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Abstract
Cerebrovascular accident due to carotid artery disease is the most common cause of death in developed countries following heart
disease and cancer. For a reliable early detection of atherosclerosis, IntimaMedia Thickness (IMT) measurement and classification are
important. A newmethod for decision support purpose for the classification of IMTwas proposed in this study. Ultrasound images are
used for IMT measurements. Images are classified and evaluated by experts. This is a manual procedure, so it causes subjectivity and
variability in the IMT classification. Instead, this article proposes a methodology based on artificial intelligence methods for IMT
classification. For this purpose, a deep learning strategywithmultiple hidden layers has been developed. In order to create the proposed
model, convolutional neural network algorithm, which is frequently used in image classification problems, is used. 501 ultrasound
images from 153 patients were used to test the model. The images are classified by two specialists, then the model is trained and tested
on the images, and the results are explained. The deep learning model in the study achieved an accuracy of 89.1% in the IMT
classificationwith 89% sensitivity and 88% specificity. Thus, the assessments in this paper have shown that this methodology performs
reasonable results for IMT classification.
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Introduction

Cerebrovascular disease (CVD) is one of the leading causes of
death and permanent damage in the world [1]. CVD due to
Carotid Artery (CA) disease is the most common cause of death
in developed countries following heart disease and cancer [2].
According to North American Symptomatic Carotid
Endarterectomy Trial data, the risk of ischemic CVD in the first
year is 11% in CA stenosis of 70–79%, and this risk reaches 35%

when there is 90% or more stenosis [3, 4]. Approximately 75%
of all patients with CA stenosis are asymptomatic. Several stud-
ies have shown that patients with internal CA stenosis benefit
from endarterectomy compared to medical treatment with 50–
99%, 60–99%, and 70–99%, depending on whether they are
symptomatic [5–7]. Internal CA stenosis is one of the most im-
portant causes of ischemic cerebral palsy [8]. 80% of the ische-
mic processes occur due to atherosclerosis.

CVD is the primary pathological damage to one or more
blood vessels of a brain region that are permanently or tempo-
rarily affected by ischemia or bleeding [9]. These diseases are
caused by the obstruction or bleeding of the vessels feeding the
brain and give symptoms related to the damaged brain area. CA
passes through the two sides of the neck and takes clean blood to
the brain. The first branch separated from the main veins is di-
vided into two vessels. One to the right arm and the other is the
right carotid vein, which carries blood to the right side of the
brain. The left CA leading to the left brain is separated from
the main vessels as a single vessel as shown in Fig. 1a [10].

CA disease is the atherosclerotic disease of our jugular
veins, which occur on both sides of our neck, which may
result in stroke. A sudden occlusion of these vessels results
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in stroke [12]. CA disease is a form of CVD, which results
most importantly from atherosclerosis. Oil particles, choles-
terol, calcium and some other substances and cells accumulate
in the artery wall causing set to be called plaque. These
plaques increase their volume over time or cause clotting on
the irregular surface and cause complete occlusion of the ves-
sel. Fully occluded jugular veins or small clots that are de-
tached from the atherosclerotic plaque may obstruct the small
veins in the brain and can cause stroke [12].

If measures are not taken and not intervened early,
stroke becomes the first cause of disability [13]. Every
year approximately 16 million people in the world are
undergoing a stroke [9]. The number of deaths because
of CVD is 64,780 in Turkey at the beginning of the
2000s. First five diseases distribution causing death in
Turkey is shown in Table 1.

80% of all strokes are occlusive strokes and 20% are brain
hemorrhages [15]. Occlusive stroke and brain hemorrhage
shapes [11] are shown in Fig. 1b.

Ultrasonography (USG) is the most sensitive and re-
liable method for the morphological evaluation of CA.
In addition, colored and spectral Doppler USG can
show flow changes caused by vascular lesions in real
time [1]. CA USG is a common imaging study for the
diagnosis of CA disease [16]. Doppler USG is a method
of examining vascular structures with sound waves,
which provides hemodynamic information about carotid
and vertebral arteries. Although its sensitivity is 92.6%
and specificity is 97%, angiography is accepted as the
gold standard [17]. Doppler equation is defined as:

f d ¼ f t− f r ¼ 2 f tv cos θ=c ð1Þ

where ft and fr are the transmitted and received ultrasound
frequencies, v is the speed of the target, c is the velocity of
the sound in the environment, and θ is the angle between the
ultrasound beam and the direction of movement of the target
[18].

