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Abstract
Due to the complex topological structure of the coronary artery and the uneven distribution of the contrast agent, the angiography
images are inevitably blurred and has low contrast, which causes great difficulty in process of segmentation. For this problem, a
two-steps segmentation algorithm based on Hessian matrix and level set is proposed in this paper. Firstly, potential blood vessels
of coronary images are preliminary extracted via Hessian matrix eigenvalues feature vectors of the geometric features and the
response function. Then a novel regularization and area constraint is introduced into the local data energy fitting functional.
Finally, the precision of Coronary Artery image is obtained in the evolution of the level set function. Experiments show that our
proposed algorithm has better performance to these comparison segmentation algorithms.

Keywords Coronary artery . Segmentation . Shape-prior constraint . Energy fitting . Two-steps segmentation . Level set . Active
contour model

Introduction

Coronary heart disease is a serious threat to human health
because of the high morbidity and mortality. It is one of the
leading cause of death in the world [1]. Coronary artery ste-
nosis or obstruction caused by atherosclerotic lesions is the
pathophysiological basis of coronary heart disease. Therefore,
the detection and quantification of coronary artery stenosis is
of great significance in the early diagnosis and risk assessment
of coronary heart disease [2].

In clinical practice, Conventional Coronary Angiography
(CCA) has always been the gold standard for evaluating cor-
onary heart disease [3]. CCA has high resolution and won’t
affected by the nature of plaque. The location, number and
severity of stenosis can be well evaluated through CCA,

where the segmentation of coronary angiogram images is the
key to do visualization and quantization to complicated vessel
data sets [4]. Accurate segmentation result not only can locate
the focus position accurately to assist doctors to diagnose and
treat coronary heart disease, but also is the basis to rebuild
three-dimensional coronary artery [5]. As the topological
structure of coronary artery is complex and the distribution
of contrast medium is non-uniform, which causes the angio-
gram image having problems as indistinction and low contrast
ratio inevitably, and creates huge difficulty to segmentation.

Scholars at home and abroad have done a lot of research on
coronary arteries segmentation, where more and more image
segmentation methods do not only use the gray-scale features
of the image, but also use the texture features, spatial features,
context features and other high-level features of the image [6].
Each pixel is represented by a feature space vector with mul-
tiple features, which can describe the image information more
comprehensively and obtain better segmentation results.
According to the modeling angle of segmentation model, the
related segmentation research work is divided into three kinds
of modes: global mode, local mode and hybrid mode. Global
pattern refers to adjusting the segmentation rules or parame-
ters in the global perspective so as to achieve the purpose of
accurate segmentation, such as threshold, edge detection,
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region growth, Gauss mixture model and so on. Such models
are not universal enough to adapt to the accurate segmentation
of complex images. Local pattern is a local data processing
model of image, which can achieve accurate segmentation of
target details, such as Snake, Active Shape Model (ASM) and
so on. Among them, the expression of active contour model is
simple and the calculation efficiency is high, especially suit-
able for modeling or extracting deformed contour of arbitrary
shape [7]. Active contour model has achieved good results in
image segmentation applications, and it is also a widely used
model in existing image segmentation applications [8]. Active
contour models can be divided into geometric active contour
models and parameter active contour models according to the
expression form of contour curves. Geometric active contour
model describes the curves by the idea of curve evolution and
the form of level set. Parametric active contour model curves
are composed of discrete points arranged regularly or de-
scribed as a continuous parametric form by some basis func-
tions, but it is sensitive to noise and can not deal with the
change of curve topology well [9]. In order to solve this prob-
lem, Turani et al. [10] created a vesselness function for seg-
mentation by analyzing the eigenvalues of Hessian matrix
with blob-like, tubular and plate-like structure under a certain
dimension, so the vessel in two-dimensional and three-
dimensional images can be strengthened so as to be conve-
nient for the segmentation of next step [11].

