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Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder accounting for 70%–80% dementia cases world-
wide. Although, research on AD has increased in recent years, however, the complexity associated with brain structure
and functions makes the early diagnosis of this disease a challenging task. Resting-state functional magnetic resonance
imaging (rs-fMRI) is a neuroimaging technology that has been widely used to study the pathogenesis of neurodegen-
erative diseases. In literature, the computer-aided diagnosis of AD is limited to binary classification or diagnosis of AD
and MCI stages. However, its applicability to diagnose multiple progressive stages of AD is relatively under-studied.
This study explores the effectiveness of rs-fMRI for multi-class classification of AD and its associated stages including
CN, SMC, EMCI, MCI, LMCI, and AD. A longitudinal cohort of resting-state fMRI of 138 subjects (25 CN, 25 SMC,
25 EMCI, 25 LMCI, 13 MCI, and 25 AD) from Alzheimer’s Disease Neuroimaging Initiative (ADNI) is studied. To
provide a better insight into deep learning approaches and their applications to AD classification, we investigate ResNet-
18 architecture in detail. We consider the training of the network from scratch by using single-channel input as well as
performed transfer learning with and without fine-tuning using an extended network architecture. We experimented with
residual neural networks to perform AD classification task and compared it with former research in this domain. The
performance of the models is evaluated using precision, recall, f1-measure, AUC and ROC curves. We found that our
networks were able to significantly classify the subjects. We achieved improved results with our fine-tuned model for all
the AD stages with an accuracy of 100%, 96.85%, 97.38%, 97.43%, 97.40% and 98.01% for CN, SMC, EMCI, LMCI,
MCI, and AD respectively. However, in terms of overall performance, we achieved state-of-the-art results with an
average accuracy of 97.92% and 97.88% for off-the-shelf and fine-tuned models respectively. The Analysis of results
indicate that classification and prediction of neurodegenerative brain disorders such as AD using functional magnetic
resonance imaging and advanced deep learning methods is promising for clinical decision making and have the potential
to assist in early diagnosis of AD and its associated stages.
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Introduction

Alzheimer’s disease (AD) is an incurable neurodegener-
ative disorder with an unrelenting progression, affecting
memory and cognitive abilities of a person. AD patho-
genesis is believed to be triggered due to the overpro-
duction of amyloid-β (Aβ) [1, 2] and hyper phosphory-
lation of tau [3, 4] protein. This results in accumulation
of Aβ plaques and tau neurofibrillary tangles, disrupting
the nucleocytoplasmic transport between neurons leading
to cell death. Initially, the hippocampus region [5] is
affected by the disease. Since the hippocampus is asso-
ciated with memory and learning, therefore, memory loss
is one of the early symptoms of AD. The exact cause of
AD is unknown and, in some cases, it is believed to be
genetic.

Dementia is a general term used for memory-related neu-
rological disorders; however, Alzheimer’s disease is the most
common type of dementia. According to the World
Alzheimer’s Report 2015 [6], approximately 50 million peo-
ple are suffering from dementia where AD accounts for 70–
80% of cases. It has been estimated that by 2050, 131.5 mil-
lion people will be suffering from AD worldwide. The rate of
prevalence of AD globally is alarming that in every 3 s a
person falls prey to it [7]. Also, AD gets the 6th place among
the leading causes of death in the aging population. The total
estimated cost to combat the disease worldwide in 2015 was
$818 billion [6]. The cost on AD is reaching up to trillion
dollars by 2019 and this cost is estimated to reach up to 2
trillion dollars by 2030 [7]. The percentage of people with
AD increases with age: 3% people of age 65–74, 17% people
of age 75–84 and 32% people of age 85 or older have
Alzheimer’s disease [8].

AD is a progressive disorder that starts with mild symp-
toms and gets worse progressively. Researchers believe that
Alzheimer’s related brain changes may begin 20 years or more
before any symptoms of AD appears [8]. There are various
stages of the disease, that are termed as: cognitively normal
(CN), significant memory concern (SMC), early mild cogni-
tive impairment (EMCI), mild cognitive impairment (MCI),
late mild cognitive impairment (LMCI), and Alzheimer’s dis-
ease (AD) [9]. CN subjects show normal signs of aging with
no signs of depression and dementia. In SMC, the subject has
normal cognitive functions but show slight memory concerns.
Subjects retain older memories by facing difficulties in
forming and retaining new ones. EMCI, MCI, and LMCI are
the stages during which disease has progressed and start af-
fecting daily life activities. The patient shows symptoms in-
cluding loss of motor functions, speech difficulties, memory
concerns and ability to read and write. Levels of MCI are
determined by a Wechsler Memory Scale (WMS) neuropsy-
chological test [10]. AD is the advanced and final stage of the
disease leading to death. There is no cure for AD but the right

medication and proper care can help to manage symptoms.
Although AD can’t be cured however cognitive decline can
be slowed down in the early stages of the disease. Therefore,
early-stage detection of AD is highly desirable in order to
increase the quality of patients’ lives and to improve the de-
velopments in drug trials.

