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Abstract
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows
signs of Alzheimer’s disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature
extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images
are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature
extraction, Student’s t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a compar-
ative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings
suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer’s diagnosis as
compared to alternative methods. The proposed CABD tool with the ST +KNN technique provided accuracy of 94.54%,
precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision,
sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
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Introduction

Alzheimer’s disease (AD), the most widespread reason for
dementia in the elderly, is a chronic degenerative disease with
progressive loss of intellectual function. The cognitive decline
is characterized by gradual disappearance of healthy nerve
cells in the cerebral cortex, especially in the frontal and medial
temporal regions of the brain. AD is also a significant factor in
morbidity, ranked fifth among causes of death by the World

Health Organization (WHO) [1]. The presence of amyloid
plaques and neurofibrillary tangles in the brain are character-
istic features of this disease. Although the cause of AD is
poorly understood, the risk factors include genetics, history
of head injury, depression, and hypertension. AD is also found
to occur in people with Down’s syndrome about 20 years
earlier than the general population [2]. The onset of the disease
is subtle and usually occurs when over 65 years of age. The
first noticeable changes include difficulty in short term

This article is part of the Topical Collection on Image & Signal
Processing

* V. Rajinikanth
v.rajinikanth@ieee.org

1 Department of Electronics and Computer Engineering, Ngee Ann
Polytechnic, Singapore, Singapore

2 School of Medicine, Faculty of Health and Medical Sciences,
Taylor’s University, 47500 Subang Jaya, Malaysia

3 Department of Biomedical Engineering, School of Science and
Technology, Singapore University of Social Sciences,
Singapore, Singapore

4 Department of Electronics and Communication Engineering,
Sahyadri College of Engineering & Management, Mangaluru, India

5 Department ofMedicine, Columbia University, NewYork, NY, USA

6 Department of Biomedical Imaging, Faculty of Medicine, University
of Malaya, Kuala Lumpur, Malaysia

7 Department of Computer Science and Information Systems, Texas
A&M University-Commerce, Commerce, TX, USA

8 Department of Electronics and Instrumentation, St. Joseph’s College
of Engineering, Chennai 600119, India

Journal of Medical Systems (2019) 43: 302
https://doi.org/10.1007/s10916-019-1428-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-019-1428-9&domain=pdf
http://orcid.org/0000-0003-3897-4460
mailto:v.rajinikanth@ieee.org


memory, disorientation, lack of self-care, behavioral changes,
depression, anxiety, and problems with language. It is gener-
ally accepted that Alzheimer’s disease has a gradual and irre-
versible progression. In the terminal stages of the disease, the
patient may lose ability to perceive, think, speak or move,
ultimately leading to loss of bodily functions and then finally
to death. The progression of the disease may take from 3 to
9 years [3, 4], or even longer.

The stages of AD include pre-dementia, early stage, middle
stage, and advanced stage. The symptoms of the pre-dementia
stage mimic the process of normal aging, including forgetful-
ness with mild cognitive impairment. In the early stages, im-
pairment of learning, executive function, and memory are
more prominent, often resulting in some language difficulty.
In the middle stage, speech difficulties become more evident,
reading and writing skills are progressively attenuated, and
long-term memory also becomes impaired. In the advanced
stage, Alzheimer’s patients may exhibit apathy and simpler
tasks cannot be carried out independently; the afflicted indi-
vidual eventually becomes bedridden, and ultimately death
ensues [5, 6].

The diagnosis of AD is based on the history of the illness
and the presence of neurological and psychological features.
The medical history of the patient may be obtained from rel-
atives, and the behavior of the patient can also be assessed [7].
The dietary pattern, as well as use of medicines and other
supplements by the patient, is also taken into consideration
during the screening for Alzheimer’s disease. Advanced med-
ical imaging includes Computed Tomography (CT), Magnetic
Resonance Imaging (MRI) and Positron Emission
Tomography-Computed Tomography (PET-CT) techniques.
A CT scan helps to diagnose dementia by checking the size
of various regions of the brain, counting the temporal lobe,
hippocampus, and frontal lobe. The MRI scan of the brain
shows the brain structures, shrinkage of the brain, vascular
irregularities, and any other structural changes that might
cause cognitive dysfunction. Memory loss caused by stroke
or tumors can be ruled out by MRI scans. PET-CT of various
types of brain functions are widely available: (i) fluoro-
deoxyglucose (FDG) PET-CT are used to measure the brain
glucose levels, (ii) amyloid PET-CT are used to measure beta-
amyloid proteins, and (iii) tau PET-CT are used to detect tau,
the protein that forms neurofibrillary tangles in nerve cells [8,
9]. For instance, a positive amyloid PET-CT scan (higher
levels of beta-amyloid) would be helpful to confirm AD.
These diagnostic methods can also be useful to rule out other
conditions that might contribute to dementia, such as tumors,
stroke, and head trauma [10].