Taking into account the division of high precision and topol-
ogy adaptability advantages, the level set method has obtained
wide range of applications after it has been introduced into the
field of image segmentation. Level set method is a kind of
model-based segmentation methods in image segmentation in
recent years. Chan-Vese model is adopted for image processing
as its high precision and topology and good adaptability [12]. For
the model can not segment uneven gray images and the selection
of the initial contour has dependency, Cervantes-Sanchez et.al
[13] discusses an improved image segmentation model with a
fusion of fuzzy clustering, uses the information of fuzzy cluster-
ing to guide the selection of initial contour in Chan-Vese model.
Firstly, deal the CT data to gain clustering information and mem-
bership matrix using fuzzy clustering method; second, define the
initial contour of level set method using the clustering informa-
tion; last, extract the coronary artery using C-V model and com-
plete the image segmentation [14]. Zhang et al. [15] improve the
imperfection of vessel enhancement arithmetic based on Hessian
matrix, which includes that parameters in vesselness function are
difficult to set, vascular structure is extracted incompletely, and
especially the tiny structures many deficiencies and breakages,
but this method is too complicated. Yihui C et al. [16] proposed a
novel and effective Hessian-matrix-based segmentation method,
which firstly utilizes the relation of Hessian matrix eigenvalues
corresponding to tubular objects, creates a novel vesselness func-
tion to strengthen coronary artery, and leaves out the parameters
setting. Then combines the characteristics of maximum variance

between clusters, which are rapid, efficiency and powerful anti-
noise ablity, proceed thresholding to coronary artery image
strengthened, and gains the segmentation result.

There are often noises in CT coronary angiography images
and the background is extremely complex [17]. The pixels in
the image are non-homogeneous. The vascular structure and
gray distribution in different regions are also different. It is
difficult to capture the real information only by considering
the gray information or gradient information of the image. In
order to solve the above problems [18], a novel yet effective
segmentation algorithm is proposed in this paper. Firstly, the
contours of the region of interest of the cardiac CT image are
extracted using the improved FCM and CV model. Next, the
multi-scale gradient vector information is obtained from the
cardiac image data to construct the energy function with shape
priors and then the multi-scale vascular function based on the
Hessian matrix is used to perform the enhancement filtering
for the cardiac region of interest to obtain the vessel prior
shape information for constraining the energy function.
Finally, the boundary and regional energy functionals are
combined and the variational principle and level set method
are used to obtain the level set evolution equation suitable for
coronary vessel segmentation. Since the gradation of the
blood vessel image is uneven and the end region of the blood
vessel is tinier, our proposed algorithm is implemented to face
the blood vessel divided into a plurality of sub-regions, and
the contour is evolved within the narrowed range. Finally, the
effectiveness of the proposed algorithm is verified by a large
number of qualitative and quantitative analysis.

Related works

A geometric active contour model (GAC) model is a typical
representative of geometric active contour model based on
boundary [19]. It uses gradient information of image to con-
struct stopping function of evolution curve to guide contour
curve to approximate real target boundary [20]. By minimiz-
ing the following energy functional, GAC model minimizes
the closing curve with g(⋅) as the weighting coefficient at the
segmentation target, and the energy functional is:

EGAC ¼ ∫L Cð Þ
0 g j∇ C sð Þ½ �jð ÞdS ð1Þ

where L(C) represents the arc length of the closed contour
curve C(s) in the Eq. (1); ∇(I) is the gradient of image I; and
g(⋅) is the edge stopping function.

The level set evolution equation corresponding to the min-
imized Eq. (1) is:

∂ϕ
∂t

¼ g ∇Ið Þ div
∇ϕ
j∇ϕj

� �
þ v0

� �
þ ∇g⋅∇ϕ ð2Þ
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where v0 is a constant, whose function is to accelerate the rate
of curve contraction to the interior in the smoothness area of
the image; div is a divergence operator; g(⋅) is a decreasing
function of image gradient modulus ∇(I); and ∇g ⋅ ∇φ is an
additional term of Battraction factor^, which is used to correct
the motion of contour curve, and improve the model’s ability
to segment the boundary with dim edge. Generally, edge func-
tion g(⋅) can be defined as:

g ∇Ið Þ ¼ 1

1þ ∇Ij jp ; p ¼ 1; 2 ð3Þ

where ∇I = I ∗Gσ and Gσ are Gauss kernel function with var-
iance σ.