In recent years, the growth of neurodegenerative disor-
ders such as AD has gained much interest from researchers
worldwide to develop high performing methods for diag-
nosis, treatment, preventive therapies, and target drug dis-
covery by studying the pathological processes associated
with each stage of AD [11]. The rate of progression of AD
varies from patient to patient and individuals may show
different symptoms in a certain disease stage [12]. That
makes classification of AD stages a challenging task for
diagnosis and prognosis. New research developments have
made it possible to diagnose AD using advanced diagnos-
tic tools and biomarker tests. Various invasive and non-
invasive neuroimaging technologies are used for AD diag-
noses such as structural Magnetic Resonance Imaging
(sMRI), functional MRI (fMRI), Positron Emission
Tomography (PET), Computerized Tomography (CT),
Electroencephalography (EEG), Magnetoencephalography
(MEG) and Cerebrospinal fluid (CSF) biomarkers. The
neuroimaging data acquired from these technologies are
used for providing a computer-aided diagnosis to aid phy-
sicians and clinicians in order to improve health-care sys-
tems for AD.

Recently, resting-state functional magnetic resonance
imaging (rs-fMRI) is being increasingly utilized to study
the pathogenesis of AD and its stages. rs-fMRI is non-
invasive and has shown great applicability to map how
AD spreads in the living brain. Various studies have tested
the accuracy of AD-related fMRI measurements and found
positive predictability of disease related to cognitive de-
cline [13, 14]. Resting-State fMRI captures the changes
in blood oxygenation levels of subjects in the rest state.
Therefore, brain regions affected by neurodegeneration
show different patterns of blood oxygenation levels.
Also, normal healthy subjects and AD patients show dif-
ferent patterns of blood oxygenation activities, which may
directly be related to disease pathology and can be used to
distinguish various stages of AD for diagnostic decision
making. Various researchers have targeted the problem of
computer-aided AD classification and diagnosis from rs-
fMRI data. In this respect, one of the earlier methods used
for AD diagnosis was based on using statistical techniques
such as the General Linear Model (GLM) that have been
applied for the analysis of fMRI [15, 16]. This method
detects activated brain regions by performing a correlation
between the template model and fMRI time sequences.
GLM is a time-consuming algorithm that uses voxel as a
parameter of measurement and is single variate [15].
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Independent Component Analysis (ICA) is another sta-
tistical technique used for the analysis of neuroimaging
data. Oghabian et al. [17] have applied ICA algorithm to
distinguish between healthy, MCI and AD patients. They
used fMRI data from 15 normal, 11 MCI and 14 AD
subjects and applied seven steps pre-processing pipeline.
Different pre-processing techniques have been applied in
this study including MCFLIRT based head motion correc-
tion [18, 19], slice-timing correction, mean intensity nor-
malization, spatial smoothing using FSLBET based brain
extraction [20], high pass filtering, and Gaussian smooth-
ing. After applying various pre-processing steps, the ICA
algorithm has been applied to fMRI activation patterns.
They obtained a difference of 0.0097, 0.0051, and
0.0168 between control and MCI, between control AD
and between AD and MCI subjects respectively.

Another commonmethod for neuroimaging data analysis is
based on Multi-Voxel Pattern Analysis (MVPA) techniques
[21, 22]. This method is based on supervised linear regression
and determines specific functional activities of various brain
regions by using their neural dynamics. Coutanche et al. [22]
have applied MVPA to determine symptoms in patients. And
it was found that MVPA methods can be used to classify
various stages of a disease. In MVPA based approaches, mul-
tiple classifiers are used to obtain the best results. To classify
fMRI data non-linear classifiers are used such as Support
Vector Machine (SVM).

The traditional machine learning techniques require
handcrafted feature extraction before classification.
However, for automatic analysis of neuroimaging data, man-
ual extraction of features is suboptimal. Approaches based on
user-defined features have limitations. Improved performance
can be obtained by learning features specific to the problem of
interest. Recently, deep learning methods are being used in the
domain of neuro-imaging for automated feature extraction and
analysis of brain data by using improved processing power
and graphical processing units. In deep learning techniques,
feature extraction is automatic, thus, models based on this
achieve improved performance.

In this respect, H.I Suk et al. [13] have applied deep
learning to classify three disease stages including MCI,
MCI converter, and AD. The dataset includes scans from
128 MCI, 76 MCI converters, 93 AD and 101 normal
control (NC) subjects. These scans were pre-processed
by applying methods of skull-striping, spatial normaliza-
tion, and cerebellum removal. For feature extraction from
images, an auto-encoder network has been applied. After
feature extraction, SVM based classification has been per-
formed and accuracies of 95.35%, 85.67%, and 75.92%
have been achieved for AD vs. NC, MCI vs. NC and
MCI-converter vs. MCI respectively. Siqi Liu et al. [26]
presented a multi-modal method to extract neuro-imaging
features for AD diagnosis. The zero-masking method was
used to learn low-level features and stacked autoencoder

Table 2 Alzheimer’s disease classification using fMRI and deep learning techniques

Study Modality Dataset Sample Size Methods Targeted Alzheimer’s Disease Stages

CN SMC EMCI MCI LMCI AD

Sarraf et al. (2016) [14] fMRI ADNI 28 AD, 15 CN LeNet-5 ✓ – – – – ✓

S. Sarraf et al.
(2016) [30]

MRI, fMRI ADNI fMRI (52 AD, 92 CN),
MRI (211 AD, 91 CN)

