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Abstract
Poor Medication adherence causes significant economic impact resulting in hospital readmission, hospital visits and
other healthcare costs. The authors developed a smartwatch application and a cloud based data pipeline for developing a
user-friendly medication intake monitoring system that can contribute to improving medication adherence. The developed
Android smartwatch application collects activity sensor data using accelerometer and gyroscope. The cloud-based data
pipeline includes distributed data storage, distributed database management system and distributed computing frameworks
in order to build a machine learning model which identifies activity types using sensor data. With the proposed sensor data
extraction, preprocessing and machine learning algorithms, this study successfully achieved a high F1 score of 0.977 with
13.313 seconds of training time and 0.139 seconds for testing.

Keywords Medication adherence · Internet of things · Wearable · Smartwatch · Health monitoring · Machine learning ·
Cloud computing · Distributed information systems · Distributed computing · Distributed databases.

Introduction

In the United States, over 117 million people have more
than one chronic diseases that often require medication [8].
Medication adherence measures how closely patients follow
their prescribed treatment regimens including dosage and
time [38]. Unfortunately, the medication adherence rate for
patients with chronic diseases is only about 50% which is
much lower than the adherence rate for patients with acute
diseases, showing gradual drops in their first few months of
clinical trials [23].

Medication non-adherence costs $100 billion every year in
the United States, causing hospital readmission, emergency
department and physician visits, death, and other healthcare
costs [38]. The high costs could get worse as outpatient
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medication expenditure increases by over 10% per year,
with increases in the aging population and patients with
chronic diseases [46]. Therefore, increased medication
adherence can help control symptoms and potentially
reduce overall medical cost.

The two main factors causing medication non-adherence
are patient’s stress and the complexity of the tasks [50,
53]. First, a patient’s emotional and physical stress is
the main factor causing medication non-adherence [38,
43]. Emotional stress affecting medication non-adherence
includes depression, denial or anger about the illness and
fear of medication addiction and its side effects. Physical
stress factors include illness and cognitive and physical
declines. Second, The complexity of medication intake
includes the number of medications to take, the frequency,
treatment cost, and medication refill policy and procedure.
Both stress and complexity affect patients’ motivation,
which is the most critical factor for long-term medication
adherence [36]. While stress is hard to be controlled by
external factors, the complexity of medication adherence
could be improved with the help of technology.

In order to develop an effective medication intake
monitoring system which can contribute to improving
medication adherence [2], it is critical to consider social
acceptance, ease of use, and time and cost efficiency for
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enhancing user experience. Developing a user-friendly real-
time medication intake monitoring system can simplify
medication intake process by detecting medication intake
activities and tracking the activities [33]. Many research
studies suggest that perceived ease of use, usefulness,
and benefits are closely related to a user’s acceptance,
satisfaction and intention to use a mobile health monitoring
system which may directly affect medication adherence
[28, 55]. Adopting a lightweight wearable device with
convenient and efficient user interface (UI) can improve
usability for monitoring a patient’s medication intake
activities and provide reminders and feedback on time. Cost
and time efficiency is also critical for patient satisfaction
and adherence rate [24, 44, 47]. The use of Internet of
Things (IoT) health monitoring solutions can reduce 68.3%
of the healthcare cost by lowering hospitalization rate and
physician office visits; although initial costs of device
and service could be an obstacle [45]. For reducing costs
caused by initial hardware design, development, server
and infrastructure maintenance, adopting off-the-shelf IoT
wearable devices and cloud services could contribute to
cost reduction [48]. Many IoT solutions utilize various
computing infrastructure including cloud computing and
edge computing for improving time and cost efficiency and
reducing delay for acquiring, storing and processing data
by efficiently organizing and distributing data [40]. These
computing tools provide a seamless interaction between a
server and a device and allow a user to receive a timely
feedback to prevent any health-related adverse events.

In this research, we focused on a low-cost real-
time medication intake monitoring system, by designing
and developing a smartwatch application and utilizing
distributed data storage and distributed machine learning
models. The smartwatch application collects activity data
from a user and sends data to a distributed data storage,
Amazon Web Services (AWS, [1]) Simple Storage Service
(S3, [3]). Preprocessed data is stored in a distributed
database, MongoDB [35] that is connected to a distributed
processing framework, Apache Spark [4]. We utilized off-
the-shelf devices and cloud services in order to provide
service at low cost as well as with stability.

