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Abstract
Breast cancer is not preventable. To reduce the death rate and improve the survival chances of breast cancer patients, early
and accurate detection is the only panacea. Delay in diagnosis of this disease causes 60% of deaths. Thermal imaging is
a low-risk modality for early breast cancer decision making without injecting any form of energy into the human body.
Thermography as a screening tool was first introduced and well accepted in 1956. However, a study in 1977 found that it
lagged behind other screening tools and is subjective. Soon after, its use was discontinued. This review discusses various
screening tools used to detect breast cancer with a focus on thermography along with their advantages and shortcomings.
With the maturation of thermography equipment and technological advances, this technique is emerging and has become the
refocus of many biomedical researchers across the globe in the past decade. This study dispenses an exhaustive review of the
work done related to interpretation of breast thermal variations and confers the discipline, frameworks, and methodologies
used by different authors to diagnose breast cancer. Different performance metrics like accuracy, specificity, and sensitivity
have also been examined. This paper outlines the most pressing research gaps for future work to improvise the accuracy of
results for diagnosis of breast abnormalities using image processing tools, mathematical modelling and artificial intelligence.
However, supplementary research is needed to affirm the potential of this technology for predicting breast cancer risk
effectively. Altogether, our findings inform that it is a promising research problem and a potential solution for early detection
of breast cancer in younger women.
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Introduction

Breast cancer is the deadliest breast pathology occurring in
women worldwide. Statistics [1] say that 1 out of 8 Indian
women are afflicted by it during their life and it is predicted
that 76,000 Indian women may die of the disease every
year by 2020. The most disheartening aspect of this disease
is the failure of early screening. It is a societal challenge
and delivering an affordable solution to its prevention will
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benefit the society directly. Early and accurate diagnosis
is critical to reduce disease burden, decrease morbidity
and mortality rates and give early treatment, thus avoiding
disfiguring surgery, and on the whole, improving the
survival index up to 95% [2]. The chances of complete cure
for breast cancer is 85%, if the tumor size detected is less
than 10 mm [3]. Studies [4, 5] have shown that different
radiologists interpret mammograms differently, at different
times of inspection. The error in interpretation does not
support the use of mammography as the sole screening tool.
Hence, researchers propose to add thermal imaging as a
modality along with breast examination and mammography
to screen breasts; as mammography gives false negatives in
early stages.

Human beings can maintain a constant body temperature,
therefore, changes of more than a few degrees, is a clear
mark of an abnormality [6]. The Stefan–Boltzmann Law
says that objects with a temperature above absolute zero
emit radiation, which is proportional to the fourth power
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of its absolute temperature. Thus, the infrared radiation
emitted by the body can be converted into temperature
values and mapped into an image [7]. This military
technique was first applied to mammary glands clinically in
1957 to pick changes in blood perfusion [8]. In 1982, Food
& Drugs Administration (FDA) approved thermal imaging
to be used in conjunction with mammography for breast
cancer detection [9]. Bryan F. Jones [10] in 1998, presented
a study reexamining the use of infrared thermography as a
signal of physiological dysfunctions. Therefore, it is vital
to address new research on early breast cancer detection to
screen the population routinely and should be cost effective
with advantages over the gold standard of mammography.

This literature review aims to investigate the frontiers of
the current research in the field of breast cancer screen-
ing using thermal imaging. This paper presents an exten-
sive review of the literature related to breast screening
using thermography and attempts to highlight the relia-
bility of this technique. The paper is organized as fol-
lows: Section Methods for diagnosis of breast cancer
and their limitations is about the several methods conven-
tionally used for the diagnosis of breast cancer. Followed by
Section Breast thermography : Biological rationale for ther-
mal changes which explains the biological rationale behind
thermography and its usage in decision making for breast
cancer. Section Related works describes the methodologies
used in past works for detecting breast cancer using thermal
imaging. Section Discussion discusses the critical interpre-
tations drawn from the past work. The article ends with the
most pressing directions for future research and summarizes
the conclusions of the survey in Section Conclusion.

Methods for diagnosis of breast cancer
and their limitations

To improve the survival chances of patients and accurate
diagnosis of breast cancer, many technologies have evolved.
Following are the methods used to diagnose abnormalities
of the breast:

Mammography

Mammography is an imaging modality that captures
craniocaudal view (CC) and mediolateral oblique view
(MLO) for each breast. It can detect cancer development
at the 12th month when the tumor is beyond 1 cm
diameter and X-rays can pass through it, which in many
cases have already metastasized. Mammograms can be
uncomfortable and traumatic because they often involve
high compression of the breast tissue between two plates
to get better contrast between non-cancerous and cancerous
cells [3]. It also shows calcification. Mammography has

suboptimal sensitivity and specificity values in women
with dense breasts and in women with fibrocystic breasts.
The mammogram sensitivity is 85% for women above
60 years, and is 64% for women under 50 years [4].
It also ionizes radiation in the patient and requires high
quality, expensive equipment. Pregnant women are not
recommended to undergo mammography. False positives
are detected in 70% of the cases which triggers emotional
stress in patients and results in painful biopsies. 10-30%
of lesions are missed during mammography due to contrast
variation, noisy images, tissue background that has the
same characteristics as that of supporting breast tissues and
edges. In addition, 42 pound pressure during the process
may rupture the encapsulation around a tumor and release
malignant cells into the bloodstream [5].

Ultrasound

Ultrasound or sonography uses sound waves to detect
tumors. Since no radiation is involved, it is the best sug-
gested method for screening pregnant women and younger
women with dense breasts. It can distinguish between cysts
and solid masses. However, it can neither detect tumors
at deeper locations nor identify microcalcifications. The
efficiency of ultrasound depends on the expertise of the
physician interpreting the image [3]. It is relatively inex-
pensive and convenient to the patient. It is mostly used
in adjunct with mammography to locate the exact area of
suspicion [2].

Breast MRI

Breast MRI is a non invasive imaging technique that uses
powerful magnetic field of strength of 1.5T and provides the
highest quality breast images [6]. It can show the smallest of
lesions that are not visible in the earlier two methods as seen
in Fig. 1. But, it is a costly exam. It frequently reports false-
positive diagnoses thus limiting its positive predictive value
(PPV). It is not capable of detecting microcalcifications.
This test is not recommended for pregnant women since
a powerful magnet and a contrast agent is used, which
produces allergic side effects [3].

