposition levels. The ratio
was that of decomposition levels 3 and 2. This yielded an
average classification accuracy of 75.5%.

Discussion

EPNN outperformed other widely-used classification tech-
niques with the sEMG feature set presented in the current
study. Based on the classification accuracies, EPNN is a ro-
bust classifier for personalized movement classification. This
has been shown previously with other biosignals in the litera-
ture, which further validates the robustness of EPNN.
Identifying the ratios of adjacent decomposition levels as the
most important feature in the presented feature set, all of the
classifiers were re-run using only these features. This in-
creased EPNN’s accuracy to 74.4%. It is possible that in-
creased accuracies could be achieved by identifying other fea-
tures not used in the current study to be combined with these
ratios. These ratio features being responsible for the majority
of class differentiation could be explained by the nature of
DWT decomposition, sEMG, and the frequency with which
the brain activates the muscles for different movements,
known as motor unit recruitment. Because sEMG is being
recorded from the surface of the skin, the resolution of muscle
signal measurement is low compared to EMG gathered using
needle electrodes that interface directly with the muscles.
sEMG gathers a summation of muscular activity produced
by the multiple motor units within each muscle. By
decomposing the sEMG signal into multiple frequency bands,
this summation signal is broken down into banks that poten-
tially represent motor units firing at similar frequencies. As the
type of movement changes, the frequency and amplitude of
muscle activation change, which provides potentially
distinguishing features among movements.

The complexity of sEMG signals stem from the fluctuating
frequencies and amplitudes from various motor units over
time. This is the root cause of its non-stationary nature and

Table 3 Changes in
accuracy determined by
excluding subsets of
signal features

Change in Accuracy (%)

Channel EPNN SVM KNN

1 −1 −2.5 −28
2 −2 −2 −27.5
3 1 1.5 −27
4 −1 0.5 −25.5
5 −1 −1.5 −27
6 −1 1 −24
7 −3 −1 −26
8 −2 −3.5 −28.5
9 −1 −1 5 −27.5
10 −1 3 −26
11 −2 2 −27
12 −7 −1.5 −28

Table 2 Feature Sensitivity Analysis Results The change in accuracy
due to feature exclusion is reported here. The left column identifies the
subset of features that were excluded from the overall feature set. All
features related to the level, time division, or statistical calculation
indicated in the leftmost column have been excluded and input into the
three classification algorithms, EPNN, SVM, and k-NN

Change in Accuracy (%)

Excluded Features EPNN SVM k-NN

Level 1 −4 0 −27
Level 2 −4 −3 −25.5
Level 3 −5 −3 −30.5
Level 4 −6 −3 −27
Level 5 0 −3 −27.5
Time Division 1 0 0 −32.5
Time Division 2 0 1 −27.5
Time Division 3 0 −1.5 −19
Mean 0 0.5 −24
Standard Deviation 0 0.5 −23.5
Power 0 −0.5 −28
Ratios −54 −27 −27
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the reason advanced signal processing techniques are neces-
sary for analyzing the true nature of these signals. The wavelet
transform uses a pre-described wavelet with a varying fre-
quency and amplitude to scale and stretch over the original
signal. The output coefficients of the wavelet transform iden-
tify the signal’s relationship to this wavelet to characterize the
signal in the time and frequency domain simultaneously. In
doing so, the non-stationary nature of the sEMG signal is
addressed. Simply inputting all of the coefficients into a clas-
sifier as a feature set can be done, however, this is computa-
tionally expensive. By dividing the sEMG signal into three
time divisions per movement, changes in the signal through-
out the movements could be identified by features extracted
from each of these segments. Statistical calculations of these
time segments, ratios between decomposition levels, mean
absolute value, standard deviation, and signal power, repre-
sent the signal changes over time and reduce the computation-
al time from using all coefficients as inputs. The result of a
zero change in accuracy when removing any features related
to any of the three time divisions indicates the signal informa-
tion for these movements does not drastically change over
time such that the features derived from that information are
distinguishable among movement classes.

Within the literature numerous studies use sEMG signals to
classify upper limb movement for spinal cord injury patients
and amputee patients. Most of these studies aim to increase the
accuracy of myoelectric prosthetics for use of patients suffer-
ing from some level of motor dysfunction. For myoelectric
prosthetics, distinguishing between fine motor movements
are of utmost importance, for the target population are ampu-
tees who still have control over gross motor function and use
myoelectric prosthetics for hand grasping motions. Multiple
studies have reported the ability to distinguish between grasps
solely using sEMG and machine learning classification tech-
niques. For hand grasping movements in healthy subjects,
accuracies reported range from 50 to 60% for k-Nearest
Neighbors, 60–70% for support vector machines, and 70–
75% for random forest classifiers [5, 6].

