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Abstract
Diffusion tensor imaging (DTI) is a new imaging method that can be used to non-invasively measure the diffusion coefficient of
water molecules in biological tissue structures in recent years. Since the DTI data is a tensor space, its segmentation is different
from ordinaryMRI images. Based on the existing deep learningmodel, an improved image semantic segmentation method based
on super-pixels and conditional random field is proposed. Firstly, this paper uses the existing feature extraction model based on
deep learning to obtain rough semantic segmentation results, including high-level semantic information of the image but lacking
details of the image. In addition, the super-pixel segmentation algorithm is implemented to obtain super-pixels that carries more
low-level information. Secondly, due to the lack of image details in rough segmentation results, the segmentation of the edge of
the image is inaccurate. In this paper, a boundary optimization algorithm is proposed to optimize the edge segmentation accuracy
of the rough results. Finally, the use of super-pixels for local boundary optimization can improve the segmentation accuracy.
Experiments results show that this segment is a practical and effective method.

Keywords Diffusion tensor imaging . Rough segmentation . Boundary optimization . Super-pixel segmentation . Full
convolutional network . Deep learning

Introduction

Diffusion tensor imaging(DTI) is of great significance and
clinical importance in the study of cognitive function and neu-
ral activity of brain [1]. DTI gets self-diffusion tensor images
by measuring the diffusing characteristics of water molecules
in brain tissues based on diffusion weighted imaging (DWI)
[2]. Compared to T2-weighted MRI, DTI could get the infor-
mation of the asymmetric construction distribution of brain
tissues [3].

Image segmentation is an important step and a key link in
medical image analysis, understanding and description [4].
The head model can be divided into five types of tissues:
scalp, skull, gray matter, white matter, and cerebrospinal fluid.
The physiological functions and structures of each tissue are

different [5]. Different brain images have different imaging
principles and different segmentation methods [6]. Brain tis-
sue s egmen ta t i on i s a key componen t in bo th
electroencephalogram/magnetic science research and clinical
diagnosis of brain diseases. The distribution of internal tissues
of the brain is very complicated, and different brain tissues are
intertwined. If the different brain tissues cannot be accurately
segmented, the correct conductivity of the brain tissue cannot
be assigned, and finally accurate calculation results cannot be
obtained [7].

Diffusion tensor imaging (DTI) is a new imaging method
that can be used to non-invasively measure the diffusion co-
efficient of water molecules in biological tissue structures in
recent years. This technique has a good application prospect in
the non-invasive tracking of white matter fiber bundles, which
can further help detect abnormalities of early white matter
lesions, and has superiority that can not be compared with
general MRI examination. Since the DTI data is a tensor
space, its segmentation is different from ordinary MRI im-
ages. Firstly, the DWI data is converted into DTI data accord-
ing to the magnetic field gradient table and the b value, and
then divided according to the diffusion characteristics of dif-
ferent tissue water molecules.
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Recently, there are three kinds of segmentation methods
based on diffusion tensor imaging. Literature [8] proposed
support vector machine and Markov random model seg-
mentation algorithm; since support vector machine training
is difficult to converge, it is difficult to choose appropriate
tensor training sample set; the hidden Markov random
model and the maximum expectation algorithm is pro-
posed by literature [9], where the segmentation error is
large and the efficiency is low; literature [10] proposed
statistical fuzzy parameterless segmentation, but its error
is very large without priori knowledge combining different
brain tissue diffusion characteristics. In order to improve
the accuracy of segmentation, domestic and foreign
scholars have proposed many excellent segmentation
algorithms.