Thermography

Unlike mammography, breast thermography is completely
non-invasive, passive, private, contactless and there is no
radiation hazard for patients. It is painless being simply
a contactless image of the patient’s breasts. Thermograms
are clinically interpreted based on color. Low heat levels
are indicated in blue (healthy), whereas, spots in red,
orange, or yellow indicate abnormality. Thermography is
a functional test and a preventive process, which can be
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Fig. 1 Various methods for diagnosis of breast cancer

used by women from the age of 23, unlike mammography
which is recommended for 40+ women only. An abnormal
thermogram can be a significant biological risk marker
in younger women under 40 for existence or continuous
development of breast tumor. Figure 2 shows sample breast
thermogram of a patient captured in various positions.

In a study conducted on breast cancer patients using
mammography and thermography, Gamagami [11] reported
that 15% of cancers went unnoticed by mammography, but
were caught by thermography. When thermal imaging is
combined with mammography, the reported 85% sensitivity
rate of mammography increases to 95%. The average
size of tumors that went unnoticed by mammography and
thermal imaging was 1.66 cm and 1.28 cm, respectively
[12]. Thus, it is clear that infrared imaging can detect
small tumors leading to early diagnosis [13]. Authors [24]
studied the performance of thermography in combination
with mammography and found the sensitivity to be 89%
in women less than 50 years, which suggests that the dual

imaging process can be one way to exploit the potential of
thermography.

Breast thermography : Biological rationale
for thermal changes

Human body emits part of its own thermal energy in
the form of infrared radiation. Skin temperature pattern
demonstrates consistent bilateral symmetry; any deviation
from the normal is a good evidence of clinical abnormal-
ity, indicating metabolic and circulation changes. This is
the underlying philosophy of using thermal imaging as a
screening tool for breast cancer. Cancer tissues metabolize
faster than other tissues, the heat produced in this process
is conveyed to the skin surface, which hints at a possible
malignancy or thermally active, fast growing tumor [15].
As well, due to excessive regional vasodilation caused by
nitric oxide (NO) originating from cancerous lesion, there is

Fig. 2 Sample thermograms : Positions (a) Front, (b) Right Lateral 45◦, (c) Right Lateral 90◦, (d) Left Lateral 45◦, (e) and Left Lateral 90◦ [7]
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an increased supply of nutrients and oxygen to the tumour
[16]. The tumour location on the breast will have a higher
temperature compared to the surrounding normal tissues. It
is evident from literature that this temperature difference
helps to identify an underlying tumour. The thermal camera
captures the temperature variation over the surface of the
skin in the form of an image. Temperature variations that
characterize tissue metabolism are circadian [17] (“about 24
hours”) in periodicity. Rhythms associated with cancer cells
are non-circadian and are indicative of malignancy. Women
with asymmetric thermograms have 10 times higher risk
of developing breast cancer than those with symmetric
thermograms [18]. Thermography is capable of detecting
cancer even before the patient is symptomatic. It is a fast,
economic and risk-free process and provides dynamic
information of tumors, if screened at regular intervals.

Rotational thermography has also been explored to
screen tumors in lower regions of the breast that go
undetected due to breast sag. A novel patented set up
known as the Mammary Rotational Infrared Thermogram
(MAMRIT) unit [14] is used for acquiring rotational breast
thermograms. This setup comprises an IR camera mounted
on a rotational arm enclosed in a chamber as shown by
a schematic in Fig. 3. Each breast is suspended in the
aperture of setup and is imaged every 30◦ under pre-cool
and post-cool temperature settings. However, to carry on
further research, there is no available database of images
captured by a rotational thermography machine. Important
procedural steps and care required to acquire thermal
images are mentioned section-wise below.

Pre-Thermographic Care & Patient Acclimation

As per the standard protocol presented in 1996 at the IEEE
EMBS Conference [18], before the examination, the patient

is cooled so that the hotspots arising from abnormalities are
highlighted. The breasts must not come in contact with any
surface that can alter its temperature. Patients are advised to
avoid application of any ointment or perfumes, avoid above
average intake of tea or coffee, avoid exposure or treatment
of breasts. Patients are refrained from wearing tight clothes
and avoid any physical exertion to ensure valid results. On
arrival, the patient’s information is collected such as age,
weight, family history, symptoms seen or previous breast
treatments done. Strict protocol needs to be followed during
thermography to get consistent results.

Procedure & Patient Safety

The examination cubicle is temperature and humidity con-
trolled, with black homogeneous background. Incandescent
lighting should not be used as it produces radiation, dur-
ing examination. The disrobed patient has to sit for 10-20
minutes at rest, so that thermal equilibrium of the parts to
be examined is achieved [2]. After achieving the thermal
steady state, the patient is seated before the infrared camera
with hands raised above the head and affected breast is to
be examined from three views, namely, medial, frontal and
lateral. Thermography is a real time system that captures a
sophisticated heat-map of the breast and stores it for fur-
ther analysis of hotspots. The first thermogram captures the
baseline reading, and shall be repeated every 3 months to
screen any abnormal development.

Thermograms and their Capturing Views

In breast thermography, the frontal view gives the best
information of abnormality or asymmetry between the left
and right breast. Thermograms of the underside of the breast
(supine view) [19] should also be viewed, so that any tumor
in the lower portion should not miss. Each pixel in the

Fig. 3 Schematic representation
of a patient table with aperture
to suspend breast
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thermogram is a representation of a specific temperature
of the parts. As the temperature of a body increases, it
gives off more intense infrared radiation. Redness indicates
increased circulation. Normal thermogram shows good
symmetry, patterns represent baseline that don’t alter over
time. Asymmetry in temperature suggests a suspicious
region.

Database

Most of the existing literature uses the thermal images from
the online, free, publicly available Database of Mastology
Research (DMR) [20, 21] that contains breast images of
287 patients (240 - healthy, 47 - sick) of different sizes and
asymmetric breasts. This dataset has images of resolution
640x480 acquired using FLIR SC-620 IR camera, with the
patient’s age ranging from 29 to 85 years.

Thermographic Equipment Development

Thermal imaging system consists of an infrared camera
and a display unit to exhibit the thermal image. Resolution
and thermal sensitivity are the crucial parameters of an
infrared camera. Older generation cameras were bulky and
needed to be cooled to liquid nitrogen temperature to reduce
artifacts in thermal images. Uncooled infrared technology
coupled with the recent development of micro-bolometer
sensors has revolutionized thermal imaging. There is a
drastic improvement in sensitivity from 0.3K to 0.02K,
over five decades, which has now facilitated the capture
of detailed, reliable, high contrast thermograms that can
detect small, localized hot spots. Modern trending IR
cameras have high resolution and are compact, portable,
easy to implement, almost maintenance free, can be used
in any orientation [10]. Major companies that manufacture
infrared cameras for use in medicine are Meditherm, FLIR,
InfraTec., Medicore Co Pvt Ltd., etc.