It can be seen from formula (3) that edge function g(∇I) is
an approximate image gradient from the single scale σ.
However, if the scale is too large, it will be difficult to separate
the two objects which are close to each other in scale space.
On the contrary, if the scale is too small, the existing large area
of image gradient are zero for the image with noise, which
makes the correction term of evolutionary curve be zero, thus
reducing the segmentation ability of the model for the bound-
ary and the image with noise. In addition, the geometric active
contour model has some disadvantages such as the high com-
plexity of the algorithm and its poor convergence to the weak
edges of medical images.

According to the analysis of Hessian matrix anisotropy
[21], eigenvalues and eigenvectors, this paper improves the
vascular response function, which uses the vascular response
function and threshold to get the rough segmentation image of
the blood vessel; and then this information is used to initialize
the level set function and construct the shape-priori term. It
overcomes the sensitivity of the level set model to initializa-
tion and the sensitivity of the regional energy fitting term to
noise. In addition, geometric operators are constructed by
using the area, width and height of the connected domain to
eliminate the artifacts between the focus for the result of level
set model segmentation and the small connected domain area.
And the final segmentation result of coronary artery is obtain-
ed [22].

Our improved two-steps coronary artery
segmentation

Analysis of geometric meaning of hessian matrix

First-order derivatives and second-order derivatives can de-
scribe local feature changes of objects, so they are often used
to construct energy-driven terms and feature-described terms
in numerical image processing based on partial differential
equations [23, 24]. For example, the direction indication func-
tion of edge terms in level set models can be constructed by

gradients containing first-order and second-order derivatives,
and the characteristics of linear and tubular objects can be
described by second-order derivatives.

Considering that the coronary artery image just presents a
tubular structure, the Hessian matrix constructed by the
second-order partial derivative is introduced. Because of the
noise and artifacts in numerical images, the original image and
the second-order partial derivative of the Gaussian function
with scale σ are convoluted to get the Hessian matrix. The
definition of the Hessian matrix is as follows [25, 26]:

H x; yð Þ ¼ IGrayS �
∂2Gσ x; yð Þ

∂y2
∂2Gσ x; yð Þ

∂x∂y
∂2Gσ x; yð Þ

∂y∂x
∂2Gσ x; yð Þ

∂y2

2
664

3
775 ð4Þ

Two-dimensional Hessian matrix is a real symmetric ma-
trix with two eigenvalues λ1 and λ2. Assuming that in the
vascular image, the eigenvector corresponding to λ1 repre-
sents the blood vessel trend, and the eigenvector correspond-
ing to λ2 represents the direction perpendicular to the blood
vessel trend. Then if∣λ1 ∣ < < ∣ λ2∣, that is, there is a point
(x, y) on the blood vessel, its curvature of the blood vessel
trend is much smaller than that the direction perpendicular to
the blood vessel trend. In the non-vascular background area,
because there is no obvious tubular structure, the feature value
of each point has ∣λ1 ∣ ≈ ∣ λ2∣. If ∣λ1 ∣ ≈ ∣ λ2 ∣ > > 0,
which means that there is obvious gray value change (noise
point or focus) between this point and the surrounding point; if
∣λ1 ∣ ≈ ∣ λ2 ∣ ≈ 0, it means that there is no obvious gray
value change between this point and the surrounding point.
It means that the blood vessel is brighter than the background
(convex) and that the blood vessel is darker than the back-
ground (concave).

