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Abstract
Doctor utilizes various kinds of clinical technologies like MRI, endoscopy, CT scan, etc., to identify patient’s deformity during
the review time. Among set of clinical technologies, wireless capsule endoscopy (WCE) is an advanced procedures used for
digestive track malformation. During this complete process, more than 57,000 frames are captured and doctors need to examine a
complete video frame by frame which is a tedious task even for an experienced gastrologist. In this article, a novel computerized
automated method is proposed for the classification of abdominal infections of gastrointestinal track from WCE images. Three
core steps of the suggested system belong to the category of segmentation, deep features extraction and fusion followed by robust
features selection. The ulcer abnormalities fromWCE videos are initially extracted through a proposed color features based low
level and high-level saliency (CFbLHS) estimationmethod. Later, DenseNet CNNmodel is utilized and through transfer learning
(TL) features are computed prior to feature optimization using Kapur’s entropy. A parallel fusion methodology is opted for the
selection of maximum feature value (PMFV). For feature selection, Tsallis entropy is calculated later sorted into descending
order. Finally, top 50% high ranked features are selected for classification using multilayered feedforward neural network
classifier for recognition. Simulation is performed on collected WCE dataset and achieved maximum accuracy of 99.5% in
21.15 s.
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Introduction

Amongst various types, colorectal cancer occurs more fre-
quently both in men and women. In 2015 only, approximately
132, 000 new cases of colorectal cancer are registered in USA
[1]. Since 2017, on average 135,430 new gastrointestinal
(GIT) infections occurred only in USA, which mostly include
ulcer, bleeding, and polyps - as a most common neoplasm.
According to statistics, 1.6 M people face hurting bowel in-
fection and approximately 200,000 new cases appear each
year. These GIT infections can be controlled and even cured
if diagnosed at an early stage [2]. Recently, doctors utilize
WCE technology [3] but this complete process contains sev-
eral challenges, existence of irrelevant and redundant informa-
tion, which makes this detection process more complex, ex-
pensive equipment, and time-consuming. These infections are
life threatening, therefore it is obligatory to identify and diag-
nose GIT diseases at an early stage [4].

Recent articles in the area of computer vision (CV) intro-
duced various computerized techniques for the diagnosis of
GIT infections using WCE images [5]. In the existing
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methods, preprocessing step is given much importance due to
its significant role in the achieving a high segmentation accu-
racy. A few of famous segmentation techniques are uniform
segmentation [6], normal distribution based segmentation [7],
optimized weighted segmentation [8], improved binomial
thresholding [9], saliency-based techniques [10], and few
more [11]. These segmented images are further used for fea-
tures extraction for classification of relevant class. The well-
known features are point, shape, texture, and color. The color
features show significant performance as compared to other
types of features in the endoscopy data due to RGB format.
But the actual performance of system is depends on the num-
ber of selected features. Various features selection techniques
are introduced by researchers such as wavelet fractal and au-
tomatic correlation [12], Genetic Algorithm based selection
(GAS) [13], multi-versus-optimizer (MVO) [14], fisher crite-
rion [15], and name a fewmore. Recently, deep learning based
techniques outperforms in the area of CVand also successfully
entered in medical imaging. Through deep learning, features
are extracted in a hierarchy of layers in which higher-level
features are attained by comprising lower-level convolutional
layers. Various pre-trained deep convolutional neural network
(DCNN) models are introduced by several researchers in the
CV community among which famous ones are AlexNet [16],
ResNet [17], VGG [18], GoogleNet [19], and YOLO [20].

Related work

A lot of techniques are introduced in the area of CV and ma-
chine learning for the diagnosis of medical diseases such as
breast tumor [21], lungs cancer [22, 23], skin cancer [24–27],
blood infections [28], brain tumor from MRI [29–31], stom-
ach abnormalities from WCE images [32, 33], to name but a
few [34–36]. From these diseases, stomach is more important
human organ. The prominent stomach infections are ulcer,
polyps, and bleeding among which ulcer and bleeding are
more vulnerable types. Sivakumar et al. [37] identified bleed-
ing regions in WCE video frames through superpixels seg-
mentation. A CMYK color format is used to detect bleeding
area clearly. Later Naive Bayes and superpixel segmentation
methods are utilized to create an automatic concealed bleeding
perception process. The presented method works efficiently
by applying it on several extracted frames of few endoscopic
videos.