LeNet, GoogleNet ✓ – – – – ✓

Y. Kazemi et al.
(2018) [39]

fMRI ADNI 55 CN, 25 SMC, 46 EMCI,
39 LMCI, 29 AD

2D CNN,
AlexNet

✓ ✓ ✓ – ✓ ✓

Proposed Work fMRI ADNI 25 CN, 25 SMC, 25 EMCI,
13 MCI, 25 LMCI, 25 AD

2D CNN,
ResNet-18,
Transfer learning

✓ ✓ ✓ ✓ ✓ ✓

Fig. 1 Computational steps for multi-class AD classification
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network was used for learning high-level features. The
extracted features have been classified by applying SVM
classifier and an accuracy of 86.86% have been achieved.

Payan et al. [27] presented an algorithm for classifica-
tion of three stages of AD including MCI, AD and normal
control (NC). The algorithms were based on applying a
3D CNN with an autoencoder network and 2D CNN to
classify brain scans. An accuracy of 89.47% and 85.53%
have been achieved with 3D CNN and 2D CNN models
respectively. Siqi Liu et al. [38] also achieved a classifi-
cation accuracy of approximately 85.53% with the same
network architecture for 2D CNNs. Sarraf et al. [14] per-
formed research for classification of AD. The study was
based on classifying AD patients from normal control
subjects using MRI and fMRI scans. Two network archi-
tectures have been applied for binary classification. These
CNN based architectures were based on LeNet-5 and
GooleNet. They achieved an average accuracy of 99%
with LeNet and 100% with GoogleNet using fMRI data.

Table 1 presents a review of the studies based on
Alzheimer’s disease classification using deep learning
techniques. Most of the studies have used structural
MRI or PET scans and are based on the classification of
a few disease stages i.e. AD, CN, and MCI. There is a
limited number of studies that have used fMRI data for
multi-class AD diagnosis and classification. Some of the

studies that have used fMRI data for AD classification has
been listed in Table 2 along with the stages of the target
disease.

Classifying different stages of AD is a challenging task due
to overlapping features of different stages. Most of the work in
literature is directed towards the binary classification i.e. pres-
ence or absence of AD from neuro-scans. Little work is done
to classify two or more stages of this disease. In this research,
the objective is to perform a multi-class classification of 6 AD
stages that include CN, SMC, EMCI, MCI, LMCI, and AD.
Classifying data with similar features among different classes
is a challenging task. Another challenge is the availability of
large datasets with ground truth labels. In order to overcome
this problem transfer learning approach, in addition to training
the model from scratch, has been used in this study to improve
performance. We have used resting-state fMRI to perform
multi-class AD classification by applying image processing
and deep learning methods. We used Resnet-18 as a base
architecture and empirically performed analysis by using
two approaches. First, by training ResNet-18 from scratch
by randomly initializing the network parameters and reducing
the number of input channels to one. Second, by initializing
weights from pre-trained model and using two strategies for
transfer learning: (i) by replacing the last dense layer of the
original network with the new dense layer and, (ii) re-training
all the convolution layers of the network with our dataset.
Several experiments are performed by tuning hyperparameters
of algorithms and classifiers, to get optimal accuracy.

This paper is organized into the following sections.
Section 1 provides an introduction and literature review.
Section 2 presents the methods and materials used to conduct
this research. The experimental details and results are listed in
Section 3. Finally, the conclusion has been presented in the
last section.

Materials and Methods

The researchmethodology consists of multiple steps including
data acquisition, pre-processing, deep learning-based feature
extraction and classification followed by evaluation.
Neuroimaging data are acquired from a well-known database
on Alzheimer’s disease. Pre-processing techniques are applied
to remove noise and artifacts from data. Preprocessed data is
then fed to CNN based neural networks for feature extraction
and classification of multiple stages of AD. These computa-
tional steps are graphically presented in Fig. 1.

Neuroimaging Dataset

Neuroimaging data is acquired from Alzheimer’s disease
Neuroimaging Initiative (ADNI) database [40] that has
been used in various studies [13, 23] for AD classification.

Table 3B Characteristics of the rs-fMRI dataset

Characteristic Description

Acquisition Scanner Philips Medical systems

EPI 140 scans/volume

Field strength 3.0

Flip angle 80 degree

TE = 30.001 30.0001

Width, Height 64,64

Number of slices 6720

Pixel spacing 3.3125

Slice thickness 3.313

Format DICOM

Table 3A Overview of the study groups in the rs-fMRI dataset

Study Group No. of Subjects Mean Age

CN 25 75.091

SMC 25 72.512

EMCI 25 71.874

LMCI 25 72.277

MCI 13 75.000 s

AD 25 74.69

Total 138 –
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ADNI is an extensive multisite study aimed at developing
genetic, biochemical, neuroimaging and clinical bio-
markers for AD diagnosis, prognosis, and tracking. ADNI
contains neuroimages in various modalities including
MRI, fMRI, PET, and DTI. In this research, we have used
rs-fMRI brain scans provided by ADNI. The dataset con-
tains fMRI scans from 138 subjects including 25 CN, 25
SMC, 25 EMCI, 25 LMCI, 13 MCI, and 25 AD. The age of
the subjects is greater than 71 and each of them has been
diagnosed and labeled as one of the AD stages based on
their scores in cognitive tests i.e. mini-mental state exam-
ination (MMSE) [41] and clinical dementia rating (CDR)
[42]. The characteristics of the fMRI dataset used for ex-
perimental analysis are given in Tables 3A and 3B.