Commercially Available Systems

An Indian startup “Non-Invasive Risk Assessment with
Machine Intelligence” (NIRAMAI) [22] co-founded by
Nidhi Mathur and Geeta Manjunath uses artificial intelli-
gence to make detection of breast cancer possible at a low
cost and is offering an alternative to mammography. Also,
the NoTouch BreastScan (NTBS) machine [23] developed
in the USA by UE LifeSciences uses two infrared cam-
eras, each pointing at one breast. It uses Artificial Neural
Networks (ANN) to identify the features and recognise the
patterns for tumors. However, in a study conducted with
180 women who had biopsy proven breast cancer, NTBS
gave an accuracy of 0.5 and thus failed in critical decision
making. Thermal camera employed in Sentinel BreastScan

[118] has thermal sensitivity of 80mK. A software analyses
the breast scans of the patient and provides a report of the
breast cancer risk. Reported sensitivity and specificity are
98% and 50% respectively. iTBra [119] created by Cyrca-
dia Health consists of wearable breast patches that measure
breast temperature at 8 locations for each breast. This sys-
tem relies on the biological circadian cycles [17]. Data is
collected through thermodynamic sensors and sent to the lab
for analysis where artificial intelligence algorithms estimate
the breast cancer risk. A flattened circadian profile is indica-
tive of the presence of cancer. Overall accuracy reported
is 87% and it is claimed to be 30% more accurate than
mammography for women with dense breasts. However, we
did not find enough testing evidences of this commercial
product.

Related works

For clarity, the research done in this domain is divided
into 4 major areas in the paper. The survey focuses on
reviewing the methods, techniques applied and results
obtained for detecting breast cancer using thermography
images. The literature on thermal image preprocessing
and segmentation is discussed in Section Processing and
Segmentation of Suspicious Region, feature extraction in
Section Boundary Detection, Asymmetry Analysis, Feature
Extraction, classification using artificial neural networks
(ANN) in Section Using Artificial Neural Networks
and Fuzzy Logic and computer modelling of breast in
Section Numerical Simulations and Models of Breast.
Section Patents discusses the patents filed related to thermal
breast imaging.

Processing and Segmentation of Suspicious Region

Denoising & Preprocessing: Noise and artifacts are intro-
duced in the image during camera handling, image compres-
sion, image acquisition, storage, which degrades the image
quality [25]. Thermal images lack texture, have low contrast
[26] and clear edges are absent in them, which make the
abnormality detection using asymmetry bit difficult. Qual-
ities affected by image acquisition are considered in [25].
However, qualities affected by camera handling, lighting
conditions are not accommodated in this work. Hence, fur-
ther extension is expected by considering these additional
features. In case of dynamic thermography, motion induced
artifacts have to be removed to compare the different images
properly. Kafieh and Rabbani [27] modelled the noise vari-
ance as a function of the image intensity and used wavelets
for denoising breast infrared images. DCT [28], Lacunar-
ity and Hurst coefficients were used in [29] to identify
breast pathology from the images. Block matching and 3D
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filtering techniques (BM3D) [30] were adopted for remov-
ing noise from breast thermograms and features extracted
from denoised images were used to identify the abnormal-
ity. There was a distinct difference in the feature values of
denoised and raw images. The edge profile was preserved
and the signal to noise ratio (SNR) was enhanced by 32% in
denoised image.

Segmentation: Using hotspot feature extraction gives high
accuracy in classifying malignant and benign tumors
as compared to features from the whole breast. Thus,
segmentation of tumor i.e. region of interest (ROI) in
a thermal image was considered essential for accurate
classification of malignancy [31]. Segmentation depends
on the distance from which the breast thermogram
was captured, the image height, the breast size, image
background, presence of noise etc. To separate the right and
left breast, different types of segmentation such as region-
based, threshold-based and edge-based have been explored
in the literature. Canny edge detector [32, 33], Sobel edge
detector, Hough transform [32, 34], C fuzzy techniques,
projection profile approach [35] have been used to extract
the body boundary and the lower parabolic boundaries of
breasts from a thermogram.

Experiments conducted by researchers [31, 36] to detect
breast pathologies in thermograms based on segmentation
of ROI were limited to only classifying the cancer images,
highlighting the suspected malignant tumor locations but
not predicting tumor location and its nature. Dynamic
frontal breast thermograms were preprocessed [37] and
level set segmentation was performed to delineate ROI.
Qualitative results were presented. Researchers claimed
accuracy (86%), sensitivity (92%) and specificity (73%).
The main disadvantage of the work was the suspicious
region in the abnormal breast was not highlighted. The
approach in [38, 39] used k-means clustering for segmenting
the hotspots, however, this method did not yield the
equivalent results with different values of k. Golestani
et al. [40] compared segmentation methods, namely, k-
means, fuzzy c-means [33] and level set for fibrocystic and
inflammatory cancer cases to extract the hottest regions. It
was established that the level set method outperformed the
others by extracting almost the exact shape of the tumor.

de Oliveira et al. [41] used automatic segmentation on
180 thermal images; but their work was limited as they used
one side lateral breast images to conduct their work. Sedong
et al. [42] used 250 thermal images and the experimental
results were analyzed and compared using Shannon entropy
and logistic regression. Pramanik et al. [43] used wavelet
based thermogram analysis on 306 images (123 unhealthy
and 183 healthy). Ali et al. [44] used segmentation method
on 63 thermal images, but method reliability check was not
performed. To separate the breast area for feature extraction,

authors [45, 46] used edge and contour filters. Eddie et al.
[47] extracted the useful regions of thermal images by
segmentation and classified them into normal or abnormal
ones. They also assessed the menstrual cyclic variation of
temperature with time to help detect breast cancer.

Boundary Detection, Asymmetry Analysis, Feature
Extraction

Interpreting thermograms requires meticulous training and
their misinterpretation can lead to high false positive
rates. In order to get rid of subjectivity in the manual
interpretation, computers can be used with machine learning
algorithms to help in accurate classification of breast
pathologies from thermal images. Dayakshini Sathish et al.
in [3] reviewed various medical image models and included
various steps to develop CAD tools for several imaging
techniques. In accordance with their work, thermography
CAD depends on asymmetry analysis and gives better
accuracy.

Josephine J. et. al [48] considered 25 typical and 25
abnormal breast thermograms for an automated classifica-
tion. Feature values were extracted and fed to backpropa-
gation neural network and error correction learning rules
were applied. However, the dataset used was very limited
and images were not acquired in real time. The proposed
methodology in [49] used thermal matrices of 454 images
from DMR of women from different age groups and in
multiple stages of breast cancer.