Yuan et al. [38] presented two-phase fully automated sys-
tem to identify ulcer through WCE. In the first phase, for
segmentation of ulcer aspirants, multilevel superpixel based
saliency map extraction method is presented. In the second
phase, the acquired saliency vector is merged with image fea-
tures for doing ulcer image identification process. Saliency
max-pooling approach is merged with Locality-constrained
Linear Coding (LLC) approach to categorize the images into

relevant category. The acquired results show the effectiveness
of presented approach with 92.65% accuracy and 94.12%
sensitivity rates. Charfi et al. [39] suggested a two-phase tech-
nique for ulcer detection in WCE videos. For better depiction
of WCE images, the method contains incorporation of texture
feature extraction phase that involves Complete Local Binary
Pattern (CLBP) and a color feature extraction phase that in-
volves Global Local Oriented Edge Magnitude Pattern
(GLOEMP). The presented method is experimented on
WCE videos which includes both normal and irregular
frames. The obtained results show the effectiveness of sug-
gested technique with 94.07% accuracy.

Suman et al. [40] proposed an automated color feature-
based method of bleeding identification from WCE frames.
The presented system uses statistical color feature examina-
tion and for classification, SVM classifier is utilized. The test
results illustrate the effectiveness of proposed approach by
giving higher accuracy as compared to existing methods.
Sainju et al. [41] introduced a supervised learning technique
for computerized identification of bleeding areas from WCE
video frames. The presented approach describes the image
areas through statistical measures taken through first-order
histogram probabilities of three channels of RGB color space.
Then a semi-automatic area illustration technique is presented
to train data proficiently. Extracted features are examined thor-
oughly to identify the best feature set and during this process,
the segmentation technique is applied to extract areas from
images. In the end, neural network is employed for final de-
tection. The suggested method gives reasonable better recog-
nition results by classifying bleeding and non-bleeding areas
in WCE images. Zhang et al. [42] showed an infinite curricu-
lum learning approach for categorizing WCE frames with re-
spect to the occurrence of gastric ulcers. A method is designed
to efficiently evaluate the intricacy of each sample through its
sample size of the patch. The training time is scheduled al-
though the patch size is increasing gradually till it becomes
equivalent to actual image size and the method achieves prom-
ising better accuracy rates.

Fan et al. [43] introduced an automated CNN basedmethod
which is able to accurately identify minor ulcers and erosions
fromWCE frames. The AlexNet was trained over a dataset of
WCE images to classify lesion and normal tissues. The exper-
imental result shows notable accuracy as compared to recent
techniques. Hajabdollahi et al. [44] proposed an automated
segmentation technique for bleeding areas in WCE images.
In this approach, color channels are picked and classified
through ANN. During the training process, NN containing
specified weights are used beyond any preprocessing and
post-preprocessing. The test results show the efficacy of pre-
sented method by giving promising accuracy results.

Xing et al. [45] suggested automatic bleeding frame iden-
tification and area segmentation with the superpixel color his-
togram feature and a subspace K-nearest neighbor classifier.
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To minimize the execution cost, superpixel segmentation and
key frame extraction methods are presented. The introduced
9-D color feature methodmerges the extracted data taken from
HSV and RGB color channels. The test result shows the ef-
fectiveness of proposed system in contrast to existing methods
with 99% of accuracy. Maghsoudi et al. [46] introduced an
approach to detect tumor and bleeding regions in frames and
categorize the normal and affected regions. GLCM, statistical,
LBP, Law’s features and Gabor filters are applied to extract
texture and geometric features. Later, normal and affected
areas are discriminated in images through extracted features.
The presentedmethod is compared with CNN and it shows the
importance of applying wide of features to identify numerous
affected regions inWCE images in contrast to CNNwhich can
only be used to train on specific databases. Moreover, CNN’s
internal features cannot be persistent to enhance the applica-
tions (Table 1).

Problem statement & contributions

The irregularity in WCE images is a challenging task,
and even experienced doctors spend on average 2 h for
analyzing 55,000 f rames of one pat ient [47] .
Additionally, GIT infections are of different shapes,
size, color, and texture, which increase the features sim-
ilarities, and in turn chances of improved classification
accuracy decreases. An improved classification system
is completely relying upon the good features .
Therefore, in this work, major challenge is to extract
most principle features because, in medical imaging,
the performance of a system relies upon the classifica-
tion of abnormalities.

In this paper, a novel framework is proposed for stomach
abnormalities classification using WCE images through
DCNN. Major contributions in this work are:

Table 1 Summary of existing ulcer detection and classification techniques

Reference Methodology Results

Sivakumar et al. [37] Two-Stage saliency approach for bleeding segmentation along
Naïve Bayes classifier

Mean 0.3478 and Standard deviation
0.3306 on red channel

Yuan et al. [38] Multi super pixel representation based saliency detection approach Accuracy and sensitivity rates are
92.65% 94.12%, respectively.