The rest of this paper is organized as follows:
Section “Related work” covers existing medication intake
monitoring procedures and systems. Sections “System
architecture” and “Algorithms” contain a system architec-
ture and algorithm details. Section “Experiment results”
contains experiment design, specifications of different com-
puting settings and experiment results under different
machine learning algorithms. Section “Conclusion” pro-
vides conclusion and future work.

Related work

Medication intake monitoring approaches fall under two
broad categories: direct and indirect. Direct methods
include direct observation of a patient taking medication,
laboratory detection of drug in a patient’s biological fluids
or in biomarkers. Indirect methods are represented by a
patient’s reporting, pill counting, medication refill history
tracking, and electric tracking systems using cameras or
wearables. While direct methods are most accurate in
monitoring medication adherence, they are most costly,
invasive and time-consuming [25]. Indirect methods, in
contrast, provide relatively inexpensive and effective tools
to monitor medication adherence. As cost and ease of use
determines successful medication adherence, in this section
we discuss various indirect methods.

Conventionally, patients record and follow their med-
ication intake using medication log sheets, text message
reminders or smartphone logging applications [30, 39, 49].
Self-reporting methods including log sheets and smartphone
logging applications require users to answer questions of
whether she or he had taken medications on schedule [20].
An electronic pill box or image scanning system could also
track a user’s medication intake behavior [17, 22]. However,
unfortunately, user’s cognitive impairment or age related
memory loss, busy schedule and medical symptoms could
affect the accuracy of the reporting outcome [42]. As the
number of requested tasks is highly related to task complex-
ity and adherence rate [29], minimizing a user’s manual
inputs, such as opening an application or pressing buttons,
and seamlessly detecting medication intake is critical.

In order to improve the medication adherence rate, many
recent studies have developed systems that utilize low-
cost sensors, which can record a series of activities during
medication intake and provide feedback by analyzing sensor
readings. By automatically recognizing medication intakes
among others activities using data collected via sensors,
these system could detect whether a patient has taken
their medication during a desirable time window and hence
could be used to provide reminders in case of missed
medication intakes. A seamless integration of such systems
into patients’ lifestyle, for example in form of a mobile app,
can leverage timely and natural interaction with patients,
requiring minimal changes in their habits or daily routines,
and thus, promising an improvement in their medication
adherence. Sensor-based systems can utilize both or
either wearable and non-wearable sensors to monitor user
behavior and activities. Non-wearable systems generally
utilize sensors capturing images and videos, while wearable
devices utilize activity sensors including accelerometer
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and gyroscope which collect 3-dimensional acceleration,
orientation and angular velocity. Hasanuzzaman’s work
used radio-frequency identification (RFID) tags attached to
a medication bottle along with captured images from a video
camera to a subject’s face and activities [21]. Tucker, et al.
developed data mining driven methodology, which utilizes
Microsoft Kinect sensors, to model and predict patients’
adherence to medication protocols, based on variations in
their motions [52]. While non-wearable solutions are low-
cost and do not require additional effort from patients like
wearing a device, their use is still restricted to a certain
area such as a patient’s house and often raise privacy
concerns. Chen’s study utilizes inertial sensors and an
RGB-Depth camera in addition to an accelerometer and
gyroscope that is attached to a patient’s wrist to collect data,
to which dynamic time-warping is applied to measure the
similarity between time-series data with different lengths
[12]. Kalantarian’s research employs smartwatches attached
to a patient’s both wrists for collecting and processing
accelerometer and gyroscope data in order to detect a
series of activities including opening a bottle and twisting
a cap by using the distribution of the sensor readings
[30]. The study requires the patient to wear sensors on
both wrists and only applied one classification algorithm
(namely, decision trees). To address that issue, Kalantarian
extended his study to offer a system and algorithms based
on data collected from a smart necklace. The system offers
opportunities to detect whether the medication has been
ingested based on the skin movement in the lower part
of the neck during a swallow using a piezoelectric sensor
[31]. The system applies Bayesian networks to classify
between chewable vitamins, saliva swallows, medication
capsules, speaking, and drinking water and was able to
reach the average precision and recall of 90.17 % and
88.9 %, respectively. Yet, wearing a necklace might be
uncomfortable for patients, thus lowering the usability and
system acceptance rate.