In 1997, Lipari and Head [18] observed asymmetry in
frontal breast thermograms by computing the temperature
differences between the contralateral breasts quadrant
wise (shown in Fig. 4). They concluded that manual
interpretation of thermograms compromises the accuracy of
diagnosis. Therefore, in a future publication (1998), Head
et al. [50] compared the temperature profile of contralateral
breasts using automated approach which ultimately led
to improved accuracy. Later in 2000, Head and Lipari
et al. [51] isolated the breasts manually and computed
infrared index for each abnormality. An analysis of family
history, previous hormone therapy and previous biopsy of
breast were assessed and results indicated that there was
no correlation of these factors with infrared results. Their
results pointed out that 35% of patients had abnormal
IR image more than a year before they got diagnosed in
mammography, which indicated that thermography is a risk
marker.

A comparative study of the thermal signatures of healthy
breasts with malignant tumors was performed in [52, 53].
Qi, Hairong et al. [54] used Canny edge detector and Hough
Transform, to derive the edges and recognize the four
feature curves, respectively, on images provided by Elliott
Mastology Centre. Bezier splines were used to view brightness
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Fig. 4 Quadrant wise
segmentation of breasts: Upper-
Outer (UOQ), Upper-Inner
(UIQ), Lower-Outer (LOQ),
Lower-Inner (LIQ)

distribution (256 brightness levels). The results obtained from
3D histogram of thermal distribution clearly showed the
difference between a cancerous image and a non-cancerous
image. To attain more accurate classification, supervised
pattern classification on a larger database was suggested.
In [55, 121], asymmetry was identified using k-means
clustering and k-nearest neighborhood [56] based on feature
extraction. Statistical features [55, 57, 58, 121] like mean,
variance, skewness, kurtosis, correlation, entropy, and joint
entropy were used to quantify the distribution of different
intensities in each breast. The feature values of both breasts
were quite consistent for normal breast thermograms,
whereas, there is a remarkable difference in the feature
values of both breasts for abnormal breast thermograms.
Results obtained in [39, 55, 57, 58, 121] points out that the
high order statistics like variance, skewness, and kurtosis
signify asymmetry. However, they used a small dataset of 24
thermograms to evaluate the performance of their method,
hence their results cannot be generalised.

The study in [59] measured temperature gradients (�
T) from thermograms of 1008 female patients and from
the asymmetry analysis, the subjects were classified into
three groups: normal (� T ≤ 2.5), abnormal (� T >2.5,
<3) and potentially having breast cancer (� T ≥ 3). X.
Tang et al. [60] proposed the LTI (Localized Temperature
Increase) for breast cancer detection. LTI was used in
breast thermograms and its amplitude was measured. High
sensitivity of 93.6% and high Negative Predictive Value
(NPV) of 91.2% was achieved. Patients with higher LTI
amplitudes were considered as having higher possibilities.
Optimal LTI amplitude threshold calculated was 1◦C for
breast cancer detection. The limitation was poor specificity
due to FPR (False Positive Rate) of 55.7%.

Hossein Ghayoumi Zadeh et al. [61] presented a fully
automated approach based on fuzzy active contour [62]
to detect edges and contour area in the thermograms. It
segmented the cancerous areas from its borders. The manual
and automated methods were evaluated using Hausdorff and
mean distance. The obtained sensitivity and accuracy was
85% and 91.98% respectively, but only for limited dataset.

M. Etehad Tavakol et al. [63] compared sixty contralateral
breast thermal images for asymmetric thermal distribution.
For a pair of images, they used mutual information and
nonparametric windows to plot the joint histogram. The
mutual information value was close to one for similar
thermal images of left and right breasts.

Authors in [64, 65] used an approach based on Fractal
Dimension (FD) for classification of thermograms. Features
of the image were extracted using box counting algorithm
[64]. From the past experiments it was evident that
boundaries of benign tumors are well defined and malignant
tumor boundaries are irregular. By exploiting this fact,
the fractal dimensions of features extracted from breast
thermography images had different values for normal breast
and inflammatory breast tissues. However, they tested
the approach on a very small dataset of 6 thermograms,
and these results may not hold true for larger datasets.
They also determined the stage of breast cancer based on
the T component of the TNM (Tumor-Node-Metastasis)
system as suggested by Surgical Clinics Journal [66]. The
classification of tumor size using Fuzzy C-Means in 3 and
4 clusters with the use of 64x64 pixel box size in the box
counting process was more consistently similar than with
the use of 32x32 pixel box size [64].

Scales et al. [67] acquired twenty-one 128x128 8-
bit grayscale thermal images and preprocessed them by
applying the Canny edge operator. To get the breast shape
as an ellipse, the morphological operators were applied to
the edge detected image. Edge detection gave inaccurate
results for the flat lower part of the breast. It was concluded
that more robust and intelligent edge detection methods
need to be devised to identify regions of interest. In [68],
Kapoor et al. created an operating system independent GUI
in MATLAB for automatic segmentation of hotspot and
asymmetric analysis of breast thermograms in real time to
detect abnormality.

A prospective, double blinded pilot study was conducted
in [69] using FLIR ThermaCam E45 for 54 patients aged
between 18-70 years. Minimum, average and maximum
temperature values were measured for each tumor location

Page 7 of 18    136Journal of Medical Systems (2020) 44: 136



and its normal contralateral side. To measure asymmetry,
0.5◦C was selected as a cut-off temperature difference.
Fibroadenomas differed from malignancies significantly in
terms of mean temperature, whereas there was no significant
statistical difference between granulomatous mastitis and
invasive ductal carcinoma. Cysts differed from malignant
lesions in terms of maximum temperature. The sensitivity
and specificity of thermal imaging was found to be
95.24% and 72.73% respectively. Using thermography, it
was possible to differentiate fibroadenoma and cysts from
invasive ductal carcinoma. Fibroadenomas are mainly seen
in younger women, where other screening techniques fail to
give good results. Thus, thermal imaging seems a promising
tool to detect it at the earliest.

A retrospective analysis [70] of the clinical records
of 100 normal patients, 100 living cancer patients, and
126 deceased cancer patients discovered that only 28%
of the noncancer patients had an abnormal thermogram,
compared to 65% of living cancer patients and 88% of
deceased cancer patients. According to the p-test, it was
seen that the clinical size of tumor as per TNM classification
system was significantly larger (p = 0.006) in patients with
abnormal thermograms. In a case study [39] conducted in
2018, one normal case of 50 years old who had undergone
screening mammography and other case of 70 years old with
abnormal cancer mass proven were included. Segmented
tumor region from mammogram and asymmetrical skin
temperature profile from thermogram were compared for
the diagnosis of breast cancer. The maximum temperature
difference between both the breasts of a cancer patient’s
thermogram was found to be 1.1◦C, whereas it was less
than 0.2◦C in normal cases. Since it was a case study, the
results cannot be generalised unless randomly tested on a
large database.