Charfi et al. [39] Complete LBP and Color features along with GLOEMP approach 94.07% accuracy

Suman et al. [40] Selection of statistical color features along with SVM of RBF kernel function 97.67% accuracy

Sainju et al. [41] Selected regions best features selection along with optimized neural network. 98.1% accuracy

Fan et al. [43] Pre-trained deep AlexNet model based ulcer detection 95.16% accuracy

Xing et al. [45] Super Pixel histogram and Subspace KNN based approach 99% accuracy

Maghsoudi et al. [46] Multiple texture and color features are along with NN based approach 94.61% accuracy

Fig. 1 Proposed flow of automated stomach abnormalities detection and classification
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1) An ulcer segmentation technique is introduced named
color features based low-level and high-level saliency
(CFbLHS) estimation. The HSVand LAB color transfor-
mations are applied in the very first step and SVD features
are extracted. Then low level saliency is computed by
utilizing these SVD features. Further, high level saliency
map is also constructed and combined along low level
saliencymap to produce an initial map for ulcer detection.
Finally, an existing CRF model is employed for refine-
ment of segmented image.

2) The cropped and original images are feed to modified
Densenet CNN architecture and perform activation on
the average pooling and fully connected layers for deep
features extraction.

3) The extracted multi layered DCNN features are op-
timized through Kapur entropy approach - fused
through parallel maximum feature value (PMFV).
After fusion, Tsallis entropy features are calculated

and sorted into descending order. Finally, top 50%
features are selected and feed to MLP for final
classification.

4) For experimental results, a new WCE dataset of 12,000
images is generated for three stomachs abnormalities such
as ulcer, bleeding, and health where each class contains
4000 images.

Proposed work

The proposed automated stomach irregularities detection
and recognition system is presented in this section which
includes three primary steps such as ulcer detection from
ulcer frames, CNN features extraction and features fu-
sion, and best features selection and recognition. The
prime structure is shown in Fig. 1 which explains that

Fig. 3 Lowlevel saliency estimation effects on WCE images. a Concatenated features effects, b Lowlevel saliency estimation

Fig. 2 Effects after concatenation of HSVand LAB color features
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initially frames are extracted from WCE videos and then
separated into ulcer, bleeding, and healthy classes
through manual process with the help of an endoscopic
expert. Then ulcer is detected through a saliency method.
Later, CNN features are extracted through mapped ulcer
and original bleeding and healthy frames followed by
PMFV based features fusion and KEcTF based best fea-
tures selection which are classified through MLP. The
comprehensive explanation of each step is given below.

Saliency based ulcer detection

As shown in Fig. 1, color features are extracted in the first step
through HSV and LAB color transformations using ulcer im-
ages. The extracted color features are later concatenated for
information fusion. After that, low-level and high-level salien-
cy is estimated by utilizing information of fused image.
Finally, a threshold operation is performed to obtain a binary
image which is later refined through existing CRF model.

Let φ(i) and φ(j) denote extracted color features through
HSV and LAB color transformations, respectively. Two met-
rics such as variance and SVD are calculated from both trans-
formations for color features which are defined through Eq.
(1).

σ2 ¼ ∑m
i¼1∑

n
j¼1

Xij−μ
� �2

N
ð1Þ

Where, i, j denote rows and columns values of each image, μ
is mean value of image, and N denotes total number of pixel
values of an input image. Then SVD is calculated through
following Eq. (2).

Sˇ ¼ Um�ndVn�n ð2Þ
Where, Um× n is m × n orthogonal column matrix over eigen-

vectors Sˇ SˇÞT
�

and Vn × n is n × n matrix over eigenvectors

SˇÞTSˇ
�

which are defined as follows in Eqs. (3) and (4).

Sˇ SˇÞT ¼ Um�nd
2Vn�n

�
ð3Þ

SˇÞTSˇ ¼ Vn�nd
2 Vn�nð ÞT

�
ð4Þ

Where, d is positive real value matrix recognized as singular
values matrix and formulated as in Eq. (5).

d ¼ λiαi
!; ð5Þ

Where, i ∈ 1, 2, 3, …n and αi
! is a column vector. Hence, the

final SVD is computed as below in Eq. (6).

Sˇ ¼ ∑n
i¼1 αiUm�n Vn�nð ÞT
� �

ð6Þ

The dimension of resultant SVD feature vector S ˇ is
N ×M, where M denotes the number of columns. In this

Fig. 4 High level saliency estimation and Otsu thresholding effects usingWCE ulcer images. a Concatenated features effects, bHLS estimation effects,
and c initial thresholding after combination of Low-level and high-level saliency
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work, a fixed dimension of 256 × 256 is used, therefore
the resultant vector output must be1 × 256 for each
channel and as HSV and LAB transformations consist
of total 6 channels, therefore the resulted fused vector is
1 × (1536 + 6) = 1542 and defined through Eq. (7).

