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Abstract
Cervical cancer is the fourth most communal malignant disease amongst women worldwide. In maximum circumstances,
cervical cancer indications are not perceptible at its initial stages. There are a proportion of features that intensify the threat of
emerging cervical cancer like human papilloma virus, sexual transmitted diseases, and smoking. Ascertaining those features and
constructing a classification model to categorize, if the cases are cervical cancer or not is an existing challenging research. This
learning intentions at using cervical cancer risk features to build classification model using Random Forest (RF) classification
technique with the synthetic minority oversampling technique (SMOTE) and two feature reduction techniques recursive feature
elimination and principle component analysis (PCA). Utmost medical data sets are frequently imbalanced since the number of
patients is considerably fewer than the number of non-patients. For the imbalance of the used data set, SMOTE is cast-off to solve
this problem. The data set comprises of 32 risk factors and four objective variables: Hinselmann, Schiller, Cytology and Biopsy.
Accuracy, Sensitivity, Specificity, PPA and NPA of the four variables remains accurate after SMOTEwhen compared with values
obtained before SMOTE. An RSOnto ontology has been created to visualize the progress in classification performance.
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Introduction

In order to replace the dead and damaged cells a normal hu-
man body produces 50 to 70 billion cells every day. At times
the growth of cells remain uncontrolled which results in be-
nign or malignant. Malignant tumors are referred as a cancer
case. This paper emphasis on a specific type of cancer called
cervical cancer. Two main factors those are responsible for
cervical cancer is

1. Modifiable factors like sexual intercourse
2. Non-modifiable factors like mutational hormones [1].

One of the serious health issue faced by women nowadays
is cervical cancer [2]. 80% of cervical cancer cases prevail in
developing countries [3]. The United States estimate 13.240
new cervical cancer cases in 2018 and about 4.170 estimated
death [4] which means that the death ratio is nearly 31.5%.
Cervical cancer affects the reproductive system of women by
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attacking women’s cervix. At the early stages it develops with-
out any symptoms and these symptoms starts appearing only
at later stage after spreading to all other organs. So it is very
important to diagnose the infection at the early stage and in-
crease the survival ratio.

Since the ratio of infected widely increases Machine learn-
ing techniques are used to resolve these problems in medical
and disease diagnosis. In thispaper we apply Random Forest
(RF) algorithm to deal withunbalanced data sets, to increase
the performance [5, 6]. It remains better than simple neural
networks technique.

Synthetic Minority Oversampling Technique (SMOTE) al-
gorithm used balances the dataset classes there by quantita-
tively increasing the minority class. The increase of minority
classes is based on k-nearest neighbors to nearly equal classes.
In order to lessen the processing time and remove unimportant
features in the classification Recursive Feature Elimination
(RFE) and Principle Component Analysis (PCA) are used.
Then Random Forest classification technique classifies the
cases into 2 categories, cervical cancer and non-cervical.
The completed performance is measured before and after
SMOTE for further results.

The paper is structured as follows.

& Section II - Related work of cervical cancer classification.
& Section III - Methods of machine learning, oversampling,

features reduction techniques used.
& Section IV - Experimental results discussed. Analysis and

comparison shown.
& Section V - Ontological Representation
& Section VI - Conclusion and Future work presented.

Related Work

Researchers have made many researches in the field of cervi-
cal cancer. Researchers used various approachesto detect and
diagnose their presence. Various classification and segmenta-
tion methods are used at various time periods to enhance the
research in this area. The enhanced versions are used so that
they help to identify various risk factors in cervical cancer.
Game theory model [7, 8], dynamic genetic algorithms [9]
and Artificial Bee Colony based clustering approach [10] are
play the vital role to develop a medical system model and
ontological representation. This papers presents an ontological
representation RSOnto for the enhanced study with SMOTE
to enrich the research in this area.