Using Artificial Neural Networks and Fuzzy Logic

The extracted features from the segmented breasts are used
as inputs to classification algorithms to classify the breast
thermograms. Since human eyes cannot perceive the colors
in thermograms perfectly, hence to classify suspicious
regions in thermograms, into benign and malignant and
maximise accuracy, artificial intelligence [71] has been the
latest area of interest among many researchers. Determining
a suitable combination of features to compose a feature
vector is essential for obtaining high precision as too many
features pose the problem of overfitting the model. Using
only a few features reduces the complexity of models,
requires less time and is easier to understand.

Qi and Head [72] proposed automatic segmentation
unlike the studies carried out in [18, 50, 51]. Abnor-
malities in left and right breast regions were obtained
from the thermal histograms. Unsupervised learning was

used to cluster abnormal pixels together. For segmenta-
tion and classification of breast thermal regions, K-Means,
Fuzzy C-Means (FCM) [73], Gaussian Mixture Model —
Expectations Maximization (GMM-EM) [74] and Bayesian
networks [75] were employed and their results were com-
pared. The results indicated that FCM segmentation gave
the best accuracy at indicating the disease. Mahmoudzadeh
et al. [76] suggested Extended Hidden Markov model
(EHMM) to randomly sample breast thermal images and re-
estimate EHMM parameters to optimize segmentation for
easy interpretation of thermal patterns by clinicians. EHMM
segmentation results were compared to K-means, Fuzzy
C-means, Lloyd–Max, self organizing map (SOM) and stan-
dard HMM algorithms. Results indicated that EHMM is
able to extract hotspots in the least time. However, they did
not analyse the extracted abnormal regions further.

Nader [77] developed an automatic breast cancer
detection software using MATLAB to analyze thermal
breast images of 206 patients. 12 statistical features and
20 texture features were extracted and fed to a neural
network classifier to differentiate normal and suspected
cancer breasts. Success rate of 96.12% was noted using this
software. In [78] the authors used a deep neural network
for tumor segmentation and binary classification of breast
cancer. Extreme learning machines [79] were employed to
classify 1052 thermographic images as cyst, malignant and
benign from the features extracted from the geometry and
texture of images. Training accuracy obtained was 73.38%
with a sensitivity of 78%, a specificity of 88% and a Kappa
index of 0.6007. In a similar study [80], feature matrix was
fed to the neural network to classify thermal images into
TH1-TH5 category (Marseille system) based on vascular
patterns. Gerald Schaefer et al. [81] extracted statistical
features like moments, cross co-occurrence matrix, mutual
information and Fourier analysis from breast thermograms
and fed them into a fuzzy rule-based classifier for analysis.
The classification accuracy achieved was about 80%, which
is limited.

Sheeja V. Francis et al. [82] extracted statistical and
texture features from breast thermograms using a curvelet
transform based method. These features were fed into SVM
for automatic classification and the accuracy obtained was
90.91%. Francis et al. [19] extracted first and second order
statistics and texture features. Eventually, they reduced
the number of features from 17 to 4 using Principal
Component Analysis (PCA). An SVM was used to classify
the breasts as normal and cancerous. The classifier achieved
a sensitivity of 83.3%. In [83], a combination of ANN and
genetic algorithm was employed to gather the features from
200 thermal images of patients aged between 18-35. The
results revealed that thermal pattern and kurtosis were the
most useful features for breast cancer classification. The
proposed model had 50% sensitivity, 75% specificity and

136   Page 8 of 18 Journal of Medical Systems (2020) 44: 136



70% accuracy. In their subsequent study [84], they used a
fuzzy model for increasing the accuracy.

Several special types of ANNs like Complementary
Learning Fuzzy Neural Network (CLFNN) [85] were
used in [86] to classify IR breast images. To increase
reliability, CLFNN takes statistical features such as family
history and temperature difference between contralateral
breasts into account. Tan et al. [87] used five different
classifiers, namely, Feed Forward (FFNN), Probabilistic
(PNN) and Fuzzy Neural Networks (FNN), Gaussian
Mixture Model (GMM) and Support Vector Machines
(SVM) for 90 breast thermal images. Out of all, FFNN,
GMM and SVM classifiers had better performance as
indicated in Table 1. Lagrange Constraint Neural Network
(LCNN) [88] used multispectral thermal images to provide
a better diagnosis. Wavelet transformation [89] with ANN
was used for multidimensional features of the IR image.
Dimensionality reduction was performed to downsize the
number of features computed and the resulting images
were classified as healthy or cancerous using a multilayer
perceptron (MLP) neural network. Borchartt et al. [90]
used free LibSVM classifier to classify breast pathology
from the extracted features. In [91], a back propagation
ANN was used to predict clinical outcomes. The ANN
output was matched with the actual clinical diagnosis.
The ANN predicted the outcome of 18 out of 19 images
correctly, however the dataset used was too small and the
statistical parameters for analysis were few. Both benign and
malignant tumors increase vascularity of the breast area and
cause temperature changes, thus limiting the specificity of
thermography.

U. Rajendran Acharya [92] extracted texture features
from 50 breast thermal images using co-occurrence and
run length matrices and fed them to an SVM classifier
for classification of breasts into normal and malignant.
The classifier gave an accuracy of 88.10%. On similar
lines, authors in [93] fused multiple adaptive thresholding
techniques to identify the hotspots in breast thermal images.

They extracted textural features using algorithm from
[92] and chose the thresholds of temperature such that
it maximizes the linear combination of sensitivity and
specificity. The obtained sensitivity and specificity using
the approach in [93] is 90% and 94.3% as compared to
85.71% and 90.48% from [92]. A study in [94] correlated
the locations of hotspots in thermograms with the tumor
locations marked in mammograms and histology images
of 60 patients. Thirteen sets of features were evaluated by
using SVM with radial basis function kernel [94] to classify
breast thermograms as healthy, benign and malignant. To
avoid an erroneous conclusion, the suspicious areas were
categorized as in the upper half or lower half of any breast.
The limitation of this study was the small experimental
dataset. Table 1. reports the number of thermograms used,
the sensitivity and specificity of the different classifiers
mentioned in the paper.