The primary role of MRI in the analysis of AD is the eval-
uation of volume alteration in characteristic positions, which
can offer an analytical accuracy of up to 87% [11, 12]. The
appraisal is frequently done on mesial temporal lobe atrophy
(i.e. hippocampus and entorhinal cortex) and temporoparietal

cortical atrophy. Mesial temporal lobe atrophy can be estimat-
ed directly or indirectly. Direct estimation is based on mea-
surement of the volume loss of hippocampal or
parahippocampal tissue, while indirect estimation relies on
the magnification of the parahippocampal fissures. These es-
timations are generally analyzed together with the medial tem-
poral atrophy score, which has been shown to be predictive of
progression from mild cognitive impairment to dementia.
Early onset of AD can be detected through the presence of
parietal atrophy on the interhemispheric surface by examining
the subsequent cingulate sulcal and parietooccipitalsulcal di-
mension, and the degree of atrophy of the precuneus and cor-
tical region in the parietal lobe.

The microscopic examination of brain tissue gives a defin-
itive diagnosis of the disease. The cognitive impairments
found in this disease are evaluated with neuro-psychological
tests such as the Mini-Mental State Examination (MMSE) and
Mini-Cog test [11]. Mood assessment of the patient to detect
behavioral changes, such as anxiety or depression, is also
carried out to rule out other ailments that overlap dementia
[11, 12]. Although the confirmative diagnosis of AD can only
be done in an autopsy by direct examination of the brain
tissue, other indirect, yet effective methods are emerging.
These include analyzing specific biomarkers that accurately
assess the levels of amyloid proteins in cerebro-spinal fluid
(CSF) and blood, which are being widely used to determine
the current size of the brain and its functional state.

The clinical significance of AD, combined with the wide-
spread availability of recent non-invasive imaging techniques,
has attracted the attention of the research community in the
field to advance reliable and accurate technical assessments
for a myriad of brain conditions. In fact, a variety of
Computer-Aided-Brain-Diagnosis (CABD) systems have
been recently proposed and implemented by researchers to
examine the occurrence and severity of AD [13–20]. The gen-
eral framework of the CABD implemented for the AD in-
cludes (i) collection of brain imagery using a recommended
imaging technique, (ii) implementation of image pre-
processing techniques to enhance brain images, (iii) mining
of vital features using a chosen feature extraction technique,
(iv) assessing dominant feature selection, (v) implementing a
classifier system to categorize the brain-image, and (vi) vali-
dation of the developed CABD using the brain MRI database.

In our study, a CABD system was developed and imple-
mented to classify the selected T2-weighted brainMRI images
into normal and AD cases. Initially, the pre-processing was
implemented for the test images using a median filter, which
helps to enhance the test pictures by removing noise.
Thereafter, a feature extraction technique was implemented
to mine the vital features from the brain MRI. In this work, a
detailed relative study between the feature selection proce-
dures, including the Contourlet Transform (CoT), Curvelet
Transform (CuT), Complex Wavelet Transform (CWT),
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Dual Tree Complex Wavelet Transform (DTCWT), Discrete
Wavelet Transform (DWT), Empirical Wavelet Transform
(EWT), and Shearlet Transform (ST), was implemented.
Then Student’s t-test was applied to select a subset of features
based on the p value for classification. Finally, the k-Nearest
Neighbor (KNN) classifier was implemented to classify brain
MRI. The developed CABD system was tested using a 256 ×
256 pixel sized clinical dataset (110 normal cases and 55 AD
cases) and benchmark images (30 normal and 30 AD cases).
During the assessment, a 3-fold stratified Cross Validation
(CV) procedure was implemented to validate the performance
of the CABD system. The performance of the considered fea-
ture extraction procedures was determined by calculating the
accuracy, precision, sensitivity, specificity, and F1 score.