When comparing the present study to Liu et al. [30] it is
important to note an exoskeleton can increase the precision of
movements within and between subjects, allowing the training
and testing samples to be more similar than that of upper limb
movement without an exoskeleton. For both stroke and
healthy subjects 98% of the variance between actual and pre-
dicted movement trajectories with the assistance of an exo-
skeleton robot to control the movements was accounted for
[30]. Because the present study uses free, unsupported move-
ment of the upper limb, the movement trajectories cannot be
controlled, and therefore there is a larger variance within the
data set. Another fact to consider is the difference in outputs
for the neural networks between the two studies. Liu et al. [30]
provide a continuous output of predicted numbers versus the
classification of full functional movements in the present

study. The present study is the first to evaluate the capability
of neural networks and other machine learning techniques to
distinguish between sEMG signals of dynamic functional
movements used for upper limb motor rehabilitation.

Differences in accuracy between studies depend heavily on
the differences in input features chosen for each classification
problem. Common features in the literature include root mean
square, thresholded histograms, zero-crossings, mean average
slopes, standard deviation, mean, and wavelet coefficients.
The highest accuracies were achieved using root mean squares
of sEMG signals and the ratios of interactions between co-
contracting muscles for hand grasping movements [53].
Another difference between the two studies that should be
noted, is the subject pool used. While both studies used
NINAPro Database 2, Wei et al. [53] reduced their dataset to
a subset of eight out of the forty subjects available, and the
current study used all forty to calculate the average classifica-
tion accuracy. This difference makes comparison between the
two studies more complex. Nevertheless, it is possible that
higher accuracies can be achieved using EPNN if coactivation
ratios were included in a feature set with the decomposition
ratios presented in this study using healthy subjects. Stroke
patients suffering from motor dysfunction often also struggle
with spasticity, an abnormal pattern of muscle recruitment
associated with hyperactive stretch reflexes [49]. Spasticity
causes abnormal coactivation patterns that are not observed
in healthy movements [12]; therefore, using coactivation pat-
terns as features might not perform well for sEMGmovement
classification in stroke patients. Classification approaches
would need to be tested in stroke patients to determine which
approaches perform best.

The main question for this study was, “Can movements
used in stroke motor ability assessments be distinguished
using EPNN?” After attempting multiple feature sets includ-
ing the features listed earlier in this paragraph, the features
reported in the results section produced the highest classifica-
tion accuracy. While more advanced feature extraction tech-
niques could potentially increase the classification accuracy
further, an in depth analysis and comparison of feature extrac-
tion techniques is beyond the scope of this study.

Most studies classify gross motor function using isometric
exercises, which consists of muscle contraction without joint
movement [45]. Movement in daily life is dynamic. Dynamic
movement involves muscle co-contraction and synergy as
well as joint movement to complete functional tasks. Early
studies in the literature that reported high accuracies of
sEMG classification utilized isometric contraction of muscles
[9]. The current study attempts to classify dynamic movement,
which might be the reason for lower accuracy scores, but is
one step closer to full understanding and utilization of dynam-
ic movement measurement.

Further optimization of these approaches for application in
motor rehabilitation after stoke could involve several
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approaches. Adding more sEMG electrodes or altering their
positions on the forearm compared to what was used in the
NINAPro data would be a first step. In addition to recording
from the forearm, adding electrodes that could measure at
least some intrinsic muscles in the hand could prove particu-
larly valuable. A combinatorial approach using sEMG along
with motion sensors to detect aspects of forearm and hand
movement could also be helpful. Moving beyond hand move-
ments and forms of finemotor skill into broader distinctions of
movements, such as reaching for and drinking a cup of water,
operating a light switch, turning a doorknob, and sampling
from a variety of more proximal muscles might provide a
different challenge and would require a broader set of mus-
cles. The scenario tested in the present study, a variety of
manipulation tasks with a relatively small number of closely
spaced electrodes only in the forearm, represents a relatively
difficult problem with which to test the performance of the
classification approaches. Given that the EPNN performs best
in this challenging scenario, it would be interesting to deter-
mine if it also performs best for classifying a wider variety of
movements. The research presented in this paper is a step in
that direction.

Conclusion

The present study has demonstrated the capability of using
upper limb sEMG signals to identify and distinguish between
functional movements used in standard upper limb motor as-
sessments for stroke patients. This was accomplished through
adroit integration of signal processing, feature extraction, and
machine learning classification. Many studies in the literature
utilize wavelet decomposition to enhance feature extraction
for class identification. However, the importance of the am-
plitude relationship between wavelet decomposition levels,
referred to as the ratio features in the methods section, was
demonstrated in the current work. Having outperformed
SVM, k-NN, and PNN, EPNN is shown as a strong contender
for current popular techniques used for machine learning clas-
sification in the literature.

Using sEMG signals to classify movement has many ap-
plications within the field of motor rehabilitation for stroke
patients. The ability to classify movements used within the
AMAT can provide clinicians with quantitative information
to support diagnosis and progression monitoring of stroke
patients throughout rehabilitation techniques. Separately, with
the proper wireless sEMG setup, daily monitoring of move-
ment can provide a quantitative method for analyzing func-
tional movements of stroke patients at home, a practice known
to enhance motor rehabilitation outcomes. By classifying
movements via sEMG, information can be relayed to clini-
cians and researchers for better understanding of how daily
movement outside of the clinic contributes to motor recovery.
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