An improved fuzzy C mean clustering algorithm is pro-
posed in literature [11], the fuzzy C-means clustering algo-
rithm randomly selects the center point of the initial clus-
ter. Because the final clustering result has a certain depen-
dence on the initial clustering center point, the random
clustering center point will not affect the final clustering.
As a result, the combination of FCM and maximum-
minimum distance algorithm is proposed. The maximum
and minimum distances are introduced on the basis of clas-
sical FCM, and the improved fuzzy C-means clustering
algorithm is validated by the experimental data set. The
experimental results show that the improved fuzzy C-
means segmentation can obtain more smooth edge infor-
mation, the wrong segmentation area is reduced, and the
segmentation accuracy is improved. An adaptive mean
drift algorithm is proposed in literature [12], the basic idea
of the mean shift algorithm is to search for the densest area
of sample points in the given sample space and drift to the
local density maximum along the direction of increasing
density. Unlike other clustering algorithms, drifting to find
the local maximum is a continuous iterative process, so no
prior knowledge is required. However, the bandwidth of
the traditional mean shift algorithm is a fixed value and
cannot be automatically adjusted according to the distribu-
tion of the pixel points. Therefore, their improved algo-
rithm proposes an adaptive mean shift algorithm. By
redefining the window function and combining the proba-
bility density function of the pixels, the pixel points are
different. Probability density applies to different band-
width values, and the segmentation effect is improved in
DTI image segmentation.

In view of the brain white matter fibers segmentation
from diffusion tensor image, literature [13] presented an
algorithm based on Riemannian manifold. Firstly, con-
struct a 3 × 3 symmetric positive definite covariant tensor
for each voxel using diffusion tensor image, by which ten-
sor field is constructed to illuminate brain white matter.
Secondly, the tensor field is regarded as Riemannian

manifold, and the fluid motion in the tensor field is
expressed by Navier-Stoke equation, so the problem of
brain white matter fibers between two voxels can be trans-
formed into the computation of the smallest distance be-
tween two points in Riemannian manifold. Finally, dis-
tances between two points in Riemannian manifold [14],
which are the brain white matter fibers, can be expressed
by geodesic, whose numerical solution is based on Level-
Set algorithm. Compared with the conventional brain white
matter fibers segmentation, this algorithm’s accuracy and
robustness are greatly improved.

However, the DTI segmentation algorithms mentioned
above are all based on low-level learning methods such as
traditional image processing and pattern recognition [15].
They are sensitive to noise and can not effectively process
and analyze large-scale image data [16]. Compared with the
traditional shallow learning, the deep learning represented by
convolutional neural network emphasizes the depth of model
structure and the importance of feature learning. By layer-by-
layer feature transformation, the feature representation of sam-
ples in the original space is transformed into a new deep-
feature space, which makes classification or prediction easier.
Compared with the method of constructing features by artifi-
cial rules, using large data to learn features can better represent
the rich intrinsic information of data. Shallow learning lacks
generalization ability for complex problems due to the limita-
tions of samples and computational capacity [17]. Deep learn-
ing can achieve complex function approximation by learning a
deep non-linear network structure, demonstrating a powerful
ability to learn the essential characteristics of data from the
sample set.

Based on the existing deep learning model, an improved
image semantic segmentation method based on super-pixels
and conditional random fields is proposed. Firstly, this paper
uses the existing feature extractionmodel based on deep learn-
ing to obtain rough semantic segmentation results, including
high-level semantic information of the image but lacking de-
tails of the image. In addition, the super-pixel segmentation
algorithm is applied to obtain super-pixels that carries more
low-level information. Secondly, due to the lack of image
details in rough segmentation results, the segmentation of
the edge of the image is inaccurate. In this paper, a boundary
optimization algorithm is proposed to optimize the edge seg-
mentation accuracy of the rough results. The edge segmenta-
tion effect in the rough results is preliminarily optimized using
super-pixels. Finally, the use of super-pixels for local bound-
ary optimization can improve the segmentation accuracy. In
order to further improve the segmentation accuracy, the fully
connected conditional random field is used to constrain the
pixels with similar structure and spatial position, and make
full use of the local texture features, global context informa-
tion and smooth priors to further optimize the semantic seg-
mentation results of the image.
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Materials and methods