Preprocessing of Resting-State fMRI Data

Researchers have used various preprocessing steps on this
dataset [14, 30]. Data preprocessing is applied to remove noise
and artifacts from data that can improve the quality of images
and leads to better feature extraction. For preprocessing rs-
fMRI, the standard pipeline consisting of various steps is used.
Firstly, the dataset is converted from DICOM to NIFTI format
by using the conversion toolbox from Chris Rorden [43].
Functional Magnetic Resonance Imaging of the Brain
(FMRIB) Software Library (FSL) [44, 45] is used for prepro-
cessing the data.

Brain extraction is performed on scans to remove non-
brain tissues such as neck tissues and skull. For this purpose,
FSL-BET toolbox [46] is used, which performs brain extrac-
tion by estimating the intensity histogram-based threshold, the
center of the gravity and radius of the sphere of the brain’s
surface. Inside the brain, the tessellated surface is initiated,
which slowly updates one vertex at a time until a complete
surface is achieved. Then, motion correction is applied to
remove and correct the effect of subjects’ head motion during
data acquisition sessions. We performed motion correction by
using FSL-MCFLIRT toolbox [19, 47]. Slice timing
correction is also performed by using FEAT [48] module of
FSL library. The method of slice timing correction applies
interpolation to transform the voxel time-series either forward

or backward in time to make the temporal adjustment. The
interpolation method used for this study is sinc interpolation
based on Hanning windowed method to adjust the voxel time-
series by a fraction of scanner’s TR (Repetition Time) with
respect to the middle of TR.

Intensity normalization is applied on data to ensure that
each volume has the same mean intensity. Spatial smoothing
is applied to reduce the noise level while preserving the un-
derlying signal. Its purpose is to improve the signal to noise
gain. The extent of spatial smoothing is set according to the
size of the underlying signal. We performed spatial smoothing
by using a 5 mm FWHM Gaussian kernel. The kernel size
selection corresponds to what has been recommended in the
literature for this dataset. Then, temporal high-pass filtering is
applied to remove the low-frequency noise signals as a result
of some psychological artifacts such as breathing, heartbeat or
scanner drift for the rs-fMRI time series. High pass filtering is
performed by using a temporal filter of cut-off frequency 0.01
HZ. We also applied spatial normalization on images by first
putting the images in T1 weighted space by using a linear-
transformation with 7 Degree of Freedom (DOF). The images
are then registered to a standard space of MNI152 template,
which is a reference template of brain-derived from the aver-
age of 152 MRI scans. To register images to MNI152 space, a
linear transformation with 12 DOF (such as translation, scal-
ing, shear, and rotation) is applied. In this study, spatial nor-
malization is performed by FSL-FLIRT [47, 49, 50] toolbox.

After applying the preprocessing methods on fMRI data,
preprocessed 64 × 64x48x140 4D fMRI scans are obtained in
which each scan contains 64 × 64x48 3D volumes per time
course (140 s). These 4D scans are then converted to 2D
images along with image height and time axis. This results
in 6720 images of size 64x64 per fMRI scan. The first and last
three slices are removed as they contain no functional infor-
mation. Therefore, from each scan information from 44 slices
is used. Hence, 6160 2D images are obtained from each fMRI
scan and are saved in portable network graphics (PNG)
format.

The data acquired from ADNI is processed and converted
to 2D images by using the aforementioned pre-processing
methods. In this way, we have created a dataset that was used
for training deep learning networks. The characteristics of the
preprocessed dataset are given in Table 4.

Deep Learning Methods for RS-fMRI Data

We performed our experiments on CNN based architectures to
train and evaluate our dataset. Prior work on rs-fMRI based
Alzheimer’s disease classification is mainly based on LeNet
[14], GoogleNet [30] and AlexNet architectures. Due to the
outstanding performance of Residual neural network [51] in
the computer vision domain, our focus in this study is the
ResNet-18 architecture [52]. We used this architecture by

Table 4 Characteristics of the preprocessed dataset

Group Rs-fMRI Scans No. of Images

CN 25 154,000

SMC 25 154,000

EMCI 25 154,000

LMCI 25 154,000

MCI 13 80,080

AD 25 154,000

Total 138 850,080
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training from scratch as well as by adapting the pre-trained
network for our task through transfer learning. The details of
network architectures are given in this section.