A Convolutional Neural Networks (CNNs) based
methodology, shown in Fig. 5, was harnessed in [95, 96]
for faster and more reliable diagnosis of breast cancer
using thermal images. CNNs require a large amount of
data for training. Data augmentation [96] was done to
tackle expensive and imbalanced medical data set problems.
The performance and reliability of CNN was enhanced
by implementing data augmentation and a hyper parame-
ters optimisation algorithm based on tree parzen estimator,
thus minimizing bias and overfitting that might occur dur-
ing the training process. Their work concluded that smaller
and simpler CNN’s performed better than state-of-the-art
ones like ResNet, SeResNet, VGG16, InceptionResNetV2
and Xception. They are more viable than past systems
based on statistical and texture features [55–58, 69, 77, 81,
82] for diagnosis. The highlight of the work was the two
possible DMR database split approaches used in the train-
ing framework and their comparative performance, which
hasn’t been discussed in any previous study. Metrics like
accuracy (92%), precision (94%), sensitivity (91%) and
F1-score (92%) with ROC-AUC summarised the CAD’s

Table 1 Performance of Various Classifiers Used For Breast Cancer Detection

Study Classifier used No of IR images Sensitivity (%) Specificity (%)

[19] SVM 24 83.3 83.3

[24] ANN 106 78 75

[87] FFNN 90 82.9 83.6

[87] PNN 90 88.8 78

[87] FNN 90 78 75.6

[87] GMM 90 94.8 78

[87] SVM 90 84 90.4

[92] SVM 50 85.71 90.48

[94] SVM 60 85.56 73.23

[95] CNN 1140 91 92
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Fig. 5 Database split
methodology using CNN in [95]

performance. Thus, the use of data augmentation ensured
the need of minimum number of patients to train the sys-
tem. In a very recent work (2020), a software was developed
for detecting early breast cancer automatically by analyz-
ing 140 thermal breast images. Breast characteristic features
based on bio-data, image analysis, and image statistics were
extracted and fed to a CNN optimized by Bayes algorithm
[120] to classify the breast images as normal or suspected.
An accuracy of 98.95% was obtained.

Adaboost classifier [33] was used to select and integrate
the best features that are invariant to scaling and translation
from breast thermal images to classify them into malignant,
benign and normal classes. They apportioned the data into
training and test sets, with an 80-20 split. Using a 10-
fold cross validation, the accuracy computed was 95%.
To solve the problem of imbalanced class distribution
i.e. less number of malignant cases than healthy, authors
in [97] suggested the use of a combination of different

classifiers instead of one, so that the common intersection
space where all classifiers make incorrect decisions will
be small and the strengths of individual classifiers can
be used to full potential for achieving high accuracy.
This collective decision making approach of a combination
of classifiers helped achieve high sensitivity without
sacrificing specificity and outperformed other classification
algorithms.

Numerical Simulations andModels of Breast

Numerical simulations have facilitated researchers to
understand the thermal interactions occurring within the
female breast and study the effect of factors such as
metabolic activity, tumor position and depth of tumors.
Mostly simulations of the female breast in literature have
been modelled using the Pennes equation [98] as it provides
accurate temperature predictions. In Eq. 1, q, c and k are the
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density, specific heat and thermal conductivity, respectively.
The subscripts t, b and a refer to tissue, blood and arteries,
respectively, x is the blood perfusion rate per unit tissue
volume and qm is the metabolic activity within the tissue.

ρtct

(
∂Tt

∂t

)
= ∇.(kt∇Tt ) + ωbcb(Ta − Tt ) + qm (1)

Authors in [99] used Lyapunov exponent modeling to
detect abnormal lesions from breast thermal images and
differentiated the patterns as malignant and benign. A
2D model [100] of the female breast with and without
tumor was numerically solved using finite element analysis.
The breast model had varying layer thickness to imitate
the actual shape of the female breast. By changing the
tumor location, its size and blood flow rate, temperature
profiles were plotted for a normal and malignant breast.
Breast surface was scanned using numerical simulation by
identifying 7 parameters and analysis of variance (ANOVA)
was performed using a 2n design (n=7) in [101]. For
optimizing the parameters, Taguchi method was used. It
ensured that the signal from the tumour is maximized,
and noise from other sources is minimized. In a further
study conducted in 2001, the surface temperature and tissue
temperature profiles of a normal breast and malignant
breast were analysed using a 3D model [102]. Tumours
of different sizes were placed at various locations to study
the effect of depth of tumor on temperature distribution of
the breast. Any shift in tumor position was also recorded
in results. It was a common observation in [100–102]
that shallow tumors generated more heat as compared to
deep seated tumors. Breast with malignant tumor generated
higher surface temperature than a normal one. At the
tumor location, the tissue temperature profile appears
distorted.

A book chapter by Amri et al. [103] focused on using the
Cartesian breast model. They implemented one such model
in [104] (shown in Fig. 6a) to study the surface temperature
patterns of the female breast. It consisted of fat and gland
layers with a tumor embedded. They varied the tumor

depth and tumor diameters and observed that the maximum
temperature rise was 1.2◦C for tumors 5 mm deep. Their
results lacked relevance as the domain of their model was
a rectangular prism, which does not correctly represent the
morphology of the female breast. Chanmugam et al. [105]
presented a 2D breast model in hemispherical domain with
six non-concentric layers using COMSOL FEM software,
as shown in Fig. 6(b). The effect of parameters discussed
in [100] was investigated and vital features were picked
out to estimate the tumor size and location. Hatwar and
Herman [106] developed the model presented in [105] and
performed transient simulations to estimate size, location
and blood perfusion of the embedded tumor. Starting from
0, they measured the temperature at 12 different positions
in increments of 2 in the axisymmetric model. The accuracy
for tumors of depth 2 cm was within 1%, but the accuracy
of estimation declined considerably for deep seated
tumors.

Patents

For a long time, researchers are working on the problem
of early detection of breast cancer - it being the deadliest
amongst all diseases in Asia. Some patents filed by a few
organizations and researchers are briefed below.

– Method of measurement of the skin temperature
overlying tissues of breast in contrast with other tissues
was employed in [107] to detect abnormal patches
painlessly. Theoretical limitation to this invention is the
tumour must be large and shallow for the temperature
of the skin to rise. However, deep-seated cancers that
have grown serious over time do register in the image.
This invention can be counted as a valuable new
diagnostic tool for the physician to use in conjunction
with other tools for cancer diagnosis and diagnosis of
other vascular diseases.