Strategy

The algorithm proposed in this paper is essentially a two-
stage segmentation algorithm [18]. The main differences
between it and the traditional image segmentation algo-
rithm are as follows: (1) the traditional image segmentation
algorithm usually is prone to over-segmentation first, and
then uses different classification models to semantically
classify the over-segmented regions. However, the pro-
posed algorithm does not need to preprocess the image;
(2) the front-end classification model FCN used in this
paper is a full-convolution network. The traditional image
segmentation method based on convolution neural network
adopts the region-based R-CNN model. The two networks
are essentially different in structure and function. The FCN
model implements the classification at the pixel level
whose classification label is the label of a single pixel.
And the R-CNN model implements the classification at
the regional level whose classification label is the label of
the smallest rectangular area including the object in the
image [19]. The classification information provided by
the FCN model is more comprehensive and detailed, while
the R-CNN model can only limit the classification preci-
sion to the over-segmented region, and the classification
precision of the former is higher; (3) the post-processing
step in two-stage model adopted in this paper is a progres-
sive optimization algorithm. Different from the traditional
optimization algorithm based on probability graph model,
this paper makes full use of the good consistency of super-
pixels to the object edge, which not only optimizes the
output of the front-end FCN model, but also plays a better
reference role in constructing the following conditional
random field model.

Extraction of rough features

In this paper, FCN model is used to extract rough features in
images. Different from the traditional convolution neural net-
work model, FCN model can input any size of image and
generate corresponding size of output to obtain pixel-level
classification results [20]. The FCNmodel can be transformed
from the existing convolutional neural network. And the FCN
model used in this paper is transformed from VGG-16 in
series VGGNet.

There are six kinds of network structures in VGGNet
series. As shown in Table 1, there are some differences in
the structure and configuration of each network [21].
Among them, different letters denote different types of
networks. VGG-16 is one of the network D. The range of
convolution layers of these six networks is 11–19 layers.
Table 2 shows the number of network parameters. It can be

seen from Table 2 that although the depth of network A to
network E increases gradually, the number of network pa-
rameters does not increase with it, because a large number
of parameters are used in the last three full-connection
layers. Although the number of parameters of convolution
layer is not large, the calculation of convolution operation
is pretty large, which leads to the big time cost in convo-
lution operation for the training process.

Compared with other deep convolution neural networks,
VGG-16 network can achieve a better balance between
feature extraction and training efficiency [22]. GooleNet
and ResNet have deeper layers and the ability to extract
more abstract image features. However, because of too
many layers, deep networks are prone to over-fitting and
gradient dispersion when training large-scale data sets,
which affects the segmentation effect. Because VGG-16
network uses smaller 3 × 3 convolution core, it improves
the non-linear fitting ability of the model, and to a certain
extent, it makes up for the deficiency of feature extraction
ability caused by fewer network layers. According to the
research results proposed by literature [23], through testing
on multiple data sets, the top-1 error rate of VGG-16 and
VGG-19 is almost the same, while the top-5 error rate is
only 0.1% gap. This shows that VGG-19 does not signifi-
cantly improve the segmentation precision, so it is better to
use VGG-16 with fewer network layers while guaranteeing
the ability of feature extraction. In contrast, AlexNet has
too few network layers to meet the requirement of image
segmentation for feature extraction. Considering the fea-
ture extraction ability of the network and the resource oc-
cupancy rate of network training, our proposed model
transforms VGG-16 network to construct the FCN model.