Various methods of early diagnosis and treatment of
CA disease have been tried in different studies. These
studies have mostly been used to perform segmentation
operations on different numbers of patient images
using different machine learning algorithms [19–27].
Segmentation process is a problem of image analysis
and it is the process of preparing the image to display
and diagnostic stages of image processing [28]. In ad-
dition to these studies, Intima Media Thickness (IMT)
measurements were also carried out to predict automat-
ic artery recognition and lumen diameter changes in
some studies. [29–31]. Moreover, a cloud computing
based platform creation study was conducted for risk
assessment and stroke follow-up of CA patients [32].
Risk assessment is the most important stage of the disease.
For this stage, classification studies were carried out using
various methods such as Neural Networks (NN) [33–35],
Support Vector Machine (SVM) [36, 37], and Enhanced
Activity Index [38].

Different studies have begun in the field of medicine
by using deep learning (DL) algorithms. Automatic ab-
dominal multiple organ segmentation [39], classification
and division of microscope images [40], segmentation
of biomedical images [41], segmentation of brain tumor
[42], identification of metastatic breast cancer [43], mi-
tosis detection in breast cancer histology images [44],
detection of diabetic retinopathy in retinal fundus pho-
tographs [45], diagnosing melanoma skin lesions [46]
false positive reduction in the detection of pulmonary
nodules [47] and automated detection/diagnosis of sei-
zure using encephalogram signals [48] are some of
these studies. Although it is known that the performance
of deep architectures in the mentioned areas is impres-
sive, the use of DL in the medical field is not yet
sufficient. DL is widely used in areas such as computer
identification, image processing, natural language pro-
cessing and speech recognition. Such new approaches
are necessary in automated medical decision-making
systems because non-automated processes are more

Fig. 1 a Carotid artery interior structures b Ischemic stroke and hemorrhagic stroke [10, 11]

273 Page 2 of 12 J Med Syst (2019) 43: 273



expensive, demand intensive labor, and therefore subject
to human-induced errors.

The study of IMT classification of the CA has not been
done with DL methods yet. DL studies have been carried
out so far only at the image segmentation level. In this study,
a proposed model using Convolutional Neural Networks
(CNN) from DL algorithms determined the increased IMT
and arterial narrowing which is one of the causes of CA
disease.

Deep learning

Deep Learning is a new and promising field for ma-
chine learning to solve artificial intelligence problems.
It is a subspace of machine learning and a field of
application of Deep Neural Networks (DNN). In this
area, instead of the customized algorithms for each
study, it is aimed that the solutions are based on learn-
ing data sets and also cover larger data sets. Artificial
Neural Networks (ANN) were inspired by the human
brain. They are information processing structures
consisting of process elements which are connected to
each other by changing weights and each of which has
their own memory. ANNs, having superiorities such as

learning, generalization, non-linearity, fault tolerance,
harmony, parallelism, are used in many different appli-
cation areas such as medical applications like image and
signal processing, disease prediction, engineering, pro-
duction, finance, optimization and classification [49].
In DNN, there are two or more secret neural network
layers and more extensive relationships are established
from simple to complex data. Each layer tries to estab-
lish a relationship between itself and the previous layer.
Thus, a more detailed examination of the inputs is made
and decisions that are more accurate are made. As
shown in Fig. 2a ANN produces an output with apply-
ing weights and activation function to the given inputs.
Figure 2b shows a DNN structure with three secret
layers.

Different activation functions can be used when forming
the structure of DNN. These functions may vary according
to the type, structure, size and model of the data. The acti-
vation function determines the output that the cell will pro-
duce in response to the input itself. A non-linear function is
usually selected. The main activation functions used are giv-
en as follows:

Sigmoid activation function : f xð Þ ¼ 1

1þ e−x
ð2Þ

Table 1 First five diseases
causing death number and
percentage distribution (Turkey,
2004) [14]

N. Causes Of Death Death Number Percentage in Total

1 Ischemic Heart Disease 93,260 21,7

2 Cerebrovascular Diseases 64,780 15

3 Chronic Obstructive Pulmonary Disease 25,104 5,8

4 Perinatal Causes 24,756 5,8

5 Lower Respiratory Tract Infections 18,225 4,2

Fig. 2 a ANN structure b DNN structure
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TanH activation function : tanh xð Þ ¼ 2

1þ e−2x
−1 ð3Þ

ReLU activation function : f xð Þ ¼ 0 for x < 0
x for x≥0

�
ð4Þ

The related curves of Sigmoid, TanH and ReLU are shown
in Figs. 3a, b. and c respectively.