Construction of vascular response function

According to Hessian matrix’s eigenvalue descriptions of dif-
ferent point (x, y) in the image, a descriptive operator can be
constructed to distinguish blood vessels from background.
Khan et al. [27] proposed using Ridgness score 1/Rβ = λ2/λ1
to describe blood vessels and using F norm of Hessian matrix
to remove the influence of background and weak signals. The
F norm of second-order Hessian matrix is defined as follows
[28, 29]:

S ¼ Hk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑2

i¼1λ
2
i

q
ð5Þ

Because the gray value of non-noise points in the back-
ground does not mutate in the two orthogonal trends and
λi ≈ 0, i = 1, 2, norm F and Rβ are smaller. Because ∣λ1 ∣ <
< ∣ λ2∣ and ∣λ2 ∣ > 0, norm F and Rβ are larger in the blood
vessel, the blood vessel and background can be successfully
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divided. But at the noise point ∣λ1 ∣ ≈ ∣ λ2 ∣ > > 0, Rβ is
still smaller, but norm F is larger, so it inevitably produces
wrong vascular response. In this paper, a new vascular de-
scription operator is constructed. It is defined as J,whose equa-
tion is written as follows,

J ¼ jλ1j−jλ2jð Þ2 jλ1j þ jλ2jð Þ2 ð6Þ
so when the point (x, y) is in the blood vessel, ∣λ1 ∣ <
< ∣ λ2∣, so J is larger; when the point (x, y) is in the noise
or background, ∣λ1 ∣ ≈ ∣ λ2∣, soJ is smaller.

Based on the above properties, this paper constructs the
vascular response function vσ(x, y) to distinguish the vessels
from the background, so as to preliminarily estimate the cor-
onary artery image. The definition of vσ(x, y) is written as
follows:

vσ x; yð Þ ¼
0; λ2 < 0

1−exp −
R2
β

2β2

 ! !
1−exp −

Jffiffiffiffiffiffiffiffiffiffi
Jmax

p
� �� �

; λ2≥0

8><
>: ð7Þ

Where, β is the size parameter, usually taking β = 0.5; σ is the
size of Gauss kernel function, Jmax is the maximum value of J.
In this way, formula (4) canmaximize the response of vascular
pixels, make the vascular response function vσ(x, y)→ 1, and
make the vascular response function vσ(x, y)→ 0 in the flat
area of non-vascular background, i.e. vσ(x, y) ∈ [0, 1]. This is
the difference between the corresponding function of blood
vessels in this paper and that in literature [8]. Therefore, it is
necessary to calculate the vascular response function vσ(x, y)
in multi-scale. Finally, the maximum response values at each
scale are defined as follows:

v x; yð Þ ¼ max
σmin ≤σ≤σmax

vσ x; yð Þ ð8Þ

where σmin and σmax are the smallest and largest sizes of inter-
ested vessels. Their purpose is to retain more edge information.
Somore vascular information can be included in the initialization
and less non-vascular structure can be included in the construc-
tion of shape constraints, so as to improve the anti-noise ability of
the model and the accuracy of vascular segmentation.

Coronary artery segmentation based on improved
level set model in combination with weighted
constraints

Using the results of coronary artery rough segmentation, we
can construct a level set model including regional energy fitting
terms, shape constraints, regularization terms, length penalty
terms and area constraints. Among them, regional energy
fitting term have the ability to fit local regional data, which
can overcome the problem of gray value intersection between
background and vessel, and ensure correct segmentation of the
adjacent vessels, crossing vessels and micrangiums; the shape

constraint terms and area constraints term can overcome the
noise sensitivity of the regional energy fitting terms; the regular
penalty terms can make the level set function regular in the
process of evolution and ensure that the level set function can
obtain accurate numerical solutions in the process of evolution;
and length penalty terms can make the segmentation contour
curve smooth. In this paper, we use the interaction of regional
energy fitting terms, shape constraints, regularization terms,
length penalty and area constraints to segment adjacent vessels,
crossing vessels and micrangiums correctly, and to overcome
noise interference. Its basic framework is described in Fig. 1.
The energy model is defined as follows:

E ϕ; f 1 f 2ð Þ ¼ ER ϕ; f 1 f 2ð Þ þ ηEs ϕð Þ þ μPR ϕð Þ
þ vLP ϕð Þ þ γAR ϕð Þ ð9Þ

where on the right side of formula (6) are respectively local
regional energy constraints, regularization maintenance of the
level set function, length penalty, and area constraints; γ, η, λ, v
are weight coefficient.