The specific method of converting VGG-16 network into
FCN model is to replace the full connection layer of the orig-
inal network with convolution layer, and retain the first five
layers of structure [24]. In the whole process of feature extrac-
tion, the resolution of feature mapping is getting lower and
lower after several iterations of convolution and pooling. In
order to reconstruct the final output as the input image that
both of them are having the same size, an up-sampling oper-
ation is needed for the intermediate output. Compared with the
original input image, the resolution of the final output feature
mapping is reduced by 2, 4, 8, 16 and 32 times. The results of
FCN-32 s can be obtained by directly sampling the rough
features of the last layer 32 times. However, the output image
of FCN-32 s lacks many details because of the large magnifi-
cation, so its results are not accurate enough. In order to im-
prove the accuracy, we need to add more details in the next
several layers to the FCN-32 s. By combining more details
with the output of FCN-32 s, we can further obtain the results
of FCN-16 s and FCN-8 s. The effect of FCN-32 s, FCN-16 s
and FCN-8 s are tested in this paper. Figure 1 shows the image
segmentation results under three receptive fields.
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An important problem to be solved in image segmentation
is how to combine target recognition and target positioning
organically. In other words, segmentation is to classify pixels
by pixels and merge location and classification information.
On the one hand, because of the difference of receptive field,
the resolution is relatively high after the previous convolution
operations, and the classification of pixels is not accurate, but
the positioning of each pixel is comparatively accurate. On the
other hand, the resolution is relatively low in the last several
convolutions and the positioning of the pixels is not accurate
enough, but the classification of the pixels is comparatively
accurate. As can be seen from Fig. 1, the result of FCN-32 s is
relatively too smooth but the edge segmentation is not very
accurate. This is because the receptive field of FCN-32 s mod-
el is larger and more suitable for macro-perception [25]. In
contrast, the receptive field of FCN-8 s model is smaller and
more suitable for details. As can be seen from Fig. 1, the
results of FCN-8 s are the closest to the true semantic labels,
and are significantly better than those of FCN-16 s and FCN-
32 s. Therefore, FCN-8 s is used as the front-end to extract the
rough features of the image. Nevertheless, the results of FCN-
8 s are still insensitive to the details of the image. Therefore,
two-level optimization algorithm is used for fine
segmentation.

Fine segmentation based on two-level
optimization

Since the most important characteristic of super-pixel is that it
can fit the image edge, we propose to use super-pixel to opti-
mize the rough features extracted from the front-end so as to
improve the segmentation accuracy of image edge [26].
Usually, a super-pixel can be regarded as a set of similar pixels
such as position, color, texture, etc. Although the super-pixel
is still a set of pixels according to this similarity, compared
with the pixel, the super-pixel has certain visual significance.
Although a single super-pixel does not have effective seman-
tic information, a single super-pixel is an object or a part of an
object with semantic information.

Framework of edge optimization algorithm

Figure 2 illustrates the flow chart of using super-pixels to
optimize the effect of segmentation on object edges. The core
idea is to use the Simple Linear Iterative Clustering super-
pixel segmentation algorithm to generate super-pixels, and
then optimize rough features through the object edges that
well fitted by super-pixels. This optimization algorithm can
improve the segmentation accuracy of object edges. It is

Table 1 VGGNet structure configuration table

Network layer VGGNet A(11) A-LRN(11) B(13) C(16) D(16) E(19)

Input layer 320 × 240

Convolution layer conv3–64 conv3–64
LRN

conv3–64
conv3–64

conv3–64
conv3–64

conv3–64
conv3–64

conv3–64
conv3–64

Pooling layer maxpool

Convolution layer conv3–128 conv3–128 conv3–128
conv3–128

conv3–128
conv3–128

conv3–128
conv3–128

conv3–128
conv3–128

Pooling layer maxpool

Convolution layer conv3–256
conv3–256

conv3–256
conv3–256

conv3–256
conv3–256

conv3–256
conv3–256
Conv1–256

conv3–256
conv3–256
conv3–256

conv3–256
conv3–256
conv3–256
conv3–256

Pooling layer maxpool

Convolution layer conv3–512
conv3–512

conv3–512
conv3–512

conv3–512
conv3–512

conv3–512
conv3–512
Conv1–512

conv3–512
conv3–512
conv3–512

conv3–512
conv3–512
conv3–512
conv3–512

Pooling layer maxpool

Convolution layer conv3–512
conv3–512

conv3–512
conv3–512

conv3–512
conv3–512

conv3–512
conv3–512
Conv1–512

conv3–512
conv3–512
conv3–512

conv3–512
conv3–512
conv3–512
conv3–512

Pooling layer maxpool

FC layer FC-4096

FC layer FC-4096

FC layer FC-100

Classification layer softmax
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divided into three steps. Firstly, the rough features of input
image are extracted and semantically labeled by using the
FCN model mentioned above. Secondly, the Simple Linear
Iterative Clustering super-pixel segmentation algorithm is
used to segment the input image and obtain the super-pixel
segmentation image. Thirdly, combining the two kinds of seg-
mentation images obtained in the first two steps, the proposed
optimization algorithm is used to optimize the local edges of
the rough features obtained in the first step. After edge opti-
mization, the segmentation results will have more accurate
edge information than the results of FCN model, and also
reduce the diffusion error in the process of up-sampling.
These two points make the accuracy of segmentation
improved.