In 2013, Tseng et al. [11] obtained the highest results in
accuracy by using three classification models

1. C5.0
2. Support vector machine
3. Extreme machine learning in cervical cancer.

The dataset collected form the Medical University
Hospital, Chung Shan was with 12 features for 168
cases where two risk factors were identified. The results
proved C5.0 obtained the highest classification.

In 2014, Hu et al. [12] using artificial neural networks
obtained the highest classification accuracy by back sub-
stitution in cervical cancer.

In 2016, Sharma [13] obtained accurate results using
naïve bayes which outperforms logistics regression.

In 2016 Sobar et al. [14] used the theory of behav-
ior in social science and obtained accurate results using
naïve bayes which outperforms logistics regression
[15].

In 2017 Wu and Zhou [16] experimented a classifi-
cation model based on Support Vector Machine (SVM)
and obtained the highest accuracy ratio. Four target var-
iables Hinselmann, Schiller, Cytology and Biopsy were
determined by the relevant factors available. RFE and
PCA techniques were used to reduce the processing
time.

In 2019 3rd Apri l KwandaNgwenduna (www.
colloquium2019.org.za/wp.../2019/04/kwanda_sydwell_
ngwenduna_10h45.pdf) stated that there remains class
imbalance still and SMOTE can be combined with under
sampling and remains comprehensive to regression and
time series.

Fig. 1 Proposed flow of activities
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Proposed Methods

Random Forest (RF)

A renowned classification technique used in diverse classifi-
cation areas is Random Forest (RF) [17, 18]. RF is also rec-
ognized as bagged decision trees [19, 20]. This algorithm [21]
works on using group of weak learners to formulate strong
learner. RF customizes 2 techniques

1. Classification technique
2. Regression Tree (CART) technique [22].

These techniques progresses uncorrelated combination
or multiple decision trees centered on bootstrap aggrega-
tion (bagging) technique [23].CART technique enables us
to learn the correct classification amongst some dependent

variables (y) and some independent variables (x) and
relationbetween them. Random Forest technique selects a
subset randomly to build an independent decision tree. It is
a repetition process which splits the selected random sub-
set from the root node to a child node [24]. This splitting
continues till each tree reaches a leaf node without
cropping. Each tree makes the classification of the features
and the objective variable independently and votes for the
final tree class [25]. The overall classification is based on
the majority acquired trees voting.

Steps for RF construction:

N - Quantitative amount of bootstrap samples
M - Total number of attributes
m - Sample size
k - Next node

Step1. Creates N bootstrap samples from the dataset.
Step2. Every node (sample) takes attributes randomly of size

m where m <M.
Step3. Builds a split for the m attributes selected in Step 2 and

identifies the k node by utilizing the best split point.
Step4. Split the tree repeatedly till one leaf node is reached

and now the tree remains completed.
Step5. Thealgorithmis trainedoneachbootstrappedseparately.
Step6. Using trees classification voting predicted data is col-

lected from the trained trees (n).
Step7. The final RF model is build using the highest

voted features.

The proposed flow of activities has been diagrammatically
represented in Fig. 1.

Fig. 3 Features in the dataset

Fig. 2 Pseudo-code for the RF-RFE
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Features Selection Techniques

Two feature selection methods are used.

1. Principle Component Analysis (PCA)
2. Recursive Feature Elimination (RFE).

These selection techniques reduce the features remaining
without degrading the model performance. The remaining fea-
tures remain in the full features dataset.

Principle Component Analysis (PCA)

A statistical mathematical procedure that uses eigenvector to
describe the feature orientation is PCA. This analysis maps the

n-dimension feature space into k-dimension where k < n,
known as principle component. The covariance matrix is cal-
culated. The calculated result is used for defining eigenvectors
and Eigen values [26]. Principle component is the Eigen vec-
tor with the highest Eigen value. This principle component is
chosen from the cervical cancer dataset since it reveals the

Fig. 4A Values of different features B. Values of different features

Table 1 Comparative patients and non-patients count

Examination Hinselmann Schiller Cytology Biopsy

Before SMOTE P 35 74 44 55

NP 823 784 814 803

After SMOTE P 805 740 792 770

NP 823 784 814 803
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most important relationship amongst the data set attributes [7].
The Eigen values are arranged in ascending order where the
most significant data is chosen and the least significant data is
discarded. The highest dimension data is reduced to a lower
dimension data [27].