Fig. 1 Basic framework
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Local energy fitting

Two-level set model uses inside and outside functions fi(x), i =
1, 2 of the curve to fit the local regional gray value, and its
local ability is mainly limited by the Gaussian kernel function
kσ(x − y). With y as the center, when x is gradually away from
y, the smaller the weight of energy fitting representing x points
is. So it can overcome the problem of gray value intersection
between the blood vessel and the background, and guide the
segmentation curve to approximate the region of the blood
vessel edge. The regional energy fitting is defined as follows:

ER φ; f 1; f 2ð Þ

¼ ∑2
i¼1βi∫ ∫kσ x−yð Þ I xð Þ− f i xð Þj j2M ε

i φ yð Þð Þdy
� �

dx ð10Þ

where σ is the Gauss kernel size parameter; βi, i= 1, 2 is the
weight coefficient of the regional energy fitting; φ is the level set
function; Mε

i φð Þ; i ¼ 1; 2 is the regional function, representing
the internal and external of the curve. Take M ε

i φð Þ ¼ Hε φð Þ,
M ε

2 φð Þ ¼ 1−Hε φð Þ, whereHε(φ) is theHeaviside functionwith
regularity and its derivative is the Dirac function δε(φ).

Hε ϕð Þ ¼ 0:5 1þ 2

π
arctan

ϕ
ε

� �� �
ð11Þ

δε ϕð Þ ¼ ε

π ε2 þ ϕ2
� � ð12Þ

where ε is size parameter, generally it is set to ε = 1.

Shape-prior constraint

Coronary artery segmentation based on region energy fitting
ER(φ, f1, f2) is sensitive to noise, and it is easy to mistakenly
divide some non-vessel noise areas into vessels, resulting in
loss of accuracy. In order to overcome the shortcomings of
region energy fitting, the shape constraints of vessels are con-
structed by obtaining binary images. Firstly, the following
level set function is initialized according to binary vessel im-
ages; then, GAC model or RSF model are used to control the
evolution of contour curve C, and symbolic distance function
is obtained at Time t to represent the shape of blood vessel.

In the level set segmentation model, the contour curve C
evolves toward the target edge by minimizing the energy ex-
pression. Therefore, ϕ(x, t) can be used to represent the prior
shape of blood vessels, and the energy functional expression
Es(ϕ) for level set functions φ and ϕ(x, t) can be constructed.
The energy expression Es(ϕ) of shape constraint is defined as:

Es φð Þ ¼ ∫Ω Hε φð Þ−Hε ϕð Þj j2dx ð13Þ

In the process of minimizing energy functional, when
the contour curve of coronary artery segmentation devi-
ates from the shape constraint prior, it will be punished.

The bigger the deviation distance is, the bigger the pen-
alty is, so as to overcome the sensitivity of region en-
ergy fitting to noise.