Fv Sij
� � ¼ Si1; Si2;…Simð Þ;

�
S1 j;S2 j;…Snj

�h i
ð7Þ

Where, Fv(Sij) represents the concatenated information
image and Sim, Snj ∈φ(i), φ(j), respectively. The visual
output after concatenation of these features is shown in
Fig. 2.

Later, low level saliency is computed by employing Sˇi as
follows in Eq. (8).

ψk
G
B

SˇijÞ ¼ ∑Sˇ ij∈G=BW i; jð Þ:χ2 i; jð Þ
�

ð8Þ

Where, W(i, j) shows the weighted factor of abnormal regions
in the concatenated image which is defined through infection
size and spatial distance of infected region. G and B denote the
abnormal regions and distance of abnormal region and border
regions, respectively. W(i, j) is computed by Eq. (9).

W i; jð Þ ¼ Sˇijj:exp
− Sci−Sc j
�� ��
α: L

� �				 ð9Þ

Where, Sci and Scjrepresent the spatial center position of
FV(Sij),α is a static parameter of value 0.2, and L is a diagonal
length of concatenated image. The effects of low level salien-
cy are shown in Fig. 3.

After that, a hig-hlevel saliency (HLS) is estimated from
two essential information as (a) complex background, and (b)
presence of abnormal regions at center point of the image.
HLS is most essential for complex background and low and

Fig. 5 Final saliency effects after CRF refinement. a Original image, b Concatenated features effects, c Low-level saliency, d High-level saliency, e
Thresholding, and f CRF refinement
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small abnormal regions. Based on these two points, location
based object prior (OP) for each region of Sij are computed as
given in Eq. (10).

λOP Sij
� � ¼ 1−

ΔBij

ΔBmax


 �β
 !

:e
−Sd
L=2


 �
ð10Þ

Where, Sd denotes the spatial Euclidean distance, ΔBij ex-
plains the number of border pixels, ΔBmaxshows the maxi-
mum number of image pixels on border regions, and β is a
static parameter which scales the location of abnormal regions
in the image. Finally, λOP(Sij) is utilized into Eq. (10) and final
HLS is estimated as follows in Eq. (11).

FS λOPð Þ ¼ λOP Sij
� �

:

∑
n

j¼1; j≠i
λOP Sij
� �

: 1−Nχ2 i; jð Þð Þ=Nχ2
max

∑
m

j¼1; j≠i
1−Nχ2 i; jð Þ=Nχ2

max

� �
ð11Þ

Where, Nχ2max represents the maximum of Chi-square dis-
tance (χ2(i, j)) between abnormal and healthy regions.

Finally, HLS map FS(λOP) and lowlevel map are simply com-
bined and Otsu thresholding operation is performed whose
effects are shown in Fig. 4.

Later, the resultant segmented images are refined through
an existing conditional random field (CRF) [48] approach.
The CRF approach removes the boundary and small unwant-
ed pixels through following energy function given in Eq. (12).

FSo λOPð Þ ¼ ∑ilogP FS λið Þð Þ þ ∑i; jθij xi; xj

� � ð12Þ

Where, xi, xjshow the label assignment of all abnormal pixels
and P(FS(λi)) is a probability value of ith pixels along θij(xi, xj)
which is formulated as in Eq. (13).

θij ¼ μ xi; xj

� �
w:exp Pi−Pj

�� ��2h i
ð13Þ

The final ulcer segmentation results after CRF refinement
are shown in Fig. 5.

Deep CNN features

CNN has become imperative machine learning approach from
last few years and showing successful achievement for object
classification. Through CNN, various new research problems
have risen such as passing an input image to a network and
after crossing all layers, it can be dissolved. Recently, several
researchers try to resolve this kind of problems and introduced
various CNN models among which few are AlexNet, VGG,
ResNet, Inception, and Yolo. Through these models, they
achieved significant accuracy. In this work, an existing CNN
model named as DenseNet [49] is utilized which has simple
connectivity patterns and gives the best learning among hid-
den layers. The connection between each layer is done

Table 2 Parameters used for features extraction

Average Pool (AP) layer Fully Connected (FC) Layer

Input size [224,224,3] Input size [224,224,3]

Pool size [7] Weights 1000 × N

Stride [7] Bias 1000 × 1

Padding mode Manual Weight Learn Rate Factor 1

Padding size [0,0,0,0] WeightL2Factor 1

Bias Learn Rate Factor 1

Fig. 6 A basic Deep DenseNet architecture of 3 dense blocks
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through a feedforward approach. In this model, as compared
to existing ones, less number of parameters is required and
redundant features are avoided to learn. Major advantage is
that each layer has straight access to gradients from the loss
function.