In order to define the deviation of data in the data set cal-
culate the variance (1) which depicts the spread of data.

Var xð Þ ¼ i=nð Þ∑n
n¼1 ẑij−μ j

� �
ð1Þ

Then covariance is determined to identify the relation of
the dataset features. The high values express the high relation
amongst features and zero values identifies that there is no
relation amongst features. The covariance is calculated using
eq. (2).

Cov
�
x; yð Þ ¼ 1

n−1

� �
∑n

n¼1 xij−μxj

��
yij−μyj

� �
ð2Þ

The Eigenvalues and Eigenvectors for the covariance ma-
trix are determined. The determined eigenvalues are then
transformed (varimax orthogonal rotation) using eq. (3).

Det A−λIð Þ ¼ 0 ð3Þ

Recursive Feature Elimination (RFE)

RFE algorithm is also used with random forest for variable
importance grouping [28]. RFE is proposed by Guyon et al.
[29]. It was used in gene microarray where the number of

features was thousands. Díaz-Uriarte and Alvarez de
AndrØs [30] used RFE-RF for gene selection and class pre-
diction; they used a back-word selection method in linear
support vector machine. It also works with other linear classi-
fication methods. Figure 2 shows the pseudo-code for the
algorithm.

Synthetic Minority Oversampling Technique (SMOTE)

Machine learning techniques facing troubles when one class
dominates the dataset which means that the number of records
in one class highly exceeds the number of the other classes.
Dataset in this case is called imbalanced dataset and this kind
of dataset misleads the classification and affects the results.
SMOTE is used to solve this problem. SMOTE is one of the
oversampling techniques that was introduced by Chawla et al.
[31]. It is used synthetically to increase the minority class
based on k-nearest neighbors [31], to balance the dataset.
The SMOTE algorithm is used in different fields to solve the
unbalanced problem like network intrusion detection systems
[32], breast cancer detection [33] and sentence boundary in
speech [34]. SMOTE technique synthetically increase the mi-
nority class.

xsyn ¼ xi þ xknn−xið Þ*t ð4Þ

SMOTE can be described by the following steps.

Step1. Identifies the feature vector xi and identify the K-
nearest neighborsxknn.

Table 3 Hinselmann test (after SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 5 15 5 11

Accuracy 97.91 95.34 95.79 96.02 95.91

Sensitivity 96.64 96.53 96.66 2.84 96.52

Specificity 98.99 99.38 99.87 100 100

PPA 98.48 93.85 95.11 100 98.35

NPA 96.71 96.90 96.97 96.82 96.61

Table 4 Schiller test (before SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 7 18 6 12

Accuracy 91.48 92.34 95.79 96.02 95.91

Sensitivity 6.64 0 1.34 8.1 2.71

Specificity 99.49 99.36 99.75 98.33 99.72

PPA 55.54 0 33.32 31.57 50.01

NPA 91.86 91.33 91.46 91.92 91.91

Table 5 Schiller test (after SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 7 18 6 12

Accuracy 95.02 93.35 95.99 96.06 95.95

Sensitivity 93.25 94.00 93.66 92.84 96.52

Specificity 98.69 99.51 99.86 97.10 99.99

PPA 98.48 90.09 92.03 96.10 98.35

NPA 95.91 95.10 93.91 93.02 92.81

Table 2 Hinselmann test (before SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 5 15 5 11

Accuracy 95.91 95.34 95.79 96.02 95.91

Sensitivity 0 0 0 2.84 0

Specificity 99.99 99.38 99.87 100 100

PPA 0 0 0 100 0

NPA 95.91 95.90 95.91 96.02 95.91
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Step2. Calculates the difference between the feature vector
and k-nearest neighbor.