The most well-known of DL algorithms is CNN and often
used in image classification problems. Kernels mostly used
with dimensions of 3 × 3, 5 × 5, 7 × 7 on each layer in CNN
as shown in Fig. 4a. Then the pooling process is done on the
outputs of these kernels, which is shown in Fig. 4b. The data
in the kernel is filtered by pooling. The max pooling method is
the most commonly used pooling method, and the largest
value is taken in the matrix with this method.

The convolution of two functions (f ∗ g) in the finite range
[0, t] is defined as follows:

f *g½ � tð Þ≡∫t0 f τð Þg t−τð Þdτ ð5Þ

where [f ∗ g](t) means the convolution of the functions f and g
[50]. Alternatively, convolution is calculated in an infinite range
mostly as:

f *g½ �≡∫∞−∞ f τð Þg t−τð Þdτ ð6Þ

¼ ∫∞−∞g τð Þ f t−τð Þdτ ð7Þ

Proposed strategy

A DL model has been created for the classification of images.
In order to improve the performance of the model, hyper-
parameters in the DL model were optimized with repeated
analysis/test studies. The following steps were followed when
creating a DL model.

In the first stage, which is called definition, the model pa-
rameters required for the DL model, such as numpy, os,
matplotlib and sklearn, were included in the program. The
image resolution is fixed at 128 × 128 and the image channel
is determined as one since the grayscale image format will be
used. The path, from which the images were taken, was iden-
tified and a second path was defined, in which the new images
were saved after image preprocessing. Parameters such as
batch size, number of classes, number of epochs, number of
filters, pool size and convolution filter size, to be used in the
model are defined in this part.

At the image pre-processing stage, the images taken from
the image folder were resized to the 128 × 128 resolution, then
converted to the grayscale image format and saved in the
folder in the second path. The images were saved sequentially

Fig. 4 a Convolutional layer (3 × 3) b Pooling (2 × 2)

Fig. 3 a Sigmoid activation function b TanH activation function c ReLU activation function
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with the names they were previously classified. Then all im-
ages were flattened as a float and an array of images was
created which was stored in a matrix. These stored images
were first labeled “1” up to 203rd image and the next images
were labeled “0”. After the labeling process was completed,
the images in the memory were mixed randomly and the se-
quential image list was changed to prevent the model from
memorizing the data and to increase accuracy.

The image sequence obtained from the last step of the image
pre-process stage was divided into two as train/test. While 80%
of the images were used for training, the remaining 20% of the
images were used for the test. During the definition of the train-
ing images, random selection was performed by preserving the
proportions of “1” and “0” tagged images in the total image.
There are 400 IMT US images in train dataset. 162 of the 400
IMT US images in the train dataset consist of images labeled as
“1,”while the remaining 238 images are labeled as “0”. There are
101 IMT US images in test dataset, which is also selected ran-
domly. 41 of the 101 IMTUS images in the test dataset consist of
images labeled as “1,”while the remaining 60 images are labeled
as “0”. By this way, it is aimed to provide the learning sensitivity
of the model on the images in the training set and to increase the
accuracy of the model. In addition, the possibility of memorizing
the data or over-fitting the data is prevented.

The model in the study was formed by determining the opti-
mum parameters after repeated tests. CNN, which is the most
known and frequently used in image classification problems, is
used in the model. The model is designed sequentially. First, 256
filters were added to the model and the images were passed
through a “3 × 3” convolution filter. There are eight convolution
layers in total in the model. After each convolution layer, the
“ReLU” activation function was added and the activation result
was determined as the input of the new layer. After every two
convolution layers, a maxpooling layer was added to prevent
over-fitting and a pooling operation of “2 × 2” dimensions was
applied. After the pooling layer, a drop out layer with “0.5” rate
was added to the model. After these processes were completed,
the model was flattened with the fully connected layers through
256, 128, and 2 outputs respectively. ReLU activation and drop
out layers were added between each fully connected layer. The
softmax activation function was used in the last layer of the
model. When compiling the model, the loss parameter was se-
lected as binary cross-entropy which is computed as follows:

L ¼ −
1

n
∑n

i¼1 y ið Þlog ŷ
ið Þ� �

þ 1−y ið Þ
� �

log 1−ŷ
ið Þ� �� �

ð8Þ

where n is number of samples and y is output of the related
neuron [51]. The optimizer parameter of the model was se-
lected RMSprop (learning rate, lr = 0.00001) and the metric is
defined as accuracy. The summarize of the model is shown in
Table 2.