Considering the ease of use, it is better to use embedded
sensors in one device which is easy and light to wear.

Additionally, a device that supports seamless data transfer,
has a long battery life and is of durable quality improves
usability. In that sense, a smartwatch provides higher usability
and social acceptance alongwith the capabilities of measuring
and transferring activity data. A survey with 221 people
from Kalantarian’s work shows that 72% of participants
responded positively to wearing smartwatches [30].

System architecture

In order to develop a low-cost, scalable, reliable and
time-efficient medication intake monitoring framework, we
utilized a smartwatch (supporting various embedded activity
sensors along with a cellular connection), distributed data
storage and processing engines. In this study, activity sensor
readings for different types of activities are transferred
from a smartwatch to a cloud storage. Then, the system
processes and transforms raw data into a DataFrame that
is structured data with columns and rows of statistical
descriptive features using a distributed processing engine
and stores it in a distributed schemaless database. In order to
develop a machine learning model with high accuracy and
efficiency from a large volume of high-frequency data, we
applied and validated multiple machine learning algorithms
written in the distributed processing framework. Figure 1
shows the designed and developed data science pipeline.

Mobile application

Smartwatches are effective activity monitoring devices
because they already contain embedded sensors that can
capture a wide range of movements. For example, smart-
watches contain a three-axis accelerometer, gyroscope,
near-field communication (NFC), and heart rate monitor.
These seamlessly integrated sensors provide a much less
obtrusive monitoring experience in comparison to smart-
phones or other wearable devices such as a heart rate mon-
itor chest strap. Sensor data collected from a smartwatch

Fig. 1 Data science pipeline
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application plays a critical role in providing contextual
information which can be used for analyzing user behavior
and generating relevant feedback for patients. Addition-
ally, information provided from a smartwatch is more easily
accessible than information provided from other devices
including a laptop, tablet or smartphone, because of its com-
pactness and adjacency to the user [26]. In this study, we
utilized an LG Watch Sport - the first Android watch run-
ning on AndroidWear OS 2.0 which provides improved user
interface and a cellular connectivity [6]. The list of available
biosensors that LGWatch Sport supports is listed in Table 1.
As LG Watch Sport supports cellular connection, collected
sensor data can be directly transmitted to the cloud stor-
age without being synchronized to a smartphone or without
WiFi connectivity.

In this study, we collected 3-axis accelerometer and
gyroscope data with a sensor delay of up to 5 milliseconds.
These two sensors play a critical role in detecting activity
types – the accelerometer sensor measures acceleration
while the gyroscope measures orientation and angular
velocity of activity. In order to save storage space on the
device and reduce the amount of data transferred over the
network, the system collects data only when there is a
change in sensor readings.

Cloud services

Accelerometer and gyroscope sensors embedded in the
smartwatch collect three-dimensional data with a frequency
of 200 Hz. This multidimensional high-frequency time-
series data requires scalable solutions for data storage,
database system, data preprocessing, and machine learning
model development. Cloud computing utilizes storage
and computing resources located in multiple data centers
connected via a network, and provides services on demand.
Cloud computing is highly scalable and user-friendly,
reacting to user needs dynamically by scaling resources,
and providing IT infrastructure and maintenance services.
Allowing resources and services to be shared by multiple
users, cloud computing minimizes cost and became an
economic and powerful tool [10, 13, 18, 57]. Therefore, a
cloud service which is scalable and accessible could be the
best solution for storing and processing the high-frequency

Table 1 A list of biosensors embedded in LG Watch Sport and
monitored attributes

Sensor Monitored attributes

Gyroscope Rotation

Accelerometer Acceleration

Photoplethysmogram (PPG) Heart rate

Barometer Atmosphere pressure

sensor data in the multi-user setting. Since motion data is
captured with millisecond granularity, the size of the data
increases exponentially. Acknowledging these constraints,
we identified AWS as a platform that provides cost-effective
storage and computing frameworks [1].