– A patent of a system [108] consisting of thermographic
imaging device configured to acquire thermographic

Fig. 6 Simplified models
(a)Cartesian model [104] and
(b) Hemispherical breast model
with seven tissue layers [105]
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images of a female torso to detect the risk of breast can-
cer was filed by Niramai Health Analytix Pvt. Ltd. in
2016. A database was configured to store the thermo-
graphic images with a qualitative analysis module con-
figured to automatically perform a qualitative analysis
of the thermographic images and generate a qualitative
score based on the qualitative analysis. A quantitative
analysis module was also configured to automatically
perform a quantitative analysis of the thermographic
images and generate a quantitative score based on the
quantitative analysis. A scoring module was configured
to correlate the qualitative and quantitative scores with
a score indicating the risk of breast cancer. A decision
fusion rule was also utilized to determine whether tissue
within a specific region is cancerous, non-cancerous, or
is suspicious of being cancerous.

– Determination of malignant tissue based on its contour
from breast thermal image of a patient undergoing
cancer screening was discussed in a patent filed by
Niramai Health Analytix Pvt. Ltd. in 2017 [109].
Pixels with a higher and lower temperature value were
displayed in different colors. A patch of pixels with
raised temperature as compared to the temperature of
surrounding tissue pixels was identified and classified
as malignant or non-malignant based on the boundary
contour irregularity calculated for that patch of pixels.
The measure of irregularity was calculated by, i)
selecting a plurality of points along a best-fit ellipse
around the pixel patch, ii) calculating a distance
between the points along the boundary contour and
the points along a best-fit ellipse. A shape of the
boundary contour of the pixel patch was determined
to be irregular or regular depending on the distance
threshold, meaning that the tissue associated with the
pixel patch is malignant or non-malignant. However, no
work was done to estimate the size of the tumor.

– A system for thermal breast cancer detection by
capturing multiple thermal images in various angles
was invented in [110]. A segment-by-segment analysis
of the thermal images employing inverse heat transfer
analysis was performed to calculate the probability of
positive breast cancer identification using a threshold.
The threshold for a patient was varied depending on at
least one variable from: age, weight, history of alcohol
consumption, history of tobacco use, the existence of a
mutation in BRCA 1 or BRCA2 gene. Applying inverse
thermal conduction algorithms to the thermal images
made it easier to detect deeply buried tumors. Multiple
thermal infrared images taken over time increased the
probability of correct early detection of smaller and
deeper breast tumors.

– A system and method for classifying the hormone
receptor status of malignant tumorous tissue identified

in a thermal breast image was disclosed in [111]. The
malignant thermal image was analyzed to define a
boundary contour of the breast. Then, the breast regions
were segmented into regions of elevated temperature.
Probability mass function was determined based on
pixel temperatures within the first segmented region.
A second probability mass function was determined
based on pixel temperatures within a second region. A
distance measure (any of: the Jensen Shannon distance,
the Kullback Liebler distance, mutual information,
or any standard defined distance function) between
the two functions was calculated and provided to a
classifier (any of: Support Vector Machine, a neural
network, a Bayesian network, a Logistic regression,
Naive Bayes, Randomized Forests, Decision Trees
and Boosted Decision Trees, K-nearest neighbor, a
Restricted Boltzmann Machine, and a hybrid system
comprising any combination hereof) trained to classify
the malignant tissue as hormone receptor positive and
negative otherwise, based on the distance measure.

– Kakileti & Siva Teja [112] from Niramai Health
Analytix Pvt. Ltd. invented a system and method for
isolating blood vessels in a breast thermal image.
Candidate vessel pixels which satisfy one or more
of intensity-based or temperature-based or shaped-
based criterion were identified and a constraint of
local maximallity was imposed on them to eliminate
spurious non-vessel pixels. Those candidate pixels were
then marked with a different color so that they could
be visually differentiated. The vessel structures were
provided to a classifier system (any of: Support Vector
Machine, a neural network, a Bayesian network, a
Logistic regression, Naive Bayes, Randomized Forests,
Decision Trees and Boosted Decision Trees, K-nearest
neighbor, a Restricted Boltzmann Machine, and a
hybrid system comprising any combination hereof)
which classified the tissue in the thermal image as
malignant or non-malignant based on tortuosity of the
vessel structures.

– Niramai Health Analytix Pvt. Ltd. [113] filed another
patent in 2018 disclosing a method for breast cancer
screening which classified hot spots seen in a thermal
image of both breasts as possibly malignant based
on a measure of symmetry. A hot spot comprising
a patch of pixels with an elevated temperature with
respect to surrounding tissue was identified using
either, a mean temperature of pixels in the patch or a
median temperature of pixels in the patch or a highest
temperature of pixels in the patch. The hot-spots in each
breast were binarized by setting a value of 1 for pixels in
the hot spots and a value of 0 for other pixels. A measure
of symmetry was calculated comprising a ratio of an
area of a smaller hot spot to an area of a larger hot spot
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from the thermogram. The measure of symmetry was
provided to a classifier system (any of: Support Vector
Machine, a neural network, a Bayesian network, a
Logistic regression, Naive Bayes, Randomized Forests,
Decision Trees and Boosted Decision Trees, K-nearest
neighbor, a Restricted Boltzmann Machine, and a
hybrid system comprising any combination hereof)
trained to classify an unclassified hot spot as malignant
or non-malignant.

Discussion

Main findings
Degradation in a thermal image is caused by noise, blur-

ring, fading and artifacts. Reported reviews in Section Pro-
cessing and Segmentation of Suspicious Region revealed
that there is not much significant work done on the quality
improvement of thermal medical images. In the studied lit-
erature, wavelet-based denoising [27, 28], block matching
and 3D filtering technique (BM3D) [30] were the meth-
ods adopted for noise removal. For ROI extraction, Canny
edge detector, Sobel edge detector, Hough transform, C
fuzzy techniques and clustering methods are used. Few
researchers like [41] used automatic segmentation but used
only one side lateral breast images. The work was studied on
a limited basis in clinical trials which pointed out the crucial
need for development of a large scale breast thermogram
database.

Localisation of the tumor from thermal image is critical
for diagnosis of breast cancer. However, in most of the
prior work, textural and statistical features extracted from
the entire thermal images were used to obtain results. There
are limited techniques that segment the tumor region and
use its features for classification. Existing segmentation
algorithms mentioned in Section Boundary Detection,
Asymmetry Analysis, Feature Extraction used clustering
[33, 38, 39, 55], thresholding [93], edge detection,
Hough transform [32] and active contour techniques [61].
Thresholding techniques [93] are strongly governed by
thresholds for segmentation. Rather, using fixed thresholds
for segmentation of thermal images leads to reduced
performance due to varying range of body temperatures.
Head et al. [18, 50] automated the process of asymmetry
analysis to compare contralateral breasts in terms of their
temperature profiles. In [39, 55, 58] the use of high order
statistics over low-order statistics was suggested to detect an
asymmetry.