Level set function φ must always have regularity in the
process of evolution. This regularity requires that the level
set function should not be too flat or too steep to ensure the
stable evolution of the level set function, so as to control the
contour curve C to approximate the edge of the target gradu-
ally and obtain accurate numerical solutions. Therefore, this
paper introduces the level set regularization PR(φ) in literature
[2], which is defined as follows:

PR ϕð Þ ¼ 1

2
∫Ω j∇ϕj−1ð Þ2dx ð14Þ

In the process of energy minimization, in order to make the
contour curve C as short and smooth as possible and to elim-
inate the local minimum problem caused by noise and focus in
the image, the length penalty LP(φ) of the contour curve C
should be added to the energy expression, which is defined as
follows:

LP ϕð Þ ¼ ∫Ωj∇Hε ϕð Þjdx ð15Þ

In order to overcome the mistaken segmentation caused by
noise and focus in vascular images, we construct a weighted
area constraint which fuses the edge gradient information of
blood vessel, it is defined as follows:

AR ϕð Þ ¼ ∫Ωg 1−Hε ϕð Þð Þdx ð16Þ
where g = 1/(1 + |∇G × IRea|

2) is non-negative monotone de-
creasing function and G is Gauss function. According to the
definition of formula (16), the area constraint has a larger
penalty in the non-vascular background area with g = 1, while
the constraint area only gets a smaller penalty in the vicinity of
the blood vessel with g→ 0.

Experiment results

In order to analyze the segmentation performance of our
proposed algorithm, a dual-source CT coronary image
are used for segmentation experiments. 8 groups of real
clinical cardiac CT sequences in the experiment are pro-
vided by West China Hospital. The acquisition instru-
ment is Siemens SOMATOM dual-source CT cardiac
scanner, which has the extremely prominent superiority
in the heart image formation and may demonstrate the
more heart structure detail. The image pixel size is
0.50~0.92 mm, the thickness is 0.625~1.00 mm, the
spatial resolution is 0.33~0.33 mm, and the scanning
layers is 220~522. The selected software platform in
this paper is the Matlab 2013 under Windows. The
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hardware configuration: CPU is Intel Core i5, and mem-
ory is 16GB; GPU is Titan X,

Parameter settings

The following parameters can be set to the same value in
process of the experiment: iteration step τ = 0.1, evolu-
tion constant v0 = 1, energy-based penalty coefficient γ =
1; Area Constraint Coefficient γ = 3.5; Length Penalty
Coefficient β = 7, Regularization Coefficient u = 1;
Gauss Kernel parameter σ = 3with the size [9, 9] and
λ1 = λ2 = 1. The the upper and lower threshold α,
β ∈ (0, 1) of the blood vessel area information function
Pvessel is set according to the degree of blurring degree,
noise, and size in the blood vessel image. In general,
when the background image is clear and the vascular
structure is obvious, the value of the similarity function
obtained by our proposed coarse coronary segmentation
more uniform (the values corresponding to the intra-
vascular pixel points almost approach 1, while the values
outside the blood vessels are close to 0), a larger fraction
(such as 0.98) can be taken. The weight coefficient of
the boundary term and the shape-prior item is determined
according to factors such as the feature and quality of the
segmented image. Because the curve evolution guided by
the shape-priori is often more efficient than the curve
controlled by the gradient information, especially when
there is interference such as noise in the image. In most
cases, α ≥ β and the α should be greater than 0.5. in
most instances, the larger α can make the active contour
model insensitive to the position of the initialization
curve. The reason is that the shape-prior energy function
is used in two levels segmentation model to obtain the
coronary artery position, which can produce a shape
force, which makes the evolution curve is fixed around
the coronary artery, and finally the true contour of the
coronary artery structure is approximated by the gradient
term energy function.

Performance indexes

In order to facilitate quantitative analysis of performance be-
tween comparison algorithms, three evaluation metrics are
adopted in experiment, namely Dice coefficient, sensitivity
and precision. The Dice similarity index is a measure of region
overlap defined by:

Dicei ¼ 2� jGTi∩Segj
jGTij þ jSegj ð17Þ

where GTi is the ground truth region marked by the
expert i and Seg is the automatically segmented region.
Obviously, Dice is always between 0 and 1, with higher

values indicating better automatic segmentation perfor-
mance. Precision is the rate of true-positives to the total
number of positives. It is expressed by the following
formula:

ACC ¼ TP þ TN
TP þ FP þ FN þ TN

ð18Þ

where TP, TN, FP and FN are indicated as the number
of true positive, true negative, false positive and false
negative, respectively.