Results and Discussion

In the study, to test the proposed model, from June 2018 to
January 2019, 501 images of 153 patients were obtained from
the patients who were treated at the Radiology Department of
Ankara Training and Research Hospital. The images were
taken with The Ethics Approval Certificate of Gazi
University Ethics Commission dated 08/05/2018 and num-
bered 2018–217. Toshiba Aplio 400 Ultrasound device was
used for ultrasound imaging. The images are classified as
“IMT: 1” and “IMT: 0” by two doctors who are experts in
the Department of Radiology at Ankara Training and
Research Hospital. The summary and features of database
are shown in Table 3.

In order to use the DL model that was created in the study on
images, a system with the following features: i5–3.50GHz,
16 GB RAM and Nvidia graphical card (GP102, TITAN Xp)
was used. The DLmodel was created using the Keras DL library
with Tensorflow in the Python programming language on the
Ubuntu operating system. Studies have been carried out using
The Scientific Python Development Environment (Spyder)
interface.

After operation of the proposed model, graphics and weights
were recorded and the accuracy and loss parameters of the model
were visualized. In order to evaluate the performance of the
model, Receiver Operating Characteristic (ROC) Curve and
ConfusionMatrix were also created.Weights were recorded after
training of the model for use in estimation model.

The accuracy of the model is 89.1%while loss of the model
is 0.292. Loss function is an important indicator for CNN
model, because it is used to measure the inconsistency be-
tween predicted value and actual label. It is a non-negative
value, where the robustness of the model increases along with
the decrease of the value of loss function [51]. The accuracy
and loss graph of the model are shown in Fig. 5a and b
respectively.

Our model starts to learn from the training data after 25
epochs. The accuracy of the model increases and the loss param-
eter decreases after this epoch. The classification results can also
be represented in the so-called confusion matrix, also known as
contingency table [52–54]. It is a square matrix (G x G), whose
rows and columns represent experimental and predicted classes,
respectively. The confusion matrix contains all the information
related to the distribution of samples within the classes and to the
classification performance [55]. Calculations such as accuracy,
error rate (misclassification rate), true positive rate (also known
as sensitivity or recall), false positive rate, true negative rate (also
known as specificity), precision, prevalence and f1 score can be
done with confusion matrix.

The confusion matrix shows where the classification model is
confused when it makes predictions. It gives insight not only into
the errors being made by the classifier model but more impor-
tantly the types of errors that are being made. There are two
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possible predicted classes: “positive” and “negative”. For this
carotid classifier, “positive” would mean IMT and “negative”
would mean no IMT. In this CA IMT case, confusion matrix
results are shown in Fig. 6.

Depending on the results shown in Fig. 6, out of those 101
cases, the classifier predicted “positive” 36 times, and “negative”
65 times. In reality, 41 patients in the sample have the IMT, and
60 patients do not have the IMT. In confusion matrix, TP means
observation is positive, and is predicted to be positive. FNmeans
observation is positive, but is predicted negative. TN means

observation is negative, and is predicted to be negative. FPmeans
observation is negative, but is predicted positive.

Accuracy calculation gives the results of overall, how often
is the classifier correct. For this carotid classifier (cc), accura-
cy is calculated as follows:

Accuracy Accð Þ ¼ TP þ TN
TP þ TN þ FP þ FN

Acccc ¼ 90

101
¼ 0; 891

ð9Þ

Error rate in general, is a measure of how often the classi-
fier has incorrectly predicted. In addition, it is known as mis-
classification rate. Error rate is equivalent to one minus accu-
racy, and is also calculated as follows:

Error Rate ERð Þ ¼ FP þ FN
TP þ TN þ FP þ FN

ERcc ¼ 11

101
¼ 0; 108

ð10Þ

True positive rate indicates when it is actually positive and
how often does it predict positive. It is also known as
“Sensitivity” or “Recall”. Recall can be defined as the ratio
of the total number of correctly classified positive examples
divide to the total number of positive examples. High recall
(small number of FN) indicates the class is correctly recog-
nized. Recall is usually used when the goal is to limit the
number of FN and is calculated as follows:

Recall ¼ TP
TP þ FN

Recallcc ¼ 33

41
¼ 0; 804

ð11Þ

False positive rate gives the results of negative actual
value’s positive prediction. It is calculated as follows:

False Positive Rate FPRð Þ ¼ FP
FP þ TN

FPRcc ¼ 3

60
¼ 0; 05

ð12Þ

True negative rate indicates when it is actually negative and
how often does it predict negative. It is also known as
“Specificity” and is equivalent to one minus FPR.
Specificity is calculated as follows:

True Negative Rate TNRð Þ ¼ TN
FP þ TN

TNRcc ¼ 57

60
¼ 0; 95

ð13Þ

Table 2 Summarized model parameters

Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 126, 126, 256) 2560

activation_1 (Activation) (None, 126, 126, 256) 0

conv2d_2 (Conv2D) (None, 124, 124, 256) 590,080

activation_2 (Activation) (None, 124, 124, 256) 0

max_pooling2d_1 (MaxPooling2D) (None, 62, 62, 256) 0

dropout_1 (Dropout) (None, 62, 62, 256) 0

conv2d_3 (Conv2D) (None, 60, 60, 256) 590,080

activation_3 (Activation) (None, 60, 60, 256) 0

conv2d_4 (Conv2D) (None, 58, 58, 256) 590,080

activation_4 (Activation) (None, 58, 58, 256) 0

max_pooling2d_2 (MaxPooling2D) (None, 29, 29, 256) 0

dropout_2 (Dropout) (None, 29, 29, 256) 0

conv2d_5 (Conv2D) (None, 27, 27, 256) 590,080

activation_5 (Activation) (None, 27, 27, 256) 0

conv2d_6 (Conv2D) (None, 25, 25, 256) 590,080

activation_6 (Activation) (None, 25, 25, 256) 0

max_pooling2d_3 (MaxPooling2D) (None, 12, 12, 256) 0

dropout_3 (Dropout) (None, 12, 12, 256) 0

conv2d_7 (Conv2D) (None, 10, 10, 256) 590,080

activation_7 (Activation) (None, 10, 10, 256) 0

conv2d_8 (Conv2D) (None, 8, 8, 256) 590,080

activation_8 (Activation) (None, 8, 8, 256) 0

max_pooling2d_4 (MaxPooling2D) (None, 4, 4, 256) 0

dropout_4 (Dropout) (None, 4, 4, 256) 0

flatten_1 (Flatten) (None, 4096) 0

dense_1 (Dense) (None, 256) 1,048,832

activation_9 (Activation) (None, 256) 0

dropout_5 (Dropout) (None, 256) 0

dense_2 (Dense) (None, 128) 32,896

activation_10 (Activation) (None, 128) 0

dropout_6 (Dropout) (None, 128) 0

dense_3 (Dense) (None, 2) 258

activation_11 (Activation) (None, 2) 0

Total params: 5,215,106

Trainable params: 5,215,106

Non-trainable params: 0
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Precision is a measure of how accurately all classes are
predicted. It is also known as positive predictive value. In
order to get the value of precision, the total number of correct-
ly classified positive examples is divided to the total number
of predicted positive examples. High Precision indicates an
example labeled as positive is indeed positive (small number
of FP). Precision is calculated as follows:

Precision ¼ TP
TP þ FP

Precisioncc ¼ 33

36
¼ 0; 916

ð14Þ

Prevalence is estimation of how often “positive” value is
found at the end of the prediction. It is calculated as follows:

Prevalence ¼ TP þ FN
TP þ TN þ FP þ FN

Prevalencecc ¼ 41

101
¼ 0; 405

ð15Þ

F1-score is the harmonic mean of precision and recall. It is
a measure of howwell the classifier performs and is often used
to compare classifiers. If it is only tried to optimize recall, the
algorithm will predict most examples to belong to the positive

Fig. 5 a Accuracy graph of the model b Loss graph of the model

Table 3 Image database

PATIENT NUMBER IMAGE NUMBER CLASSES US MACHINE ETHICS

IMT:1 IMT:0

153 501 203 298 Toshiba Aplio 400 Gazi University Ethics Commission
Date: 08/05/2018
Number: 2018–217

TN: True Negative, TP: True Positive 

FN: False Negative, FP: False Positive 

Fig. 6 Confusion matrix of the model

Table 4 Performance measures

precision recall f1-score support

IMT:0 0.88 0.95 0.91 60

IMT:1 0.92 0.80 0.86 41

micro avg 0.89 0.89 0.89 101

macro avg 0.90 0.88 0.88 101

weighted avg 0.89 0.89 0.89 101

J Med Syst (2019) 43: 273 Page 7 of 12 273



class, but that will result in many false positives and, hence,
low precision. On the other hand, if it is tried to optimize
precision, the model will predict very few examples as posi-
tive results, but recall will be very low. Therefore, F1-score is
useful when it is needed to take both precision and recall into
account. F1-Score is calculated as follows:

F1 Score ¼ 2TP
2TP þ FP þ FN

F1cc ¼ 66

77
¼ 0; 857

ð16Þ

After calculation of all parameters of confusionmatrix, overall
average performance measurements of the model for both of the
classes “IMT:0” and “IMT:1” are shown in the Table 4.