Residual Neural Network for AD Classification

ResNet was developed by Kaiming He et al. [51] in 2016. A
residual learning method was proposed to train deeper net-
works that are practically difficult to train. Network layers
were reformulated to learn residual functions with reference
to the layer inputs. The results indicate that the deeper net-
works based on residual learning can achieve better optimi-
zation and high accuracy. Experimental evidence [53, 54]
revealed that network depth is crucial to achieving better
performance. But deeper networks are difficult to train and
the increased number of layers may not ensure better learn-
ing. Also when deep networks start convergence, accuracy
gets saturated at a point and then starts to decrease rapidly.
The use of residual learning in deeper networks solves the
problem of accuracy degradation in deeper networks. In
plain networks, several layers are stacked together to direct-
ly learn the desired mapping. However, in residual net-
works, the layers are stacked to learn a residual mapping.
The mapping function, denoted by H(x), is fitted by a few
stacked layers. The idea of residual learning is hypothe-
sized as, if several nonlinear layers can asymptotically es-
timate a complicated mapping function, then they can as-
ymptotically estimate the residual function denoted as F(x).
The underlying mapping is given by:

H xð Þ ¼ F xð Þ þ x ð1Þ

And the residual function is given by:

F xð Þ ¼ H xð Þ–x ð2Þ

The stacked layers explicitly learn the residual function
F(x) rather than learning the original functionH(x). This meth-
od assumes that residual mapping function is easier to opti-
mize than the original function. For example, if an identity
mapping is optimized than the residual can be pushed to zero

easily rather than approximating the identity mapping from a
few stacked non-linear layers. After approximating the resid-
ual function, original mapping function is calculated asH(x) =
F(x) + x. This mapping function F(x) + x is realized as residual
shortcut connection in a feedforward neural network and per-
forms element-wise addition. In a residual network, these con-
nections approximate an identity mapping. Their output is
then added back to the stacked layers. Addition of these con-
nections in the networks does not introduce more complexity
or parameters. Also, these residual networks can be easily
trained with SGD based backpropagation.

The architecture of the original ResNet-18 is shown in
Fig. 2. There is a total of eighteen layers in the network (17
convolutional layers, a fully-connected layer and an addi-
tional softmax layer to perform classification task). The
convolutional layers use 3 × 3 filters and the network is
designed in such a way that if the output feature map is
the same size then the layers have the same number of the
filters. However, filters get doubled in the layers, if the
output feature map is halved. The downsampling is per-
formed by convolutional layers having a stride of 2.
Lastly, there is an average-pooling followed by a fully-
connected layer with a softmax layer. Throughout the net-
work, residual shortcut connections are inserted between
layers. There are two types of connections. The first type
of connections, denoted by solid lines, are used when input
and output have the same dimensions. Second types of
connections, denoted by dotted lines, are used when di-
mensions increase. This type of connection still performs
identity mapping but with zeros padding for increased di-
mensions with a stride of 2.

In order to benefit from the effects of a different design
decision in deep learning, we designed several experiments
by training modified ResNet-18 from scratch as well as
performing transfer learning. Specifically, we used two strat-
egies in our experiments for network training. First, we used a
slightly modified version of ResNet-18 to perform training
from scratch by randomly initializing the network parameters.
We also reduced the number of input channels to one in order
to perform training with the greyscale images.

Fig. 2 Original ResNet-18 Architecture
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Secondly, we used a pre-trained network for weight initial-
ization and transfer learning was performed. Since the trained
model was for a different domain and task, we adapt the net-
work to perform our task. In order to transfer the knowledge
from a pre-trained network, we performed transfer learning in
two ways. In the first approach, we performed off-the-shelf
(OTS) [55, 56] transfer learning by replacing the last dense
layer of the original network with the new dense layer to
match the number of classes for our task. In the off-the-shelf
approach, all the layers except the last layer (classifier) of the
network are used for feature extraction and the weights of the
last layer are adapted to the new task. The second approach is
fine-tuning (FT), in whichmore than one layers of the network
are re-trained from the samples of the new task. For fine-
tuning approach, we re-trained all the convolution layers of
the network with our dataset. For both approaches of transfer
learning, we used weights of ResNet-18 network trained on
ImageNet as a starting point [57].

The details of the networks used for experiments are given
in Table 5. We used the ResNet-18 architecture in our exper-
iments and the table presents the difference between the

original and our networks. There are three networks in the
table, 1-Channel ResNet-18, Off the Shelf (OTS) and Fine-
Tuned (FT). 1-Channel ResNet-18 represents the network that
was trained from scratch by using greyscale images. For trans-
fer learning, we used three additional convolution layers. The
words “same” and “fine-tuned” are used to represent the dif-
ference between OTS and FT networks. The layer parameters
of each network are given in the table. The ResNet with 18
layers has 2.37 million parameters and ResNet with 21 layers
has 11.18 M parameters.

Evaluation Measures

A common approach of evaluating results of machine learning
models is using precision, recall [58] f1-measure and area
under the receiver operating characteristic (AROC) curve
[54]. These measures have been originated form Information
Retrieval. In this research, we have evaluated our multi-class
AD classification models by using the aforementioned evalu-
ation measures.