Sensitivity measures the proportion of ground truth posi-
tives which are correctly identified as such. It is deined as
follows,

SENS ¼ TP
TP þ FN

ð19Þ

For each quantitative metric, statistical analysis is done so
as to understand whether the means are actually different or
the difference between empiric means may be due to chance.

Comparison of experimental results

The comparison algorithms used in this paper are HS [14],
SEMT [18], DRLSE [19] and Sparse_SM. Figure 2 firstly
shows the results of coronary artery image segmentation.
Figure 2a is the original image, Fig. 2b, c, d and e are the
results of different algorithms, where Fig. 2b is the rough
estimation of coronary artery image by corresponding
Hessian matrix and response function, and the image is
denoised by using threshold 0.005 and morphological op-
erator respectively; Fig. 2c further uses the segmentation
results of DRLSE model proposed in reference [18]; Fig.
2d is the segmentation result of the SEMT algorithm,
which directly improves the histogram threshold of the cor-
onary image and adaptively segment the blood vessel area;
Fig. 2e is based on the sparse feature segmentation method,
where the sparse Dictionary of the blood vessel area is used
to automatically learn the blood vessel features, and the
precise segmentation is realized by SVM; Fig. 2f is a
two-stage segmentation algorithm combined with prior in-
formation proposed in this paper. From the results of Fig.
2, we can see that threshold and morphological are difficult
to eliminate the non-vascular noise in the image, and seri-
ously deplete the real blood vessel segmentation precision
and can not get the real blood vessel edge. The segmented
blood vessel image has a large number of breaks in the
small blood vessel, i.e. discontinuous, and it is difficult to
solve the problem of adjacent blood vessels connecting
when the Hessian matrix and response function preliminar-
ily estimate the blood vessel. The DRLSE in Fig. 2c can
remove image noise well and ensure the continuity of the
small vessels to a certain extent, but it is not enough to
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segment the small vessels. According to Fig. 2 d and e, we
can see that although the sparse feature can segment large
arterial regions, it is not good for the segmentation of small
regions, mainly because of the error caused by sparse ap-
proximation, and the dictionary atom has insufficient ability
to fit small targets. Figure 2f is the result of our proposed

algorithm in this paper. This method can not only remove
the non-vascular noise in the image, but also successfully
solve the problem of blood vessel image connection caused
by the adjacent vessels too close, and the continuity of the
small vessels. The segmentation curve can be close to the
real blood vessel edge. In the pre-process, we used rough

(a)                   (b)              (c)             (d)

(e)               (f)                 (g)                  (h)

Fig. 2 Performance comparison of different algorithms on Left coronary artery; a original image; bHS; c SEMT; dDRLSE; e Sparse_SM; fMulti-scale
Hessian; g our proposed algorithm; h manual benchmark

Fig. 3 Performance comparison of different algorithms on Right coronary artery; a original image; b HS; c SEMT; d DRLSE; e Sparse_SM; f Multi-
scale Hessian; g our proposed algorithm; h Manual benchmark
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segmentation to enhance the images, but found that it had
lots of miss-judgment. Then, two-step segmentation pro-
posed in this paper is adopted eventually, whose result
approximate the benchmark results from expert manual seg-
mentation. Therefore, our proposed method has great ad-
vantages in coronary artery segmentation.

Figure 3 shows performance comparison of different algo-
rithms on Right coronary artery. Compared with the results of
manual segmentation, the experimental results of SEMT and
DRLSE can extract the coronary structure, but there are many
problems. The edge of the blood vessel segmented by the
SEMT algorithm is relatively fuzzy, and there is serious edge
leakage at the subtle vascular structure and small blood vessel
loss. The result obtained by the DRLSE algorithm is relatively
complete, but there is a lot of noise. By comparing the local
details of the segmentation results, we can find that the coro-
nary structure obtained by the DRLSE algorithm has many
fractures in the lower contrast region and the micro vessels,
while the coronary artery extracted by the SEMT algorithm
guarantees continuity, but there are a large number of speckle
noise. Sparse_SM and Multi-scale Hessian also have incom-
plete small-area segmentation and mis-segmentation. In con-
trast, the coronary vessels extracted by the algorithm are more
complete and continuous, and can be successfully detected for
coronary end, small vessel branches and blood vessels in low
contrast areas, and the background noise is effectively
suppressed.