Step3. Multiplies the difference by a random number be-
tween 0 and 1.

Step4. Adds the output number to feature vector to identify a
new point on the line segment.

Step5. Repeats the process from 1 to 4 for identifying the
feature vectors.

Cervical Cancer Dataset

The cervical cancer dataset consisted of medical record histo-
ry, routines and demographic information for 858 cases with
32 features for each and every case [35]. Dataset may have
missing values because there are cases which decide not to
answer all questions for confidential concern. The information
predicts the

1. Dataset features
2. Total number of entries and
3. The missing value for each feature.

The dataset is from https://www.kaggle.com/c/intel-
mobileodt-cervical-cancer-screening.

Missing values are visible in dataset. We can find a lot of
missing values, which are removed and the number of features
are decreased to 30. We use the mean equation to handle the
missing values. Figure 3 represents the features in the dataset.
Figure 4A and 4B illustrate the values related to the features.

Schiller’s test is used to diagnose cervical cancer by apply-
ing iodine solution in the cervix [36]. Hinselmann is used to
examine the cervix, vulva and vagina [35]. Cytology is the test
which checks for cancer, precancerous conditions, and urinary
tract infection. Biopsy, a piece of tissue from the body used to
examine and suggest if it is normal or not. These four tests are
examined and the results are compared before and after
SMOTE.

For each case of the 858 cases labeled with Hinselmann,
Schiller, Cytology and Biopsy, an ontological representation
for the same is provided in this paper. The objective variables
articulate a form of cervical cancer examination.

Quantitatively the number of examinations of the patients
are compared to the non-patients before and after SMOTE.

1. Before SMOTE the data remains imbalanced.
2. After the implementation of SMOTE algorithm the

dataset remains balanced.

Evaluation Metrics

Using unbalanced dataset the accuracy, sensitivity, speci-
ficity, positive predicted accuracy (PPA) and negative pre-
dicted accuracy (NPA) are measured which predicts the
performance of the classification. Using random forest
with SMOTE and two feature reduction techniques the cer-
vical cancer prediction is performed. In the pre-processing
stage the unbalanced dataset with missing values and lack
of information are deleted. Apply SMOTE to balance the

Table 7 Cytology test (after SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 8 15 8 11

Accuracy 95.02 93.35 95.99 96.06 95.95

Sensitivity 93.25 90.00 93.66 92.84 96.52

Specificity 98.69 98.51 99.86 99.10 99.99

PPA 98.48 97.09 92.03 96.10 98.35

NPA 95.91 95.10 94.91 96.02 95.81

Table 8 Biopsy test (before SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 6 18 8 11

Accuracy 93.48 93.13 95.79 93.02 93.91

Sensitivity 3.7 3.7 1.34 5.6 3.71

Specificity 99.49 99.36 99.75 99.33 99.72

PPA 66.7 25.1 20.02 33.57 29.1

NPA 93.86 91.33 93.46 93.92 93.91

Table 9 Biopsy test (after SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 6 18 8 11

Accuracy 94.02 93.35 95.99 96.06 95.96

Sensitivity 98.25 94.00 93.66 92.84 96.51

Specificity 99.69 99.52 99.86 99.10 100

PPA 98.47 90.19 92.03 96.18 99.35

NPA 95.91 92.10 93.91 94.02 94.81

Table 6 Cytology test (before SMOTE)

% RF RF-RFE RF-PCA

Feature Number 30 8 15 8 11

Accuracy 94.58 93.49 95.17 94.62 94.93

Sensitivity 4.57 0 0 9.08 4.54

Specificity 99.66 98.36 99.26 99.03 99.52

PPA 40.0 0 0 36.37 33.32

NPA 95.14 94.83 94.86 95.28 95.06
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Table 10 Performance of Hinselmann test