The remaining part of this research work is structured as
follows: section 2 outlines related research findings available
in the literature; the relevant methods implemented to examine
brain MRI are discussed in section 3. Section 4 presents the
experimental results and discussion, and the conclusion of the
present research work is discussed in section 5.

Related work

In the domain of medical imaging, AD diagnosis is essential
not only for preserving individual cognitive capacity, but also
for public health in general. AD creates serious problems for
human thinking, memory, and related living activities. Due to
the unrelenting destruction of nerve cells over time, basic hu-
man intellectual abilities are severely impaired in the later
stages of life [21]. In the USA alone, approximately five mil-
lion people are affected by AD, mostly in the age group of 80–
90 years [22]. For early detection of AD, various therapies and
diagnostic techniques are being developed. AlthoughMRI is a
powerful tool that can be useful to recognize signs of AD in
the brain, the acquisition procedure is time-consuming, pri-
marily due to the need for manual inspection of workflow
bottlenecks [23].

Recently, several techniques have been introduced for the
diagnosis of AD using image processing and machine learn-
ing techniques, which perform more efficiently as compared
with manual systems. Madhumitha et al. [24] presented a
method for early diagnosis of AD using an MRI scan through
an effective image processing technique. The atrophy is com-
puted through K-means, wavelet, watershed, and a few other
customized algorithms. The results of this approach may pro-
vide a helpful diagnostic measure for early stage AD. The
work of Kaur and Kaur was to study several enhancement
techniques which are utilized for AD detection [25]. The
corrected red and green ingredients are used for this purpose,
and the sensitivity and specificity were computed to determine
the best approach for AD detection. Yue et al. [26] presented a
new technique for AD detection using MRI through gradient

echo plural contrast imaging (GEPCI). This technique iden-
tifies those brain tissues which are damaged through AD. The
GEPCI technique enhances the resolution of diseased areas in
the MRI, which is helpful for measurement of brain tissues.

Sankari and Adeli [27] introduced a method for AD diag-
nosis by applying a probabilistic neural network (PNN) tech-
nique to MRI images. The atrophy rate and total brain volume
are computed in the first stage. Then features are extracted,
such as contrast, correlation, and shape, which are input to the
classifier. In comparison, PNN outperforms SVM and KNN in
terms of the accuracy, sensitivity, and specificity. Plant et al.
[28] designed a novel framework for the prediction of AD
using MRI images. They combined the three classifiers
SVM, Bayes statistics, and voting feature interval (VFI) for
matching the patterns of AD in the imagery. For this purpose,
MRI was obtained from thirty-two AD patients, and features
were duly extracted and discussed by Plant et al. [28].
Thereafter, feature selection was employed, and a significant
prediction accuracy was shown. Zhang et al. [29] described a
new machine learning based approach for AD detection using
MRI images. Initially, skull stripping was performed for re-
moval of extracted regions, and then stationary wavelet entro-
py based features were extracted. The extracted entropy fea-
tures were input to a single hidden layer neural network (NN).
Thereafter, weights and biases of NN were optimized via par-
ticle swarm optimization (PSO), which significantly improved
the detection performance.

Wang et al. [30] described detection of AD using MRI
through a single slice method along with wavelet entropy
and perceptron learning (PL). In the feature extraction step,
various features were obtained, including single slice features
via ICV, wavelet transform, wavelet orientation, and wavelet
entropy. The extracted features were then classified by a mul-
tilayer perceptron (MLP) with optimized performance through
a biogeography-based algorithm. The detection results outper-
form as compared with the latest methods. Dong et al. [31]
applied an undersampling method for AD detection fromMRI
images. They utilized principal component analysis (PCA)
and singular value decomposition for feature extraction and
prominent features selection. Finally, the support vector ma-
chine (SVM) and decision tree (DT) algorithms were fused to
achieve significant performance. Zhang et al. [32] introduced
an AD detection system using MRI images. The displacement
field (DF) evaluation was computed to detect AD abnormali-
ties in an otherwise normal brain. The DWT features were
extracted and reduced by PCA. Later, reduced features were
categorized by three classification methods including SVM,
generalized eigenvalue proximal SVM, and twin SVM
(TSVM), which demonstrated better performance. They con-
cluded that DF is helpful in AD detection when utilizing MRI
images.