Several ANN based classifiers are discussed in
Section Using Artificial Neural Networks and Fuzzy Logic
and their performance parameters like accuracy, sensitivity,
specificity, positive predictive value (PPV) and negative
predictive value (NPV) are tabulated. The training set used

in literature is comparatively smaller, hence, results cannot
be validated and generalized. To improve the utility of ther-
mography in clinical practises, it is important to maximise
the performance of classifiers for easy interpretation and
diagnosis.

Pennes bioheat equation, discussed in Section Numerical
Simulations and Models of Breast, is used to study the
thermal interactions within the breast. Although there
is limited literature on modeling of breasts, numerical
modelling in conjunction with high-resolution thermograms
is proved to be a good diagnostic tool. 2D [100, 104–106]
and 3D [102] models of female breast with and without
carcinoma have been implemented and the effect of size and
location of the tumour on surface temperature distribution
was studied.

Despite the success of mammography, due to its
flaws, there is a need for promoting additional research
in thermography to refine it. Researchers in [114–116]
proposed to add thermal imaging as a modality along with
breast examination and mammography to screen breasts;
as mammography gives false negatives in early stages.
A study [115] conducted with 132 patients pointed out
that the accuracy of mammography (76.9%) was more
than thermography (69.7%). Yao et al. [116] found that
mammography has a better accuracy in detecting tumors
larger than 2 cm in diameter, whereas thermography is a
cut above ultrasound and mammography in case of tumors
less than 2 cm in diameter. Wishart et al. [24] found
thermography to be effective in women under 50 years,
whereas in women over 70 years reduced vascularity in
breasts causes thermography to fail. Arora et al. [117]
reported that thermography had up to 97% sensitivity
and 11% specificity for breast cancer detection. However,
the study was not blinded as patients with suspicious
lesions detected by mammography and recommended for
biopsy were selected. Thus, the results of effectiveness of
thermography are controversial and we found a lack of
consensus on the outcome measure of this tool with the
clinicians. It is important to conduct a blind, randomised
trial with adequate cases of every stage of cancer, obese
women, large breast sizes, etc. to check the feasibility of
thermal imaging as a screening test. The findings confirm
that this technique is valuable in the early prognosis and
can add curative potential to breast cancer in the next 5
years. It can be an initial screening test in poor countries
or rural areas having no access to the costly mammography
machine, provided some limitations are overcome.

Limitations
Preliminary survey shows that the analysis of thermal

images in the studies conducted has been subjective
which ultimately led to inconsistency in the diagnosis of
breast cancer. Since, the results obtained were not well
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controlled or blinded, researchers, clinicians lost interest
in the technology and are sceptical about the usage.
The biggest challenge facing researchers in this field
today is that the literature lacks a prospective, double
blinded study, where experts reading the thermograms
are blinded to biopsy site. Challenge faced and not
addressed conclusively yet, is, if thermography can replace
mammography successfully. It is a well identified, yet,
an under appreciated societal challenge. Earlier primitive
thermal technology was discredited due to high false
positive and high false negative rates, limitations on
equipment, image resolution, low accuracy for deep tumors,
its subjective nature and inability to localize a lesion.
On the contrary, with the incorporation of the latest
technology, cheaper and fast thermal cameras are available
now. To get consistent results, more investigation is needed
on interpreting thermal images accomplishing standard
protocols. The role of thermography can truly be evaluated
only through clinical practice and trial in mass breast cancer
screening. Being a preventive test, to improve healthcare,
asymptomatic patients should be screened using thermal
imaging for breast abnormalities. It is difficult to distinguish
between breast cancer and inflammation zones through
thermography. Cold tumors are difficult to be caught on
a thermogram. A high rate of false positives has been
identified as one of the flaws of the diagnostic tool. There
is no literature that guides the clinician to an approach for
making a decision for further treatment after an abnormal
thermogram is detected. There also prevails a lack of work
in distinguishing different stages of breast cancer starting
from early stage using thermography. Thermography is still
not endorsed for detecting clinically occult breast cancer
due to the above highlighted technical challenges and
limitations.

Conclusion

Breast cancer is a critical global health problem. Since it is
not preventable, to curb the mortality rate of this malady,
aggressive work needs to be done on its early detection.
Our review depicts the current state of research and the
progress that has been made in context of the techniques
used for classifying the breast as healthy or malignant using
thermography images along with its diagnostic virtues and
limitations over the past two decades. A significant finding
of the literature work conducted is that there is no large
scale database of thermographic images. In this paper, the
challenges and future potential research opportunities are
highlighted. From the investigation of highly diversified
studies, it is evident that the sensitivity and specificity
of mammography is less than optimal for patients with

dense breasts. There is no one tool that can truly predict
the presence of cancer, except biopsy. Thermography used
in combination with mammography had sensitivity of
95%. Thus, combining different screening tools can help
clinicians achieve the best diagnosis.

Thermography is a patient friendly tool that stands out
in diagnosing early signs of breast cancer thus facilitating
earliest treatment. Human eye cannot easily differentiate
between the thermal patterns, hence, there is a dire need of a
smart, automated system that can accurately understand the
patterns, predict malignancy without erroneous results and
produce acceptably high true positive rate. However, a high
false positive rate has been identified as one of the flaws of
thermography. Research is needed to make the thermogram
interpretation objective and develop an accurate model for
classification of breast patterns. The possibilities with such
systems are very broad and open new opportunities for
research. Thermography can become the appropriate first-
line service for any woman who simply wants to do a safe,
precautionary screening. At present, it can be concluded
that it cannot substitute mammography in clinical practice
due to insufficient evidence. If thermography is coupled
with an agent administered to the patient, it can help to
detect tumor accurately. From the study of published results
using infrared imaging, it was seen that the sensitivity was
between 0.78 and 0.94. The specificity was between 0.73
and 0.92. The reported results are heterogeneous due to
different devices and algorithms used in different works to
classify thermal images.

The limitations of thermography like false-positive and
false-negative need to be reduced further by using appropri-
ate combination of the feature extraction techniques, types
of the segmentation and classification algorithms on a com-
prehensive database. Computer simulations can facilitate
automated interpretation of thermograms to help clinicians
perform breast cancer routine check-up using this tech-
nology as a screening tool. Deep learning based method
has proved to be a promising tool to detect breast cancer
with upto 98.95% accuracy rate. The evidence and gaps
deriving from the past experiments suggest that high qual-
ity scientific research in this field is the need of the hour
to revolutionize the quality of healthcare and link multi-
disciplinary advancements. Considering the small cost and
non-invasive nature of this technology, pursuing further
studies would be worthwhile to chase this endeavour.
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