Reference [16] Results (SVM) Proposed Models (SMOTE)

RF RF-RFE RF-PCA RF RF-RFE RF-PCA

Number of features 30 5 15 5 11 30 5 15 5 11

Accuracy 93.9 90.7 93.69 92.09 93.79 97.91 95.34 95.79 96.02 95.91

Sensitivity 100 100 100 100 100 96.64 96.53 96.66 2.84 96.52

Specificity 89.9 84.6 89.4 86.8 89.6 98.99 99.38 99.87 100 100

PPA 84.97 78.69 84.38 81.16 84.57 98.48 93.85 95.11 100 98.35

NPA 100 100 100 100 100 96.71 96.90 96.97 96.82 96.61

Table 11 Performance of Schiller
test Reference [16] Results (SVM) Proposed Models (SMOTE)

RF RF-RFE RF-PCA RF RF-RFE RF-PCA

Number of
features

30 7 18 6 12 30 7 18 6 12

Accuracy 90.18 90.08 90.18 89.49 90.18 95.02 93.35 95.99 96.06 95.95

Sensitivity 98.73 98.73 98.73 98.99 98.99 93.25 94.00 93.66 92.84 96.52

Specificity 84.63 84.46 84.63 83.14 84.3 98.69 99.51 99.86 97.10 99.99

PPA 80.75 80.58 80.75 79.31 80.45 98.48 90.09 92.03 96.10 98.35

NPA 99.03 99.03 99.03 99.21 99.22 95.91 95.10 93.91 93.02 92.81

Table 12 Performance of Biopsy
test Reference [16] Results (SVM) Proposed Models (SMOTE)

RF RF-RFE RF-PCA RF RF-RFE RF-PCA

Number of
features

30 8 15 8 11 30 8 15 8 11

Accuracy 92.75 90.65 92.37 91.98 92.46 95.02 93.35 95.99 96.06 95.95

Sensitivity 100 100 100 100 100 93.25 90.00 93.66 92.84 96.52

Specificity 87.92 84.42 87.28 86.65 87.44 98.69 98.51 99.86 99.10 99.99

PPA 83 79.1 82.26 81.54 82.44 98.48 97.09 92.03 96.10 98.35

NPA 100 100 100 100 100 95.91 95.10 94.91 96.02 95.81

Table 13 Performance of
Cytology test Reference [16] Results (SVM) Proposed Models (SMOTE)

RF RF-RFE RF-PCA RF RF-RFE RF-PCA

Number of
features

30 6 18 8 11 30 6 18 8 11

Accuracy 94.13 92.39 94.03 93.45 94.03 94.02 93.35 95.99 96.06 95.96

Sensitivity 100 100 100 100 100 98.25 94.00 93.66 92.84 96.51

Specificity 90.21 87.32 90.05 89.09 90.05 99.69 99.52 99.86 99.10 100

PPA 86.07 82.68 85.88 84.72 85.88 98.47 90.19 92.03 96.18 99.35
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unbalanced dataset. Apply the feature selection techniques
PCA and RFE which reduces the number of features and
decrease the processing time of the dataset. The second
phase signifies the classification phase in which training
is performed using random forest. The next phase empha-
sizes on 10-fold cross validation technique for validation

and testing purpose. The concluding phase of the model
compares the results with and without SMOTE algorithms
and the obtained result with methodology is applied in
ontology [37].