Distributed data storage

For storing raw sensor data collected from a smartwatch,
we utilized networked data stores which support high data
availability by replicating data in multiple servers. With
AWS Simple Storatge Service (S3), data is accessible from
anywhere with an option to replicate data in multiple storage
across many regions in the world. Additionally, S3 offers
a secure infrastructure through access policy options that
allows only authorized users to access the data. AWS S3 also
ensures scalability and flexibility by parallelizing requests
and allowing any size and type of object, while minimizing
time and cost for server maintenance [3].

Distributed database

In the last two decades, tech companies started tracking
detailed user behaviors through websites and IoT devices
in real-time, which caused a huge volume of data with
an evolving schema. For storing IoT data with explosive
volume growth, the needs of an affordable but robust system
arose. Many of the new database management systems
support distributed data sources by dividing and storing data
in different servers (shards) and improve data availability by
maintaining replicas in multiple servers [11, 16].

MongoDB, one of the most popular distributed databases,
stores data in a schemaless JSON document format allowing
users to add and remove fields easily. MongoDB is
designed to scale out and split up data across multiple
servers. MongoDB takes care of loading data across a
cluster, balancing data distribution in multiple servers and
routing user requests to the server which has the relevant
data points. These capabilities allow users to focus on
programming rather than low-level system architecture and
data distribution [35].

For developing a distributed database, the system utilizes
several AWS Elastic Compute Cloud (EC2) instances
with MongoDB installed. For developing a distributed
database management system, a routing server (mongos),
configuration nodes and data shards and their replica
nodes are launched (Fig. 1). Mongos service node takes
user requests and routes them to the right instance which
contains requested data. The configuration nodes include
one primary (master) and two secondaries (slaves) and
manage metadata of the overall database. We divided the
original sensor readings into shard nodes where each shard’s
primary and secondaries maintain a subset of preprocessed
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sensor readings. For configuration and data shard nodes,
the system maintains one primary and multiple secondary
nodes for each shard in case of a primary node failure.
Each primary node is in charge of read and write operations
and copies data to secondaries. Secondary nodes maintain
replicated data which can be used when a master node fails
due to networking, power outage, and other system failures.

Distributed computing

Hadoop’s MapReduce, introduced in 2004, implemented
efficient distributed techniques in an attempt to speed up
large scale data analysis [15]. MapReduce splits data into
smaller chunks across different nodes, and subsequently
maps and processes a task, e.g., filtering and sorting, in
parallel. The output of a mapped task becomes the input of
a reduce operation, which performs a summary operation.
This highly-effective model allows users to design programs
with successive Map and Reduce operations, and is a
popular and powerful programming paradigm.

Apache Spark adopts the MapReduce model, but
executes a task close to 100 times faster than MapReduce by
processing data in memory. Also, Spark uses efficient job
scheduling and recovery model using directed acyclic graph
(DAG) representation, and still runs 10 times faster in disk
than MapReduce [5, 19, 56].

For processing sensor data and applying machine
learning algorithms using Spark, we utilized AWS Elastic
MapReduce (EMR) which uses Hadoop’s YARN (Yet
Another Resource Negotiator) for provisioning the cluster’s
hardware resources (EC2 instances) and installs the required
software for running Apache Spark (Fig. 2).

Algorithms

In order to process high-frequency sensor data and classify
medication intake activities, we designed and developed
a preprocessing algorithm to impute missing data and
extract statistical features and applied four machine learning
algorithms being executed on a Spark cluster.

Fig. 2 AWS EMR cluster architecture

Preprocessing algorithm

In order to save storage and computing resources, the data is
only collected from the smartwatch application when there
is a new sensor event triggered by an accelerometer or a
gyroscope. Therefore, for discretizing the data and calcu-
lating the statistics of data, missing data imputation was
necessary. Additionally, as this work applies classification
algorithms to different lengths of time-series data from the
3-axis accelerometer and gyroscope, data discretizion was
applied along with feature extraction. The pseudocode for
missing data imputation is listed in Algorithm 1.