Syed et al. [33] presented a hybrid approach for AD clas-
sification with MRI. Three primary steps were performed:
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feature extraction, reduction, and classification. DWT features
were extracted from MRI images and reduced by irrelevant
points through PCA. Finally, they utilized ANN and KNN for
classification into healthy and AD images. Wang et al. [34]
described a new method for AD detection and classification
through the Zernike moment (ZM) features and a linear re-
gression (LR) classifier. Through ZM, features were extracted
of length 10–256 for each MRI image. The extracted ZM
features were finally classified by LR, reaching an accuracy
of 97.51%, which is superior to existing methods [35].
Furthermore, Wang et al. [36] established that existing tech-
niques do not achieve better accuracy for AD detection, and

do not properly classify AD-related areas. For this purpose,
they presented a computerized method based on 3D DF esti-
mation among healthy and AD groups. The features were
extracted through the 3D DF method, while significant fea-
tures were selected by using the Bhattacharyya distance (BD),
Student’s t-test, and Welch’s t-test (WTT). The selected fea-
tures were then classified by SVM and TSVM, yielding a
notable performance. Zhang et al. [37] introduced a CAD
system for the detection of AD fromMR images. They select-
ed key slices from 3D MRI images through maximum inter-
class variance. Then eigenbrains were generated for each set
of slices. Later, essential eigenbrains were computed through
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Fig. 1 Structure of the CABD system proposed in this work
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Welch’s t-test, and input to SVM was done along various
kernels. The prediction performance was improved further
via the PSO algorithm. The introduced system outperformed,
efficiently predicted AD, and discriminated brain regions.

Zhang et al. [38] described a CAD system for AD detection
using MRI-scanned images. They extracted wavelet entropy
and Hu moment invariant features from MRI images, and
classification was performed via extraction of generalized ei-
genvalues proximal to SVM. The radial basis function (RBF)
of SVMwas used to increase the classification accuracy. Kette
et al. [39] introduced a multi-textural (MTL) framework for
feature extraction. Through the MTL approach, the structural
information of AD was computed from an MRI image.
Thereafter, they introduced an adaptive fusion method of var-
ious texture grading features extracted from the 3D Gabor
filter. The classification results showed significant perfor-
mance as compared with extant bio-marker techniques. Gao
et al. [40] presented a deep learning-based method for AD
classification. Through deep learning, significant information
of AD was obtained at an early stage, which can be helpful for
diagnosis. For deep learning architecture, both 2D and 3D
Convolutional Neural Networks (CNN) are fused, yielding
excellent performance based on Softmax scores.

The recent work of Ayadi et al. (2019) implemented a hy-
brid technique to extract features from selected brain MRI,
and implemented a classifier system. This work considered
the benchmark dataset of normal and disease classes including
Alzheimer’s disease (AD). Initially, the DWT technique was
adopted to extract the features from the 256 × 256 pixel sized
test picture, and later the Bag-of-Words (BoW) concept was
implemented to group the vital image features. Finally, a rel-
ative assessment among a range of classifiers, such as k-NN,
RF, AB, and SVM, was implemented [58].

Methodology

The methodology implemented in this study is depicted in
Fig. 1. The main aim of the research was to develop a
CABD system to classify normal versus AD cases, based on
T2-weighted MRI brain images. Initially, the 2D test images
of the brain MRI were collected from the University of
Malaya Medical Centre (Medical Ethics Approval No.
2017112–5771) and the Harvard Brain Atlas [41]. During this
process, 66 two-dimensional (2D) test images with dimension
256 × 256 pixels were collected for the examination as
discussed in Ayadi et al. (2019). Thereafter, a pre-processing
procedure was implemented to enhance the test pictures con-
sidered for the study. The pre-processing implements a medi-
an filtering algorithm to remove noise and defects from the
test picture [42, 43]. Thereafter, features were collected from
the brain images using mining procedures described in the
literature. The dominant features were then identified using
the p value obtained with Student’s t-test [44, 45]. Finally,
the KNN classifier process was implemented to classify the
test picture based on its features. Lastly, the performance of
the proposed CABD system was validated based on the per-
centage values of accuracy, precision, sensitivity, specificity,
and F1 score.