Super-pixel-based edge optimization algorithm

The key of local edge optimization is the effect of combining
super-pixel edge with FCN model. If the effect is good, it will
improve the overall effect [27]. On the contrary, it will not
improve the segmentation effect, but will expand the segmen-
tation error and reduce the accuracy of segmentation. The
optimization algorithm proposed in this paper is shown in
Algorithm 1, and the core idea of edge optimization is shown
in pseudo-code. The core idea of the edge optimization algo-
rithm proposed in this paper is to semantically assign labels to
all the pixels in the super-pixel using the pixel-level charac-
teristic pattern output by FCN. There are several possible sit-
uations in this process. According to whether or not the image
edge is included in the super-pixel, there are two kinds of
cases, namely, edge and no edge. In the case of super-pixels
containing edges, there are two cases according to whether all
pixels have the same semantic label. For the convenience of
description, case A is that a single super-pixel does not contain
image edges, and all the pixels in the super-pixel have the
same semantic label; while case B is that the super-pixel does
not contain image edges, but the pixels in the super-pixel have
multiple semantic labels. Case C is that the super-pixel con-
tains image edges, but all pixels still have the same semantic

label; case D is that the super-pixel contains image edges and
the pixel has multiple semantic labels.

Fine segmentation

After local edge optimization, it is still necessary to improve
the segmentation accuracy of weak edges, small structures and
complex scenes. Therefore, this paper uses the fully connected
conditional random field model to restore the edge of the
image more accurately, that is, to further optimize the segmen-
tation effect of the edge part of the image, and then to improve
the overall accuracy of image segmentation.

A fully connected conditional random field model is
established by using image I and edge-optimized pixel-level
segmented graph, and it is represented by probability distribu-
tion P (X). The energy function used in this paper is E (x), in
which one-dimensional potential energy ψu(xi) is the opti-
mized segmentation results of local edges and represents the
probability that the pixel i is labeled as label xi. But the fully
connected conditional random field has a large number of
edges, which makes the calculation very difficult. For exam-
ple, Robust CRF algorithm takes several hours to process a
picture. So this paper usesmean field approximation and high-
dimensional filtering to solve the probability distributionP (X)
of CRF efficiently.

Mean field approximation

Since calculating accurate probability distribution P(X) is a
NP-Hard problem, a more general approach is to find proba-
bility distribution Q(X) from distribution set Q by minimizing
KL (Kullback-Leibler) divergence to approximately replace
probability distribution P(X). Probability distribution set Q
can be expressed as the product of independent edge proba-
bility distribution, as shown in formula (1):

Q Xð Þ ¼ ∏Qi xið Þ ð1Þ
where Qi(xi) is the edge probability distribution of variable xi.
And Qi(xi) can be obtained by using KL divergence and
Lagrange equation.

Qi xið Þ ¼ 1

Zi
exp −ψu xið Þ− ∑

i≠ j
ψp xi;U j

� �� �( )
ð2Þ

(a) (b) (c) (d)

Fig. 1 Brain white matter
segmentation results for different
receptive fields. a FCN-32 s; b
FCN-16 s; c FCN-8 s; d
benchmark

Table 2 The number of arguments for different blocks

Blocks A,A-LRN B C D E

Arguments 133 133 134 138 145
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Formula (3) can be obtained by combining formula (2) and
binary potential energy:

Qi xi ¼ 1ð Þ ¼ 1

Zi
exp −ψu xið Þ− ∑

l
0∈L

μ l; l
0

� �
∑
K

m¼1
ω mð Þ ∑

i≠ j
k mð Þ f i; f j

� �
Qj l

0
� �" #

ð3Þ

From Formula 3, we can get the specific solution of ap-
proximate probability distributionQ (X). The flow chart of the
mean field approximation algorithm for fully connected con-
ditional random fields is summarized as follows:

(1) Use formula (4) to initialize probability distribution Q:

Qi xið Þ ¼ 1

Zi
exp −ψu xið Þ½ � ð4Þ

(2) Determine whether the probability distribution Q con-
verges or not. If it does not converge, repeat steps (a) to
(d):

(a) For all m, the information propagation values between all
pairs of pixels are calculated:

Qi l
0

� �
¼ ∑

i≠ j
k mð Þ f i; f j

� �
Qj l

0
� �

ð5Þ

(b) Compatibility function is added to calculate its effect on
probability distribution:

Q ̂ i xið Þ ¼ ∑
l
0∈L

μ mð Þ xi; l
0

� �
∑
K

m¼1
ω mð ÞQi

mð Þ
l
0

� �
ð6Þ

(c) Locally renew formula (6) and solve the probability dis-
tribution of variable x:

Qi xið Þ ¼ exp −ψu xið Þ−Q ̂ i xið Þ� � ð7Þ

(d) Approximate probability distribution Q(X) can be ob-
tained by normalizing Qi(xi)

Steps (a) to (c) are the core steps of the mean field approx-
imation algorithm. The complexity of steps (b) and (c) is lin-
early related to the number of variables in the probabilistic
pattern model, which is efficient and less time-consuming.
However, the relation between step (a) and the number of
variables is a quadratic function because it is necessary to
calculate the information propagation of other variables. In
the field of image segmentation, the number of variables is
generally the number of pixels in the image, so if this step is
not optimized, the square complexity of the algorithm is
unacceptable.

Information propagation based on high-dimensional
filtering

Approximate high-dimensional filtering can reduce the time
complexity of information propagation process from square
complexity to linear complexity. From the point of view of
signal processing, the information propagation process can be
represented by the convolution process of the Gauss kernel
function GΛ(m) in the feature space, as shown in Eq. (8):

Qi l
0

� �
¼ GΛ mð Þ⊗Qj l

0
� �h i

f ið Þ−Qi l
0

� �
¼ Qi

mð Þ
l
0

� �
Qi l

0
� �

−Qi l
0

� � ð8Þ

It is noted that the information propagation process of var-
iables occurs only with variables except itself, so formula (8)

FCM

Original image Rough result Fine result

Super-Pixel

Segmentation

SLIC

Edge optimization CRF

 

Fig. 2 Framework of edge
optimization algorithm
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need subtract Qi(l
′) on the basis of the stack of convolution

functions Qi
mð Þ

l
0

� �
. Essentially, the convolution process

Qi
mð Þ

l
0

� �
can be seen as a low-pass filtering process. When

the distance is small, the convolution function is larger,
resulting in larger weight. With the distance increasing, the
convolution function becomes smaller, resulting in smaller
weight. According to the sampling theorem, as long as the
requirement of the number of sampling points is satisfied,
the convolution function Qi(l

′) can be reconstructed through
a series of sampling points, in which the distance between
sampling points is proportional to the standard deviation of
the filter. In summary, the convolution process can be divided
into three stages: firstly, acquire a part of the sampling points
and get Q↓(l

′) by down-sampling Q(l); secondly, convolute
sampling point f ̂ :

∑
j∈v̂̂
k mð Þ f ̂ i; f ̂ j

� �
Qj l

0
� �

→∀i∈viQi

mð Þ
l
0

� �
ð9Þ

Finally, Qi
mð Þ

l
0

� �
is obtained by up-sampling Qi

mð Þ
l
0

� �
.

Results and discussion

In order to verify the performance of the improved DTI white
matter segmentation algorithm based on super-pixel and con-
ditional random field proposed in this paper, we compare the

proposed algorithm with the current state-of-the-art segmen-
tation algorithm, and analyze the segmentation results from
both qualitative and quantitative perspectives, where we first
introduce the preliminary preparation of the experiment, in-
cluding the experimental platform, the data set, and the pa-
rameter setting strategy. Then the experimental verification of
the improved algorithm is carried out, including the necessary
verification of the algorithm steps and the comparison with
other algorithms. Finally, the subjective and objective experi-
mental data are given, and the necessary analysis is carried
out.