Once missing data is imputed, we discretized high-
frequency data which was collected every five milliseconds.
Since the time duration of each data varies, we reduced the
time-series data length of n to the length of f (f ≤ n)
and calculated statistics for the entire data and over each sliding
window. When the original time-series after imputing missing
data is C = c1, ..., cn, the mean over the sliding window
(C) is calculated by Eq. 1. In addition to the mean in Eq. 1,
we also calculated other aggregate measures including
minimum, maximum, 5, 25, 50, 75 and 95 percentiles and
standard deviation accordingly for the entire time frame
and each sliding window. In addition to the mean, adding
statistical values as features help estimate data distribution
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Table 2 EC2 instance configurations for MongoDB (Given CPU, memory, storage and price information are for each node)

Role Number of nodes Number of CPU Memory Storage Price

Shard 1 3 1 2 GB 8 GB $0.023/hr

Shard 2 3 1 2 GB 8 GB $0.023/hr

Routing 1 1 1 GB 8 GB $0.012/hr

Configuration 3 1 1 GB 8 GB $0.012/hr

and outliers. For example, percentile values provide a better
understanding about the distribution of the data [9].

μi = f

n

n
f

i∑

j= n
f

(i−1)+1

cj (1)

Machine learning algorithms

In order to accurately classify the medication intake activity,
we grouped the activity labels into a binary class — a
medication intake activity and not a medication intake
activity (including other activities). Using these labels, we
applied four different supervised learning algorithms and
compared their predictive performance using metrics such
as F1 scores, as well as execution time.

Random forest

Random forest is an ensemble-based supervised learning
algorithm that aggregates multiple decision trees [41]. The
algorithm uses random sampling of training data when
building trees and a random subset of features when splitting
the nodes. This inherent randomness within the trees avoids
overfitting issues complicit with deterministic decision
trees, which allows random forest to perform well without
much of hyperparameter tuning. Each decision tree in a
random forest learns from random samples which are drawn
using bootstrapping. Predictions for testing are calculated
by averaging the predictions of each decision tree [7].

Gradient-boosted tree

Gradient boosting is an ensemble-based machine learning
method that can be used for classification and regression.

The principle behind gradient boosting is using an ensemble
of weak decision tree stumps to form a strong classifier
or regressor. Unlike the random forest algorithm, the
gradient boosting algorithm puts more weight on previously
misclassified samples when generating successive trees.
Just like any other supervised machine learning algorithm,
the goal of gradient boosting is to minimize a loss function
such as mean squared error (MSE, (2)) or mean absolute
error (MAE, (3)) [34].

MSE = 1

n

n∑

k=1

(predictedk − truek)
2 (2)

MAE = 1

n

n∑

k=1

| predictedk − truek | (3)

Logistic regression

Logistic regression is a widely used statistical supervised
machine learning algorithm that predicts the probability
that an input value belongs to a particular category by
fitting the data to a linear regression model, which is then
passed to the logistic function in Eq. 4 [14, 37]. The main
strength of logistic regression is the interpretability of the
model outputs. The algorithm can also be regularized to
avoid overfitting and is often used as a base model for
classification problems.

σ(x) = 1

1 + e−x
(4)

Support vector machine

Support Vector Machine (SVM) is a machine learning
algorithm that classifies class labels by solving a convex
optimization problem to find a separating hyperplane, Eq. 5

Table 3 EMR cluster types used for launching Apache Spark (Given CPU, memory, storage and price information are for each node)

Cluster Role Number of CPU Memory Storage Price

Cluster 1 Primary 4 8 GB 32 GB $0.030/hr

Secondary (Total 2 Nodes) 4 8 GB 32 GB $0.030/hr

Cluster 2 Primary 8 15 GB 80 GB $0.070/hr

Secondary (Total 2 Nodes) 8 7 GB 32 GB $0.035/hr
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in a Hilbert space that maximizes the margin between the
two classes [32].

w · x + b = 0 (5)

SVM uses a nonlinear function to map vectors in the
input space to a higher dimensional space where the classes
can be linearly separated [51].