DenseNet architecture is trained on 4 large publicly avail-
able datasets including CIFAR-10, 100, SVHN, and
ImageNet. A total of 709 layers are involved in this network
containing convolutional layers, depth concatenation layers,
ReLu layers, batch normalization layers, average pooling
layers, fully connected layers (FC), and output function called

softmax. The basic flow of DenseNet architecture with
3Dense blocks is shown in Fig. 6.

Six steps are performed for implementation of DenseNet
architecture including ResNets implementation, dense con-
nectivity, composite function, pooling layers, growth rate,
and bottleneck layers. AP layer and FC layer for deep CNN
features extraction are applied in this work. As shown in Fig.
1, mapped ulcer segmented and RGB WCE images are uti-
lized for features extraction through transfer learning [50].
The parameters involved in this process are given below in
Table 2 which includes input size, pooling size, stride,

Fig. 8 Confusion matrices for all optimized selected features through MLP. a Verification of FC optimized features, b Verification of optimized MLFS

Fig. 7 Proposed labeled results using WCE images
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padding mode, weights, learning factor, and bias learning fac-
tor. The softmax is used as activation function and feature
vectors of dimensions N × 1920 and N × 1000are extracted
for AP layer and FC layer, respectively. Later, best features
are selected and fused through PMFV approach for recogni-
tion accuracy and minimum computational time.

Features selection and fusion

In machine learning, various types of features are utilized for
recognition of objects into their relevant class [51]. However,
the all extracted features are not important and many of them
are irrelevant for current classification problem. These unim-
portant features deteriorate the classification performance and
also increases the overall computation time. To motivate with
these challenges, a new deep CNN features selection approach
named as Kapur Entropy controlled Tsallis Entropy along

higher Probability (KEcTaHP) is introduced in this work.
The proposed KEcTaHP approach is formulated as follows:

There are two extracted CNN feature vectors such as
AP layer vector and FC layer vector denoted by ξi(F1)
and ξj(F2) of dimensions N × 1920 and N × 1000, re-
spectively, where N denotes the total number for sam-
ples utilized for features extraction in the training and
testing process. Let ξk(F3) and ξk1(F4) represent the
selected feature vectors of dimensionsN × K1 and N ×
K2, respectively, where K1, K2 ∈ R. The Kapur entropy
[52] is computed in the first step through following Eqs.
(14) and (15).

ξE F1ð Þ ¼ ∑N1
i¼1Hi F1ð Þ ð14Þ

ξE F2ð Þ ¼ ∑N2
j¼1Hj F2ð Þ ð15Þ

Where, ξE(F1) and ξE(F2) are Kapur’s entropy vectors
for ξi(F1) and ξj(F2). N1 and N2 are occurrence levels
of features in F1 and F2 vectors. Hi(F1) and Hi(F2) are
computed through following Eqs. (16) and (17).

Hi
c ¼ ∑N1

i¼1

P Hi
c F1ð Þð Þ

WN1
c ln

Hi
c F1ð Þ
WN1

c


 �
ð16Þ

Hj
c ¼ ∑N2

j¼1

P Hj
c F2ð Þ� �

WN2
c ln

Hj
c F2ð Þ
WN2

c


 �
ð17Þ

Where, P(.) shows the probability distribution of each
feature, WN1

c and WN2
c denote the probability occur-

rences for N1and N2 levels, respectively. Later, both
entropy vectors ξE(F1) and ξE(F2) are fused through
parallel maximum feature value (PMFV) approach.
Through PMFV approach, initially features are com-
bined through Eqs. (18) to (20) as given below.

Fig. 9 Comparison of classification time among optimal FC and MLFS
approach

Table 3 Classification results using proposed MLFS and FC layer features

Classifier Features Analysis Parameters

FC MLFS Recall (%) Specificity (%) Precision AUC FPR Accuracy (%) Time (sec)