Experiment setup

In order to ensure the final experimental data is convinc-
ing, all the algorithms are carried out under the same hard-
ware and software conditions. The main configuration pa-
rameters of the computer used in this experiment are
shown in Table 3:

NVIDIATitan Xp is the most important part of the exper-
iment in this article. The use of the GPU for the training and
testing process of the FCN model greatly shortens the exper-
imental time, and the SLIC algorithm implemented by the
GPU can achieve the real-time processing effect when
performing super pixel segmentation. In order to balance the
software environment required for each experiment, the
Ubuntu desktop 16.04 LTS operating system is adopted,
where the deep learning framework Caffe is used to speed
up the experiment. The self-built data-set and the public
data-set are used for deep learning training and testing. The
self-built data-set collects 7000 medical DTI image data from
several hospitals and some data have been labeled by imaging
specialists. The public data set is from the medical imaging
data set DeepLesion released by NIHCC [28], which contains
more than 32,000 lesion annotations from more than 10,000

Fig. 4 DTI data training process curve for IOU

Table 3 Configuration parameter

CPU Intel(R) Core(TM) i3–6400 CPU 3.30GHz

RAM 32 GB

GPU NVIDIATitan Xp

Memory Size 12GB

Fig. 3 DTI data training process curve for LOSS

J Med Syst (2019) 43: 303 Page 7 of 10 303



cases. In order to facilitate training and testing, 12,150 images
are selected as training samples and 8800 images as testing
samples. The key parameters that need to be set in the im-
proved algorithm mainly include the parameters of the FCN
model, the number N of SLIC super-pixels and several
hyperparameters w1, w2, σa, σβ, σr in the fully connected
condition random field. Because the training of the FCNmod-
el in this paper uses the default parameters, the parameter
settings of the FCN model are not discussed. We mainly dis-
cusses the number of SLIC super-pixels and the
hyperparameters [29].

Parameter optimization

This paper uses cross-validation to determine several
hyperparameters for a fully connected conditional random
field. First, we set two parameters w2 and σr. For these two
parameters, they have little effect on the classification accura-
cy, more affect the smoothness, so the initial values are set as
w2 = 1, σr = 1. According to the test results, the paper finally
sets w2 = 3 and σr = 3. As for these three hyperparameters w1,
σa and σβ, we uses a optimal search strategy for rough to fine.
In addition, we select a small number of images to search on
the training dataset. The initial values of these three parame-
ters are set to w1 = 3, σa = 30 and σβ = 3∈. After the initial
search range is set to a round of search, the search is re-
searched within the range of the optimal value, and the incre-
mental step is halved until the final search stops. This ensures
that the conditional random field parameter set in this paper is
the optimal parameter. After searching, the three values used
in this article are w1 = 5, σa = 48 and σβ = 3. In addition, this
paper sets the SLIC super-pixel to perform 10 iterations, and
sets the CRF to perform 10 average field approximation
iterations.

Qualitative and quantitative analysis

In this paper, pixel accuracy (PA) and intersection over Union
(IoU) are used to quantitatively analyze the segmentation ac-
curacy. Themeaning of PA is to calculate the ratio between the
number of pixels accurately classified and the total number of
pixels in the whole image, which is the most intuitive mea-
surement index. The meaning of IoU is to measure whether an
algorithm can effectively detect a specific category in an im-
age. In addition to the above two evaluation indicators, this
paper also uses the most widely used Mean Intersection over
Union (MIoU) [30], which is the standard performance mea-
surement index in the field of image segmentation. It is ob-
tained by calculating the IoU of all categories.

The used metrics in this study is the IOU value of the
segmentation [30, 31]. That is, the degree of overlap between
the white-matter region of the segmented image and the white-
matter region of the benchmark image, the loss function used
in this study is binary cross entropy. The training process is
iterated for 50 times. Figure 4 shows that the IOU values of
DTI data and thoracic data in training set are respectively is
0.6341 and 0.5947. The IOU values of these two different data
are 0.6342 and 0.5948. As shown in Fig. 3, the Loss value of
the verification set is 0.0754 and 0.05. By observing the image
segmentation results, the DTI data segmentation had been
well implemented (Fig. 4).