Experiment results

For validating the designed data science pipeline, we
deployed the distributed systems for storing and processing
sensor data from smartwatches. The experiment setting
section describes the details of hardware being used and
human subjects along with performed activities. The result
section demonstrates the accuracy and time efficiency of the
developed system.

Experiment setting

In this study, the systemwas designed to store a large volume
of high frequency sensor data stream, extract features and
apply machine learning algorithms with scalability and time
efficiency using cloud-based frameworks. The recruited
human subjects performed various activities for collecting
data using the developed smartwatch application.

System architecture setting

We utilized Amazon Web Services for implementing a
cloud-based data pipeline to preprocess, store and apply
machine learning algorithms using distributed frameworks.
Preprocessed data is stored in MongoDB and the spec-
ifications of our launched AWS Elastic Compute Cloud
(EC2) instances for MongoDB are in Table 2. For applying
machine learning algorithms to data from MongoDB, we
used Apache Spark installed on two different AWS Elastic
Map Reduce (EMR) clusters where each has one primary
and two secondary nodes. The specifications of each EMR
are outlined in Table 3.

Subject and data collection

For the experiment, we collected data from 24 individuals
listed in Table 4. Each individual performed medication
intake activities wearing watches on either their left or right
wrists. In addition, individuals performed non-medication
intake activities including texting, walking, writing and
opening and drinking a bottled water (Table 5). The subjects
repeated each activity five times. The data is randomly split
into 80% and 20% for training machine learning models and
validating them respectively.

Table 4 Recruited subject information

Criteria Number of subjects

Dominant hand Right 21

Left 3

Watch wrist Right 16

Left 8

Sex Female 13

Male 11

Age group 18-20 5

20-24 9

25-29 4

30-34 2

35-39 1

45-49 2

55-60 1

The proposal of human subject recruitment and data
collection processes was submitted to, and approved by
University of San Francisco, Institutional Review Board
(IRB) for the Protection of Human Subjects.

Example accelerometer and gyroscope readings during
medication intake and other activities are given in Figs. 3
and 4. In the example given, the subject was wearing the
watch on the left wrist which is the subject’s non-dominant
wrist.

Results

To evaluate the performance of our models, we compared
the model fitting time and the F1 score. The F1 score is a
measure of prediction accuracy, considering true and false
positives and negatives, where 1 is the best and 0 is the
worst. For a highly imbalanced dataset, F1 score is a better

Table 5 Activity Types and Watch Wrists (Each subject repeated each
activity five times)

Activity Activity class Watch wrist

Pill medication intake Medication intake Left

Right

Liquid medication intake Left

Right

Texting Non-medication Preferred Wrist

Writing Intake by the Subject

Walking

Bottled water intake
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Fig. 3 Accelerometer and gyroscope readings of non-medication intake activities
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Fig. 4 Accelerometer and gyroscope readings of medication intake activities

Fig. 5 Various sliding window
sizes and corresponding F1
scores of different machine
learning algorithms
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Fig. 6 Different machine
learning algorithms and
corresponding F1 scores for the
window count of 40

measure than accuracy to evaluate a model performance
because it accounts for recall and precision.

Accuracy = T P+T N
T P+FP+FN+T N

P recision = T P
T P+FP

Recall = T P
T P+FN

F1 = 2∗(Recall∗Precision)
(Recall+Precision)

In order to validate the accuracy of algorithms, we
applied aforementioned four different classification algo-
rithms. As the preprocessing step returns different numbers
of features depending on the sliding window size, we sum-
marized each data set into 5 to 50 different bins (window
count) and calculated F1 scores. Figure 5 shows window
count and F1 score of corresponding algorithms and shows
that the window count of 40 yields the global maximum
for all four algorithms. Figure 6 shows the F1 score of
each model where gradient-boosted tree and random for-
est models yield the highest F1 scores, 0.983 and 0.977,
respectively. This results show that the developed system
outperforms existing medication intake monitoring systems.
Chen’s study utilizing inertial sensors with an RGB depth

camera achieved an F1 score of 0.9796 using data collected
from 5 subjects [12]. Kalantarian’s research which required
their 25 subjects to wear watches on both wrists achieved an
F1 score of 0.4468 due to low precision [30]. Kalantarian’s
recent study using a smart necklace achieved an F1 score of
0.895 from their 20 subjects [31].