DT ✓ 74.0 66.5 78.0 0.847 0.133 73.8 109.55

✓ 77.0 66.0 86.0 0.972 0.113 77.2 119.31

CSVM ✓ 96.0 97.0 96.33 0.992 0.02 96.2 117.96

✓ 96.33 97.0 96.31 0.992 0.02 96.4 87.83

WKNN ✓ 96.75 95.50 96.33 0.992 0.02 96.2 129.63

✓ 96.0 97.0 96.24 0.990 0.03 96.3 158.26

ET ✓ 85.67 86.5 85.33 0.891 0.07 85.6 116.95

✓ 88.33 92.0 88.33 0.975 0.09 88.1 93.13

MLP ✓ 94.75 94.5 95.30 0.990 0.027 95.0 134.27

✓ 98.25 97.5 98.0 0.994 0.01 97.9 71.95

The bold values show the significant results
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ξEF F1; F2ð Þ ¼ ξ1 F1ð Þ; ξ1 F2ð Þð Þ; ξ2 F1ð Þ; ξ2 F2ð Þð Þ;… ξN1 Fið Þ;ξN2 Fjð Þð Þ
ð18Þ

ξmax i; jð Þ ¼ ∑N1
i¼1∑

N2
j¼1Max ξN1 Fið Þ; ξN2 Fjð Þð Þ ð19Þ

ξfus ijð Þ ¼ ξmax f 1
� �

; ξmax f 2
� �

; ξmax f 3
� �

;…ξmax fN
� � ð20Þ

Where, ξfus(ij) denote fused entropy feature vector of
dimension N × 1920. Later, discrete probability distribu-
tion (DPD) of fused vector is computed and defined as
Pi = P0, P1, …PN. Then, by utilizing probabilities values,
Tallis entropy is computed through following Eqs. (21)
to (23).

ξtli ξfusð Þ ¼ f u 1ð Þ; f u 2ð Þ;… f u Nð Þ ð21Þ

¼ argmax SE
1 f u 1ð Þð Þ þ SE

2 f u 2ð Þð Þ þ…SE
N f u kð Þð Þ�  ð22Þ

SE
N
�
f u kð Þ ¼

1− ∑
N

k¼1
Pk

PN

1−q
ð23Þ

Where, SE
N(fu(k) representss Tallis entropy vector, q > 0 AND

< 1&0 > q < 1 and Pk ¼ ∑
N

k¼1
Pk are subject to the following

constraints given in Eq. (24).

PN þ PK−1
		 		−1 < S < 1− PN þ PK−1

		 		 ð24Þ

Finally, Tallis entropy vector (SE
N(fu(k)) is sorted into de-

scending order and top 50% features are selected for final rec-
ognition process which are fed to multi-layer perceptron (MLP)
[53, 54]. The proposed labeled results are shown in Fig. 7.
These results are computed after selection of best 50% features.

Table 4 Classification accuracy
of proposed 70% optimal MLFS
features and FC layer features

Classifier Features Analysis Parameters

FC MLFS Recall
(%)

Specificity
(%)

Precision AUC FPR Accuracy
(%)

Time
(sec)

DT ✓ 84.33 84.11 84.67 0.926 0.08 84.2 22.29

✓ 87.67 87.00 88.33 0.926 0.06 88.0 35.52

CSVM ✓ 98.33 98.13 98.00 0.990 0.01 98.4 46.68

✓ 98.67 98.47 98.67 0.992 0.007 98.6 52.72

WKNN ✓ 95.33 95.30 95.67 0.990 0.02 95.5 76.47

✓ 98.33 97.29 97.67 0.992 0.01 98.0 31.63

ET ✓ 91.0 90.16 91.0 0.984 0.05 91.0 31.89

✓ 94.0 93.10 94.33 0.990 0.03 94.1 97.29

MLP ✓ 99.00 99.00 98.67 0.993 0.003 99.2 50.01

✓ 99.07 99.00 99.05 0.993 0.003 99.3 32.43

The bold values show the significant results

Fig. 10 Confusion matrices for 70% optimized selected features through MLP. a Verification of FC optimized features, b Verification of optimized
MLFS
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Results and discussion

The proposed system is validated on a newly generated
dataset of WCE images which consists of total 12,000 video
frames of three stomach abnormalities. Three stomach abnor-
malities are ulcer, bleeding, healthy regions and each class
includes 4000 frames. The resolution of generated video
frames is 760 × 1240. Through proposed features optimization
approach, the performance of top 50% features is also com-
pared with 70% and all DCNN features. MLP method of neu-
ral network is utilized and its performance is compared with
few popular supervised learning classification methods like
decision trees (DT) [55], Cubic SVM (CSVM) [56], weighted
KNN (WKNN) [57], and ensemble trees (ET) [58]. The per-
formance of selected features is analyzed through prominent
parameters such as recall rate, specificity, precision, AUC,
false positive rate, accuracy, and classification computational

cost. All simulations are conducted on the personal desktop
computer of CoreI7, 16 GM of RAM and 8GB graphics card.