Data pre-processing

Brain MRI pre-processing often involves skull-stripping, and
enhancement based on image thresholding and filtering [46,
47]. In this work, the median filter was implemented to en-
hance the test picture under study. The details related to the
medial filtering can be found in [42, 43].

(a) Normal dataset 

(b) AD dataset 

Fig. 2 Sample test images considered from the clinical database
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Feature extraction

The image features from the pre-processed brain MRI were
initially mined using the Contourlet Transform (CoT). Later, a
similar procedure was followed with other feature mining pro-
cedures including CuT, CWT, DTCWT, DWT, EWT and ST.
These feature extraction techniques are widely adopted in a
variety of signal and image processing scenarios [48–52]. A
major objective of this research work was to develop a com-
parative analysis among the considered feature mining proce-
dures, in order to identify the ideal feature mining technique
that offers superior results. More details related to the adopted
feature extraction techniques and their related application can
be found elsewhere [53–57].

Feature selection

In the proposed CABD system, the feature selection process
plays a vital role. In the literature, a variety of traditional and
heuristic algorithm-based feature selection procedures are
adopted to identify the leading features from the extracted
features of each category. In this study, Student’s t-test was
applied to select a subset of features based on the p value for
classification, details of which can be accessed from previous-
ly published papers [44, 45].

Classification

From the literature, it is noted that the examination ability of
the CABD system mainly depends on the type and quality of
classifier system. Quite a few classifier systems exist in the
field of brainMRI examination, but in this work only the well-
known KNN technique was implemented to classify the brain
MRI into normal versus AD [58]. Like other classifiers, KNN
also needs training and testing based on image features.

KNN extrapolates the distance from a range of new data to
all training data points, and finds the shortest distance as the
best neighbour. The k value is empirically determined using
the training sample’s sorting error.

The mathematical expression of the KNN implemented in
this work is as follows:

Let there exist two feature vectors of D dimensions,
M = (M1,M2,…Mn)

T and M = (N1, N2,…Nn)
T, then the

Euclidean distance can be shown to be:

Euclidean distance M
!
; N
!� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M 1−N1ð Þ2 þ M 1−N2ð Þ2þ;…; MD−N1ð Þ2

q
ð1Þ

Validation

The performance of the proposed CABD system was validat-
ed by computing well known image performance measures
[46, 47]. In order to improve the examination capability, a
three-fold cross validation was implemented. The perfor-
mance values adopted in this work are depicted in Eq.’s (2)
through (6).

Table 2 Feature table using the
Shearlet transform Features Normal Alzheimer Statistical measures