Figures 7 and 8 show the execution time for training
and testing each of the machine learning algorithms
with a different window count on Cluster 2. Although
fast prediction time is most critical for providing timely
feedback to a user, a medication detection system also
requires to train new models quickly. In order to make
sure that the developed model is adaptive to a wide range
of users with different medication intake behaviors, sensor
signatures, and medical conditions, the system needs to re-
train a model as more data being collected. In addition,
re-training a model will help develop an adaptive adjustment
for individuals with changes in medication regimens and
medical conditions [54].

Classification models tend to take more time to be trained
and tested when the number of windows increase, as this
corresponds to the number of features being used. While
the gradient-boosted tree model showed the highest F1
score (0.983) when the window count is 40, it takes the
longest time (208.784 seconds) to be trained. In contrast, the

Fig. 7 Various sliding window
sizes and corresponding training
time of different machine
learning algorithms on Cluster 2
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Fig. 8 Various sliding window
sizes and corresponding test
time of different machine
learning algorithms on Cluster 2

random forest model which has the second highest F1 score
(0.977), takes the shortest training time (13.313 seconds).

As Cluster 1 and Cluster 2 have different machine
specifications including CPU, memory and disk, we
compared the training and test time of the two best models,
gradient-boosted tree and random forest models. On Cluster
1, it takes 36.833 and 0.337 seconds to train and test a
random forest model, and 668.909 and 0.482 seconds to
train and test a gradient-boosted tree classifier, when the
window count is 40. On Cluster 2, it takes 14.070 and 0.169
seconds to train and test a random forest model, and 208.784
and 0.126 seconds to train and test a gradient-boosted tree
classifier, when the window count is 40 (Fig. 9). Since
Cluster 2 has more computing power including more CPUs,
memory and disk space, it showed a better time efficiency.
Therefore, the cost of building and training Cluster 2 is
57.849% of Cluster 1 and the cost of testing on Cluster 2
is 48.531% of Cluster 1, using random forest and gradient-
boosted tree models. When processing data in a distributed
manner, data needs to be sent to a number of instances and
the processed outcome in each instance needs to be sent
back for summarization and this process may require more
networking time and overload [27]. Therefore, it is critical
to choose and configure a Spark cluster for minimizing
time and cost required to build and apply a model. In this
case, the data size was large enough that it overcomes the

extra networking time and benefits from the distributed and
parallelized processing.

Conclusion

In this study, we developed a smartwatch application
and cloud-based distributed data storage and processing
pipeline for monitoring medication intake. The smartwatch
application collects accelerometer and gyroscope data
while a subject performs eight different activities and
sends the data to a cloud data storage. The developed
pipeline processes the sensor datastream and stores the
data in a distributed schemaless database, MongoDB. We
applied four different classification algorithms to develop
distributed machine learning models and compared their
F1 scores and training time. The study results show
that gradient boosted tree yields the highest F1 score
(0.983), although it requires the most training time (208.784
seconds). Alternatively, random forest produced the second
highest F1 score (0.977) with the least training time (13.313
seconds). As both gradient boosted tree and random forest
algorithms require an insignificant amount of testing time
(0.126 and 0.139 seconds respectively), the choice between
the two algorithms would depend on priorities between F1
score and training time. The results of our study also show

Fig. 9 Training time of gradient-
boosted tree and random forest
algorithms using two different
clusters listed in Table 3
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that a Spark cluster with more CPUs, memory and storage
can build a machine learning model faster by utilizing more
computing resources concurrently.

Adding extra features using other biosensors embedded
in a smartwatch might enhance F1 score, although it would
require more training and testing time. In addition to the
biosensors utilized in this study, many smartwatches are
equipped with NFC which establishes communication and
exchanges data between two electronic devices within close
proximity (about 10 cm). While our study results show that
the applied algorithm could sometimes misclassify data,
perhaps applying NFC sensors’ data could enhance the
outcome. Our future research will also extend the system and
clinical study for validating improvements in medication
regimen adherence by sending notifications when a subject
misses or takes an incorrect amount of medication.
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