Table 5 Adapted Architectures of ResNet-18 used for AD classification

Layer Type 1-Channel ResNet-18 (1CR) Transfer Learning

Layer Parameters Output Size Layer Parameters Output size Off the Shelf (OTS) Fine-Tuned (FT)

Convolution 7 × 7, 64-d, stride 2 112 × 112 7 × 7, 64-d, stride 2 112 × 112 Same Fine tuned

Max Pooling 3 × 3, stride 2 56 × 56 3 × 3, stride 2 56 × 56 Same Same

Convolution 1 × 1, 256-d, stride 1 56 × 56 1 × 1, 64-d, stride 1 56 × 56 Same Fine tuned

Convolution 1 × 1, 64-d, stride 1 56 × 56 3 × 3, 64-d, stride 1 56 × 56 Same Fine tuned

Convolution 3 × 3, 64-d, stride 1 56 × 56 3 × 3, 64-d, stride 1 56 × 56 Same Fine tuned

Convolution 1 × 1, 256-d, stride 1 56 × 56 3 × 3, 64-d, stride 1 56 × 56 Same Fine tuned

Convolution 1 × 1, 64-d, stride 1 56 × 56 3 × 3, 64-d, stride 1 56 × 56 Same Fine tuned

Convolution 1 × 1, 64-d, stride 1 56 × 56 1 × 1, 128-d, stride 1 28 × 28 Same Fine tuned

Convolution 1 × 1, 256-d, stride 1 56 × 56 3 × 3, 128-d, stride 2 28 × 28 Same Fine tuned

Convolution 1 × 1, 64-d, stride 1 56 × 56 3 × 3, 128-d, stride 1 28 × 28 Same Fine tuned

Convolution 3 × 3, 64-d, stride 1 56 × 56 3 × 3, 128-d, stride 1 28 × 28 Same Fine tuned

Convolution 1 × 1, 256-d, stride 1 56 × 56 3 × 3, 128-d, stride 1 28 × 28 Same Fine tuned

Convolution 1 × 1, 512-d, stride 2 28 × 28 1 × 1, 256-d, stride 2 14 × 14 Same Fine tuned

Convolution 1 × 1, 128-d, stride 2 28 × 28 3 × 3, 256-d, stride 2 14 × 14 Same Fine tuned

Convolution 3 × 3, 128-d, stride 1 28 × 28 3 × 3, 256-d, stride 1 14 × 14 Same Fine tuned

Convolution 1 × 1, 512-d, stride 1 28 × 28 3 × 3, 256-d, stride 1 14 × 14 Same Fine tuned

Convolution 1 × 1, 128-d, stride 1 28 × 28 3 × 3, 256-d, stride 1 14 × 14 Same Fine tuned

Convolution 3 × 3, 128-d, stride 1 28 × 28 1 × 1, 512-d, stride 2 7 × 7 Same Fine tuned

Convolution 1 × 1, 512-d, stride 1 28 × 28 3 × 3, 512-d, stride 2 7 × 7 Same Fine tuned

Convolution – – 3 × 3, 512-d, stride 1 7 × 7 Same Fine tuned

Convolution – – 3 × 3, 512-d, stride 1 7 × 7 Same Fine tuned

Convolution – – 3 × 3, 512-d, stride 1 7 × 7 Same Fine tuned

Average Pooling 7 × 7, stride 1 22 × 22 7 × 7, stride 1 1 × 1 Same Same

Dense 6-d 1 × 1 6-d 1 × 1 Same Same

Softmax 6-d 1 × 1 6-d 1 × 1 Same Same
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Precision

Precision or Confidence [58] is the proportion of predicted
positive cases that are actually real positives. It is also called
Positive Predictive Value (PPV). Precision is defined as:

Precision ¼ Confidence ¼ TP
TP þ FP

ð3Þ

where TP denotes true positive and FP denotes false
positive.

Recall

Recall (also named as sensitivity) [58] is the proportion of
actual positive cases that are correctly predicted. This mea-
sures the coverage of actual positive cases and reflects correct
predicted cases. It is termed as True Positive Rate (TPR) and is
given as:

Recall ¼ Sensitivity ¼ TP
TP þ FN

ð4Þ

where TP denotes true positive and FN denotes false
negative.

F1-Measure

F- Measure is a combined measure [58] that captures the
tradeoffs associated with precision and recall and is defined as:

F−Measure ¼ 1

α
1

P
þ 1−αð Þ 1

R

¼ 1þ β2
� �

PR

β2P þ R
ð5Þ

where P denotes precision and R denotes recall. The har-
monic mean is considered a very conservative average, that’s
why a balancedmeasure is used called F1-measure withα = 1,
β = 1/2 and is defined as:

F1−Measure ¼ 2*PR
P þ R

ð6Þ

Area under Receiver Operating Characteristic (AROC) Curve

Receiver Operating Characteristics (ROC) analysis [58] has
been borrowed from Signal Processing in medical sciences. It
has become a standard tool for evaluation by comparing the
true positive rate (TPR) and false-positive rate (FPR). In be-
havioral sciences, AROC curve represents the combination of
sensitivity (TPR) and specificity (TNR). It allows to compare
the performance of classifier models and takes values between
0 and 1. Best classifier model is the one which is closest to 1

Table 6 Details of dataset split used for training

Type Split Ratio No. of Images

Training dataset 70% 595,056

Validation dataset 20% 170,016

Testing dataset 10% 85,005

Total 100% 850,080

Fig. 3 Graphical trends of training loss vs. testing loss with 1CR Network
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and farthest from TPR = FPR. However, lower bound for clas-
sification is 0.5 in practical scenarios where classifier has no
discrimination ability. Whereas classifier with must higher
value than 0.5 has a much more discriminative ability. The
approach to measuring the ROC curve is by calculating the
area under the curve (AUC) and is given by:

AUC ¼ TPR−FPRþ 1

2
¼ TPR−TNR

2
¼ 1−

FPRþ FNR
2

ð7Þ

where TPR denotes true positive rate, FPR as false positive
rate, TNR as true negative rate and FNR as false-negative rate.