Mean SD Mean SD p Value t-Value

S1O1_Vertical_Fuzzy Entropy 0.3238 0.1658 0.6944 0.1756 0.0000 5.8238

S2O5_Vertical_Yager Entropy 0.7553 0.1597 0.3315 0.2138 0.0000 5.8119

S1O9_Horizontal_Vadja Entropy 0.5265 0.1874 0.2137 0.1344 0.0000 5.4949

S2O4_Vertical_Yager Entropy 0.8146 0.1096 0.3824 0.2503 0.0001 5.4692

S1O1_Vertical_Max Entropy 0.6160 0.1724 0.2981 0.1513 0.0000 5.4267

S1O9_Vertical_Max Entropy 0.5410 0.1802 0.2274 0.1450 0.0000 5.3897

S1O9_Horizontal_Energy 0.5318 0.1927 0.2233 0.1369 0.0000 5.2973

S1O8_Vertical_Fuzzy Entropy 0.3265 0.1833 0.6921 0.1907 0.0000 5.2592

S1O7_Vertical_Fuzzy Entropy 0.3186 0.1536 0.6548 0.1830 0.0001 5.2378

S1O9_Horizontal_Fuzzy Entropy 0.3378 0.1871 0.6903 0.1809 0.0000 5.2163

S2O5_Vertical_Kapoor Entropy 0.2836 0.1669 0.7055 0.2412 0.0001 5.2111

S1O2_Vertical_Fuzzy Entropy 0.3011 0.1701 0.6475 0.1855 0.0001 5.1956

S1O9_Horizontal_Max Entropy 0.5326 0.1934 0.2143 0.1512 0.0000 5.1799

S1O9_Horizontal_Kapoor Entropy 0.5731 0.2111 0.2501 0.1454 0.0000 5.1393

Table 1 Clinical brain MRI dataset considered in this study

Image class Number of MRI slices

Normal 22(subjects) × 5 (images/subject) = 110

AD 11(Patients) × 5(images/patient) = 55

Total 165
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Accuracy ¼ TP þ TNð Þ= TP þ TN þ FP þ FNð Þ ð2Þ
Precision ¼ TP= TP þ FPð Þ ð3Þ
Sensitivity ¼ Recall ¼ TP= TP þ FNð Þ ð4Þ
Specificity ¼ TN= TN þ FPð Þ ð5Þ
F1Score ¼ 2TP= 2TP þ FP þ FNð Þ ð6Þ
where TN, TP, FN and FP signify true negative, true positive,
false negative and false positive.

Results and discussion

This section presents the experimental results and discussion.
In this work, initially, the proposed approach is demonstrated
on the clinical database. Figure 2 depicts normal and the AD-
affected brain images collected from University of Malaya
Medical Centre.

During image collection, every subject was separately ex-
amined. The images were selected from the axial T2-weighted
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Fig. 3 Performance evaluation of
the chosen feature extraction
methods

Table 3 Performance evaluation of the feature extraction techniques

Feature extraction technique
(No of Features)

TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1 score (%)

CoT+KNN (38) 49 95 15 6 87.27 76.56 89.09 86.36 82.35

CuT +KNN (121) 51 99 11 4 90.91 82.26 92.73 90.00 87.18

CWT+KNN (53) 41 77 33 14 71.515 55.41 74.54 70.00 63.57

DTCWT+KNN (67) 54 103 7 1 95.15 88.52 98.18 93.64 93.10

DWT+KNN (40) 50 97 13 5 89.09 79.3 90.91 88.18 84.75

EWT+KNN (2) 34 72 38 21 64.24 47.22 61.82 65.45 53.54

ST + KNN (171) 53 103 7 2 94.54 88.33 96.3 93.64 92.17
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MRI sequence. The images were subjected to transformation
and feature extraction, which was then formed into a single
feature vector. Table 1 presents the details of the clinical
dataset considered in this work.

After selecting the test images, a median filter was imple-
mented to pre-process each image. Later, feature-extraction
was implemented with the Shearlet Transform (ST). Feature
selection was determined based on Student’s t-test. Finally, the
KNN classifier was implemented and the results were verified.
In this work, the training data were undersampled and used to
train 1000 models, wherein the test set was verified with re-
spect to the model in order to obtain a score assessing the
degree of posterior probability. These probabilities were aver-
aged together and used for class prediction. Like the ST, other
feature extraction techniques were then implemented and test-
ed separately on the clinical dataset.

Table 2 depicts the features extracted with the STapproach.
Later, Student’s t-test based feature selection was implement-
ed, and it was found that four features alone were sufficient to
attain the expected result. This Table shows the p value and t-
value obtained via comparison of mean between Normal and
Alzheimer's along with the statistical measures. Moreover, a
3-fold stratified Cross Validation (CV) was also implemented
to attain better results during the brain MRI examination.

In this work, the feature mining and classification of the
considered clinical images were incorporated using the con-
sidered feature extraction techniques and KNN based classifi-
cation, and the corresponding results are depicted in Fig. 3.
For this database, the CoT based feature extraction and clas-
sification was implemented with from 2 to 66 selected domi-
nant features. The performance measure with reference to the
number of chosen features is shown in Fig. 3a. Better

(a) Normal 

(b) AD 

Fig. 5 Test images of the Harvard Brain Atlas database
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performance measures were obtained when the number of
features was selected as thirty-eight (dominant feature level),
since the extracted features exhibit better classification

accuracy for both the normal and AD brain image cases.
The performance values obtained with the CuT for 2 to 614
selected features are shown in Fig. 3b, and better performance
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Fig. 6 Dominant feature
selection. a CuT, bDTCWT, c ST

Table 4 Performance evaluation with the benchmark database

Feature extraction technique
(No. of Features)

TP TN FP FN Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1 score (%)