Accuracy ¼ TP= TP þ TN þ FP þ FNð Þ ð5Þ

Fig. 5 Hinselmann – Accuracy
(Before and after SMOTE)

Fig. 6 Hinselmann – Sensitivity
(Before and after SMOTE)

Fig. 7 Hinselmann – Specificity
(Before and after SMOTE)

286 Page 8 of 19 J Med Syst (2019) 43: 286



Sensitivity ¼ TP= TP þ FNð Þ ð6Þ

Specificity ¼ TN= TN þ TPð Þ ð7Þ

PPA ¼ TP= TP þ FPð Þ ð8Þ

NPA ¼ TN= TN þ FNð Þ ð9Þ

Simulation Experiment

The cost of misdiagnose of a cervical cancer case or vice
versa is high. The used dataset is unbalanced as the number

Fig. 8 Hinselmann – PPA
(Before and after SMOTE)

Fig. 9 Hinselmann – NPA
(Before and after SMOTE)

Fig. 10 Schiller – Accuracy
(Before and after SMOTE)
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of malignant records is fewer than the number of normal
records so SMOTE algorithm is used to balance the num-
ber of classes. In this section three RF-based approaches
were used to classify cervical cancer cases to identify the
patient and the non-patient ones. For validating our model
performance, 10-fold cross validations were used. The ex-
periments were done before and after SMOTE with and
without feature selection. Each experiment was executed
separately to ensure the highest accuracy and avoid classi-
fication mislead due to the nature of the dataset. The

experiments will be conferred in the imminent sections
with reference count as in Table 1.

Objective Variable: Hinselmann

In Hinselmann examination test, the RF before SMOTE
was achieved with total accuracy of 95.91% with 35 pa-
tient records and 823 non-patient records. After using
SMOTE algorithm RF achieved a total accuracy of
97.91% with number of patients 805 and non-patients

Fig. 11 Schiller – Sensitivity
(Before and after SMOTE)

Fig. 12 Schiller – Specificity
(Before and after SMOTE)

Fig. 13 Schiller – PPA (Before
and after SMOTE)
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823. SMOTE algorithm increased the accuracy ratio with
sensitivity ratio, PPA and as shown in Table 2 and Table 3.

Objective Varaible: Schiller

In Schiller examination test, the RF before SMOTE was
achieved with total accuracy of 91.48 with 35 patient records
and 823 non-patient records. After using SMOTE algorithm
RF achieved a total accuracy of 95.02% with number of pa-
tients 805 and non-patients 823. SMOTE algorithm increased

the accuracy ratio with sensitivity ratio, PPA and NPA as
shown in Table 4 and Table 5.

Objective Varaible: Cytology

In Cytology examination test, the RF before SMOTE was
achieved with total accuracy of 94.58% with 35 patient re-
cords and 823 non-patient records. After using SMOTE algo-
rithm RF achieved a total accuracy of 95.02% with number of
patients 805 and non-patients 823. SMOTE algorithm

Fig. 14 Schiller – NPA (Before
and after SMOTE)

Fig. 15 Cytology– Accuracy
(Before and after SMOTE)

Fig. 16 Cytology – Sensitivity
(Before and after SMOTE)

J Med Syst (2019) 43: 286 Page 11 of 19 286



increased the accuracy ratio with sensitivity ratio, PPA and
NPA as shown in Table 6 and Table 7.

Objective Varaible: Biopsy

In Biopsy examination test, the RF before SMOTE was
achieved with total accuracy of 93.48% with 35 patient re-
cords and 823 non-patient records. After using SMOTE algo-
rithm RF achieved a total accuracy of 94.02% with number of

patients 805 and non-patients 823. SMOTE algorithm in-
creased the accuracy ratio with sensitivity ratio, PPA and
NPA as shown in Table 8 and Table 9.

Analysis and Comparison

The results has proved the practice of Random Forest tech-
nique to categorize the biased dataset to get a better accuracy

Fig. 17 Hinselmann – NA
(Before and after SMOTE)

Fig. 18 Schiller – Accuracy
(Before and after SMOTE)

Fig. 19 Schiller – Sensitivity
(Before and after SMOTE)
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Fig. 21 Schiller – PPA (Before
and after SMOTE)

Fig. 22 Schiller – NPA (Before
and after SMOTE)

Fig. 23 Cytology– Accuracy
(Before and after SMOTE)

Fig. 20 Schiller – Specificity
(Before and after SMOTE)
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ratio in classifying cervical cancer data has been graphically
represented using Figs. 5,6,7,8,9,10,11,12,13,14,15,
16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32.