Results and Discussions

This research is aimed at using rs-fMRI data to classify 6
stages of AD. We have applied different preprocessing
methods before performing further analysis. The preprocess-

Fig. 4 Graphical trend of test accuracy with 1CR Network

Fig. 5 Graphical trends of training loss vs. testing loss with OTS Network
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ing methods and algorithms used to analyze rs-fMRI data
have been discussed in Section 2. This section provides details
on the experiments conducted and discusses the results
achieved. In the dataset, there are 138 4D scans and 850,080
2D images. For the evaluation, we split the dataset into a
training dataset, validation dataset and testing dataset with
70%, 20%, and 10% split ratio, respectively as described in
Table 6. The dataset was randomly shuffled before splitting.
The validation set was used to determine the trend of learning
during the training phase. We estimate the validation loss to

determine the best models. The testing set was used to perform
inference on the learned model.

Experiments and Evaluation

We trained three ResNet-18 based networks (1CR, OTS, and
FT) to classify different stages of AD. We used the same
experimental setup in all the experiments. The input to the
networks are images of size 224 × 224 that are resized to
match the pre-trained network’s input size. The learning rate

Fig. 6 Graphical trend of test accuracy with OTS Network

Fig. 7 Graphical trends of training loss vs. testing loss with FT Network
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is initialized to 0.001 which decreased by 10% every 25,000
iterations. Gamma is initialized as 0.1, momentum as 0.9 and
weight decay factor is 0.0005. Stochastic gradient descent
(SGD) based solver is used with a batch size of 32 images
for training. The models are implemented on Caffe and trained
on FloydHub cloud service with GPU Tesla K80.

The trends of training and testing loss and average test
accuracy are shown in Figs. 3, 4, 5, 6, 7, 8.

Table 7 summarizes the testing accuracy and validation loss
with the three networks for a multi-class AD classification
task. The best average testing accuracy is achieved with the
OTS network, however, the improvement is slight compared
to the FT network. However, for “CN” stage, the FT network
achieved approximately 3.12% improvement in accuracy than
the OTS network. Table 8 summarizes the outcomes of our
evaluation and Fig. 9 presents the ROC curves of three
models. We evaluated three different experimental setups with
varying weight initializations and network architectures. We

evaluated the classification models by using different mea-
sures such as precision, recall, f1-measure, and AROC curves
analysis to evaluate all AD stages.

The results indicate variability in outcomes with respect to
AD stages, especially for CN and SMC stages. Specifically,
for the “CN” stage, we observe a standard deviation of 0.048
for precision, 0.017 for recall and 0.016 for f1-measure of
three models. For the “SMC” stage, the standard deviation is
0.05 for precision, 0.014 for recall and 0.0197 for f1-measure
of three models. For each AD stage, the results are better with
either OTS or FT models. However, the average scores for all
measures are higher for the OTS network. In particular, an
average improvement of 0.069, 0.0055, 0.0055 and 0.0002
is observed for precision, recall, f1-measure, and AUC respec-
tively with the OTS model. While, our models achieved high
AUC for all AD stages, yet the applicability of such technol-
ogy in a clinical assessment largely depends on the data avail-
able for model training and evaluation.

Comparative Analysis

We compared the performance of our ResNet-18 based net-
works with each other. We also compared our results with a
previous study [39], that have worked on a similar problem
but with 5 disease stages including AD, CN, EMCI, LMCI,
and SMC. But in order to have a fair comparison (using same
data samples, data split and a number of stages), we performed
an additional evaluation by training an AlexNet used in [39]
on our dataset. We evaluated the classification results in terms
of average accuracy and classification accuracy of each AD
stage. Table 9 presents the comparative analysis as well as

Fig. 8 Graphical trend of test accuracy with FT Network

Table 7 Multi-class classification results with networks

Study Group 1CR Network OTS Network FT Network

CN 0.9593 0.9688 1.0000

SMC 0.9984 1.0000 0.9685

EMCI 0.9719 0.9738 0.9738

LMCI 0.9672 0.9738 0.9743

MCI 0.9713 0.9781 0.9740

AD 0.9729 0.9801 0.9801

Average Accuracy 0.9737 0.9792 0.9788

Validation loss 0.0739 0.0716 0.0393
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summarizes the classification results with other approaches.
Figure 10 graphically presents the comparative analysis for
6 AD stages.