CuT+KNN (6) 35 29 1 1 96.97 97.22 97.22 96.67 97.22

DTCWT+KNN (5) 34 29 1 2 95.45 97.14 94.44 96.67 95.77

ST + KNN (5) 32 33 0 1 98.48 100.00 96.97 100.00 98.46
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values were obtained when the feature size is 121. Figure 3c
depicts the performance measures obtained with the CWT
approach for 2 to 84 features. In Fig. 3d, the performance
obtained for the DTCWT procedure for 2 to 142 features is
presented, and the better measures were attained when the
selected feature size was 67. The outcome obtained with
DWT for 2 to 56 features is shown in Fig. 3e. Figure 3f and
g depicts the results obtained for 2 to 5 and 2 to 289 features,
respectively.

Figure 3 depicts the various performance measures obtain-
ed with the chosen feature extraction and the classification
procedures. The best performance measures obtained with
respect to the chosen feature values are presented in Table 3.
Table 3 shows that CuT+KNN, DTCWT+KNN, and ST +
KNN offered better values of accuracy, precision, sensitivity,
specificity, and F1 score as compared to alternative methods.

Our results suggest that the performance measures attained
with the CoT, CWT and DWT are moderate as compared to
CuT, DTCWT, and ST, and that the measures of EWT
underperform. Figure 4 depicts the graphical representation
of the performance measures computed with the clinical
dataset. For this dataset, CuT+KNN, DTCWT+KNN and
ST +KNN offer enhanced results.

Table 3 as well as Fig. 4 suggest that the CuT, DTCWTand
ST approaches offer enhanced results on the clinical dataset as
compared to the alternative methods considered in this research
work. The performance of CuT+KNN, DTCWT+KNN, and
ST +KNN are further examined using 256 × 256 pixel sized
T2-weighted brain MRI from the Harvard Brain Atlas [41].
Figure 5 depicts the sample test images considered for the study.
Figure 5a presents the 256 × 256 sized normal brain MRI and
Fig. 5b depicts the brain image for the AD case (18 normal
+ 48 AD = 66 images). The assessment procedures, including
CuT+KNN, DTCWT+KNN, and ST +KNN, are considered
for the benchmark dataset, and corresponding results are
depicted in Table 4 and Fig. 6. In this work, the training of
the KNN classifier was performed with 55 images (15 normal
and 40 AD cases) and validation is executed with 11 images (3
normal and 8 AD case) as discussed in Ayadi et al. [58].

From Table 4, it can be observed that the ST +KNN tech-
nique offers enhanced results with a lesser number of image
features as compared to CuT+KNN and DTCWT+KNN,
which require six and eight image features, respectively.
From these results, it can be verified that the ST +KNN tech-
nique offers a better evaluation of the MRIs for normal versus
the AD case. Furthermore, this approach requires minimal

Table 5 Performance evaluation of the proposed and existing work on Harvard AD and normal database

Number of images Author Classifier Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

66 Ayadi et al. [58] SVM (linear) 100 100 100 100

66 SVM (radial) 100 100 100 100

66 SVM (polynomial) 95.45 100 83.33 94.11

66 KNN 100 100 100 100

66 RF 83.33 81.25 66.66 86.66

66 Adaboost 83.33 89.58 89.58 87.75

66 This work CuT+KNN 96.97 97.22 96.67 97.22

66 DTCWT+KNN 95.45 94.44 96.67 97.14

66 ST +KNN 98.48 96.97 100.00 100.00
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for the benchmark database
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image features to achieve better accuracy as compared to other
techniques implemented in this research work.

Selection of dominant features for the selected meth-
od is depicted in Fig. 6, and the selected number of
features is presented in Table 4. The CuT+KNN tech-
nique offered a better result when six features were
considered for classification. The DTCWT+KNN and
ST + KNN offered better results when five features were
considered. Table 4 also shows that the ST + KNN tech-
nique provides better classification performance mea-
sures as compared to the alternatives.

The performance indices, including accuracy, precision,
sensitivity, specificity, and F1 score, are considered to evalu-
ate the adopted feature extraction techniques. The results pre-
sented in Fig. 7 suggest that the proposed techniques are effi-
cient in attaining better performance values (>95.4%) on the
considered dataset. This result also suggests that ST +KNN
outperforms other feature extraction procedures by providing
an enhanced performance index. The experimental outcome
of this study verifies that the proposed CABD system offers
satisfactory results in the quantitative analysis of the clinical as
well as the benchmark datasets.