Experiment 1: All optimized features

In the first experiment, all optimized features are con-
sidered for computation of classification performance. A
70:30 approach is opted which explains that 2800 WCE
frames (70%) of each class are utilized for training the
system and remaining 12,00 WCE frames (30%) of each
class are employed for testing of proposed system. All
testing results are held through 10-fold cross validation
(10CV). The classification results of all optimal features
extracted through multilayers features selection (MLFS)
are presented in Table 2. The maximum accuracy of
proposed system through MLFS is 97.9%, whereas oth-
er methods such as DT, CSVM, WKNN, and ET gained
accuracy of 77.2%, 96.4%, 96.3%, and 88.1%, respec-
tively. From results, it is noticed that DT performed
worst as compared to other methods and reported an
error rate of 22.8%. Additionally, the classification per-
formance is also computed through single FC layer op-
timal features and shows best accuracy of 95.0% for
MLP and worst accuracy of 73.8 using DT. The perfor-
mance of MLP for both FC and MLFS is also endorsed
by confusion matrices (CM’s) in Fig. 8 to represent the
sensitivity rate, precision, FPR, specificity, and AUC. In
addition, the classification execution time is also com-
puted for all classifiers as presented in Table 3 and also
plotted in Fig. 9 which clarifies that proposed system
outperforms using MLP.

Experiment 2: 70% optimized features

In this experiment, top 70%, optimal features are selected for
analysis of classification performance. 10CV is performed on

Table 5 Classification accuracy of proposed 50% optimal MLFS and FC layer features

Classifier FC MLFS Recall (%) Specificity (%) Precision AUC FPR Accuracy (%) Time (sec)

DT ✓ 84.33 82.24 84.33 0.93 0.080 84.1 28.77

✓ 86.33 86.12 86.33 0.94 0.070 86.3 28.03

CSVM ✓ 99.02 99.00 98.67 0.99 0.0070 99.1 43.59

✓ 99.06 99.02 99.00 0.99 0.004 99.3 21.61

WKNN ✓ 98.00 97.64 98.33 0.99 0.010 98.3 44.09

✓ 99.02 99.00 98.67 0.99 0.007 99.1 60.82

ET ✓ 97.67 97.10 98.00 0.98 0.013 97.9 76.49

✓ 98.67 98.21 98.50 0.99 0.008 98.8 20.91

MLP ✓ 99.20 99.00 99.00 0.99 0.003 99.3 37.44

✓ 99.40 99.20 99.30 0.99 0.003 99.5 21.15

The bold values show the significant results

Fig. 11 Classification time comparison of proposed optimal MLFS and
FC layer features after 70% selection
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same 70:30 approach for validation of the proposed system.
Major intention in this work is to achieve maximum accuracy
in less computation time. To do this, it is essential to provide a
low dimensional feature vector which holds only relevant fea-
tures. The classification results of 70% optimal features are
presented in Table 4 for various classifiers which shows best
accuracy of 99.3%, recall rate of 99.07%, specificity of 99%,
precision rate 99.05%, AUC is 0.993, and FP rate of 0.003,
respectively. The accuracy of other classification methods
through proposed optimal MLFS such as DT, CSVM,
WKNN, and ET is 88%, 98.6%, 98%, and 94.1%, respective-
ly. Additionally, the classification accuracy of the proposed
optimal MLFS features is compared with FC layer features
and obtained a maximum accuracy of 99.2% through MLP.
The accuracy of MLP through FC and MLFS are also verified
through confusion matrices, presented in Fig. 10 and clearly
demonstrate that minimum features produced good accuracy.
Moreover, the analysis of the top 70% features and all features

is conducted in terms of classification time as plotted in
Fig. 11 which verifies that the reduction in features minimizes
the system execution time for all classifiers.

Experiment 3: 50% optimal features

In the third experiment, top 50% features are selected for
classification results. 70:30 approach is utilized and 10CV is
performed. The results are shown in Table 5 which shows the
best accuracy of 99.5% for MLP classifier. The other classi-
fiers such as DT, CSVM, WKNN, and ET also perform well
and give sufficient accuracy of 86.3%, 99.3%, 99.1%, and
99.5%, respectively for proposed MLFS approach. The per-
formance analysis of MLP classifier using MLFS is also con-
ducted through a confusion matrix given in Fig. 12 which
depicts that each class provides approximately 99% of
accuracy.