The core idea of the improved method in this paper is the
application of super-pixel and the optimization of conditional
random field model. As an improved algorithm, it is necessary
to verify the improved algorithm to achieve the expected ef-
fect through the necessity analysis. Therefore, in order to ver-
ify the necessity of each step in the improved algorithm, we
have designed some independent experiments to verify the
effect and necessity of super-pixel edge optimization and
CRF precise edge recovery. The normal FCN-8 s model is

(a) (b) (c) (d) (e) (f)

Fig. 5 Brain white matter segmentation results for different model. a Original image; b FCN-8 s; c FCN-8 s + edge optimization; d FCN-8 s + CRF; e
Proposed f Benchmark

Table 4 Comparison of IoU for different models

Dataset FCN-8 s FCN-8 s + Edge optimization FCN-8 s + CRF Proposed

Self-built 62.7 65.9 69.6 75.2

DeepLesion 56.1 58.9 62.1 65.1
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used as the benchmark for all comparison experiments; The
super-pixel edge optimization is applied to the processing re-
sults of the FCN-8 s model as the first comparison experiment.
The fully connected conditional random field is used as the
post-processing step of the FCN-8 s model, but the super-pixel
edge optimization is not used; The result of the FCN-8 s mod-
el is optimized through the super-pixel edge, and then the fully
connected condition random field is used to further optimize
the image edges. Figure 5 is an illustration of experimental
results obtained on same test image.

From Fig. 5, we can see the comparison of the results for
four independent experiments. First of all, from a subjective
point of view, we can see that the super-pixel edge optimiza-
tion is always better than the method without edge optimiza-
tion. Figure 5b is closer to the real label than comparison
algorithms. In addition, it can be concluded that the DTI seg-
mentation precision of the edge can be improved by super-
pixel edge optimization. For the FCN-8 s model combined
with CRF, it has a significant improvement in subjective effect
compared to the ordinary FCN-8 s.

We count the MIoU scores of the four experiments on two
data sets, as shown in Table 2. The statistical data shows that
the quantitative results are consistent with the conclusion of
subjective analysis. The data shows that the edge optimization
has increased theMIOU by 3.2% over the self-built dataset for
the regular FCN-8 s model and by 2.8% over the DeepLesion
dataset. Based on the above experimental results, it can be
concluded that the DTI segmentation precision can be im-
proved by super-pixel edge optimization. The purpose of
using CRF is to reconstruct the edges more accurately. In the
same situation, the necessity can be verified by comparing the
performance of FCN-8 s with and without CRF as a post-
processing step. As can be clearly seen from Table 4, CRF
can always improve the MIoU score of the corresponding
algorithm. Comparing Fig. 5d and e, the algorithm uses CRF
to achieve accurate edge recovery, which is improved by 5%
on the self-built data set and 4.1% on the DeepLesion data set.
Edge optimization using super-pixels, and precise edge recov-
ery using CRF are necessary, and both can improve the seg-
mentation accuracy of the DTI white-matter segmentation
algorithm.

Conclusion

Diffusion tensor imaging (DTI) is a new imaging method that
can be used to non-invasively measure the diffusion coeffi-
cient of water molecules in biological tissue structures in re-
cent years. Since the DTI data is a tensor space, its segmenta-
tion is different from ordinary MRI images. Based on the
existing deep learning model, an improved image semantic
segmentation method based on super-pixels and conditional
random fields is proposed. Firstly, this paper uses the existing

feature extraction model based on deep learning to obtain
rough semantic segmentation results, including high-level se-
mantic information of the image but lacking details of the
image. In addition, the super-pixel segmentation algorithm is
applied to obtain super-pixels that carries more low-level in-
formation. Secondly, due to the lack of image details in rough
segmentation results, the segmentation of the edge of the im-
age is inaccurate. In this paper, an boundary optimization al-
gorithm is proposed to optimize the edge segmentation accu-
racy of the rough results. The edge segmentation effect in the
rough results is preliminarily optimized using super-pixels.
Finally, the use of super-pixels for local boundary optimiza-
tion can improve the segmentation accuracy. Experiments re-
sults show that this segment is a practical and effective
method.
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