It is seen in confusion matrix that the sensitivity of the model
is 89% and specificity is 88%. There were 101 images to test the
model. While testing after the training of the model, the number
of images in both classes was determined by maintaining the
ratio in the total image. The model is correctly predicted eight
of nine test image classes as seen in the Table 5.

ROC analysis contributes to the process of clinical
decision-making when the diagnosis process will take a long
time, the cost will be high, special method-equipment and
qualified human resources will be needed by determining ap-
propriate cut-off values for indicators that will be determined
in short-time, low-cost, and easily obtainable [56]. Sensitivity
and specificity curves provide the comparison of the success
of different tests in correct clinical diagnosis. In this CA IMT
case, ROC curve is shown in Fig. 7.

The outputs of layers, while CNN model working on the
IMT USG images, were also saved to show sample feature
extraction. The original input image and feature extraction
steps for 1st, 5th, 10th, 15th, and 20th layers activation outputs
are shown respectively in Fig. 8.

Various studies have been carried out on CA images in the
literature as shown in Table 6. These studies can be examined
in two different sections:

& CA Intima Media Segmentation Studies
& CA Intima Media Classification Studies

According to Table 6, although the study of IMTclassification
of the CA has not been done with DL methods, DL studies have
been carried out so far only at the image segmentation level.
Classification studies were mostly carried out through machine
learning methods with SVM and NN. These studies produced
different results from each other. The classification studies carried
out through NN were in the range of 71–73% when working
withmore than 200 images [33, 34], while this rate was 99.1% in
a study with 54 images [35]. It is understood that by working
with theNN, the accuracy rate decreases as the number of images
increases. Instead, while working with DL methods, more input
data means better accuracy because model learns features itself
from input data. TheCNNmodel proposed in this study achieved
better accuracy rate of 89.1% from more image data. The use of
SVM is slightly different from this situation. In different studies
ranging image number from 270 to 350, performance rates of
different ratios ranging from 73% to 83% were obtained with
SVM [36, 37]. Although SVM methods produced better results
thanNN, the CNNmethod proposed in this study achieved better
results than SVM methods. These results are an indication of a
better achievement than previous studies when compared to the
results given in the Table 6. Although the parameters such as
number of patients, number of images, image quality etc. in all
studies given in the Table 6 are different, it can be seen that our
model is positive compared to the methods in other studies.

Conclusion

In this study, a new method for the classification of CA IMT
on ultrasound images was proposed. The proposed method
was to classify IMT for early diagnosis and treatment of

Table 5 Test and predict results
Test values 0 1 0 0 1 0 0 0

Predicted Values [0. 1.]

X

[0. 1.]

√
[1. 0.]

√
[1. 0.]

√
[0. 1.]

√
[1. 0.]

√
[1. 0.]

√
[1. 0.]

√

Fig. 7 ROC curve for model
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CVD. The proposal is based on a model in the field of DL, a
new subfield of machine learning.

The model is tested on a database of 501 images
from 153 patients treated in Ankara Training and
Research Hospital during 8-months period. CNN algo-
rithm, which is frequently used in image classification
problems, is used in the model. The accuracy of the
model was compared with the classification of the doc-
tors. The results showed that the created DL model

achieved a classification performance of 89.1%. The
proposed model has 89% sensitivity and 88% specificity
for IMT classification. The performance of our CNN
model, based on the DL method, has been remarkably
significant in the classification of the CA IMT. To sum-
marize, the main contributions and developments of the
proposed method are that this is an ongoing study of
previous segmentation studies; it shows high perfor-
mance in high number of images in classification

Fig. 8 Feature extraction a Input Image b 1st Layer c 5th Layer d 10th Layer e 15th Layer f 20th Layer
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studies, high performance in image quality differences
and significant reliability and precision in the classifica-
tion of IMT.

It is also important to emphasize that these positive aspects are
very important for a method designed to help prevent CVD. The
study showed that DL methods can produce effective results in
medical research.
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