Additionally, the classification accuracy of FC layer features
is also calculated and achieves the highest accuracy of 99.3% for
MLP classifier. The other classifiers also give significant classi-
fication performance in terms of accuracy which is 84.1%,
99.1%, 98.3%, and 97.9%, respectively. The accuracy of MLP
classifier using FC layer features is verified through CM, plotted
in Fig. 12. The results presented in Table 5 explain that the
selection of 50% optimal features provides better classification
accuracy and good execution time as compared to all and 70%
selectedMLFS approach. The time comparison of each classifier
for all MLFS, 70% MLFS, and 50%MLFS features is depicted
in Fig. 13 to show that the optimal number of features improves
the overall system performance.

Analysis

The analysis of proposed system is directed in terms of overall
recognition performance (visual and numerical), change in

Fig. 12 Confusionmatrices for 50% optimized selected features throughMLP. aVerification of FC accuracy, bVerification of optimizedMLFSaccuracy

Fig. 13 Time comparison of all experiments like all MLFS features, 70%
MLFS and best 50% optimal selected MLFS features
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recognition accuracy after 100 iterations of the proposed algo-
rithm, and finally comparison with few latest techniques. In Fig.
1, overall flow of the proposed system is presented including
saliency estimation for ulcer detection, multilayers CNN features
extraction, best CNN features selection and fusion, and finally
classification throughMLP. The initial ulcer detection results are
presented in Figs. 2, 3, 4, and 5. Then, CNN features are extract-
ed through DenseNet model whose architecture is shown in Fig.
6. The multilayer features are extracted and best features are
selected through the proposed selection approach and results
are validated on newly designed WCE dataset. The results are
analyzed in three different rounds: (a) all multilayers features
selection (MLFS) and comparison with FC selected features;
(b) 70% MLFS and comparison with FC 70% selected features,
and (c) 50% MLFS and comparison with 50 FC selected
features.

The results of first round are presented in Table 3 and con-
firmed by CM’s in Fig. 8. The bestachieved recognition accuracy
of all MLFS approach is 97.9%whereas the FC selected features
reached 95.0%. In Table 4, the results of second round are pre-
sented and achieved the best accuracy of 99.3% on MLP classi-
fier through proposed MLFS approach. The results are also con-
firmed byCM’s given in Fig. 10. In the final round, 50% features
are selected throughMLFS approach as presented in Table 5 and

reached the best accuracy of 99.5% which is also affirmed by
CM’s in Fig. 12. In addition, the recognition time for all classi-
fiers is also computed and plotted in Figs. 9, 11, and 13 which
explains that the less and useful number of features gives the best
accuracy and minimizes the overall system execution time.

Moreover, the iterations based comparison of proposed
system is conducted with FC selected features as shown in
Fig. 14 in which system is iterated up to 100 times and very
minium change is noted which confirms the authenticity of
proposed system.

In the last, the comparison of proposed system is also con-
ducted with latest existing techniques as presented in Table 6
where the latest existing accuracy is 98.49% achieved by
Amna et al. [5] in 2018. They classify three of stomach infection
classes including ulcer, bleeding, and healthy but with very low
computational time of 17.193 s on only 448 WCE frames (255
healthy, 119 bleeding and 68 ulcer), whereas in the presented
work, same type of 12,000 WCE images are used and reached
maximum accuracy of 99.50% and computational time of
21.15 s which is clearly good as compared to existing ones.

Conclusion

Ulcer and bleeding are the most frequently occurring deformities
of the human digestive tract. An ulcer is more common GI tract
infection and approximately 10% of people in the entire world
are suffering from it. In this article, a new automated system is
proposed using the best CNN feature selection. The ulcer regions
are segmented through CFbLHS approach and then compute
CNN features. From them, the best features are selected and
provides to MLP for classification. The experiments are per-
formed on selected Private Dataset and achieve maximum accu-
racy of 99.5%, recall rate 99.40%, specificity 99.20%, and com-
putation time 21.15 s. From overall system results, we conclude
that the segmentation process helps in to extract the useful

Fig. 14 Change in recognition accuracy after 100 times iterations using FC features and proposed MLFS approach

Table 6 Proposed work comparison with latest existing approaches

Method Year Accuracy (%) Time (sec)

[59] 2017 97.89 –

[40] 2017 97.67 –

[60] 2017 87.49 –

[61] 2017 88.61 –

[5] 2018 98.49 17.193

Proposed 2019 99.50 21.15

The bold values show the significant results
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features of the important region. The proposed method also
shows that the fusion process increase in the classification per-
formance but on the other end, this step increase the computa-
tional time due to more number of features. This kind of problem
is resolved through the selection process which minimized the
computational time along with consistent accuracy. In the future,
the segmentation of ulcer regions is performed through mask
RCNN and then extracts features. Moreover, the addition of a
few latest performance measures is also computed for more pre-
cise analysis.
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