In our comparative analysis, we noticed that our models
performed better than Y. Kazemi et al. [39] and our trained
AlexNet model. When we compared our results with Y.
Kazemi et al., we found that the FT model achieved higher
classifying accuracy with each AD stage and OTS and 1CR
achieved higher accuracy in all but “CN” stage.
Particularly, the FT model achieved 1.66%, 2.3%, 1.74%,
1.54 and 3.04% improvement in accuracy with CN, SMC,
EMCI, LMCI, and AD respectively. While, TS model

achieved an improvement of 5.45%, 1.74%, 1.49% and
3.04 with SMC, EMCI, LMCI, and AD respectively. With
1CR model, we achieved an improvement of 5.29%,
1.55%, 0.83% and 2.32% with SMC, EMCI, LMCI, and
AD respectively. To have a fair comparison, we compared
our results with our trained AlexNet model and found that
there is an approximately 4% improvement in accuracy
with our models. Overall, when directly comparing our re-
sults to the former best results, we achieved state-of-the-art
results with our FT model for all AD stages. While with
OTS and 1CR models we achieved state-of-the-art results
for all except “CN” stage. Comparing the average accuracy

Table 8 Evaluation of results for
our models Group Network CN SMC EMCI LMCI MCI AD Average

Precision 1CR 0.9979 0.8869 0.9849 0.9997 1.0000 0.9984 0.9761

OTS 0.9988 0.8974 1.0000 1.0000 1.0000 0.9999 0.9813

FT 0.8964 1.0000 0.9987 1.0000 1.0000 1.0000 0.9810

Recall 1CR 0.9593 0.9984 0.9719 0.9672 0.9713 0.9729 0.9737

OTS 0.9689 1.0000 0.9738 0.9738 0.9781 0.9801 0.9792

FT 1.0000 0.9685 0.9738 0.9743 0.9740 0.9801 0.9789

F1-Measure 1CR 0.9782 0.9393 0.9784 0.9832 0.9854 0.9855 0.9741

OTS 0.9836 0.9459 0.9867 0.9867 0.9889 0.9899 0.9796

FT 0.9454 0.9840 0.9861 0.9869 0.9868 0.9899 0.9793

AUC 1CR 0.9994 0.9995 0.9994 0.9995 0.9996 0.9995 0.9995

OTS 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997

FT 0.9996 0.9996 0.9996 0.9997 0.9997 0.9997 0.9997

(a) ROC Curve for 1CR model. (b) ROC Curve for OTS model.

(c) ROC Curve for the FT model.

Fig. 9 Receiver operating characteristic curves for multi-class AD classification
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for all AD stages with the former approach i.e. AlexNet,
also achieved improved performance. While the former
study reported average accuracy of 97.63% with 5 disease
stages and a larger dataset than ours, we still achieved better
results for 6 AD stages with an average accuracy of 97.92%
and 97.88% for OTS and FT models respectively.

Conclusion

Alzheimer’s disease (AD) is an incurable neurological disor-
der affecting a significant world’s population. The early diag-
nosis of AD is crucial to improve the quality of patients’ lives
and the development of improved treatment and targeted
drugs. The present study was conducted to explore the effec-
tiveness of the resting-state functional magnetic resonance
imaging and advanced deep learning techniques to perform
multi-class classification and diagnosis of AD and its progres-
sive stages including CN, SMC, EMCI,MCI, LMCI, and AD.
The study proposed to use deep residual neural networks com-
bined with transfer learning approach for performing the clas-
sification of 6 AD stages. We incorporate different weight
initialization schemes and network architectures to evaluate
our dataset. We present a systematic evaluation of three net-
works including 1CR, OST and FT. 1CR network was exclu-
sively trained on single-channel rs-fMRI images, while two
networks were optimized on ImageNet dataset by retraining
last dense layer in the OTS network and all the convolution
layers in the FT network respectively. While state-of-the-art
results are achieved with our models, however, in comparison

to a former study [39] FT network achieved higher accuracy
for all AD stages with 1.66%, 2.3%, 1.74%, 1.54 and 3.04%
improvement in accuracy for CN, SMC, EMCI, LMCI, and
AD respectively. And Our OTS network achieved the best
average accuracy of 97.92% for 6 disease stages. The use of
residual learning, pre-training and transfer learning approach
helped to achieve better performance. The results of this study
indicate that integration of resting-state fMRI based neuroim-
aging and deep learning methods can assist the diagnostic
decision making in early diagnosis of neurodegenerative dis-
ease, especially AD. The diagnosis of AD stages could aid
drug discovery by providing better pathogenesis for measur-
ing effects of target treatments that can slow down the disease
progression. By combining clinical imaging with deep learn-
ing techniques can help to uncover patterns of functional
changes in the brain, related to AD progression and could
aid in the detection of risk factors and prognostic indicators.
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Table 9 Overview of
classification accuracy (%) Pathology Y. Kazemi et al. [39] AlexNet 1CR OTS FT

CN 98.34 91.73 95.93 96.88 100.0

SMC 94.55 100.0 99.84 100.0 96.85

EMCI 95.64 91.80 97.19 97.38 97.38

LMCI 95.89 90.50 96.72 97.38 97.43

MCI – 94.80 97.13 97.81 97.40

AD 94.97 95.14 97.29 98.01 98.01

Average Accuracy 97.63 93.60 97.37 97.92 97.88
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Fig. 10 Comparative analysis of classification results
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