A comparative table using SVM and SMOTE has been
tabulated by using values given in reference 16. Accuracy,
sensitivity, specificity, PPA and NPA are the features

Fig. 24 Cytology – Sensitivity
(Before and after SMOTE)

Fig. 25 Cytology – Specificity
(Before and after SMOTE)

Fig. 26 Cytology – PPA (Before
and after SMOTE)
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Fig. 27 Cytology- NPA (Before
and after SMOTE)

Fig. 28 Biopsy– Accuracy
(Before and after SMOTE)

Fig. 29 Biopsy – Sensitivity
(Before and after SMOTE)

Fig. 30 Biopsy – Specificity
(Before and after SMOTE)
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calculated for 805 patients among 835 non-patients and given
using Tables 10, 11, 12 and 13.

Ontological Representation

Knowledge representation is ontology. Knowledge is in the
form of vocabulary of concepts which are explicitlydefined
with relationships amongst the concepts. Ontologies is also a

structured view of the domain with rich semanticmeaning.
Since the size and diversityof datasets semantically represened
is growing dramatically,the computational load have been in-
creased significantly.

A knowledge based graph on ontologytake an advantage of
exihibiting relevant information visually which helps us to effec-
tively and efficiently analyze the crucial need to find
computa t ion load wi thou t los ing any da ta . The
aforementionedrequirements and explanations stimulate us to

Fig. 31 Biopsy – PPA (Before
and after SMOTE)

Fig. 32 Biopsy- NPA (Before and after SMOTE)

Fig. 33 RSOnto ontological representation (Onto Graph)
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educate how to recognizeand proceed these inherent semantic
structures and hierarchies todetermine new perceptions and ele-
vate prevailing services.

Figure 33 represents the ontographical representation of
RSOnto which depict the relation amongst various classes.
Figure 34 illustrates the classes and sub-classes in RSOnto ontol-
ogy. Figure 35 and 36 illustrates the comparitive studywith SVM
and SMOTE. This ontology graphically represents the
comparitive study of Hinselmann, Schiller, Biopsy and

Cytology testsbeforeandafterSMOTE.Thestudyrelates the tests
using the objective variable.

RSOnto depicts the accuracy, sensitivity, specificity, PPA and
NPA for Hinselmann, Schiller, Biopsy and Cytology
comparitively before and after SMOTE proving the efficiency
of SMOTE. Figure 35 and Fig. 36 represents the graphical rep-
resentation of tests before and after SMOTE. This framework is
based on RDF/OWL which captures the dependencies amongst
low level domain and complex activities. This defines the tests

Fig. 34 RSOnto ontological representation (Classes and sub-classes)

Fig. 35 RSOnto (Classes and
sub-classes Before and after
SMOTE)
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to capture the knowledge for detecting complex activities. This
ontology-based semantic fusion aids as a baseline to recognize
events in a universal view where complete multimodal is
recorded.

Limitations

SMOTE is used only for 2 dimensional data here. When mov-
ing to higher dimensions smote is not very effective, since it
does not consider adjacent nodes which results in overlapping,
resulting in inaccuracy. In further study a higher version of
SMOTE can be implemented for higher dimensions.

Conclusion and Future Work

The services and systems, provided for cervical cancer requires
accurate and reliable considerations for the degree of expecta-
tion. Measuring the evaluation metrics of features is not much
easier, since they remain with various uncertainties. It is a dif-
ficult and ambiguous task. In order to balance the imbalanced
data set SMOTE is applied which is visualized using RSOnto
ontology which increases the quality of metrics.

We presented the brief evaluation of metrics which in fu-
ture work can be proved more efficient and accurate with
several algorithms and various case studies.
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