Figure 4a is the original image; Fig. 4b is the results of the
proposed rough algorithm, but our algorithm without Priori
information in the energy function require 150 iterations to
obtain satisfactory segmentation results so as to eliminate
non-vascular noise. Figure 3c is the fine segmentation result
for our segmentation algorithm with shape constraints, where
only 60 iterations are needed to obtain satisfactory results; Fig.
3d is the manual benchmark from imaging specialists. It
should also be pointed out that the weight factor of length
penalty is α=16 so as to eliminate non-vessel noise as much
as possible and to make the segmentation curve as close as
possible to the real benchmark, while the weight factor of
length penalty is α=7 in the case of shape constraint. If the
weight coefficient of the shape penalty term is too large, the
segmentation curve will be too rigid, it will be difficult to
smooth, and it will be difficult to approach the real coronary
edge in some complex region. It can be seen that adding shape
constraints can not only greatly reduce the time cost of seg-
mentation, but also make the segmentation curve more close
to the real edge.

According to the rules of coronary artery image extraction,
the higher the sensitivity, accuracy, specificity, accuracy and
the lower the false positive rate, the better the feasibility of the
segmentation algorithm. Table 1 shows that DRLSE algorithm
is better than SEMT algorithm, but our propsoed algorithm is
better than DRLSE algorithm. Compared with DRLSE, the
sensitivity, accuracy, specificity and accuracy of the proposed
algorithm are 3.97%, 0.98%, 0.06%, 0.57% and 0.06% re-
spectively, while the false positive rate is 0.06%. Sensitivity
is the correct recognition of vascular pixels, and the sensitivity
should be as high as possible. This shows that the proposed
algorithm has strong feasibility in vascular segmentation of
coronary image.

Conclusion

The segmentation of coronary angiogram images is the
key to do visualization and quantization to complicated

Fig. 4 Segmentation Results for different step; a original image; b Rough segmentation; c; Fine segmentation; d Manual benchmark

Table 1 Quantitative results for different comparison algorithms

Algorithms Sensitivity Specificity Accuracy

HS 0.70131 0.97621 0.93428

SEMT 0.73275 0.97011 0.94229

DRLSE 0.73860 0.98325 0.93181

Sparse_SM 0.75128 0.98799 0.95385

Multi-scale Hessian 0.76081 0.98012 0.95801

Proposed 0.77105 0.98.929 0.96284
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vessel data sets. Accurate segmentation result not only
can locate the focus position accurately to assist doctors
to diagnose coronary heart disease, but also is the basis
to rebuild three-dimensional coronary artery. As the to-
pological structure of coronary artery is complex and the
distribution of contrast medium is non-uniform, which
causes the angiogram image having problems as in-
distinction and low contrast ratio inevitably, and creates
huge difficulty to segmentation. For this problem, a two-
steps segmentation algorithm based on Hessian matrix
and level set is proposed in this paper. Firstly, potential
blood vessels of coronary images are preliminary extract-
ed via Hessian matrix eigenvalues feature vectors of the
geometric features and the response function. Then a
new regularization and area constraint is introduced into
the local data energy fitting functional. Finally, the pre-
cision of Coronary Artery image is obtained in the evo-
lution of the level set function. Experiments show that
our proposed algorithm has better performance to these
comparison segmentation algorithms. In future, we will
integrate the proposed model into the ultrasound equip-
ment so as to provide accurate diagnostic results in real
time.
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