Comparison of proposed work with the existing work
of Ayadi et al. [58] is depicted in Table 5. This table
presents the classification accuracies obtained with var-
ious classifiers on the benchmark MRI dataset [41]. In
Ayadi’s work, a novel hybrid methodology with MRI
pre-processing based on the median filter, DWT based
image decompos i t ion , fea tu re ex t rac t ion wi th
GLCM/SIFT/SURF/Dense/FAST, implementation of the
Bag-of-Words (BoW) concept and finally classification
is proposed. However, it requires additional computation
to implement the proposed technique. The author also
provided a detailed comparative analysis using SVM,
KNN, Random-Forest (RF) and Adaboost. The existing
results were compared with our proposed methodology,
and the comparative results are depicted in Table 5. The
number of test images and dataset are the same in both
cases. The results of Ayadi’s hybrid approach are
favourable in SVM (linear and radial) and the KNN
case as compared to the proposed technique. The pro-
posed ST + KNN approach offers better outcome as
compared to the SVM (polynomial), RF and Adaboost.
The proposed approach requires very few implementa-
tion steps in comparison to the hybrid approach de-
scribed in the literature.

Furthermore, the proposed ST +KNN’s classification ac-
curacy was then compared with other related methods
discussed by Chaplot et al. (2006) [59] and Zhang and
Lenan (2012) [60], as depicted in Table 6.

The work of Chaplot et al. (2006) implements a fea-
ture extraction and classification of the Harvard Brain
Atlas (http://www.med.harvard.edu/aanlib/) database

using DWT, SVM, and Self-organizing maps (SOM).
From the Table, it can be noted that the proposed ap-
proach (ST + KNN) offers a favourable result as com-
pared to the existing method. Furthermore, the work of
Zhang and Lenan (2012) considers a similar brain MRI
database and presents a relative study among the classi-
fication accuracies of various SVM kernels. This work
integrates DWT, PCA, and SVM techniques for feature
extraction, selection and classification of the chosen
brain MRI dataset. This Table also suggests that the
accuracy obtained with our proposed method is
favourable as compared with existing techniques, and
better than the accuracy of hybrid feature extraction
and classification procedure “DWT + PCA + SVM +
HPOL” discussed by Zhang and Lenan [60].

In the proposed work, a machine learning technique is im-
plemented to evaluate and classify the considered brain MRI
slices into normal and AD classes. In recent years, deep learn-
ing techniques have been widely adopted by researchers to
examine a class of medical images [61–64]. In the future, a
suitable deep learning technique can be proposed to classify
the considered brain MRI dataset, and its performance can be
confirmed versus the ST + KNN approach discussed in the
proposed work.

Conclusion

Herein, an investigation of the axial images of T2-
weighted brain MRI, with and without Alzheimer’s dis-
ease (AD), were comparatively examined. The main ob-
jective of the study was to develop an efficient CABD
system to assess the severity of brain abnormality
caused by AD, without resorting to manual techniques
that are slower to implement and that may be cost pro-
hibitive when providing supportive care. A detailed
evaluation of the existing feature extraction procedures
is also presented, and feature selection is implemented
using Student’s t-test. The outcome of this work confirms that
the ST +KNN technique offers an improved result as compared

Table 6 Existing works and their accuracy on the benchmark MRI
dataset

Methods Accuracy (%)

DWT+ SOM [59] 94.00

DWT+ SVM [59] 96.15

DWT+ SVM+RBF [59] 98.00

DWT+ PCA+ SVM [60] 96.01

DWT+ PCA+ SVM+HPOL [60] 98.34

ST +KNN (This work) 98.48
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to alternatives. Moreover, the number of features required for
the ST +KNN is few (four) as compared with other techniques.
The proposed paradigm offered better results on the brain MRI
obtained from the medical clinic and the benchmark AD
dataset. The performance of this system can be improved by
replacing the KNN with other classifiers. In future work, in-
stead of utilizing KNN, other classification techniques, such as
SVM, neural-networks, random forest, and AdaBoost will be
implemented, so that the CABD system’s performance can be
enhanced. Furthermore, a suitable deep learning model can be
proposed to enhance classification accuracy.
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